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Abstract

Second-order statistics play an important role in data modeling. Nowadays, there is a tendency toward measuring
more signals with higher resolution (e.g., high-resolution video), causing a rapid increase of dimensionality of the
measured samples, while the number of samples remains more or less the same. As a result the eigenvalue estimates
are significantly biased as described by the Marčenko Pastur equation for the limit of both the number of samples and
their dimensionality going to infinity. By introducing a smoothness factor, we show that the Marčenko Pastur
equation can be used in practical situations where both the number of samples and their dimensionality remain finite.
Based on this result we derive methods, one already known and one new to our knowledge, to estimate the sample
eigenvalues when the population eigenvalues are known. However, usually the sample eigenvalues are known and
the population eigenvalues are required. We therefore applied one of the these methods in a feedback loop, resulting
in an eigenvalue bias correction method.
We compare this eigenvalue correction method with the state-of-the-art methods and show that our method
outperforms other methods particularly in real-life situations often encountered in biometrics: underdetermined
configurations, high-dimensional configurations, and configurations where the eigenvalues are exponentially
distributed.

1 Introduction
In data modeling, in order to give ameaningful interpreta-
tion of input samples, a description of the data generating
process is needed. Often little is known about this pro-
cess beforehand and the description consisting of a model
and its parameters has to be derived from a set of exam-
ples, called the training set. Since the number of samples
is usually limited in this training set, a model is cho-
sen beforehand: The generation of this set is modeled as
drawing samples from a random process P (x), where the
distribution of this random process is approximated by a
multivariate normal distributionN (μ,�).
There are two reasons for modeling the distribution

withN (μ,�). Firstly, a normal distribution has the high-
est entropy for a given variance. Therefore, according to
the principle of maximum entropy, the normal distribu-
tion is the best choice if no further information about the
distribution is available [1]. Secondly, for a multivariate
normal distribution, only the second-order statistics have
to be determined. the estimates of higher-order statistics
in high-dimensional data can be highly distorted as shown
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in [2], but, as we will show, even the estimation of the
second-order statistics may be severely distorted.
As mentioned before, the parameters of the distribution

N (μ,�), the populationmean and population covariance
matrix, are usually unknown and have to be estimated
from the training samples. For the mean, the sample
mean,

μ̂ = 1
N

N∑
k=1

xk , (1)

and for the covariance matrix, the sample covariance
matrix,

�̂ = 1
N − 1

N∑
k=1

(
xk − μ̂

) · (
xk − μ̂

)T , (2)

are often used as estimates. Here N is the number of sam-
ples in the training set, where each sample is a column
vector with p elements, denoted by xk .
It is known that the sample distributionN

(
μ̂, �̂

)
is not

a good estimate of the population distribution N (μ,�)

([3] or see for example our demonstration in [4]), because
even though the elements of the sample covariance matrix
are unbiased estimates of the elements of the population
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covariance matrix, the eigenvalues of the sample covari-
ance matrix, the sample eigenvalues L = {lk|k = 1 . . . p},
are biased estimates of the eigenvalues of the population
covariance matrix which are the population eigenvalues
� = {λk |k = 1 . . . p}. In [5] it has even been suggested
to abandon the estimation of �̂ altogether. In classical
(LSA), sample eigenvalues seem unbiased because it is
assumed that the number of samples is large enough to
fully determine the statistics of the sample covariance
matrix.
However, many applications evolve in such a way that

the dimensionality of the sample space increases as fast
as or even faster than the number of samples in train-
ing sets. For example, in face recognition, the resolution
of face images has increased considerably because high-
resolution devices have become available at modest costs,
and the dimensionality of the sample space is related to
the image resolution. The number of training samples
depends on the number of test subjects available and the
effort that can be put in collecting the data. As a result,
in one of the databases with the largest number of sub-
jects, the FRGC2 database [6] has images of approximately
500 individuals, while the feature vectors can easily reach
a dimensionality of 10,000.
If the dimensionality is in the same order or even higher

than the number of samples, (LSA) no longer gives accu-
rate predictions of the statistics of the estimators. In
(GSA) the dimensionality of the samples is also consid-
ered and is therefore more applicable than (LSA) as will be
discussed in Section 2.1.
Building on the work of many as is described in [7] using

(GSA), a relation between the sample eigenvalues and
population eigenvalues was determined for a narrow set of
sample distributions in[8], the Marčenko Pastur equation.
In [9] it was shown that this relation holds for a large set
of distributions. Based on this relation in case of large p
and N, a correction of the sample eigenvalues is possible
which leads to a more accurate estimate of the population
eigenvalues. The basic idea is shown in Figure 1.
In Figure 1 the first part models how the sample eigen-

values are obtained. In the model, the data-generating
process generates samples for a training set X by drawing

samples from a normal distribution with a set eigenval-
ues �, the population eigenvalues. From the training set a
sample covariance matrix �̂ is estimated. The decompo-
sition of the matrix results in sample eigenvalues L. This
process can be modeled as a function B (�) = L. Bias
correction can then be interpreted as applying an esti-
mate of the inverse of B to the sample eigenvalues, which
results in �̂

c, the estimate of the population eigenvalues
after correction.
One aspect of analyzing eigenvalue estimation with

(GSA) is that eigenvalue estimation is considered in the
limit that the dimensionality of the samples becomes
infinitely large. Therefore, instead of considering the
eigenvalue set, an eigenvalue distribution description is
used as explained in Section 2.1. The Marčenko Pastur
equation in fact does not give a relation between the
sample eigenvalues and the population eigenvalues, but
between the corresponding distributions in the (GSA)
limit.
Of course, in practice, the dimensionality of the sam-

ples and the number of samples are not infinite, and the
Marčenko Pastur equation cannot be used directly to cor-
rect the bias in the sample eigenvalues. However, as we
will show in Section 2.4, by applying a smoothing oper-
ation to both the population distribution estimate and
the sample eigenvalue distribution estimate, the relation
between the two smoothed distributions is still accurately
described by the Marčenko Pastur relation.
Because the Marčenko Pastur equation does relate the

two smoothed distributions, we could develop two meth-
ods in Section 2.5, a polynomial method and a fixed point
method, which both give a smoothed estimate of the sam-
ple eigenvalue density given a set of population eigenval-
ues. But in practice, bias correction is often desired, which
equals to estimating the population eigenvalues corre-
sponding to a set of sample eigenvalues. In Section 2.6 we
derive two methods that can estimate a set of population
eigenvalues given a set of sample eigenvalues. The fixed
point bias correction method uses the fixed point sample
eigenvalue density estimator, which shows that population
eigenvalue to sample eigenvalue estimators do have their
application.

Figure 1 Schematic overview of bias introduction and bias correction in eigenvalue estimation.
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In Section 3 we present several experiments. First we
illustrate the effectiveness of the two sample eigenvalue
density estimationmethods:We show that the polynomial
method makes good estimates of the sample eigenvalue
densities if the number of population eigenvalue clusters
is low, but fails if that number increases. Second we also
show that the number of required iterations of the fixed
point method increases if we decrease the smoothness of
the estimation.
We then compare the fixed point bias correction

method with a state-of-the-art bias correction method by
Kaorui [7] and a bootstrap bias correctionmethod we pre-
sented in [10]. The fixed point method performs well in
all experiments and excels in two real-life examples we
often encountered in biometrics. In Section 4 we present
conclusions based on these experiments.

2 Bias of the sample eigenvalues
2.1 Large sample analysis of eigenvalue bias
Bias is a statistic of an estimator and in order to find
the statistics of estimators, often the classical (LSA) is
performed. In (LSA) the statistics of an estimator are
determined for the limit N → ∞, where N is the num-
ber of samples. With (LSA), the sample eigenvalues seem
to be unbiased. However, in many applications N is of the
same order as the dimensionality of the sample space, p
and (LSA), which provides inaccurate statistics.

2.2 General statistical analysis of eigenvalue bias
In (GSA) [11] the limitN , p → ∞ while p

N → γ is consid-
ered, where γ is some positive constant. Applying (GSA)
to eigenvalue estimation does show a bias in the estimates.
In the following example we demonstrate the situation

under consideration in (GSA). In the example we mea-
sured the sample eigenvalues of synthetic data, with the
population eigenvalues uniformly distributed between 1
and 3. To show that the (GSA) limit ‘if p → ∞’ is rele-
vant we set p to 6, 20, and 100, while keeping γ = 1

3 , so
N = 18, 60, and 300, respectively. From the population
eigenvalue sets and the measured sample eigenvalue sets,
we determined the empirical eigenvalue distribution func-
tion, which is given by Equation 3 for an eigenvalue set{
xk| k = 1 . . . p

}
:

Fp (x) = 1
p

p∑
k=1

u (x − xk) , (3)

where u(x) is the unit step function.
In Figure 2 we show both the empirical population

eigenvalue distribution Hp and four empirical sample
eigenvalue distributions Gp for the different settings of p.
If p is low, large variations in the Gps occur and the bias is
only a small component in the estimation error. However,
if p increases, the Gps converge to a fixed distribution,

which is different from Hp. This difference is due to the
bias in the eigenvalue estimates.
In [8] an equation was given, which describes the rela-

tion between the sample eigenvalue distributions and the
population eigenvalue distribution. Originally this rela-
tion, here after referred to as the (MP) equation, was
proved for a very limited set of data distributions, but
based on the work of many others as described in [7] and
in [9], it was shown that the same relation holds for a
much larger set. The (MP) equation requires the Stieltjes
transform of the empirical sample eigenvalue distribution,
which is given by

mGp (z) =
∫ dGp (l)

l − z
, for z ∈ C

+. (4)

Assuming zero mean data, modeled by a random p by n
matrix x in [7], the (MP) equation is given using vGp(z),
the Stieltjes transform corresponding to the spectrum of
x∗x/n. vGp(z) is related to mGp(z), which is the Stieltjes
transform of xx∗/n, via

vGp (z) =
(
1 − p

n

) −1
z

+ p
n
mGp (z). (5)

As is discussed in [9] both transforms could be used, as
the two spectra only differ in (n − p) zero-valued eigen-
values. It is argued that the form with vGp(z) makes the
study of analytical properties more simple. Notation wise,
this form also results in more compact expressions. Note
that with finite sample analysis, which will be discussed in
the next section, this choice of representation is not that
arbitrary and depends on whether n > p.
We now quote Theorem 1 from [7], which gives the

(MP) equation and the conditions under which it holds:
Theorem 1. Suppose the data matrix X can be written
X = Y�

1
2
p , where �p is a p×p positive definite matrix

and Y is an n×pmatrix whose entries are independent and
identically distributed (real or complex), with E

(
Yi.j

) = 0,
E

(∣∣Yi,j∣∣2
)

= 1 and E
(∣∣Yi,j∣∣4

)
< ∞.

Call Hp the population spectral distribution, i.e. the dis-
tribution that puts mass 1/p at each of the eigenvalues
of the population covariance matrix, �p. Assume that Hp
converges weakly to a limit denoted H∞ (we write this con-
vergence Hp ⇒ H∞). Then, when p, n → ∞ and p/n →
γ , γ ∈ (0,∞),

1. vGp → v∞(z), A.s., where v∞(z) is a deterministic
function

2. v∞(z) Satisfies the equation

− 1
v∞(z)

= z − γ

∫
λdH∞ (λ)

1 + λv∞ (z)
,∀z ∈ C

+

(6)

3. The previous equation has one and only one solution
which is the Stieltjes transform of a measure.
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Figure 2 Examples of eigenvalue estimation bias toward the GSA limit. The dashed line indicates the population distribution Hp , the four solid
lines are the empirical sample distributions of Gp .

Equation 6, the (MP) equation, fully characterizes the
sample eigenvalue distribution G∞ if the population
eigenvalue distribution is known. However, the question
at hand is to derive a method that reduces the bias in the
sample eigenvalues, that is, rewrite Equation 6 in the form
� = B−1(L).

2.3 Finite sample analysis of eigenvalue distribution
Both (LSA) and (GSA) apply limit analysis to find a rela-
tion between the population eigenvalue set and the sample
eigenvalue sets. However, for several data distributions,
results are available for the eigenvalue distribution for
the limited N and p case. For classes of random com-
plex Gaussian vectors, the distributions of the eigenvalues
of the covariance matrices have been found, and these
results are applied in for example wireless communica-
tion. A review of much of the work on this topic is given
in [12]. Based on the work in that field, in [13], the joint
(CDF) of the eigenvalues of complex Wishart (for the case
n > p) and pseudo-Wishart (n ≤ p) random matrices,
where the common covariance matrix are found, can take
the form of an arbitrary full-rank Hermitian matrix.
These results rely on the assumption that the data can

be modeled as proper complex Gaussian random vec-
tors (Section II in [14]), which is not the case if the
data have only a real component. Indeed, the results on
the distribution of the eigenvalues of Wishart matrices
of real data derived in [15] and [16] differ consider-
ably, suggesting that in the finite N case, the bias in the
sample eigenvalues depends on whether the data is real or
complex.
In comparison to the (GSA) analysis, the finite sample

analysis have strong requirements on the distribution of
the data. Verifying the distribution of the data seems to

become harder as the dimensionality increases (see for
the discussion on Gaussianity in [2]), therefore increasing
the risk of using the wrong distribution assumption.
On the other hand, the rate of convergence to the
results of the (GSA) analysis is still an active research
topic (Section 3.2 in [3]), although some results sug-
gest some error measures decrease by an order of N− 1

4 .
Nonetheless, the question of when to switch from the
finite sample analysis to the (GSA) limit is still an open
question.
In our experiments with the Muirhead eigenvalue cor-

rection [16], we found that for a dimensionality in the
order of a few 100, the correction already had significant
distortions, and strong modifications to the correction
method had to be made [17]. We therefore continue to use
the (GSA) analysis and derive methods from those results.

2.4 Smooth eigenvalue estimation
The Marčenko Pastur equation describes the relation
between the sample eigenvalue distribution and the
population eigenvalue distribution in the (GSA) limit,
but in practice both N and p are finite. However we
assume that the global characteristics already converge
for lower values of N and p, and higher values of
N and p are only required if very local details have
to be considered. To support this assumption we con-
sider the curves in Figure 2 again. The empirical dis-
tribution function is always staircase shaped as shown
in 2a, with at most p jumps of at least height 1

p , so
that the curve can only contain local details if p is
large enough. For an exact definition of local detail,
see Appendix 4.
Based on the assumption of convergence of global

characteristics for lower p and N values, we show that
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by varying the imaginary value of z, we can control the
influence of local details and global characteristics in
Equations 6 and 4.We will use this result later on to derive
algorithms which can be used in practical situations.
First we introduce the inverse Stieltjes transform:

g(x) = 1
π
lim
y↓0 
 {

mG (x + ıy)
}
. (7)

In order to find the sample eigenvalue density given
the population eigenvalue distribution, Equation 6 has to
be solved with 
 {z} ↓ 0. However, as long as we use
empirical distributions, setting 
 {z} = 0 will lead to sev-
eral problems. For example, the Stieltjes transform of the
empirical sample eigenvalue distribution will become infi-
nite at the sample eigenvalues and real valued anywhere
else. If, on the other hand, we solve Equation 6 with 
 {z}
with some fixed positive constant y, we find the empiri-
cal sample eigenvalue density convolved with the Cauchy
kernel 1

π

[
y

x2+y2

]
, as noted in [3].

The factor y therefore seems to have a smoothing effect:
local details are filtered out. But this is not limited to
the resulting density; setting y as non-zero has a sim-
ilar effect on the Marčenko Pastur equation. Consider
the integrands in both the integral of the Stieltjes trans-
form (Equation 4) and the integral in theMarčenko Pastur
equation (Equation 6). Both arguments can be rewritten
to the form

b (r) = 1
r − ıq

, (8)

where r is a real variable and q is a real constant. For exam-
ple, if we set r = l − � {z} and q = 
 {z} we have the
argument of the integral in Equation 4. The function in
equation 8 is a generalized circle, a specific kind ofMöbius
transform [18], which in this case describes a circle in
the complex plane with a center ı 1

2q and radius 1
2q (see

Figure 3).
The result of the integrals in Equations 4 and 6 is deter-

mined by the mapping of the distribution function along
this circle. In case q is small, only a small part of the
real axis is mapped to other positions than the infinity
points. If any probability mass is repositioned, it will still
be mapped to the infinity points and so the change will
have little effect on the result of the integral, unless the
change is in the neighborhood around r = 0. So for small
q, the results of the integrals are only sensitive to a small
part of the density function.
If on the other hand q is large, much more of the

real axis is mapped to other positions than the infinity
points. In that case changes of position of density in a
large neighborhood around r = 0 have an effect on the
result of the integral. In the extreme cases, for q ↓ 0, the
integration result is determined by one point on the dis-
tribution curve, which gives an explanation of the limit in

−1/(2q) 0 1/(2q)

0

1/(2q)

1/q

↑
r = 

← r = −q

r = 0
↓

← r = q

Re{b(r)}
Im

{b
(r

)}

b(r)

Figure 3 The integration arguments used as mapping functions
describe a circle in the complex plain with diameter 1

q .Where
each point p is mapped depends on the value of q: if q is small, most
points will be mapped in the neighborhood of r = ±∞, if q is large
more points will be mapped away from r = ±∞.

the inverse Stieltjes transform. If q → ∞, the results are
solely determined by the means of the distributions. An
exact proof of these claims is given in Appendix 1.
Because of this mapping the result of the integral is

bounded by the circle (see the proof in Appendix 2), which
is a more strict property than the well-known condition

 {mG(z)} ≤ 1/
{z} [19]. This limit is used for choosing a
starting point in the fixed point algorithm in Section 2.5.2,
and the limit is also used as an upper bound of the min-
imal value of 
(z) for which the fixed point algorithm
converges Appendix 3).
The observation about the sensitivity of the integral

results for variations of the distributions is used in the fol-
lowing sections where we first derive an algorithm to find
a smoothed estimate of the sample eigenvalues if the pop-
ulation eigenvalues are known.We then use this algorithm
in a feedback algorithm to find an estimate of the pop-
ulation eigenvalues given that the sample eigenvalues are
known.

2.5 From population eigenvalues to sample eigenvalues
In the previous section we showed that by setting 
{z}
low or high, we can control how much effect local details
of the distributions have on the Stieltjes transform of the
empirical sample eigenvalue density and consequently in
the (MP) equation. This means we can approximate the
distributions with the empirical distributions if we set
{z}
high enough.
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If we substitute the empirical population distribution
function Hp(λ) = 1

p
∑p

k=1 u (λ − λm) and v̂p(z) for
the population distribution and v∞(z) respectively in
Equation 6, we get the following equation:

−1
v̂p (z)

= z − 1
N

p∑
k=1

λk
1 + λkv̂p (z)

. (9)

To find the corresponding sample eigenvalue density
ĝ(l), v̂p(z) has to be solved from Equation 9. We present
two solutions: a polynomial method and a fixed point
method.

2.5.1 Polynomial method
In this section we will derive and analyze a polynomial
method, which was already found by Rao and Edelman
[20]. Their derivation has a solid embedding in random
matrix theory, but it is less focussed on the application we
discuss in this article.
We derive the polynomial method by rewriting

Equation 9 to a polynomial expression bymultiplying both
sides of the equation with v̂p(z)

∏p
k=1

(
1 + λkv̂p(z)

)
. The

new expression can be rewritten to an expression of the
form 0 = ∏p+1

k=0 ckv̂
k
p(z), which then can be solved using

standard polynomial solving tools.
A problem with this method is that if the number

of eigenvalues increases, the order of the polynomial
increases and the roots of the higher order polynomial
become numerically unstable. As observed in the experi-
ments, the polynomial solution becomes unreliable above
10 eigenvalues. The advantage of the method is that it can
solve Equation 9 for arbitrarily small 
 {z} values, even 0.
The numerical issues with root finding is a well-known

problem. Wilkinson, for example, demonstrated it in [21].
One approach to mitigate the numerical dependency on
the coefficients of the polynoom is to use a basis dif-
ferent from the monomial basis. This has been demon-
strated successfully in polynomial approximation by using
Lagrange polynomials in [22]. As the outcomes are lim-
ited by a circle as described in Section 2.4, maybe a similar
approach as used in the Lindsey-Fox method [23] could
be used. However, this large field of study is beyond the
scope of this paper, so we do not go further into this
subject.

2.5.2 Fixed point method
A second method to solve Equation 9 is by using a fixed
point method. The fixed point method is based on rewrit-
ing Equation 9 to

A = z + 1
N
A

p∑
k=1

λk
λk − A

(10)

where A = − 1
v̂p(z) . If we replace the A on the left hand

side by An and the As on the right hand side by An−1, we

get an equation similar to the general form of a fixed point
method in [24]:

An = FP (An−1) . (11)

Our hypothesis is that Equation 10 is indeed a fixed
point algorithm, where An converges to a fixed point if the
output of iteration n An is repeatedly used as input again
in iteration n + 1. In Appendix 4 we prove the conver-
gence for a minimal value of 
{z}; but we observed that if
we set 
{z} below this value, we still get a good approx-
imation; however, the number of iterations required
increases.
Since the solution should be within the limit circle, as

described in Section 2.4, we use the center of that circle
as a starting point. Furthermore, it was pointed out to us
that a considerable speedup can be achieved if (part of )
the evaluation of Equation 10 for all evaluation points can
be done using the (FMM) method [25,26]. The summa-
tion can be rewritten to the form of Equation (5.1) in [27]
by choosing ck = −λk , ϕ(x) = 1/x, x = A, and xk = λk .
Using the (FMM) method, the evaluation of one of the
iteration could potentially be sped up from O(mp), with
m the number of evaluation points, toO (m + p).
The result of both the polynomial method and the fixed

point method is an estimate of the Stieltjes transform
of the sample eigenvalue distribution. But in general the
sample eigenvalues are required. Using the inverse Stielt-
jes transform (Equation 7), the sample eigenvalue density
can be found, but it is convoluted with the Cauchy den-
sity, since the chosen values of z have an imaginary value
larger than 0. Finding the sample eigenvalue density by
deconvolution is hard since the estimate should have zero
density for negative values and it should be nonnegative
everywhere. Furthermore, the Cauchy density has an infi-
nite variance, and the convolved density is only known on
fixed positions (�{z}).
A schematic representation of the developed methods is

given in Figure 4. On the left, the population eigenvalues
� are used as input. On these eigenvalues each algorithm
applies an estimate of the bias introducing function F,
after which the convolution with the Cauchy kernel occurs

Figure 4 Sample eigenvalue density estimation based on
population eigenvalues.
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(S). The result is an estimate of the sample eigenvalue
density convolved with the Cauchy kernel ˆg(l).
Although the methods do not give an estimate of the

sample eigenvalues themselves, they can still be useful.
One application is to use them to test whether the can-
didate population eigenvalue sets match with the mea-
sured sample eigenvalues. First the sample eigenvalue
density corresponding to this candidate population eigen-
value set is estimated. If this estimated sample eigen-
value density does not match the empirical density of
the measured sample eigenvalues, the candidate popu-
lation eigenvalue set is probably not a good candidate.
One particular candidate could be the measured sample
eigenvalues themselves. If they do not match, then the
measured sample eigenvalues are probably considerably
biased estimates of the original population eigenvalues
as well.

2.6 Sample eigenvalues to population eigenvalues
Although methods for determining the sample eigenval-
ues if the population eigenvalues are known do have
applications (see the example in the previous section),
methods that can often determine the population eigen-
values belonging to a set of sample eigenvalues are desired.
There already exist several methods designed to per-
form this action (see [7,10]), where the method developed
by Karoui can be considered the state-of-the-art at the
moment. The method is based on the (MP) equation as
well, but it lacked the explanation of how to deal with
finite p and N. Moreover, it also estimates the population
distribution instead of a set of eigenvalues, making it less
suited for a number of practical problems.
Some of these problems are encountered in biomet-

rics, where the distribution of the sample eigenvalues
suggests that there are a few significant eigenvalues and
the remainder form some bulk. If individual eigenval-
ues are of importance, then the distribution descrip-
tion used in the Karoui method is less suited, as is
also shown in the experimental results presented in
Section 3.
We therefore designed two new methods based on the

theory and methods presented in the previous sections.
Particularly, the second method has several advantages
over the existing methods. Firstly, it estimates the pop-
ulation eigenvalues directly instead of a density esti-
mate and secondly, as will be shown in the experiments,
the method performs better for a number of practical
situations.

2.6.1 Direct density estimation solution
The first method is based on the Stieltjes transform of
the population eigenvalue distribution. If we are able
to determine this transform, then the population eigen-
value density can be found using the inverse transform.

The (MP) equation can be rewritten to give this Stieltjes
transform:

− (1 − γ ) v∞ (z) + z v2∞(z)
γ

=
∫ dH∞(λ)

λ − −1
v∞ (z)

=mH∞

( −1
v∞(z)

)
.

(12)

If we now substitute z̃ for −1
v∞(z) , we get the following

expression for the Stieltjes transform of the population
eigenvalue distribution:

mH∞
(
z̃
) = (1 − γ ) z̃ − v−1 (−z̃−1)

z̃2γ
(13)

where v−1(c) is the function which solves z from c =
v∞(z).
The reason for choosing z̃ as a parameter and determin-

ing the corresponding z instead of choosing z and calcu-
lating the corresponding z̃ is twofold: Firstly, in Section 2.4
it was noted that if the inverse transform is applied with
an argument with a non-zero imaginary part, a density
is determined which is a convolution of the original den-
sity with the Cauchy kernel. The width of the convolution
kernel is determined by 
 {

z̃
}
. Secondly, the point at

which this density is determined is controlled by � {
z̃
}
.

If z is chosen as variable, both parameters are difficult to
control.
There are four major problems with implementing this

method. First of all, the evaluation of Equation 13 requires
an implementation of v−1(c), which is not straightforward.
Secondly, the method suffers from numerical instabilities
which are hard to predict in advance. The method also
requires deconvolution and combined with the numerical
instabilities, this can easily lead to large errors. The last
problem of the method is that it finds an eigenvalue den-
sity description instead of a set of eigenvalues. Because of
these problems, we do not use the method any further.

2.6.2 Feedback correction
In Section 2.5 we derived two algorithms that can esti-
mate a sample eigenvalue density convolved with a Cauchy
density corresponding to a set of population eigenval-
ues. In this section we derive a feedback method which
uses the methods from Section 2.5 to correct population
eigenvalue estimates.
The global idea (schematically represented in Figure 5)

is as follows: The algorithm starts with an initial estimate
of the population eigenvalues (�̂c

n with n = 1). The sample
eigenvalues corresponding to these population eigenval-
ues (L̂n) are estimated and compared to the measured
sample eigenvalues (L). If both sets are not very similar,
the estimate of the population eigenvalues is updated and
the steps are repeated.
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Figure 5 Schematic representation of a feedback correction. In
each iteration the sample eigenvalues corresponding to the current
estimate of the population eigenvalues are calculated. The estimate
of the population eigenvalues is updated by comparing these sample
eigenvalues with the measured eigenvalues.

But as noted in Section 2.5, we do not actually estimate
the sample eigenvalues, but the convoluted sample eigen-
value density ĝy(l). We therefore convolve the empirical
distribution of the measured sample eigenvalue set with
the Cauchy density, resulting in gy(l), and compare these
two densities.
In order to derive a feedback algorithm which always

converges, the best solution is to compare the distribu-
tion functions instead of density functions. However, this
requires numerical integration of ĝy(l) which results in a
large amplification of the errors in the tails of the density.
Besides using densities instead of the distributions, the
influence of the tail errors can be reduced even more, by
considering the Kullback Leibler divergence as a measure
of similarity between ĝy(l) and gy(l) as

dKL
(
ĝy, gy

) =
∫

ĝy (l) log
ĝy (l)
gy (l)

dl (14)

where we use the natural logarithm for log.
Due to numerical integration problems, the negative

parts of the integral can be over estimated, resulting in a
negative cost value. We therefore squared the logarithm
resulting in the following cost function:

K
(
gy, ĝy

) =
∫

ĝy (l) log2
ĝy (l)
gy (l)

dl. (15)

This is still a valid cost function: it is still 0 if and only if
gy(l) = ĝy(l) and larger than 0 for any mismatch in distri-
butions. Furthermore, the focus on the tails is still reduced
since lima↓0 a log2 a

b = 0. Note also that we chose gy(l) as
denominator since it is never zero for y > 0, because the
Cauchy convolution kernel is never zero if y > 0.
If the cost function exceeds a preset threshold, the pop-

ulation eigenvalue estimates need to be adjusted. We use
descending gradient to find a better estimate. To do the
adjustments we need to find an expression for the gradient

∂K
∂λ

(
gy, ĝy

)
. We first relate the gradient ∂K

∂λ

(
gy, ĝy

)
to ∂ ĝy(l)

∂λ

via

∂K
∂λ

(
gy, ĝy

) =
∫

log
( ĝy(l)
gy(l)

) (
log

( ĝy(l)
gy(l)

)
+ 2

)
∂ ĝy(l)
∂λ

dl.

(16)

Each of the elements of this gradient ∂ ĝy(l)
∂λ

can be related
to ∂

∂λm
A (l + ıy)

∂ ĝy (l)
∂λm

= 1
πγ



{
A−2 (l + ıy)

∂

∂λm
A (l + ıy)

}

(17)

where

∂A
∂λm

=
− 1

n

(
A

λm−A

)2
(
1 − γ − 2

n
∑p

k=1
A

λk−A − 1
n

∑p
k=1

(
A

λk−A

)2) .

(18)

The feedback correction thus created is represented
schematically in Figure 6. A clear advantage of this algo-
rithm is that the end result is not a density description
but a set of population eigenvalues. Another advantage is
that the smoothness factor is incorporated without need-
ing to deconvolute the output. The last advantage is that
the correction corrects all zero-valued sample eigenvalues
to the same value, which is a good property as explained
in Section 2.7.

2.6.3 Maintaining order among eigenvalues
For most of the methods presented in the previous
sections, it is necessary that the eigenvalues are sorted in
order of value and that they keep this order during updat-
ing. If the order is not maintained, one of the problems
that may occur is oscillation: λ̃k may switch places with
λ̃k+1 in one iteration and switch back to the next iteration.
Other eigenvalue correction methods had the same prob-
lem. Therefore, Stein presented an algorithm to ensure
order preservation during eigenvalue updating [28]. We
used an isotonic tree algorithm for this purpose, described

Figure 6 Extended schematic representation of our
implementation of feedback correction. Instead of comparing
sample eigenvalues, smoothed sample eigenvalue densities are
compared.
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in [10], which has several advantages over the algorithm
of Stein.

2.7 Correction of the null space
A problem in eigenvalue correction occurs in underdeter-
mined cases, which are characterized by N being smaller
than p. In this case the data matrix has a zero space and
p − N + 1 sample eigenvalues are necessarily zero, so the
correction tries to estimate p population eigenvalues from
N − 1 non-zero sample eigenvalues.
A related effect of underdetermination is that the sam-

ple eigenvectors in the null space form a random orthog-
onal basis. Without additional information, correction of
the zero-valued sample eigenvalues with varying values
results in randomness in the correction. This suggests that
for correction all zero-valued sample eigenvalues should
be given an equal value.
A more theoretically sound argument for such a cor-

rection is based on the maximum entropy theorem (see
[1]). The maximum entropy method states that if there
are multiple solutions to a problem and all available infor-
mation has been used to narrow the selection, the best
solution is the one with the highest entropy. The entropy
of a multivariate normal distributed random variable is
given by

1
2
ln

{
(2πe)p |�|} . (19)

This entropy is maximized if the determinant is maxi-
mized, which is the product of the eigenvalues. With the
constraint that the sum of the eigenvalues remains con-
stant, the maximum of the product is achieved when all
eigenvalues are equal. This is thus the maximum entropy
solution.

3 Experimental validation
In the following sections we present three experiments: In
the first experiment we illustrate some of the character-
istics of the population eigenvalue to sample eigenvalue
methods. In the second experiment we compare the per-
formance of the fixed point eigenvalue correction method
with an implementation we made of a state-of-the-art
correction method by Karoui and a bootstrap correction
method. In the third experiment we apply the correction
method in a verification experiment, with a configuration
often encountered in face recognition: a high number of
samples with high dimensionality, where the number of
samples is smaller than the dimensionality of the samples.

3.1 Population to sample eigenvalue results
In Section 2.5 we derived two algorithms to find the
sample eigenvalue distribution given a set of population
eigenvalues: a polynomial algorithm (Section 2.5.1) and

a fixed point algorithm (Section 2.5.2). We noted two
characteristics of the methods: the polynomial algorithm
will have problems if the number of eigenvalue clusters
increases, and the fixed point method will require more
iterations before convergence occurs if the smoothness
factor is decreased.
To demonstrate these characteristics we estimated the

sample eigenvalue densities in three different settings:
First we estimate the sample eigenvalue density of belong-
ing to a population eigenvalue set with half of the eigen-
values equal to 1 and the other half equal to 2, with
the ratio between the dimensionality of the samples
and the number of samples equal to 0.01 and with a
smoothness factor y (Equation 7) of 0.01 as well. In the
second experiment we lower the smoothness factor to
10−5. In the third experiment we set the smoothness
factor back to 0.01, but the population eigenvalue set
is divided in 20 clusters uniformly distributed between
0.1 and 2.
A reference density is obtained as follows: First a syn-

thetic data set is generated with the same parameters as in
the experiments described. Then the sample eigenvalues
of synthetic data are calculated. The corresponding empir-
ical density function is then convolved with a Cauchy
kernel with the same width as the smoothness factor.
Figure 7a shows the estimates of the sample eigen-

value distribution for the first setting. All three estimates
are very alike, only the reference estimate shows some
local variations due to the use of a limited number of
samples.
Figure 7b shows that when the smoothness factor

is decreased, the fixed point algorithm has not con-
verged on all positions if the number of iterations is
kept the same. After increasing the number of iter-
ations, the fixed point algorithm converged on all
points again (not shown). Note that the reference dis-
tribution is still convolved with a Cauchy kernel of
width 0.01 so variations due to local details are kept
small.
If the number of eigenvalue clusters is increased, the

roots of the polynomial method become unstable and the
estimation fails as shown in Figure 7c. The fixed point
method is still accurate.

3.2 Sample to population eigenvalue results
As noted earlier, the more common problem is how to
get from the measured sample eigenvalues an estimate
of the population eigenvalues. Two methods to solve this
problem were described in Section 2.6: a direct estimation
method and a fixed point feedback loop method.
3.2.1 Direct estimation results
Some tests on the direct estimation method
(Section 2.6.1) showed that the method has several imple-
mentation flaws. A major flaw is that it results in an
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(a) Sample eigenvalue distributions resulting from 2
population eigenvalue clusters.
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(c) Sample eigenvalue distributions with 20 popula-
tion eigenvalue clusters.

Figure 7 Sample eigenvalue density predictions based on population eigenvalues. (a) Sample eigenvalue distributions resulting from two
population eigenvalue clusters. (b) Sample eigenvalue distributions with very low smoothing factor resulting from two population eigenvalue
clusters. (c) Sample eigenvalue distributions with 20 population eigenvalue clusters.

estimate of the population eigenvalue density convolved
with the Cauchy kernel instead of the population eigen-
values. Because the Cauchy kernel has infinite variance,
this poses the problem that the spread in population
eigenvalues keeps increasing with an increasing number
of eigenvalues. The smaller eigenvalues eventually even
end up with values below zero. Because of this flaw, we
did no further experiments.

3.2.2 Fixed point correction results
The second method is based on using the fixed point
algorithm in Section 2.5.2 in a feedback loop as
described in Section 2.6.2. In [10] we compared an
eigenvalue correction method based on bootstrapping
with our implementation of the method developed
by Karoui. In the next experiment we repeat the
comparison but we also include the iterative feedback
algorithm.
The experimental set-up is as follows: Synthetic data

is generated by drawing N samples from N (0,D), a p-
variate normal distribution with zero mean and with
diagonal matrix D as covariance matrix. From the data

the sample eigenvalues are determined and afterwards
these sample eigenvalues are corrected with the three
correction methods.
An accuracy score is assigned to each correction result

bymeasuring the Levy distance between the empirical dis-
tributions of the sample eigenvalues and the population
eigenvalues and dividing this distance by the Levy distance
between the empirical distributions of the corrections and
the population eigenvalues:

score = dL (H ,G)

dL
(
H , Ĥ

) (20)

where the Levy distance dL between distributions F andG
is given by

dL (F ,G) = inf {ε ≥ 0 : F (x − ε) − ε ≤
G (x) ≤ F (x + ε) + ε,∀ x} . (21)

After repeating these experiments a number of times, a
histogram per correction method can be determined.



Hendrikse and et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:117 Page 11 of 16
http://asp.eurasipjournals.com/content/2013/1/117

We used the Levy distance to make the experiments
comparable with the experiments in [7]. But, as we
showed in [10], the levy distance has several disadvan-
tages, one being that the distance measure is not scale
independent.
We tested six different parameter settings. In the first

five only the distribution of the population eigenvalues
vary. We keep the number of dimensions p fixed at 100
and the number of samples N fixed at 500. In the last
experiment, we changed N to 201 and p to 600. The
settings for the population eigenvalues are given in Table 1
Experiments 1, 2, and 4 are repetitions of the experi-

ments done by Karoui. We added experiment 5 because
a 100 over f model is a common model for eigenvalues
estimated from facial data (see [29-31] ), even though
its limiting distribution is 0 for the (GSA) limit. Another
characteristic of facial data is that these are underdeter-
mined. The performance of the correction methods under
such conditions is measured by experiment 6. To com-
pare these performances with the performance if there
are more samples than dimensions, experiment 3 is intro-
duced.
Figure 8 gives the densities derived from the histograms

of the accuracy scores, where the best method is the
method that has most of its density on the right. In the
identity experiment the fixed point does a reasonable job
although Karoui quite frequently has better scores. In the
two cluster case, Karoui is only slightly better. In the slope
configuration, fixed point outperforms Karoui, but then
the bootstrap method has significantly better results. In
the Toeplitz case, fixed point is only slightly better than
Karoui, but again the bootstrap method outperforms both
methods.
So in the experiment set-ups by Karoui, the fixed point

correction does not excel, but it always performs rea-
sonably. However, in the last two experiments which are
based on real-life settings, the results are different: in both
the 100 over f configuration and the underdetermined

Table 1 The population eigenvalues per experiment

Experiment � Description

1 λk = 1 Identity

2
λk = 1|k = 1 . . . 50

2 Cluster
λk = 2|k = 51 . . . 100

3 λk = 1 + k/100 Slope

4 Eigenvalues of Toeplitz matrix Toeplitz

5 λk = 100/k 100 over f

6 λk = 1 + k/600 Underdetermined slope

The first column indicates in which experiment the eigenvalue set is used. The
second column describes the eigenvalues in the set. The last column gives the
name used in the text to indicate the set.

slope configuration, the fixed point method outperforms
both methods clearly.
In Figure 9 we show an example repetition of the under-

determined slope experiment. Figure 9a gives the scree
plots of the population eigenvalue estimates, showing sig-
nificant differences between estimates, and none of the
estimates matches closely with the real population eigen-
values. We estimated the sample eigenvalues belonging
to population eigenvalue estimates and show them in
Figure 9b. Despite the differences in population eigenval-
ues, the sample eigenvalues seem almost identical. This
suggest that the configuration is underdetermined: mul-
tiple population eigenvalue sets lead to the same sample
eigenvalue set. This hypothesis is further supported by
Appendix 4, which shows that if the dimensionality of the
samples continues to increase, in the limitation that only
the mean of the population eigenvalues influences the
sample eigenvalue distribution, all other characteristics
are lost.
Furthermore, our implementation of the Karoui cor-

rection shows that several population eigenvalues are
estimated as zero valued. This becomes problematic if
the training results are used, for example, for likelihood
estimates.

3.3 Correction applied in verification experiments
As indicated in the previous section, bias correction can
be used to improve likelihood estimates. In biometrics, a
common approach to make automated verification deci-
sions (that is, reject or accept the claim that a person
has a certain identity based on a comparison of some
measured characteristics with a template) is to model
both the variations between samples coming from differ-
ent persons and the variations between samples coming
from the same person with normal distributions. The
parameters of these distributions are estimated from a
set of examples, the training set. For many biometric
modalities the number of samples available for train-
ing is in the same order as the dimensionality of these
samples.
To show that bias reduction can, at least in theory,

improve verification performance, we did a verification
experiment with synthetic data, where the parameters of
the distributions from which the synthetic samples are
drawn have been set to the estimates obtained from facial
image data. The dimensionality p of the facial data sam-
ples and the synthetic data is 8,762. The training set
contained 7,047 samples of 400 individuals.
Note that both our implementation of Karoui’s method

and the bootstrap method cannot be used. Karoui cannot
be used because the system is underdetermined (N < p),
and as shown in the previous experiments, Karoui results
often in zero-valued eigenvalues. The evaluation of the
likelihood functions requires the inverse of the covariance
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Figure 8 Performance histograms of several correction methods. Histograms of the Levy distance ratio between the sample eigenvalue
distribution and the estimates of the population eigenvalue distributions.

matrix, which cannot be done if some of the eigenvalues
are zero.
The bootstrap algorithm requires usually at least 25

iterations to converge, which results in a run time of
several days for the values of p and N in the experi-
mental system. This run time is unacceptable in most
applications.
In verification there are two kinds of claims: genuine

claims, where the claimed identity is indeed the real
identity of the person, and impostor claims, where the
claimed identity is not the real identity of the person. In
our experiment we calculated for each claim a log like-
lihood ratio score, which is the logarithm of the ratio
of the likelihood score that the claim is genuine over
the likelihood that the claim is an impostor claim. In
Figure 10 we show the score histograms achieved by
applying classical principal component analysis (PCA)
dimension reduction as bias correction (Figure 10a) and
by applying the fixed point algorithm (Figure 10b) as bias
correction.

The results show that the classical PCA reduction
method will already result in highly separable likelihood
scores (Figure 10a); the distance between the two clus-
ters has increased considerably when using the fixed point
eigenvalue correction (Figure 10b).
We also attempted to do correction in an experiment

with real face data. However, we found that correction
actually decreases the verification performance. This can
be explained with the error in the data model we use as we
reported in [31]. The smaller eigenvalues are particularly
affected by the modeling error. Since eigenvalue correc-
tion will increase these smaller eigenvalues, it can explain
why the performance actually decreases.

4 Conclusions
We presented a study of estimating population eigenval-
ues in the case that we have a large, but not infinite,
number of samples and a large, but not infinite, number
of dimensions. In such problems, the sample eigenvalues
are biased. The MP equation only describes the relation
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Figure 9 Example of a repetition with the underdetermined slope configuration. (a) Population eigenvalue scree plot. (b) Sample eigenvalue
scree plot.

between the sample eigenvalue distribution and the sam-
ple eigenvalue distribution for the cases that both the
number of samples and their dimensionality are infinite,
so using the (MP) equation to remove the bias in practical
problems is not straightforward.
To solve this problem, we showed that by setting 
{z}

either small or large in the (MP) equation, we can focus
more on local details or global characteristics of the
involved eigenvalue distributions, where we assumed that
global characteristics converge for much lower p and N
values, and p and N only have to close to infinite if we are
interested at very local characteristics. From these obser-
vations we derived methods, one of which is new to our
knowledge, for estimating the sample eigenvalue density
for a given set of population eigenvalues. The most impor-
tant application of these methods is in a feedback algo-
rithm which estimates the population eigenvalues from
sample eigenvalues.
In the feedback algorithm, the value of 
{z} deter-

mines how the estimated sample eigenvalue density and

the empirical distribution of the measured sample eigen-
values are smoothed before they are compared. Increas-
ing 
{z} when both p and N are limited reduces the
influence of statistical noise in the correction at the
price of loosing details of the population eigenvalue
density.
We showed that the feedback algorithm particularly

outperforms other methods in the underdetermined con-
figurations and configurations where individual eigenval-
ues are of importance, such as the set described by a 1 over
f distribution, which is often encountered in biometrics.
In a verification experiment, application of the feedback
method results in a large increase of the distance between
impostor and genuine scores. The difference between the
synthetic scores of the classical PCA method and the
scores achieved using real data suggests that the bias in
the sample eigenvalues is not the only problem in face
data though. Eigenvalue correction can actually increase
the effect of modeling errors and therefore result in a
decreased performance.
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Figure 10 Histograms of the log likelihood ratio scores measured in the synthetic facial data verification experiment. (a) Classical PCA
dimension reduction. (b) Fixed point population correction.
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If the distribution of the data is (approximately) known,
finite sample size eigenvalue distributions have been
determined for several data distributions. These solution
can take advantage of details lost in the limit analy-
sis used for deriving the (MP) equation. The transition
point when one approach outperforms the other is at this
time difficult to determine, partially because convergence
behavior is still a topic of study for the (MP) equation. A
disadvantage for distribution-specific approaches is that
unless prior knowledge is available, the data distribution
should be tested. For some of these tests it has already
been shown that their accuracy is negatively affected by
increased dimensionality of the data. In previous stud-
ies we already saw that for large dimensionality, (GSA)-
based methods outperformed a data distribution-specific
method. How the relation is with other distribution spe-
cific methods is however still an open question.

Appendix 1
Proof influence of parts of the distribution on the Stieltjes
transform
In this section we prove that the Stieltjes transform at z is
influenced mostly by changes in the density close to �{z}.
Assume we are going to move a part of the density of G(l)
around position l1 with weight β . We assume the part we
move to be small enough so G(l) can be written as G(l) =
(1 − β) G̃(l) + βu (l − l1). The Stieltjes transform mG(z)
can be written as

mG (z) =
∫ dG (l)

l − z
(22)

=
∫ 1

l − z
d

(
(1 − β) G̃ (l) + βu (l − l1)

)
(23)

= (1 − β)mG̃ (z) + β
1

l1 − z
. (24)

The derivative of mG(z) with respect to l1, normalized
for β is then given by

dmG (z)
dl1

= − 1
(l1 − z)2

. (25)

Its absolute value is maximum when l1 = �{z}. If we
normalize

∣∣∣dmG(z)
dl1

∣∣∣ with its maximum value, we get

(
1

(
{z})2
)−1 ∣∣∣∣dmG (z)

dl1

∣∣∣∣ = 1(
l1−�{z}


{z}
)2 + 1

, (26)

so the norm of the derivative is a function which has a
maximum at �{z} = l1 and its width is proportional
to 
{z}.

The sample eigenvalue density is solely determined by
the imaginary part of the Stieltjes transform (Equation 7).
The width of the function of the imaginary part of
the derivative is also proportional to 
{z}, although its
extrema are not exactly at �{z} = l1:



{
1
β

dmG(z)
dl1

}
= −2
 {z} (l1 − � {z})(

(l1 − � {z})2 + (
 {z})2)2 (27)

= (
 {z})−2 −2 t(
t2 + 1

)2 (28)

where t = l1−�{z}

{z} .

Appendix 2
Proof result integration along circle stays within circle
Note that the integrals in Equations 4 and 6 can be rewrit-
ten to the form∫ dF (a(r))

r − ıq
(29)

where r is a real variable, q is a real constant, F is a dis-
tribution function and a is a function R → R. We now
prove that the result of the integrals stays within the circle
described by (r − ıq)−1, by showing that the norm of the
result minus the center of the circle can never exceed the
radius of the circle.∣∣∣∣

∫ dF (a(r))
r − ıq

− ı

2q

∣∣∣∣
=

∣∣∣∣
∫ 1

2q
(cosϕ (r) + ı (sinϕ (r) + 1)) dF (a(r)) − ı

2q

∣∣∣∣
(30)

= 1
2q

∣∣∣∣
∫

(cosϕ (r) + ı sinϕ (r)) dF (a(r))
∣∣∣∣ (31)

≤ 1
2q

∫
|cosϕ (r) + ı sinϕ (r)| dF (a(r)) (32)

= 1
2q

(33)

where (r − ıq)−1 = ı
2q (cosϕ(r) + ı (sinϕ(r) + 1)).

Appendix 3
Proof fixed point in fixed point solution
In this section we prove that the function in Equation 10
has a fixed point. According to the Banach fixed point
theorem, we need to show that d(An+1 − Bn+1) ≤ q ·
d(An −Bn) holds for any two points A and B, where q < 1
[24]. We begin by evaluating the norm of the difference
between both points of iteration n + 1:

|An+1 − Bn+1| =
∣∣∣∣∣γ

K∑
k=1

λk · ak
(

An
An + λk

− Bn
Bn + λk

)∣∣∣∣∣
(34)



Hendrikse and et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:117 Page 15 of 16
http://asp.eurasipjournals.com/content/2013/1/117

= γ |An − Bn|
∣∣∣∣∣
K∑

k=1

akλ2k
(An + λk) (Bn + λk)

∣∣∣∣∣
(35)

From this we can derive an expression for the ratio
which should be between 0 and 1 according to the
theorem

|An+1 − Bn+1|
|An − Bn| = γ

∣∣∣∣∣
K∑

k=1
ak

λk
An + λk

· λk
Bn + λk

∣∣∣∣∣ (36)

≤ γ

K∑
k=1

ak
∣∣∣∣ λk
An + λk

∣∣∣∣
∣∣∣∣ λk
Bn + λk

∣∣∣∣ (37)

≤ γ max
∣∣∣∣ λk
An + λk

∣∣∣∣max
∣∣∣∣ λk
Bn + λk

∣∣∣∣ .
(38)

Note that the minimum norm of An is determined by
1

max|v∞(z)| = 
{z}, so the minimum norm of An is equal
to the smoothness factor. Therefore, setting the smooth-
ness factor arbitrarily large will result in an arbitrarily low
ratio of Equation 36, guaranteeing convergence after some
threshold in the value of the smoothness factor.
A minimum value of the smoothness factor can be

derived after which convergence is guaranteed. Assume
that 0 < γ < 1. Then if both maximums in Equation 38
get close to 1, the ratio of Equation 36 becomes smaller
than 1.
We will focus on the first ratio, since the argument on

the second ratio is similar. Given |λ + An| > λ, the ratio(
max

∣∣∣ λ
λ+An

∣∣∣) is smaller than 1, therefore convergence
is guaranteed. Setting the smoothness factor larger than
2λmax, where 2λmax = max λk , will result in a minimum
norm of An of 2λmax. This results in a ratio lower than 1,
guaranteeing convergence of the algorithm. There is even
a lower setting for the smoothness factor since An attains
its minimum norm when it is purely imaginary. In that
case, the norm has an upper limit of 1√

5 .

Appendix 4
Underdetermination in high-dimensional problems
In the experiments we suggest that if the number of
samples N is below the dimensionality of the samples
p, the correction of the sample eigenvalues is an under-
determined problem. In the following section we prove
that if γ → ∞, all characteristics of the population
eigenvalue distribution are lost except for its mean, show-
ing that in that limit the sample eigenvalue correction
is indeed a severely underdetermined problem. Because
H(λ) describes the population eigenvalues, H(λ) =
0 ∀ λ ≤ 0. We also assume the eigenvalues have a supre-
mum λsup, so H(λ) = 0 ∀ λ > λsup.

We start with proving that O (‖v∞(z)‖) = O
(
γ −1). We

first show that O (‖v∞(z)‖) = O (γ a), with a > 0 leads to
a contradiction. Firstly, note that O

(∥∥∥ 1
v∞(z)

∥∥∥)
= O

(
γ −a).

Then note that

O
(∥∥∥∥z − γ

∫
λdH(λ)

1 + λv∞(z)

∥∥∥∥
)
= O

(∥∥∥∥z − γ

∫
λdH(λ)

λv∞(z)

∥∥∥∥
)

= O
(∥∥∥∥z − γ

1
v∞(z)

∫
dH(λ)

∥∥∥∥
)

= O
(∥∥∥∥z − γ

1
v∞(z)

∥∥∥∥
)

= O
(
γ 1−a) .

So the assumption O (‖v∞(z)‖) = O (γ a) with a >

0 leads to the contradiction that O
(∥∥∥ 1

v∞(z)

∥∥∥)
is both

O
(
γ −a) and O

(
γ 1−a).

We now assume that O (‖v∞(z)‖) = O
(
γ 0). Note that

O
(∥∥∥ 1

v∞(z)

∥∥∥)
= O

(
γ 0).

O
(∥∥∥∥z − γ

∫
λdH(λ)

1 + λv∞(z)

∥∥∥∥
)

= ∣∣O (
γ 0) − O(γ ) · O (

γ 0)∣∣
= O(γ ).

So this is again a contradiction: O
(∥∥∥ 1

v∞(z)

∥∥∥)
should be

both O
(
γ 0) and O

(
γ 1).

Now we assume that O (‖v∞(z)‖) = O (γ a) with a < 0.
Note that O

(∥∥∥ 1
v∞(z)

∥∥∥)
= O

(
γ −a).

O
(∥∥∥∥z − γ

∫
λdH(λ)

1 + λv∞(z)

∥∥∥∥
)

= O
(∥∥∥∥z − γ

∫
λdH(λ)

∥∥∥∥
)

= |O(1) − O(γ ) · O(1)|
= O(γ ).

So if we set a = −1, both arguments result in
O

(∥∥∥ 1
v∞(z)

∥∥∥)
= O(γ ) or O (‖v∞(z)‖) = O

(
γ −1).

Using the fact that O (‖v∞(z)‖) = O
(
γ −1), we can

determine the sample eigenvalue distribution if γ → ∞,

lim
p→∞ − 1

v(z)
= lim

γ→∞ z − γ

∫
λdH(λ)

1 + λv(z)

= lim
γ→∞ z − γ

∫
λdH(λ)

1
= lim

γ→∞ z − γ λ̄.

So in the limit the Stieltjes transform v(z) converges to

v(z) = 1
γ λ̄ − z

which is the Stieltjes transform of G(x) = u
(
x − γ λ̄

)
,

so the sample eigenvalue set will converge to a set of n
eigenvalues equal to γ λ̄ and p − n eigenvalues equal to 0,
whatever the population eigenvalue distribution, if it has a
bounded support.
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