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Algebra Universalis

Menger algebras of n-place interior operations

Wieslaw A. Dudek and Valentin S. Trokhimenko

Abstract. Algebraic properties of n-place interior operations on a fixed set are de-
scribed. Conditions under which a Menger algebra of rank n can be represented by
n-place interior operations are found.

1. Introduction

It is known [5] that on the topology on a set A one can talk in the language of
open sets, the language of closed sets, the language of interior operations (also
called opening operations), or the language of closure operations. Various
types of closure operations on algebraic systems and their applications are
well described (see for example [3]). So a natural question is about a similar
characterization of interior operations having applications in topology and
economics. Such operations were first studied from an algebraic point of view
by Vagner [7]. Kulik observed in [4] that the superposition of two interior
operations is not always an interior operation and found conditions under
which the composition of two interior operations of a given set A is also an
interior operation of this set. Moreover, he proved that a semigroup S is
isomorphic to a semigroup of interior operations of some set if and only if S

is idempotent and commutative.
Below, we introduce the concept of n-place interior operations and find

conditions under which a Menger algebra of rank n can be isomorphically
represented by n-place interior operations of some set.

2. Preliminaries

Let A be a nonempty set, P(A) the family of all subsets of A, and Tn(P(A))
the set of all n-place transformations of P(A), i.e., maps f :

∏n
P(A) →

P(A), where
∏n

P(A) denotes the n-th Cartesian power of the set P(A).
For arbitrary f, g1, . . . , gn ∈ Tn(P(A)), we define the (n + 1)-ary composition
f [g1 · · · gn] by putting

f [g1 · · · gn](X1, . . . , Xn) = f(g1(X1, . . . , Xn), . . . , gn(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P(A).
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The (n + 1)-ary operation O : (f, g1, . . . , gn) �→ f [g1 · · · gn] is called the
Menger superposition of n-place functions (cf. [3, 6]). Then (Tn(P(A)),O) is
a Menger algebra in the sense of [2] and [3], i.e., the operation O satisfies the
so-called superassociative law :

f [g1 · · · gn][h1 · · ·hn] = f [g1[h1 · · ·hn] · · · gn[h1 · · ·hn]], (2.1)

where f, gi, hi ∈ Tn(P(A)), for i = 1, . . . , n.
We say that n-place transformation f ∈ Tn(P(A)) is

• contractive if for any X1, . . . , Xn ∈ P(A), f(X1, . . . , Xn) ⊆ X1 ∩ · · ·∩Xn;
• idempotent if f [f · · · f ] = f ;
• isotone if for any X1, . . . , Xn, Y1, . . . , Yn ∈ P(A),

X1 ⊆ Y1 ∧ · · · ∧ Xn ⊆ Yn =⇒ f(X1, . . . , Xn) ⊆ f(Y1, . . . , Yn);

• ∪-distributive if for all X, Y, H1, . . . , Hn ∈ P(A) and i = 1, . . . , n,

f(Hi−1
1 , X ∪ Y,Hn

i+1) = f(Hi−1
1 , X,Hn

i+1) ∪ f(Hi−1
1 , Y, Hn

i+1),

where Hr
s means Hs, . . . , Hr for s � r.

• ∩-distributive if for all X, Y, H1, . . . , Hn ∈ P(A) and i = 1, . . . , n,

f(Hi−1
1 , X ∩ Y,Hn

i+1) = f(Hi−1
1 , X,Hn

i+1) ∩ f(Hi−1
1 , Y, Hn

i+1);

• full ∪-distributive if for any subsets (Xk)k∈K of A, all H1, . . . , Hn ∈ P(A),
and i = 1, . . . , n,

f
(
Hi−1

1 ,
⋃

k∈K

Xk, Hn
i+1

)
=

⋃

k∈K

f
(
Hi−1

1 , Xk, Hn
i+1

)
;

• full ∩-distributive if for any subsets (Xk)k∈K of A, all H1, . . . , Hn ∈ P(A),
and i = 1, . . . , n,

f
(
Hi−1

1 ,
⋂

k∈K

Xk, Hn
i+1

)
=

⋂

k∈K

f
(
Hi−1

1 , Xk, Hn
i+1

)
.

It is not difficult to see that the contractivity of an n-place transformation
f ∈ Tn(P(A)) is equivalent to the system of conditions

f(X1, . . . , Xn) ⊆ Xi, for i = 1, . . . , n.

The isotonicity is equivalent to the system of n implications

X ⊆ Y =⇒ f(Hi−1
1 , X,Hn

i+1) ⊆ f(Hi−1
1 , Y, Hn

i+1), for i = 1, . . . , n,

where X, Y, X1, . . . , Xn, H1, . . . , Hn ∈ P(A).
It is also easy to show that the Menger superposition of contractive (iso-

tone) n-place transformations of P(A) is again a contractive (isotone) n-place
transformation of P(A).

An n-place transformation of P(A), which is contractive, idempotent, and
isotone, is called an n-place interior operation or an n-place interior operator
on the set A.

For n = 1, this definition coincides with the definition of interior operations
proposed by Vagner (see [7]).
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3. Properties of n-place interior operations

We start with the following characterization of n-place interior operations.

Theorem 3.1. For an n-place transformation f of P(A), the following con-
ditions are equivalent:

(a) f is an n-place interior operation on A;
(b) for all X1, . . . , Xn, Y1, . . . , Yn ∈ P(A), we have

f(X1∩Y1, . . . , Xn∩Yn) ⊆ f(f(Xn
1 ), . . . , f(Xn

1 ))∩f(Y n
1 )∩Y1∩· · ·∩Yn. (3.1)

Proof. (a) =⇒ (b): Suppose that f is an n-place interior operation on A. Then
by the contractivity of f , for Xi, Yi ∈ P(A), for i = 1, . . . , n, we have

f(X1 ∩ Y1, . . . , Xn ∩ Yn) ⊆ (X1 ∩ Y1) ∩ · · · ∩ (Xn ∩ Yn) ⊆ Y1 ∩ · · · ∩ Yn. (3.2)

As Xi ∩ Yi ⊆ Yi, i = 1, . . . , n, the isotonity of f implies

f(X1 ∩ Y1, . . . , Xn ∩ Yn) ⊆ f(Y1, . . . , Yn) = f(Y n
1 ). (3.3)

Similarly, Xi ∩ Yi ⊆ Xi for i = 1, . . . , n implies

f(X1 ∩ Y1, . . . , Xn ∩ Yn) ⊆ f(X1, . . . , Xn) = f(Xn
1 ).

Since f(Xn
1 ) = f(f(Xn

1 ), . . . , f(Xn
1 )), from the above we obtain

f(X1 ∩ Y1, . . . , Xn ∩ Yn) ⊆ f(f(Xn
1 ), . . . , f(Xn

1 )),

which together with (3.2) and (3.3) gives (3.1). Thus, (a) implies (b).
(b) =⇒ (a): If an n-place transformation f satisfies (3.1), then setting

Xi = Yi for i = 1, . . . , n in (3.1), we obtain

f(Xn
1 ) ⊆ f(f(Xn

1 ), . . . , f(Xn
1 )) ∩ f(Xn

1 ) ∩ X1 ∩ · · · ∩ Xn. (3.4)

So f(Xn
1 ) ⊆ X1 ∩ · · · ∩ Xn, i.e., f is contractive. In addition, (3.4) implies

f(Xn
1 ) ⊆ f(f(Xn

1 ), . . . , f(Xn
1 )). Since f is contractive, we have

f(f(Xn
1 ), . . . , f(Xn

1 )) ⊆ f(Xn
1 ) ∩ · · · ∩ f(Xn

1 ) = f(Xn
1 ),

which together with the previous inclusion proves that f is idempotent.
If Xi ⊆ Yi, then obviously Xi ∩ Yi = Xi. Hence, by (3.1), for Xi ⊆ Yi for

i = 1, . . . , n, we have

f(Xn
1 ) = f(X1 ∩ Y1, . . . , Xn ∩ Yn)

⊆ (f(Xn
1 ), . . . , f(Xn

1 )) ∩ f(Y n
1 ) ∩ Y1 ∩ · · · ∩ Yn ⊆ f(Y n

1 ),

which means that f is isotone. Thus, f is an n-place interior operation. So
(b) implies (a). �

Theorem 3.2. For an n-place transformation f of P(A), the following con-
ditions are equivalent:

(i) f is contractive and full ∪-distributive;
(ii) f is contractive and ∪-distributive;
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(iii) for all X1, . . . , Xn ∈ P(A), we have

f(Xn
1 ) = f(A, . . . , A) ∩ X1 ∩ · · · ∩ Xn. (3.5)

Proof. (i) =⇒ (ii): This is obvious.
(ii) =⇒ (iii): According to ∪-distributivity, for all subsets X, H1, . . . , Hn of

A and i = 1, . . . , n we have

f(Hi−1
1 , X,Hn

i+1) ∪ f(Hi−1
1 , X ′, Hn

i+1) = f(Hi−1
1 , A,Hn

i+1),

where X ′ = A \ X. Then clearly
(
f(Hi−1

1 , X,Hn
i+1) ∩ X

)
∪

(
f(Hi−1

1 , X ′, Hn
i+1) ∩ X

)
= f(Hi−1

1 , A,Hn
i+1) ∩ X.

(3.6)
Since f is contractive, we have f(Hi−1

1 , X,Hn
i+1) ⊆ X, which implies that

f(Hi−1
1 , X,Hn

i+1)∩X = f(Hi−1
1 , X,Hn

i+1). Similarly, f(Hi−1
1 , X ′, Hn

i+1) ⊆ X ′

and X ′ ∩ X = ∅ imply f(Hi−1
1 , X ′, Hn

i+1) ∩ X = ∅. Thus, (3.6) has the form

f(Hi−1
1 , X,Hn

i+1) = f(Hi−1
1 , A,Hn

i+1) ∩ X.

Using this identity, we obtain

f(X1, X2, X3, . . . , Xn) = f(A, X2, X3, . . . , Xn) ∩ X1

= f(A, A,X3, . . . , Xn) ∩ X2 ∩ X1 = · · ·
= f(A, A,A, . . . , A) ∩ Xn ∩ · · · ∩ X2 ∩ X1 = f(A, . . . , A) ∩ X1 ∩ · · · ∩ Xn.

So (ii) implies (iii).
(iii) =⇒ (i): That (3.5) implies f(X1, . . . , Xn) ⊆ X1∩· · ·∩Xn is not difficult

to see. Thus, f is contractive. Moreover, in this case we also have

f(A, . . . , A) ∩ H1 ∩ · · · ∩ Hi−1 ∩
( ⋃

k∈K

Xk

)
∩ Hi+1 ∩ · · · ∩ Hn

=
⋃

k∈K

f
(
Hi−1

1 , Xk, Hn
i+1

)

by (3.5). So f is distributive with respect to the union. Thus (iii) implies (i),
which completes the proof. �

Corollary 3.3. Every n-place transformation f on P(A) satisfying (3.5) is
an n-place interior operation on A.

Proof. Any transformation satisfying (3.5) is clearly contractive. It is also
idempotent, because

f(f(Xn
1 ), . . . , f(Xn

1 )) = f(A, . . . , A) ∩ f(Xn
1 )

= f(A, . . . , A) ∩ f(A, . . . , A) ∩ X1 ∩ · · · ∩ Xn

= f(A, . . . , A) ∩ X1 ∩ · · · ∩ Xn = f(Xn
1 )

for all X1, . . . , Xn ∈ P(A).
For X1 ⊆ Y1, . . . , Xn ⊆ Yn, we have X1 ∩ · · · ∩ Xn ⊆ Y1 ∩ · · · ∩ Yn. Thus,

f(A, . . . , A)∩X1 ∩ · · · ∩Xn ⊆ f(A, . . . , A)∩Y1 ∩ · · · ∩Yn. So f(Xn
1 ) ⊆ f(Y n

1 ).
Hence, f is isotone. �
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Corollary 3.4. Every (full) ∪-distributive n-place interior operation is (full)
∩-distributive.

Proof. Indeed, by Theorem 3.2, any ∪-distributive n-place interior operation
f on the set A satisfies (3.5). Hence,

f(Hi−1
1 , X ∩ Y,Hn

i+1)

= f(A, . . . , A) ∩ H1 ∩ · · · ∩ Hi−1 ∩ (X ∩ Y ) ∩ Hi+1 ∩ · · · ∩ Hn

=
(
f(A, . . . , A) ∩ H1 ∩ · · · ∩ Hi−1 ∩ X ∩ Hi+1 ∩ · · · ∩ Hn

)

∩
(
f(A, . . . , A) ∩ H1 ∩ · · · ∩ Hi−1 ∩ Y ∩ Hi+1 ∩ · · · ∩ Hn

)

= f(Hi−1
1 , X, Hn

i+1) ∩ f(Hi−1
1 , Y, Hn

i+1)

for X, Y, H1, . . . , Hn ∈ P(A) and i = 1, . . . , n. Thus, f is ∩-distributive.
Analogously, we can show that f is full ∩-distributive. �

4. Compositions of n-place interior operations

On the set Tn(P(A)) of n-place transformations of the set A we introduce
the binary relation 
 defined by

f 
 g ⇐⇒ (∀X1, . . . , Xn)
(
f(Xn

1 ) ⊆ g(Xn
1 )

)
.

It is easy to see that 
 is a partial order, i.e., it is reflexive, transitive, and
antisymmetric.

Proposition 4.1. The relation 
 has the following properties:

(a) If f ∈ Tn(P(A)) is contractive, then f [g1 · · · gn] 
 gi for i = 1, . . . , n

and all g1, . . . , gn ∈ Tn(P(A)) .
(b) If f ∈ Tn(P(A)) is isotone, then

g1 
 h1 ∧ · · · ∧ gn 
 hn =⇒ f [g1 · · · gn] 
 f [h1 · · ·hn]

for all g1, . . . , gn, h1, . . . , hn ∈ Tn(P(A)).
(c) If f ∈ Tn(P(A)) is isotone and g ∈ Tn(P(A)) is contractive, then

f [g · · · g] 
 f.

Proof. (a): If f ∈ Tn(P(A)) is contractive, then for all X1, . . . , Xn ∈ P(A)
and i = 1, . . . , n, we have f [g1 · · · gn](Xn

1 ) = f(g1(Xn
1 ), . . . , gn(Xn

1 )) ⊆ gi(Xn
1 ).

Hence, f [g1 · · · gn] 
 gi. So the first property is proved.
(b): If f ∈ Tn(P(A)) is isotone and gi 
 hi for all gi, hi ∈ Tn(P(A)) and all

i = 1, . . . , n, then for all X1, . . . , Xn ∈ P(A), we have gi(Xn
1 ) ⊆ hi(Xn

1 ) for all
i = 1, . . . , n; consequently, f(g1(Xn

1 ), . . . , gn(Xn
1 )) ⊆ f(h1(Xn

1 ), . . . , hn(Xn
1 )).

Therefore, f [g1 · · · gn](Xn
1 ) ⊆ f [h1 · · ·hn](Xn

1 ). So f [g1 · · · gn] 
 f [h1 · · ·hn],
which proves the second condition.

(c): This is a consequence of (a) and (b). �
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Theorem 4.2. The Menger superposition of given n-place interior operations
f, g1, . . . , gn defined on the set A is an n-place interior operation on A if and
only if for each i = 1, . . . , n, we have

gi[f · · · f ][g1 · · · gn] = f [g1 · · · gn]. (4.1)

Proof. (=⇒): Suppose that f, g1, . . . , gn and f [g1 · · · gn] are n-place interior
operations on A. Since each gi is contractive, according to (2.1) and Proposi-
tion 4.1, we obtain

gi[f · · · f ][g1 · · · gn] = gi[f [g1 · · · gn] · · · f [g1 · · · gn]] 
 f [g1 · · · gn].

On the other hand, using (2.1) and the fact that f [g1 · · · gn] is an idempotent
n-place transformation, we get

f [g1 · · · gn] = f [g1 · · · gn][f [g1 · · · gn] · · · f [g1 · · · gn]]

= f [g1[f [g1 · · · gn] · · · f [g1 · · · gn]] · · · gn[f [g1 · · · gn] · · · f [g1 · · · gn]]]


 gi[f [g1 · · · gn] · · · f [g1 · · · gn]] = gi[f · · · f ][g1 · · · gn],

which together with the previous inequality gives (4.1).
(⇐=): As mentioned above, Menger superposition preserves contractivity

and isotonicity. We show that f [g1 · · · gn] is idempotent. Indeed, according to
(2.1) and (4.1), we have

f [g1 · · · gn][f [g1 · · · gn] · · · f [g1 · · · gn]]

= f [g1[f [g1 · · · gn] · · · f [g1 · · · gn]] · · · gn[f [g1 · · · gn] · · · f [g1 · · · gn]]]

= f [g1[f · · · f ][g1 · · · gn] · · · gn[f · · · f ][g1 · · · gn]]

= f [f [g1 · · · gn] · · · f [g1 · · · gn]] = f [f · · · f ][g1 · · · gn] = f [g1 · · · gn].

Thus, f [g1 · · · gn] is an n-place interior operation. �

5. Algebras derived from their diagonal semigroups

Recall (cf. [2], [3]) that a Menger algebra (G, o) of rank n is a nonempty set
G with an (n + 1)-ary operation o : (f, g1, . . . , gn) �→ f [g1 · · · gn] satisfying the
identity (2.1). On such algebra we can define a binary operation ∗ by setting
x ∗ y = x[y · · · y] for any x, y ∈ G. It is easy to see that (G, ∗) is a semigroup.
It is called the diagonal semigroup of (G, o). In the case when

f [g1g2 · · · gn] = f ∗ g1 ∗ g2 ∗ · · · ∗ gn,

we say that a Menger algebra (G, o) is derived from its diagonal semigroup
(G, ∗).

Proposition 5.1. For any n-place interior operations f, g on the set A, the
following three conditions are equivalent:

(a) f ∗ g is an n-place interior operation on A;
(b) f ∗ g = g ∗ f ∗ g;
(c) f ∗ g = f ∗ g ∗ f .
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Proof. (a) =⇒ (b): This implication follows from Theorem 4.2.
(b) =⇒ (c): By Proposition 4.1, we have f [g · · · g] 
 f , i.e., f ∗ g 
 f .

This together with (b) shows f ∗ g = g ∗ f ∗ g 
 g ∗ f . So f ∗ g 
 g ∗ f ,
which in view of Proposition 4.1 (b), gives f ∗ f ∗ g 
 f ∗ g ∗ f . Hence,
f ∗ g = f ∗ f ∗ g 
 f ∗ g ∗ f 
 f ∗ g, and consequently, f ∗ g = f ∗ g ∗ f .

(c) =⇒ (a): Since Menger superposition preserves contractivity and iso-
tonicity, then f ∗ g is an isotone and contractive n-place transformation. We
show that it is idempotent. In fact,

(f ∗ g) ∗ (f ∗ g) = (f ∗ g ∗ f) ∗ g = (f ∗ g) ∗ g = f ∗ (g ∗ g) = f ∗ g.

Thus, f ∗ g is an n-place interior operation. �

6. Characterizations of algebras of n-place interior operations

An abstract characterization of Menger algebras of n-place interior opera-
tions is given in the following theorem.

Theorem 6.1. A Menger algebra (G, o) of rank n is isomorphic to a Menger
algebra of n-place interior operations on some set if and only if it satisfies the
following three identities

x[x · · ·x] = x, (6.1)

x[y · · · y] = y[x · · ·x], (6.2)

x[y1 · · · yn] = x[y1 · · · y1] · · · [yn · · · yn]. (6.3)

Proof. Necessity: Let (Φ,O), where Φ ⊂ Tn(P(A)), be a Menger algebra of
n-place interior operations on the set A. Then obviously, f [f · · · f ] = f for all
f ∈ Φ. Thus, the condition (6.1) is satisfied.

If f, g ∈ Φ, then also f [g · · · g], g[f · · · f ] ∈ Φ. Therefore, f ∗ g and g ∗ f

are n-place interior operations and by (b), (c) from Proposition 5.1, we have
f ∗ g = g ∗ f . Thus, f [g · · · g] = g[f · · · f ]. Hence, the condition (6.2) also is
satisfied.

Further, using (2.1) and Theorem 4.2, for f, g1, . . . , gn ∈ Φ and for each
i = 1, . . . , n, we obtain

gi∗f [g1· · · gn] = gi[f [g1· · · gn] · · · f [g1· · · gn]] = gi[f · · · f ][g1· · · gn] =f [g1· · · gn].

Thus, gi ∗ f [g1 · · · gn] = f [g1 · · · gn] for all i = 1, . . . , n. Consequently,

(f ∗ g1 ∗ · · · ∗ gi) ∗ f [g1 · · · gn] = (f ∗ g1 ∗ · · · ∗ gi−1) ∗ (gi ∗ f [g1 · · · gn])

= (f ∗ g1 ∗ · · · ∗ gi−1) ∗ f [g1 · · · gn]

...

= f ∗ f [g1 · · · gn] = f [f [g1 · · · gn] · · · f [g1 · · · gn]]

= f [f · · · f ][g1 · · · gn] = f [g1 · · · gn].
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Hence,

(f ∗ g1 ∗ · · · ∗ gi) ∗ f [g1 · · · gn] = f [g1 · · · gn] (6.4)

for every i = 1, . . . , n. Since f [g1 · · · gn] 
 gn and

(f ∗ g1 ∗ · · · ∗ gn−1) ∗ f [g1 · · · gn] 
 (f ∗ g1 ∗ · · · ∗ gn−1) ∗ gn,

by Proposition 4.1, the equality (6.4) means that

f [g1 · · · gn] 
 f ∗ g1 ∗ · · · ∗ gn. (6.5)

By Proposition 4.1, we also have f ∗ g1 ∗ · · · ∗ gn 
 f ∗ g1 ∗ · · · ∗ gi 
 gi for all
i = 1, . . . , n. Therefore, f [(f ∗ g1 ∗ · · · ∗ gn) · · · (f ∗ g1 ∗ · · · ∗ gn)] 
 f [g1 · · · gn],
i.e., f ∗ (f ∗ g1 ∗ · · · ∗ gn) 
 f [g1 · · · gn], whence by f ∗ f = f , we obtain

f ∗ g1 ∗ · · · ∗ gn 
 f [g1 · · · gn].

This, together with (6.5), gives f [g1 · · · gn] = f∗g1∗· · ·∗gn. Thus, the condition
(6.3) is satisfied too.

Sufficiency: Let (G, o) be a Menger algebra of rank n satisfying all the
conditions of the theorem and let (G, ∗) be its diagonal semigroup. Consider
a binary relation ω defined on the set G as follows: ω = {(x, y) | x ∗ y = y}.
Since the diagonal semigroup (G, ∗) is semilattice, the relation ω is reflexive,
transitive, and antisymmetric. So the relation ω is just the usual ordering on
a semilattice (treated as a join semilattice), and ω〈x〉 = {y ∈ G | (x, y) ∈ ω}
is just the upset in this ordering.

We show that

ω〈x[y1 · · · yn]〉 = ω〈x〉 ∩ ω〈y1〉 ∩ · · · ∩ ω〈yn〉 (6.6)

for x, y1, . . . , yn ∈ G.
Since the diagonal semigroup (G, ∗) is semilattice, the equation ω〈x ∗ y〉 =

ω〈x〉 ∩ ω〈y〉 holds in (G, ∗).
Using this equation and (6.3) we obtain

ω〈x[y1 · · · yn]〉 = ω〈x ∗ y1 ∗ · · · ∗ yn〉 = ω〈x ∗ (y1 ∗ · · · ∗ yn)〉
= ω〈x〉 ∩ ω〈y1∗ (y2∗ · · · ∗ yn)〉 = ω〈x〉 ∩ ω〈y1〉 ∩ ω〈y2 ∗ · · · ∗ yn〉
= · · · = ω〈x〉 ∩ ω〈y1〉 ∩ · · · ∩ ω〈yn〉,

which proves (6.6).
Consider the set Φ = {fg | g ∈ G} ⊆ Tn(P(G)) of all n-place operations fg

defined by

fg(Xn
1 ) = ω〈g〉 ∩ X1 ∩ · · · ∩ Xn (6.7)

and the map P : g �→ fg.
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Clearly, fg(G, . . . , G) = ω〈g〉. Thus, fg(Xn
1 ) = fg(G, . . . , G)∩X1∩· · ·∩Xn.

Hence, by Corollary 3.3, fg is an n-place interior operation on the set G. More-
over, for all g, g1, . . . , gn and X1, . . . , Xn ∈ P(G), we have

fg[fg1 · · · fgn ](Xn
1 ) = fg(fg1(X

n
1 ), . . . , fgn(Xn

1 ))

= ω〈g〉 ∩ fg1(X
n
1 ) ∩ · · · ∩ fgn

(Xn
1 )

= ω〈g〉 ∩
(
ω〈g1〉 ∩ X1 ∩ · · · ∩ Xn

)
∩ · · · ∩

(
ω〈gn〉 ∩ X1 ∩ · · · ∩ Xn

)

=
(
ω〈g〉 ∩ ω〈g1〉 ∩ · · · ∩ ω〈gn〉

)
∩ X1 ∩ · · · ∩ Xn

(6.6)
= ω〈g[g1 · · · gn]〉 ∩ X1 ∩ · · · ∩ Xn = fg[g1···gn](Xn

1 ).

Thus, P (g[g1 · · · gn]) = P (g)[P (g1) · · ·P (gn)], i.e., P is a homomorphism of G

onto Φ.
Suppose now that P (g1) = P (g2), where g1, g2 ∈ G. Then fg1 = fg2 , i.e.,

fg1(X
n
1 ) = fg2(X

n
1 ) for all X1, . . . , Xn ∈ P(G). Hence, ω〈g1〉∩X1∩· · ·∩Xn =

ω〈g2〉 ∩ X1 ∩ · · · ∩ Xn, which for X1 = · · · = Xn = G, gives ω〈g1〉 = ω〈g2〉.
Since ω is an antisymmetric relation, from the above we conclude g1 = g2.
Thus, P is a bijection of G onto Φ. This means that a Menger algebra (G, o)
of rank n is isomorphic to the constructed Menger algebra (Φ,O) of n-place
interior operations. �

Corollary 6.2. A Menger algebra (G, o) of rank n is isomorphic to a Menger
algebra of n-place interior operations on some set if and only if it is derived
from an idempotent commutative semigroup.

The above corollary says that a Menger algebra isomorphic to a Menger
algebra of n-place interior operations is derived from an idempotent commu-
tative semigroup. Since a diagonal semigroup of a group-like Menger algebra
is a group (see [1] or [3]), a group-like Menger algebra isomorphic to a Menger
algebra of n-place interior operations has only one element. In view of Corol-
lary 6.2, it is obvious that two Menger algebras of n-place interior operations
are isomorphic if and only if their diagonal semigroups are isomorphic.

According to Theorem 3.2 and Corollary 3.4, each n-place interior operation
defined by (6.7) is (full) ∪-distributive and (full) ∩-distributive. Therefore, we
have the following corollary.

Corollary 6.3. For a Menger algebra (G, o) of rank n the following conditions
are equivalent:

• (G, o) is derived from an idempotent commutative semigroup.
• (G, o) is isomorphic to a Menger algebra of contractive (full) ∪-distributive

n-place transformations on some set.
• (G, o) is isomorphic to a Menger algebra of (full) ∪-distributive n-place

interior operations on some set.
• (G, o) is isomorphic to a Menger algebra of (full) ∪-distributive and ∩-

distributive n-place interior operations on some set.
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7. Semigroups of interior operations

Menger algebras of rank n = 1 are (binary) semigroups. So, as a conse-
quence of our results, we obtain some useful facts for semigroups.

Recall that Vagner (cf. [7]) defined interior operations on the set A as
contractive, idempotent, and isotone transformations of P(A). This definition
coincides with our definition for n = 1. So, as a consequence of Theorem 3.1,
we obtain the following corollary.

Corollary 7.1. A transformation f of P(A) is an interior operation on the
set A if and only if

f(X ∩ Y ) ⊆ f(f(X)) ∩ f(Y ) ∩ Y

is valid for all X, Y ∈ P(A).

From Theorem 3.2 and Corollary 3.3, we obtain

Corollary 7.2. For a transformation f of P(A), the following conditions are
equivalent:

• f is contractive and full ∪-distributive;
• f is contractive and ∪-distributive;
• for every X ∈ P(A), we have

f(X) = f(A) ∩ X. (7.1)

Corollary 7.3. Any transformation f of P(A) satisfying (7.1) is an interior
operation on A.

As a consequence of Corollary 3.4, we obtain

Corollary 7.4. Every (full) ∪-distributive interior operation is (full) ∩-dis-
tributive.

Putting n = 1 in Theorem 4.2, we obtain one of the main results of the
paper [4]:

Corollary 7.5. The composition f ◦ g of two interior operations defined on
the same set is an interior operation on this set if and only if f ◦g = f ◦g ◦f .

The other main result of [4] is a consequence of our Corollary 6.3, which for
n = 1 has the following form:

Corollary 7.6. For a semigroup (G, ·), the following statements are equiva-
lent:

• (G, ·) is an idempotent commutative semigroup;
• (G, ·) is isomorphic to a semigroup of contractive and (full) ∪-distributive

transformations on some set;
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• (G, ·) is isomorphic to a semigroup of (full) ∪-distributive interior oper-
ations on some set.

• (G, ·) is isomorphic to a semigroup of (full) ∪-distributive and ∩-distri-
butive interior operations on some set.

From this, we obtain the following:

Corollary 7.7 (Podluzhnyak and Kulik [4]). A semigroup (G, ·) is isomorphic
to some semigroup of interior operations on some set A if and only if it is
idempotent and commutative.
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Ed. USM, Chişinǎu (2006) (Russian)

[3] Dudek, W.A., Trokhimenko, V.S.: Algebras of multiplace functions, Walter de
Gruyter GmbH & Co. KG, Berlin/Boston (2012)

[4] Kulik, V.T., Podluzhnyak, H.G.: Abstract characterization of a semigroup of interior
operations, Naukovi Zapiski, ser. Fiz. Mat. (Vinnitsa) 1, 341–346 (2002) (Ukrainian)

[5] Kuratowski, K.: Topology, vol. 1, new edition, Warszawa (1966)
[6] Schein, B.M., Trohimenko, V.S.: Algebras of multiplace functions, Semigroup Forum

17, 1–64 (1979)
[7] Vagner, V.V.: Representation of ordered semigroups, Mat. Sbornik 38(80), 203–240

(1956) (Russian)

Wieslaw A. Dudek

Institute of Mathematics and Computer Science, Wroclaw University of Technology,
50-370 Wroclaw, Poland
e-mail : wieslaw.dudek@pwr.wroc.pl

Valentin S. Trokhimenko

Department of Mathematics, Pedagogical University, 21100 Vinnitsa, Ukraine
e-mail : vtrokhim@gmail.com

Open Access This article is distributed under the terms of the Creative Commons Attribution License 
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and 
the source are credited.


	Menger algebras of n-place interior operations
	Abstract
	1. Introduction
	2. Preliminaries
	3. Properties of n-place interior operations
	4. Compositions of n-place interior operations
	5. Algebras derived from their diagonal semigroups
	6. Characterizations of algebras of n-place interior operations
	7. Semigroups of interior operations
	References


