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Abstract
Hahn introduced the difference operator Dq,ωf (t) = (f (qt +ω) – f (t))/(t(q – 1) +ω) in
1949, where 0 < q < 1 and ω > 0 are fixed real numbers. This operator extends the
classical difference operator �ωf (t) = (f (t +ω) – f (t))/ω as the Jackson q-difference
operator Dqf (t) = (f (qt) – f (t))/(t(q – 1)).
In this paper, we present new results of the calculus based on the Hahn difference

operator. Also, we establish an existence and uniqueness result of solutions of Hahn
difference equations by using the method of successive approximations.

Keywords: Hahn difference operator; Jackson q-difference operator

1 Introduction and preliminaries
Hahn introduced his difference operator which is defined by

Dq,ωf (t) =
f (qt +ω) – f (t)
t(q – ) +ω

at t �= ω/( – q) and the usual derivative at t = ω/( – q), where  < q <  and ω >  are
fixed real numbers [, ]. This operator unifies and generalizes two well-known difference
operators. The first is Jackson q-difference operator defined by

Dqf (t) =
f (qt) – f (t)
t(q – )

,

where q is fixed. Here f is supposed to be defined on a q-geometric set A ⊂ R, for which
qt ∈ Awhenever t ∈ A, see [–]. The second operator is the forward difference operator

�ωf (t) =
f (t +ω) – f (t)

ω
,

where ω >  is fixed, see [–].
In [], Annaby et al. gave a rigorous analysis of the calculus associated with Dq,ω . They

stated and proved some basic properties of such a calculus. For instance, they defined a
right inverse of Dq,ω in terms of both the Jackson q-integral; see [], which contains the
right inverse ofDq and Nörlund sum; cf. [], which involves the right inverse of �ω . Then
they proved a fundamental theorem of Hahn’s calculus. An essential function which plays
an important role in this calculus is h(t) = qt + ω. This function is normally taken to be
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defined on an interval I , which contains the number θ = ω/( – q). One can see that the
kth order iteration of h(t) is given by

hk(t) = qkt +ω[k]q, t ∈ I.

The sequence hk(t) is uniformly convergent to θ on I . Here [k]q is defined by

[k]q =
 – qk

 – q
.

Throughout this paper, I is any interval of R containing θ and X is a Banach space.

Definition . Assume that f : I → X is a function, and let a,b ∈ I . The q,ω-integral of f
from a to b is defined by

∫ b

a
f (t)dq,ωt =

∫ b

θ

f (t)dq,ωt –
∫ a

θ

f (t)dq,ωt,

where

∫ x

θ

f (t)dq,ωt =
(
x( – q) –ω

) ∞∑
k=

qkf
(
hk(x)

)
, x ∈ I,

provided that the series converges at x = a and x = b.

Definition . [] For certain z ∈ C, the q,ω-exponential functions ez(t) and Ez(t) are
defined by

ez(t) =
∞∑
k=

(z(t( – q) –ω))k

(q;q)k
=

∏∞
k=( – zqk(t( – q) –ω))

(.)

and

Ez(t) =
∞∑
k=

q 
 k(k–)(z(t( – q) –ω))k

(q;q)k
=

∞∏
k=

(
 + zqk

(
t( – q) –ω

))
. (.)

To guarantee the convergence of the infinite product in (.) with t ∈ C, we assume addi-
tionally that

|t – θ | < 
|z( – q)| ,

see [, ]. For a fixed z ∈ C, (.) converges for all t ∈ C, defining an entire function of
order zero. For the proofs of the equalities in (.) and (.), see [, Section .] and [].
Here the q-shifted factorial (b;q)n for a complex number b and n ∈N is defined to be

(b;q)n =

{∏n
j=( – bqj–), if n ∈N,

, if n = .

The following results were mentioned in [], and we need them in this paper.

http://www.advancesindifferenceequations.com/content/2013/1/316


Hamza and Ahmed Advances in Difference Equations 2013, 2013:316 Page 3 of 15
http://www.advancesindifferenceequations.com/content/2013/1/316

Lemma . Let f , g : I → R be q, ω differentiable at t ∈ I . Then the following statements
are true:

(i) Dq,ω(f + g)(t) =Dq,ωf (t) +Dq,ωg(t),
(ii) Dq,ω(fg)(t) =Dq,ω(f (t))g(t) + f (h(t))Dq,ωg(t),
(iii) for any constant c ∈ X , Dq,ω(cf )(t) = cDq,ω(f (t)),
(iv) Dq,ω(f /g)(t) = (Dq,ω(f (t))g(t) – f (t)Dq,ωg(t))/(g(t)g(h(t))) for g(t)g(h(t)) �= .

We notice that (ii) and (iv) are true even if f : I → X. Also, (i) is true if f , g : I → X.

Lemma . For a fixed z ∈ C, the parametric q,ω-exponential functions ez(t) and E–z(t)
are the unique solutions of the first order initial value problems

Dq,ωy(t) = zy(t), y(θ ) = , |t – θ | < 
|z( – q)|

and

Dq,ωy(t) = –zy(qt +ω), y(θ ) = , z, t ∈C,

respectively.

Lemma . Let s ∈ I , s > θ , f : I → R and g : I → R be q,ω-integrable on I . If |f (t)| ≤ g(t)
for all t ∈ {sqk +ω[k]q}∞k=, then for a,b ∈ {sqk +ω[k]q}∞k=, a < b,

∣∣∣∣
∫ b

θ

f (t)dq,ωt
∣∣∣∣ ≤

∫ b

θ

g(t)dq,ωt and
∣∣∣∣
∫ b

a
f (t)dq,ωt

∣∣∣∣ ≤
∫ b

a
g(t)dq,ωt.

Theorem . Let f : I → R be continuous at θ . Define

F(x) :=
∫ x

θ

f (t)dq,ωt, x ∈ I.

Then F is continuous at θ . Furthermore, Dq,ωF(x) exists for every x ∈ I and

Dq,ωF(x) = f (x).

Conversely,

∫ b

a
Dq,ωf (t)dq,ωt = f (b) – f (a) ∀a,b ∈ I.

Lemma . andTheorem . are also true if f is a functionwith values inX with replacing
the norm ‖ · ‖ instead of the modulus | · |.
The aim of this paper is to establish an existence and uniqueness result of solutions of

the first order abstract Hahn difference equations by using the method of successive ap-
proximations. Thismethod is a very powerful tool that dates back to the works of Liouville
[] and Picard []. It is based on defining a sequence of functions {φk}∞k= and showing
that φk will successively approximate the solution φ in the sense that the ‘error’ between
the two monotonically decreases as k increases. Also, it differs from fixed point methods
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and topological ideas that were used by some researchers to develop the existence and
uniqueness of solutions.
We organize this paper as follows.
In Section , we prove Gronwall’s and Bernoulli’s inequalities with respect to the Hahn

difference operator. In Section , we establish mean value theorems in the calculus based
on this operator. In Sections  and , we apply the method of successive approximations
to obtain the local and global existence and uniqueness theorem of first order Hahn differ-
ence equations in Banach spaces. Hence, we deduce this theorem for the nth order Hahn
difference equations.

2 Gronwall’s and Bernoulli’s inequalities
In this section, I is a subinterval of [θ – 

|r|(–q) , θ +


|r|(–q) ], where r ∈R, and f is a real valued
function defined on I .

Theorem . Assume that r ∈ R, and y, f are continuous at θ . Then

Dq,ωy(t) ≤ ry(t) + f (t)

for all t ∈ I implies that

y(t) ≤ y(θ )er(t) + er(t)
∫ t

θ

E–r
(
h(τ )

)
f (τ )dq,ωτ .

Proof We have

Dq,ω
[
y(t)E–r(t)

]
=Dq,ωy(t)E–r

(
h(t)

)
+ y(t)Dq,ωE–r(t)

=
(
Dq,ωy(t)

)
E–r

(
h(t)

)
+ y(t)

(
–rE–r

(
h(t)

))
= E–r

(
h(t)

)(
Dq,ωy(t) – ry(t)

)
≤ E–r

(
h(t)

)
f (t).

Integrating both sides from θ to t in the inequality above, we obtain

y(t)E–r(t) – y(θ )E–r(θ )≤
∫ t

θ

E–r
(
h(τ )

)
f (τ )dq,ωτ .

This implies that

y(t) ≤ y(θ )er(t) + er(t)
∫ t

θ

E–r
(
h(τ )

)
f (τ )dq,ωτ . �

Theorem . (Gronwall’s inequality) Let r ∈R
≥, and y, f be continuous at θ . Then

y(t) ≤ f (t) +
∫ t

θ

ry(τ )dq,ωτ

for all t ∈ I implies that

y(t) ≤ f (t) + rer(t)
∫ t

θ

E–r
(
h(τ )

)
f (τ )dq,ωτ .
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Proof Set z(t) =
∫ t
θ
ry(τ )dq,ωτ . Then z(θ ) = ,Dq,ωz(t) = ry(t) ≤ r(f (t)+ z(t)) andDq,ωz(t) ≤

rf (t) + rz(t). Consequently,

z(t) ≤  + er(t)
∫ t

θ

rE–r
(
h(τ )

)
f (τ )dq,ωτ .

Hence,

y(t) ≤ f (t) + rer(t)
∫ t

θ

E–r
(
h(τ )

)
f (τ )dq,ωτ . �

Theorem . (Bernoulli’s inequality) Let r ∈R. Then, er(t) ≥  + r(t – θ ) for all t ∈ [θ , θ +


|r|(–q) ].

Proof Let y(t) = r(t – θ ). Then,

ry(t) + r = r(t – θ ) + r ≥ r =Dq,ωy(t).

Since y(θ ) = , we have by Theorem .

y(t) ≤ y(θ )er(t) + er(t)
∫ t

θ

rE–r
(
h(τ )

)
dq,ωτ

= er(t)
(
–

∫ t

θ

Dq,ωE–r(τ )dq,ωτ

)

= er(t)
(
 – E–r(t)

)
= er(t) – .

Therefore, er(t) ≥  + r(t – θ ). �

3 Mean value theorems
Theorem . Let f : I → X, g : I →R be q, ω differentiable on I and s ∈ I .
Assume that ‖Dq,ωf (t)‖ ≤ Dq,ωg(t) for all t ∈ {sqk +ω[k]q}∞k=. Then ‖f (b) – f (a)‖ ≤ g(b) –

g(a) for all a ≤ b, a,b ∈ {sqk +ω[k]q}∞k=.

Proof The inequality ‖ ∫ b
a Dq,ωf (t)dq,ωt‖ ≤ ∫ b

a Dq,ωg(t)dq,ωt implies that ‖f (b) – f (a)‖ ≤
g(b) – g(a) for all a≤ b,a,b ∈ {sqk +ω[k]q}∞k=. �

Corollary . Suppose that f , g : I → X is q, ω differentiable.The following statements are
true:

(i) For every s ∈ I , the inequality ‖f (b) – f (a)‖ ≤ supt∈I ‖Dq,ωf (t)‖(b – a) holds for all
a ≤ b, a,b ∈ {sqk +ω[k]q}∞k=.

(ii) If Dq,ωf (t) =  for all t ∈ I , then f is a constant function.
(iii) If Dq,ωf (t) =Dq,ωg(t) for all t ∈ I . Then g(t) = f (t) + c for all t ∈ I , where c is a

constant in X .

Proof (i) Let g(t) = supt∈I ‖Dq,ωf (t)‖(t – θ ). Then Dq,ωg(t) = supt∈I ‖Dq,ωf (t)‖ ≥ ‖Dq,ωf (t)‖
for all t ∈ {sqk +ω[k]q}∞k=.

http://www.advancesindifferenceequations.com/content/2013/1/316
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By Theorem .,

∥∥f (b) – f (a)
∥∥ ≤ g(b) – g(a)

= sup
t∈I

∥∥Dq,ωf (t)
∥∥(b – θ – a + θ )

= sup
t∈I

∥∥Dq,ωf (t)
∥∥(b – a).

(ii) Statement (i) implies that f (sqk +ω[k]q) = f (s) for every s ∈ I and k = , , . . . . Letting
k → ∞, we obtain f (s) = f (θ ) for all s ∈ I .
(iii) Can be deduced immediately from (ii). �

As a direct consequence of Theorem ., we get the following result.

Theorem . Let f : I → X be continuous at θ . Then

∫ h(t)

t
f (τ )dq,ωτ =

(
h(t) – t

)
f (t).

4 Successive approximations and local results
Throughout the remainder of the paper,

S(x,b) =
{
x ∈ X : ‖x – x‖ ≤ b

}

and R is the rectangle

R = [θ , θ + a]× S(x,b),

where a and b are fixed positive numbers.

Theorem . Assume that f : R → X satisfies the following conditions:
(i) f (t,x) is continuous at t = θ for every x ∈ S(x,b).
(ii) There is a positive constant A such that the following Lipschitz condition

‖f (t,x) – f (t, y)‖ ≤ A‖x – y‖ for all x, y ∈ X is satisfied.
Then there is h >  such that the following Cauchy problem

Dq,ωx(t) = f (t,x),
x(θ ) = x

}
(.)

has a unique solution x(t) on [θ , θ + h].

Proof Since f is continuous at t = θ , there exists γ >  such that ‖f (t,x) – f (θ ,x)‖ <  for
all t with |t – θ | < γ . Hence,

∥∥f (t,x)∥∥ ≤ ∥∥f (t,x) – f (θ ,x)
∥∥ +

∥∥f (θ ,x) – f (θ ,x)
∥∥ +

∥∥f (θ ,x)∥∥
<  +Ab +

∥∥f (θ ,x)∥∥

http://www.advancesindifferenceequations.com/content/2013/1/316
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for all t ∈ I , x ∈ X such that |t – θ | < γ and ‖x – x‖ < b. Define the following constants K ,
h to be

K = sup
t∈[θ ,θ+a],x∈S(x,b)

∥∥f (t,x)∥∥,
h =min

{
γ ,

 – q
A

,
b
K

}
.

We establish the existence of the solution φ(t) of (.) by the method of successive ap-
proximations.
We consider the sequence defined as follows:

φ(t) = x,
φk+(t) = x +

∫ t
θ
f (s,φk(s))dq,ωs, k ≥ .

}
(.)

The proof of the existence consists of four steps.
(i) φk(t) ∈ S(x,b), k ≥ , t ∈ I . Indeed, we have ‖φ(t) – x‖ =  ≤ b. Assume that the

inequality ‖φk(t) – x‖ ≤ b holds. This implies that

∥∥φk+(t) – x
∥∥ ≤

∫ t

θ

∥∥f (s,φk(s)
)∥∥dq,ωs

≤ K
∫ t

θ

dq,ωs

≤ b,

i.e., φk(t) ∈ S(x,b), k ∈ Z
≥. Also, each φk(t) is continuous at t = θ .

(ii) Now, we show by induction that

∥∥φm+(t) – φm(t)
∥∥ ≤ KAmhm+, t ∈ [θ , θ + h]. (.)

First, ‖φ(t) – φ(t)‖ ≤ K
∫ t
θ
dq,ωs≤ Kh.

Assume that (.) is true. Hence,

∥∥φm+(t) – φm+(t)
∥∥ ≤

∫ t

θ

∥∥f (s,φm+(s)
)
– f

(
s,φm(s)

)∥∥dq,ωs
≤ A

∫ t

θ

∥∥φm+(t) – φm(t)
∥∥dq,ωs

≤ KAm+hm+
∫ t

θ

dq,ωs

≤ KAm+hm+.

Thus, inequality (.) is true for every m ∈ Z
≥.

(iii) We show that φm(t) converges uniformly to a function φ(t) on [θ , θ + h].
We write φm(t) as the following sum

φm = φ + (φ – φ) + (φ – φ) + · · · + (φm – φm–).

http://www.advancesindifferenceequations.com/content/2013/1/316
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So,

lim
m→∞φm(t) = φ(t) +

∞∑
i=

(
φi(t) – φi–(t)

)
, (.)

provided that (.) converges.
Thus, the convergence of the sequence of functions φm(t) is equivalent to the conver-

gence of the right-hand side of (.).
To prove the latter, we use estimate (.), and then apply the Weierstrass M-test.

The convergence of the series
∑∞

m=Amhm+ implies the uniform convergence of the se-
ries

∑∞
i= ‖φi(t) – φi–(t)‖ on [θ , θ + h]. This implies that the right-hand side of (.) is

uniform convergent to some function φ(t). That is, there exists a function φ(t) such
that limm→∞ φm(t) = φ(t). Obviously, φ(t) ∈ S(x,b) since ‖φ(t) – x‖ = limm→∞ ‖φm(t) –
x‖ ≤ b.
(iv) The last part of the proof of the existence is to show that φ(t) is a solution of (.).
From the Lipschitz condition,

∥∥f (t,φ(t)) – f
(
t,φm(t)

)∥∥ ≤ A
∥∥φ(t) – φm(t)

∥∥
for all t ∈ [θ , θ + h] andm ∈N.
Thus, for every ε > , ∃n ∈N such that

∥∥f (t,φ(t)) – f
(
t,φm(t)

)∥∥ <
ε

h
∀m≥ n, t ∈ [θ , θ + h].

So,

∥∥∥∥
∫ t

θ

(
f
(
s,φ(s)

))
– f

(
s,φm(s)

)
dq,ωs

∥∥∥∥ <
ε

h

∫ t

θ

dq,ωs

≤ ε.

This implies that

lim
m→∞

∫ t

θ

f
(
s,φm(s)

)
dq,ωs =

∫ t

θ

f
(
s,φ(s)

)
dq,ωs

uniformly on [θ , θ + h]. Taking k → ∞ in (.), it follows that

φ(t) = x +
∫ t

θ

f
(
s,φ(s)

)
dq,ωs.

Consequently, we obtain Dq,ωφ(t) = f (t,φ(t)). Clearly, φ(θ ) = x.

Uniqueness
To prove the uniqueness, let us assume that ψ(t) is another solution which is valid in
t ∈ [θ , θ + h]. We have

φ(t) = φ
(
h(t)

)
+

(
t – h(t)

)
f
(
t,φ(t)

)

http://www.advancesindifferenceequations.com/content/2013/1/316
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and

ψ(t) =ψ
(
h(t)

)
+

(
t – h(t)

)
f
(
t,ψ(t)

)
.

From which we deduce

∥∥φ(t) –ψ(t)
∥∥ ≤ ∥∥φ

(
h(t)

)
–ψ

(
h(t)

)∥∥ +
∣∣t – h(t)

∣∣∥∥f (t,φ(t)) – f
(
t,ψ(t)

)∥∥. (.)

Taking σ (t) = ‖φ(t) –ψ(t)‖, we get

σ (t)
(
 –A

∣∣t – h(t)
∣∣) ≤ σ

(
h(t)

)
,

i.e.,

σ (t)≤ σ
(
h(t)

)
+A

∣∣t – h(t)
∣∣σ (t).

Hence,

σ (t)≤ σ (h(t))
 –A|t – h(t)|

≤ σ (hk(t))∏k–
i= ( –A|hi(t) – hi+(t)|)

=
σ (hk(t))∏k–

i= ( –Aqi(t( – q) –ω))
, k ∈N.

By taking the limit as k → ∞, we get

σ (t)≤ σ (θ )eA(t).

Since σ (θ ) = , then σ (t) = , which completes the proof. �

Corollary . Let I be an interval containing θ , fi(t,x,x, . . . ,xn) : I × ∏n
i= Si(yi,bi) → X

such that the following conditions are satisfied:
(i) For xi ∈ Si(yi,bi), ≤ i≤ n, fi(t,x,x, . . . ,xn) are continuous at t = θ .
(ii) There is a positive constant A such that, for t ∈ I , xi,x′

i ∈ Si(yi,bi), ≤ i≤ n, the
following Lipschitz condition is satisfied:

∥∥fi(t,x,x, . . . ,xn) – fi
(
t,x′

,x
′
, . . . ,x

′
n
)∥∥ ≤ A

n∑
i=

∥∥xi – x′
i
∥∥.

Then there exists a unique solution of the initial value problem

Dq,ωxi(t) = fi(t,x(t),x(t), . . . ,xn(t)), ≤ i≤ n, t ∈ I,
xi(θ ) = yi ∈ X.

}
(.)

http://www.advancesindifferenceequations.com/content/2013/1/316
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Proof Let x = (y, y, . . . , yn)T and b = (b,b, . . . ,bn)T .
Define f : I × ∏n

i= Si(yi,bi) → Xn by

f (t,x,x, . . . ,xn) =
(
f(t,x,x, . . . ,xn), . . . , fn(t,x,x, . . . ,xn)

)T .
System (.) yields

Dq,ωx(t) = f (t,x(t)),
x(θ ) = x.

}
(.)

First f is continuous at t = θ , since each fi is continuous at t = θ .
Second f satisfies a Lipschitz condition because for x,x′ ∈ ∏n

i= Si(yi,bi)

∥∥f (t,x) – f
(
t,x′)∥∥ =

∥∥f (t,x,x, . . . ,xn) – f
(
t,x′

,x
′
, . . . ,x

′
n
)∥∥

=
n∑
i=

∥∥fi(t,x,x, . . . ,xn) – fi
(
t,x′

,x
′
, . . . ,x

′
n
)∥∥

≤ A
n∑
i=

∥∥xi – x′
i
∥∥

= A
∥∥x – x′∥∥.

Applying Theorem ., then there exist h >  such that the initial value problem (.) has
a unique solution on [θ , θ + h]. It is easy to show that (.) is equivalent to the initial value
problem (.). �

The following corollary shows that Corollary . can be applied to indicate the required
conditions for the existence and uniqueness of solutions of the Cauchy problem

Dn
q,ωx(t) = f (t,x(t),Dq,ωx(t), . . . ,Dn–

q,ω x(t)),
Di–

q,ωx(θ ) = yi, ≤ i≤ n.

}
(.)

The proof of this corollary depends on converting the nth order Hahn difference equation
(.) to a first order system. Clearly, the Cauchy problem (.) is equivalent to the first
order system

Dq,ωxi(t) = fi(t,x(t),x(t), . . . ,xn(t)), ≤ i≤ n,
xi(θ ) = yi

}
(.)

in the sense that {φi(t)}ni= is a solution of (.) if and only if φ(t) is a solution of (.). Here,

fi(t,x, . . . ,xn) =

{
xi+, ≤ i ≤ n – ,
f (t,x, . . . ,xn), i = n.

This leads us to state the following theorem.

Theorem . Let f (t,x, . . . ,xn) be a function defined on I × ∏n
i= Si(yi,bi) such that the

following conditions are satisfied:

http://www.advancesindifferenceequations.com/content/2013/1/316
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(i) For any values of xr ∈ Sr(yr ,br), f is continuous at t = θ .
(ii) f satisfies a Lipschitz condition

∥∥f (t,x, . . . ,xn) – f
(
t,x′

, . . . ,x
′
n
)∥∥ ≤ A

n∑
i=

∥∥xi – x′
i
∥∥,

where A > , xi,x′
i ∈ Si(yi,bi), i = , . . . ,n and t ∈ I .

Then the Cauchy problem (.) has a unique solution which is valid on [θ , θ + h].

The following corollary gives us the required conditions for the existence of solutions of
the Cauchy problem

a(t)Dn
q,ωx(t) + a(t)Dn–

q,ω x(t) + · · · + an(t)x(t) = b(t),
Di–

q,ωx(θ ) = yi, i = , . . . ,n.

}
(.)

Corollary . Assume that the functions aj(t) : I → C ( ≤ j ≤ n) and b(t) : I → X satisfy
the following conditions:

(i) aj(t) (j = , . . . ,n) and b(t) are continuous at θ with a(t) �=  ∀t ∈ I .
(ii) aj(t)/a(t) is bounded on I , j ∈ {, . . . ,n}.

Then, for any elements yr ∈ X, equation (.) has a unique solution on a subinterval J ⊂ I
containing θ .

Proof Dividing by a(t), we get the equation

Dn
q,ωx(t) = A(t)Dn–

q,ω x(t) + · · · +An(t)x(t) + B(t), (.)

whereAj(t) = –aj(t)/a(t), andB(t) = b(t)/a(t). SinceAj(t) andB(t) are continuous at t = θ ,
then the function f (t,x,x, . . . ,xn) defined by

f (t,x,x, . . . ,xn) = A(t)xn + · · · +An(t)x + B(t)

is continuous at t = θ . Furthermore, Aj(t) is bounded on I . Consequently, there is A > 
such that |Aj(t)| ≤ A, t ∈ I . We can easily see that f satisfies a Lipschitz condition with
Lipschitz constant A. Thus, the function f (t,x, . . . ,xn) satisfies the conditions of Theo-
rem .. Hence, there exists a unique solution of (.) on a subinterval J of I contain-
ing θ . �

5 Nonlocal results
Theorem . is called a local existence theorem, because it guarantees the existence of
a solution x(t) defined for t ∈ R, which is close to the initial point θ . However, in many
situations, a solution will actually exist on the entire interval I = [θ , θ + a]. We now show
that if f satisfies a Lipschitz condition on a strip

S = [θ , θ + a]×X

rather than on the rectangle R, which is given in Section , then solutions will exist on the
entire interval I = [θ , θ + a].

http://www.advancesindifferenceequations.com/content/2013/1/316
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Theorem . Let f be continuous on the strip S, and suppose that there exists a constant
A >  such that ‖f (t,x) – f (t, y)‖ ≤ A‖x – y‖ for all (t,x), (t, y) ∈ S, where A < 

a(–q) . Then
the successive approximations that are given in (.) exist on the entire interval [θ , θ + a]
and converge there uniformly to the unique solution of (.).

Proof There is a constant M such that ‖f (t,x)‖ ≤ M for all t ∈ I . We will show that the
inequality

∥∥φk(t) – φk–(t)
∥∥ ≤MAk– (t( – q) –ω)k

(q;q)k
, t ∈ I (.)

holds for every k ∈N . Inequality (.) is true at k = . Indeed, we have

∥∥φ(t) – φ(t)
∥∥ =

∥∥∥∥
∫ t

θ

f (s,x)dq,ωs
∥∥∥∥ ≤M

∫ t

θ

dq,ωs

=M
(
t( – q) –ω

) 
 – q

and

∥∥φ(t) – φ(t)
∥∥ =

∥∥∥∥
∫ t

θ

(
f
(
s,φ(s)

)
– f

(
s,φ(s)

))
dq,ωs

∥∥∥∥
≤ A

∫ t

θ

∥∥φ(s) – φ(s)
∥∥dq,ωs

≤ MA
 – q

∫ t

θ

(
s( – q) –ω

)
dq,ωs

=
MA
 – q

(
t( – q) –ω

) 
 – q

=MA
(t( – q) –ω)

(q;q)
.

Assume that inequality (.) is true. Now, we have

∥∥φk+(t) – φk(t)
∥∥ ≤

∫ t

θ

∥∥(
f
(
s,φk(s)

)
– f

(
s,φk–(s)

))∥∥dq,ωs
≤ MAk

(q;q)k

∫ t

θ

(
s( – q) –ω

)k dq,ωs
=

MAk

(q;q)k
(
t( – q) –ω

) ∞∑
i=

qi
(
hi(t)( – q) –ω

)k

=
MAk

(q;q)k+
(
t( – q) –ω

)k+.
We see that

∞∑
i=

MAi–(t( – q) –ω)i

(q;q)i
=
M
A

( ∞∑
i=

(A(t( – q) –ω))i

(q;q)i
– 

)
,
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which converges to (M/A)(eA(t)–), t ∈ I . This convergence enables us to apply theWeier-
strassM-test to conclude that a series

∞∑
k=

∥∥φi(t) – φi–(t)
∥∥ (.)

converges uniformly on I . Also, we can write φk(t) as the following sum

φk(t) = φ(t) +�k
i=

(
φi(t) – φi–(t)

)
. (.)

Consequently, the absolute uniform convergence of the series in (.) on I implies that
φk(t) converges uniformly to some function φ(t) on I .
Our objective now is to show that φ(t) is a solution of (.) for all t ∈ I .
From the Lipschitz condition

∥∥f (t,φ(t)) – f
(
t,φm(t)

)∥∥ ≤ A
∥∥φ(t) – φm(t)

∥∥
for all t ∈ [θ , θ + a]. This implies that limm→∞ f (t,φm(t)) = f (t,φ(t)) uniformly on I and
limm→∞

∫ t
θ
f (s,φm(s))dq,ωs =

∫ t
θ
f (s,φ(s))dq,ωs uniformly on I .

Takingm → ∞ in (.), it follows that

φ(t) = x +
∫ t

θ

f
(
s,φ(s)

)
dq,ωs.

Consequently, Dq,ωφ(t) = f (t,φ(t)). Clearly, φ(θ ) = x.

Uniqueness
Let x(t) and y(t) be two solutions of (.) for all t ∈ I . We show that x(t)≡ y(t) on I .
For t ∈ I , consider

z(t) =
∥∥x(t) – y(t)

∥∥
≤

∫ t

θ

∥∥f (s,x(s)) – f
(
s, y(s)

)∥∥dq,ωs
≤ A

∫ t

θ

∥∥x(s) – y(s)
∥∥dq,ωs

= A
∫ t

θ

z(s)dq,ωs.

Thus, from Gronwall’s inequality, we have z(t) = . Consequently, x(t) = y(t) for all t ∈ I .
�

Corollary . Let f be continuous on the half-plane

[θ ,∞)×X.

Assume that f satisfies a Lipschitz condition

∥∥f (t,x) – f (t, y)
∥∥ ≤ Lθ ,a‖x – y‖

http://www.advancesindifferenceequations.com/content/2013/1/316
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on each strip

Sθ ,a = [θ , θ + a]×X,

where Lθ ,a is a constant that may depend on θ and a. Then, the initial value problem (.)
has a unique solution that exists on the whole half-line [θ ,∞).

Proof The proof involves showing that the conditions of Theorem . hold on every strip
of Sθ ,a and is omitted for brevity. �

6 Conclusion and future directions
This article was devoted to establish the method of successive approximations in prov-
ing the existence and uniqueness of solutions of the initial value problems associated with
Hahn difference operators. Also, some new results of the calculus based on this operator
like a mean value theorem were obtained. In one direction, one should ask about the q-ω
Taylor’s theorem. In this respect, we point out that q-Taylor’s theorem has been estab-
lished in []. Another direction, is to study in more details the theory of Hahn difference
equations, based on Hahn difference operator, and the stability of its solutions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally in writing this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt. 2Mathematics Department, Faculty of
Science, Al-Azhar University (Girls Branch), Nasr City, Cairo, Egypt.

Received: 25 March 2013 Accepted: 4 September 2013 Published: 08 Nov 2013

References
1. Hahn, W: Über orthogonalpolynome, die q-differenzengleichungen genügen. Math. Nachr. 2, 4-34 (1949)
2. Hahn, W: Ein Beitrag zur Theorie der Orthogonalpolynome. Monatshefte Math. 95, 19-24 (1983)
3. Abu Risha, MH, Annaby, MH, Ismail, MEH, Mansour, ZS: Linear q-difference equations. Z. Anal. Anwend. 26, 481-494

(2007)
4. Andrews, GE, Askey, R, Roy, R: Special Functions. Cambridge University Press, Cambridge (1999)
5. Annaby, MH, Mansour, ZS: q-Taylor and interpolation series for Jackson q-difference operator. J. Math. Anal. Appl.

344(1), 472-483 (2008)
6. Carmichael, RD: Linear difference equations and their analytic solutions. Trans. Am. Math. Soc. 12, 99-134 (1911)
7. Carmichael, RD: On the theory of linear difference equations. Am. J. Math. 35, 163-182 (1913)
8. Ismail, MEH: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia Math. Appl., vol. 98.

Cambridge University Press, Cambridge (2005)
9. Jackson, FH: Basic integration. Q. J. Math. 2, 1-16 (1951)
10. Jackson, FH: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253-281 (1908)
11. Bird, MT: On generalizations of sum formulas of the Euler-Maclaurin type. Am. J. Math. 58, 487-503 (1936)
12. Birkhoff, GD: General theory of linear difference equations. Trans. Am. Math. Soc. 12, 243-284 (1911)
13. Jagerman, DL: Difference Equations with Applications to Queues. Dekker, New York (2000)
14. Jordan, C: Calculus of Finite Differences. Chelsea, New York (1965)
15. Annaby, MH, Hamza, AE, Aldwoah, KA: Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim.

Theory Appl. 154, 133-153 (2012)
16. Abu Risha, MH, Annaby, MH, Ismail, MEH, Mansour, ZS: Existence and uniqueness theorems of q-difference equations

(2005, submitted)
17. Koornwinder, TH: Special functions and q-commuting variables. In: Ismail, MEH, Masson, DR, Rahman, M (eds.) Special

Functions, q-Series and Related Topics. Fields Institute Communications, vol. 14, pp. 131-166. Am. Math. Soc.,
Providence (1997)

18. Gasper, G, Rahman, M: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge, (2004)
19. Mahwin, J: Boundary value problems for nonlinear ordinary differential equations: from successive approximations to

topology. In: Development of Mathematics 1900-1950 (Luxembourg, 1992), pp. 443-477. Birkhäuser, Basel (1994)
20. Picard, E: Mémoire sur la théorie des équations aux dérivés partielles et la méthode des approximations successives.

J. Math. Pures Appl. 6, 145-210 (1890)

http://www.advancesindifferenceequations.com/content/2013/1/316


Hamza and Ahmed Advances in Difference Equations 2013, 2013:316 Page 15 of 15
http://www.advancesindifferenceequations.com/content/2013/1/316

10.1186/1687-1847-2013-316
Cite this article as: Hamza and Ahmed: Existence and uniqueness of solutions of Hahn difference equations.
Advances in Difference Equations 2013, 2013:316

http://www.advancesindifferenceequations.com/content/2013/1/316

	Existence and uniqueness of solutions of Hahn difference equations
	Abstract
	Keywords

	Introduction and preliminaries
	Gronwall's and Bernoulli's inequalities
	Mean value theorems
	Successive approximations and local results
	Uniqueness

	Nonlocal results
	Uniqueness

	Conclusion and future directions
	Competing interests
	Authors' contributions
	Author details
	References


