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We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP) radar. Determining the
optimum weights at each range requires data snapshots at neighboring ranges. However, in virtually all configurations, snapshot
statistics are range dependent, meaning that snapshots are nonstationary with respect to range. This results in poor performance.
In this paper, we propose a new compensation method based on registration of clutter ridges and designed to work on a single
realization of the stochastic snapshot at each range. The method has been successfully tested on simulated, stochastic snapshots.
An evaluation of performance is presented.
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1. INTRODUCTION

Space-time adaptive processing (STAP) is an increasingly
popular radar signal processing technique for detecting slow-
moving targets in the presence of clutter and jammers [1, 2].
The space dimension arises from the use of an array of N
antenna elements and the time dimension from the use of a
coherent train of M pulses. The power of STAP comes from
the joint processing in space and time. STAP radars oper-
ate either in monostatic configuration, where the transmitter
and receiver are colocated, or in bistatic configuration, where
the transmitter and receiver are located on distinct, indepen-
dently moving platforms.

The data collected by a STAP radar can be viewed as a
sequence of M × N 2D arrays, typically treated as MN × 1
vectors. These arrays or vectors are called “snapshots.” Im-
plementing the optimum STAP processor generally involves
inverting the covariance matrix (CM) of the snapshots. This
matrix must be estimated using snapshots at neighboring
ranges. A major problem for virtually all STAP configu-
rations is that the snapshots’ statistics are not stationary
with respect to (w.r.t.) range. One of the most visible man-
ifestations of this is the deformation with range of the 2D
clutter power spectrum (PS), where the spectral dimensions

correspond to spatial and Doppler frequencies. Ignoring the
lack of stationarity and computing the sample CMby straight
averaging of single-sample CMs at neighboring ranges results
in a loss of performance. The lack of stationarity of the snap-
shots w.r.t. range and the series of related issues are referred
to in STAP as the “range-dependence (RD) problem.”

Various techniques have been developed to deal with the
RD problem. The main ones are Doppler warping [3, 4],
angle-Doppler compensation (both deterministic and adap-
tive) [5, 6], derivative-based updating [4], and registration-
based compensation [7, 8, 9]. These methods are briefly re-
viewed in Section 2.

In [7], we introduced the new concept of registration-
based compensation in STAP, but assumed that the (theo-
retical) CM of the snapshots was known at each range. In
contrast, in the present paper, we assume that all we have is
a single stochastic realization of the snapshot at each range.
This paper shows how tomodify the algorithms of [7] so they
continue to perform under the new conditions. The work
reported here is based exclusively on simulated, stochastic
snapshots. Of course, the ultimate test is real data, but this
is not considered here.

Figure 1 gives a preview of the level of complexity con-
sidered in this paper, as compared to that of [7]. Figure 1a
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Figure 1: Example of (clutter) PS at one range. (a) Expected value
of periodogram computed from theoretical CM. (b) Periodogram
computed from one realization of a stochastic snapshot.

shows the “interference + noise (I + N)” PS computed at a
specific range for a known CM of the I + N snapshots at
that range. The “clutter ridge” appears complete and smooth.
Its appearance is “deterministic,” that is, fixed for any given
configuration and range. Figure 1b shows the corresponding
I + N PS estimated from a single realization of the stochastic
I+N snapshot at the same range. The clutter ridge has broken
down into an “archipelago of small ridges.” Its appearance is
“stochastic,” even for a given configuration and range.

Whereas the algorithms in [7] were designed to work
on deterministic PS such as in Figure 1a, the algorithms dis-
cussed here are designed to work on stochastic PS such as
in Figure 1b. Below, we present our new RD compensation
method and discuss its performance.

2. STATE OF THE ART IN RANGE-DEPENDENCE
COMPENSATION

Doppler warping was initially developed for monostatic con-
figurations [3] and later applied to bistatic configurations
[4]. It applies the appropriate Doppler shift at each range to
bring the clutter ridges at all ranges into registration at a spe-
cific spatial frequency. Even if this method is simple to imple-

ment, the configuration parameters must be known and the
compensation is perfect at only one spatial frequency. (Adap-
tive) angle-Doppler compensation [5, 6] generalizes Doppler
warping by applying an angle-Doppler shift, determined at
each range, to bring the spectral center at that range into reg-
istration with the spectral center at some reference range. All
the above methods apply only to directive sensors.

Derivative-based updating [10] was applied to bistatic
configurations in [4]. The idea is to expand the optimum
weight as a function of range using a Taylor series expan-
sion limited to 1st order. Even if this method can be used in a
wide variety of situations, the number of degrees of freedom
is doubled, implying that the number of samples required for
estimation is also doubled.

In [7], we proposed registration-based RD compensa-
tion methods that compute the sample CM at some refer-
ence range gate l by averaging properly transformed single-
sample CMs at a series of neighboring range gates k. The
single-sample CM at each range k is transformed to bring
the corresponding clutter ridge at k into registration with
the clutter ridge at l. This registration is guided by analyti-
cal formulas describing the “direction-Doppler (DD) curves”
[8]. In [7], we distinguished between “true-parameters (TP)”
methods, which assume exact knowledge of the configura-
tion parameters, and “estimated-parameters (EP)” methods,
which estimate the parameters from the data. The methods
in each class rely on a common “registration-based com-
pensation (RBC)” module. The EP methods rely on an ad-
ditional “configuration-parameters estimation (CPE)” mod-
ule.

3. BISTATIC RADAR CONFIGURATION

The configuration geometry is shown in Figure 2. The trans-
mitter T is at the center of an (x, y, z) coordinate system. The
x-axis points in the same direction as the velocity vector vT
of T . The z-axis points vertically and up. The receiver R is
located at (xR, yR, zR). Its velocity vector vR is assumed to be
horizontal and to make an angle αR w.r.t. vT . The linear an-
tenna A is located at R. It is horizontal and makes an angle
δ w.r.t. vR. The (bistatic) range Rb to some scatterer S is the
distance from T to S to R. The angular positions of S w.r.t.
vT , vR, and s are denoted by ξTd , ξ

R
d , and ξs, respectively. The

ground is assumed to be a horizontal plane at z = −H . All
scatterers corresponding to ground clutter are thus located
in this plane. The magnitudes of vT and vR are denoted by
vT and vR. Any bistatic configuration is fully characterized by
the vector of (configuration) parameters

θ = (H , xR, yR, zR, vT , vR,αR, δ
)
. (1)

4. DIRECTION-DOPPLER CURVES AND SURFACES

4.1. Important parameters

The three important physical parameters associated with
each scatterer S are the range Rb, the angular position ξs, and
the relative velocity vr . The related parameters that are more
directly measured from the radar returns are the roundtrip
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Figure 2: Bistatic radar configuration. (a) Transmitter (T)-receiver
(R)-scatterer (S) geometry and related parameters. (b) Receiver an-
tenna (A) and related angles.

delay τrt, the spatial frequency fs, and the Doppler frequency
fd. For a stationary scatterer, we have τrt = Rb/c, fs =
cos ξs/λc, and fd = vr/λc, where λc is the carrier wavelength
and c is the speed of light. Rb, ξs, and vr are easily derived
from τrt, fs, and fd.

4.2. Isorange curves

All scatterers S characterized by the same range Rb are located
on an isorange surface, which is an ellipsoid of revolution
with foci at T and R. The intersection of this surface with the
ground is an isorange curve, which is an ellipse (parameter-
ized with polar angle ψ).

4.3. 2D direction-Doppler curves

For any given configuration and range, all stationary scat-
terers S at this range map onto a curve showing the relation
between fs and fd for any such S. This curve is called a DD
curve. DD curves are typically represented in terms of the
normalized spatial frequency νs, equal to (λc/2) fs, and the
normalized Doppler frequency νd, equal to (λc/2(vR+vT)) fd.
Figure 3 shows that bistatic DD curves vary significantly with
configuration and range. The variation of these curves with
range for any particular configuration is one of the most vis-
ible manifestations of the RD problem.

To derive the equations of bistatic DD curves, we proceed
as follows. First, we express νd as a function of νs. Since most
DD curves have 2 distinct values of νd for most νs’s, any DD

curve is best described by 2 functions νd = f1(νs) and νd =
f2(νs), which describe the “bottom” and “top” parts of the
curve, respectively.1 Second, if we express νs and νd in terms
of the angle ψ, which also parameterizes the isorange ellipse,
we find a parametric description of the DD curve, that is,
νs = g1(ψ) and νd = g2(ψ). The derivation of the fi(νs)’s and
gi(ψ)’s is lengthy and thus omitted.

4.4. 3D direction-Doppler surfaces

We call the surface obtained by stacking DD curves for suc-
cessive values of Rb a DD surface. Figure 4 shows the DD sur-
face for the configuration of Figure 3d.

4.5. Recovery of configuration parameters

Consider the DD surface S corresponding to an arbitrary
bistatic configuration θ1 = (H , xR, yR, zR, vR, vT ,αR, δ) and
to all applicable values of Rb. One can show that the
only other set of parameters that produces S is θ2 =
(H , xR,−yR, zR, vR, vT ,−αR,−δ). Thus, the inverse problem
of recovering θ from S has 2 related solutions. We can then
infer that the inverse problem of recovering θ from a single
slice of S has at least 2 solutions and that at least 2 of them
are related.

5. SNAPSHOTS

In each coherent processing interval, a coherent train of M
pulses is transmitted from T . The returns are sensed at each
of the N elements of the linear antenna array A at R. Finally,
the sensed returns are sampled at a number of discrete ranges
(called range gates) covering the range interval of interest.
Ranges are indexed with l ∈ L = {0, 1, . . . ,L− 1}. We regard
the data as a sequence of M × N 2D data arrays (snapshots)
at successive ranges l. TheM ×N snapshot corresponding to
a specific l (or even to some arbitrary value of the continu-
ous range) and to a single scatterer S characterized by specific
parameters (Rb, νs, νd) can be written as the MN × 1 vector
[2]

y
(
νs, νd

) = βrv
(
νs, νd

)
, (2)

where βr is found from the radar equation and v(νs, νd) is the
MN × 1 steering vector

v
(
νs, νd

) = b
(
νd
)⊗ a

(
νs
)
, (3)

where ⊗ is the Kronecker product, a(νs) is the N × 1 spa-
tial steering vector, and b(νd) is theM × 1 temporal steering
vector. For uniform linear arrays, we have

a
(
νs
) = (1 · · · e j2πνsn · · · e j2πνs(N−1))T ,

b
(
νd
) = (1 · · · e j2πνdm · · · e j2πνd(M−1))T . (4)

1All curves have a bottom and a top, even when they appear flat, as in
Figure 3a. The notions of top and bottom continue to be precisely defined
for 8-shaped curves, as in Figure 3b. However, the top is not always above
the bottom!
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Figure 3: Example of DD curves for four bistatic configurations and four ranges Rb (170, 210, 250, and 400 km). Parameters specific to
each configuration are (a) (xR, yR, zR) = (100, 0, 0) km, αR = 0◦, δ = 0◦, (b) (xR, yR, zR) = (0, 100, 0) km, αR = 0◦, δ = 0◦, (c) (xR, yR, zR) =
(0, 100, 0) km, αR = 90◦, δ = 0◦, and (d) (xR, yR, zR) = (80, 50, 20) km, αR = 35◦, δ = 60◦. Common configuration parameters are H =
−50 km and vR = vT = 90m/s.

The target snapshot y
t
is directly given by (2), where we

use the appropriate target parameters (Rt
b, ν

t
s, ν

t
d). The clutter

snapshot y
c
is found by integrating y(νs, νd) over the isorange

curve, that is,

y
c

(
νs, νd

) = ∫ 2π

0
βc(ψ)v

(
νs(ψ), νd(ψ)

)
dψ. (5)

Since βc(ψ) is a stochastic process, yc is a stochastic vector.
We assume it is wide-sense stationary w.r.t. space and time.
It is thus characterized by a constant CM R

c
= E{y

c
y†
c
}.

Jammer snapshots are not considered here. The unavoid-
able noise snapshot y

n
is assumed to be uncorrelated with

y
c
and to be spatially and temporally white and indepen-

dent of range. It is thus characterized by a constant CM
R
n
= E{y

n
y†
n
} = PnI, where Pn is the noise power. The im-

portant quantity in STAP is the I + N snapshot y
q
= y

c
+ y

n
,

characterized by the I + N CM

R
q
= E

{
y
q
y†
q

}
. (6)

As alluded to earlier, the present paper differs from [7]
primarily through the fact that, here, we use a set of sim-
ulated, stochastic I + N snapshots y

q
generated on the ba-

sis of (5), whereas, in [7], we use the theoretical I + N
CM R

q
defined by (6) and derivable, in major part, from

(5).
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Figure 4: Example of DD surface for bistatic configuration of
Figure 3d. Range Rb varies from 152 km to 350 km. Note that the
minimum of 152 km is the smallest possible value for Rb for this
configuration.

6. OPTIMUM PROCESSOR

The structure of the optimum processor (OP) is shown in
Figure 5. The primary input is the snapshot y = y(l) at range
gate l (with range Rb). Secondary inputs are specific values of
νs and νd and the theoretical R

q
at l. The triplet (Rb, νs, νd)

constitutes the “target hypothesis.” The weight vector that
maximizes the output signal-to-interference-plus-noise ratio
(SINR) is given by [11]

wo

(
νs, νd

) = αR−1
q
v
(
νs, νd

)
, (7)

where α is an arbitrary complex constant. (Rb appears
through R

q
.) The detection statistic is the complex scalar

z = w†o
(
νs, νd

)
y. (8)

Its magnitude is compared to a threshold λ to determine
whether the target hypothesis is true or false.

R
q
in (7) is the theoretical I + N CM. In practice, R

q
has

to be estimated from the data. This is discussed in the next
section.

The performance of a processor using a weight w,
whether optimal or not, is measured by the SINR loss defined
as [2]

SINRL = SINR
SINR0

=
∣∣w†v∣∣2(

w†R
q
w
)(
v†v

) , (9)

where SINR0 is the SINR in the absence of clutter. Optimum
performance is achieved for w = wo. Performance is de-
graded by losses due to the estimation of the I +N CM (even
in the absence of RD effects) and to inappropriate handling
of the RD problem.

Target
present

Target
absent

Yes No

|z| ≥ λ

z = w†o y

wo = αR−1
q
v(νs, νd) R

q

y

Figure 5: Structure of OP determining whether, for the given y =
y(l), the target hypothesis (Rb, νs, νd) is true or false.

7. ESTIMATION OF I +N COVARIANCEMATRIX R
q

At each range l, one might be tempted to estimate R
q
via [2]

R̂
q
(l) = 1

Nl

∑
k∈Sl

R̃
q
(k) with R̃

q
(k) = y

q
(k)y†

q
(k), (10)

where Nl is the number of snapshots used for estimation, Sl
is the set of snapshot indices k defined by l − (Nl/2) < k <
l+(Nl/2), and yq(k) is the snapshot at range k. (Observe that

range l is omitted from the sum in (10).) However, R̂
q
(l) is

“maximum likelihood” only if the y
q
(k)’s are independent

and identically distributed (i.i.d.) w.r.t. range and have com-
plex Gaussian probability density functions (identical for all
k’s) [12]. Unfortunately, in virtually all configurations, the
y
q
(k)’s are not i.i.d. w.r.t. range. One of the clearest manifes-

tations of this lack of stationarity w.r.t. range is the variation
with range of the clutter PS and, in particular, of the clut-
ter ridge. All these facts and issues are the essence of the RD
problem in STAP.

If no RD compensation is performed, the estimate R̂
q
(l)

in (10) provides reduced performance. The goal of any RD
compensation method should be to produce the best possi-
ble estimate for R

q
(l) based on the available data and in spite

of the nonstationarity w.r.t. range. One such method is de-
scribed below.

8. PRINCIPLE OF OUR REGISTRATION-BASED
RANGE-DEPENDENCE COMPENSATION
METHOD

We perform RD compensation by applying a properly de-
signed transformation TR

kl[·] to each single-sample CM
R̃
q
(k) = y

q
(k)y†

q
(k). Equation (10) then becomes

R̂
q
(l) = 1

Nl

∑
k∈Sl

R̃
′
q
(k) with R̃

′
q
(k) = TR

kl

[
R̃
q
(k)
]
. (11)
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At this point, TR
kl[·] should be regarded as a conceptual

transformation. Its precise meaning will become clear later.
Specifically, one should not assume it is a linear-transforma-
tion matrix.

Since the nonstationarity is most visible in the spectral
domain (via the deformation of the clutter ridge), we per-
form the RD compensation in this domain, using the clut-
ter ridges at the various ranges as guides. The transforma-
tion TR

kl[·] is designed to deform the clutter PS at each range
k ∈ Sl to bring its clutter ridge into registration with that
of the PS at reference range l. Because of the direct relation
between clutter ridges and DD curves, we can also think in
terms of DD curves. The registration of DD curves is the key
idea behind the method introduced in [7] and its general-
ization presented here. Note that [5] also applies an elemen-
tary form of registration, in that DD curves are brought into
registration at their spectral centers, that is, at a single point
only.

To implement TR
kl[·] in the spectral domain, we need an

estimate P̃k(U ,V) of the true PS Pk(U ,V). Here, we use the
periodogram so that [13]

P̃k(U ,V) =
v†(U ,V)R̃

q
(k)v(U ,V)

v†(U ,V)v(U ,V)
, (12)

where v(·, ·) is defined in (3). Appropriately combining (11)
and (12), we find

P̂l(U ,V) = 1
Nl

∑
k∈Sl

v†(U ,V)TR
kl

[
R̃
q
(k)
]
v(U ,V)

v†(U ,V)v(U ,V)
(13)

or

P̂l(U ,V) = 1
Nl

∑
k∈Sl

P̃′k(U ,V), (14)

where

P̃′k(U ,V) =
v†(U ,V)TR

kl

[
R̃
q
(k)
]
v(U ,V)

v†(U ,V)v(U ,V)
, (15)

which we can write as follows:

P̃′k(U ,V) = TP
kl

[
P̃k(U ,V)

]
. (16)

From (12), (15), and (16), it is clear that it would be ex-
tremely difficult to express TP

kl[·] in terms of TR
kl[·]. There-

fore, TP
kl[·] should only be interpreted as a conceptual trans-

formation, just as TR
kl[·] should be.

P̃k(U ,V) in (12) is also the 2D DTFT of the estimate
Γ̃q,k[lm, ln] of the 2D statistical autocorrelation sequence of
the snapshot y

q
(k). Denoting by yq,k(m,n) the 2D M × N

array representing the realization at hand of y
q
(k), we have

Γ̃q,k = yq,k � y∗q,k, where � is the 2D correlation operator
[13]. Taking the inverse 2D DTFT of (14), we have

Γ̂
q
(l) = 1

Nl

∑
k∈Sl

Γ̃
′
q
(k) with Γ̃

′
q
(k) = TΓ

kl

[
Γ̃
q
(k)
]
, (17)

Γ̃
′
q
(k)

θ
Registration-based

compensation (RBC)

Γ̃
q
(k)

(a)

Γ̃
′
q
(k)

θ̂
Registration-based

compensation (RBC)

Γ̃
q
(k)

Configuration-parameters
estimation (CPE)

{
Γ̃
q
(l)|l ∈ L

}

(b)

Figure 6: The subsystem for properly transforming the reduced-

size CM Γ̃
q
(k) into Γ̃

′
q
(k) can operate in (a) TPmode (for known θ )

or (b) EP mode (for estimated θ̂). In both cases, the transformation
is performed by the common RBC module. In the second case, the
unknown configuration parameters are provided by the CPE mod-
ule. Note that the current CPE module uses all inputs Γ̃

q
(l), that is,

for all l ∈ L.

where Γ̃
q
(k) is the matrix representing the central (2M −

1) × (2N − 1) part of Γ̃q,k[lm, ln]. Here too, TΓ
kl[·] is concep-

tual. Since the (2M − 1)× (2N − 1) Γ̃
q
(k) carries exactly the

same information as theMN×MN R̃
q
(k), it is computation-

ally advantageous to perform the compensation using Γ̃
q
(k)

rather than R̃
q
(k).

The transformation TΓ
kl[·] is not given in analytical form,

but as an algorithm operating on the input Γ̃
q
(k) and pro-

ducing the output Γ̃
′
q
(k). Figure 6 shows two possible imple-

mentations of TΓ
kl[·], depending upon whether we know the

configuration-parameter vector θ or we have to estimate it.
These modes of operation are respectively called TP and EP.

Figure 6 highlights the presence of two key processing
modules: RBC and CPE. The RBC module is used in both
modes of operation and transforms Γ̃

q
(k) using either the

true θ or its estimate θ̂. The CPE module is used only in the

EP mode of operation to produce the estimate θ̂ from the
data. Note that, contrary to the approach discussed in [7],
all Γ̃

q
(l)’s, l ∈ L, are used to estimate θ.
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Figure 8: Block diagram of processing steps for CPE module.

In spite of the added degree of difficulty in the problem
considered here (as compared to that considered in [7]), the
RBC module described in [7] is directly applicable here. Its
block diagram is shown in Figure 7, but the reader is referred
to [7] for additional details.

In contrast, the CPE module of [7] needs a major over-
haul to deal with the increased degree of uncertainty consid-
ered here and illustrated in Figure 1.

9. CONFIGURATION-PARAMETERS
ESTIMATIONMODULE

Figure 8 shows the block diagram of the CPE module. This
diagram is a generalization of the corresponding diagram in
[7]. One main difference is that the PS for all ranges l ∈ L

are used. The Γ̃
q
(l)’s are processed individually up to and

including peak extraction (described in Section 10). The
peaks corresponding to all l’s are then used jointly to find
the DD surface that best matches them. This surface yields

the estimate θ̂ of θ.
The significant contributions of this paper are the de-

sign and evaluation of the peak extraction (2) and of the
DD-surface-fitting processing steps (i.e., algorithms) shown
in Figure 8.

Figure 1a shows the PS obtained for a given θ and a given
Rb when we use the theoretical R

q
. The clutter ridge is deter-

ministic and fixed. The peaks are located on, or very close to,
the corresponding DD curve, which is fixed. Figure 1b shows
the PS obtained for the same θ and Rb when using a single,
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Figure 9: Each subfigure shows the peaks extracted at a given range
by the peak extraction (2) algorithm. The underlying, theoretical
DD curve is also shown. Whereas, in (a), the extracted peaks are
very close to the underlying DD curve, in (b), they tend to fall fur-
ther away, which leads to inaccuracies in the DD-surface-fitting al-
gorithm.

stochastic snapshot y
q
. From one realization to the next, the

PS estimate and, thus, the related clutter ridge will most likely
change. However, this clutter ridge will always be located in
the vicinity of the underlying DD curve, which is the same
as in the 1st case. Comparing both cases, it is clear that the
2nd is more challenging since we may experience difficulties
in extracting the peaks and in fitting a DD surface to them.

The reader is referred to [7] for a description of the first
two processing steps, that is, expansion and zero-padding
and 2D FFT. In fact, these steps are identical to the first two
steps of the RBC module (Figure 7). In both cases, the pur-
pose of these steps is to bring us into the spectral domain.
(The expansion sizes associated with the 2D FFT may differ
in both modules.)
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Figure 10: 3D scatter plot of extracted peak locations in (νs, νd ,Rb)-
axes. The peak locations shown are located in the L horizontal slices
corresponding to the L values of l ∈ L. The locations in each slice
are the output of the peak extraction (2) algorithm. The complete
collection of peak locations is the input to the DD-surface-fitting
algorithm. Ideally, these points should fall on the underlying DD
surface. In practice, they should most likely fall in its vicinity.

The other two processing steps, that is, peak extraction
(2) and DD surface fitting, are described in the next two sec-
tions. Their design, implementation, and evaluation are the
major contributions of this paper.

10. PEAK EXTRACTION (2) ALGORITHM

The corresponding algorithm of [7] was significantly modi-
fied to deal with the sparsity and stochastic behavior of the
peaks in any given realization of a PS. The new algorithm for
extracting the desired peaks from the PS at any given range l
works as follows: (1) the largest value PSmax in the PS array
is found; (2) all pixels in the PS array with values less than a
given percentage (set here to 30%) of PSmax are set to zero;
(3) the remaining nonzero values are grouped into regions
by the “connected components” labelling technique of im-
age processing [14] or equivalent; (4) the largest value within
each region is found and the location of the corresponding
pixel defines the location of the peak for that region.

This peak-extraction algorithm is based on the hope that
the largest value in each region will fall on or close to the
underlying DD curve. Simulations show that this is generally
the case. This is illustrated in Figure 9.

The above algorithm is then applied to each l ∈ L. This
leads to a constellation of peak locations, as illustrated in Fig-
ures 10 and 11. This constellation of points is the input to the
DD-surface-fitting algorithm.

11. DD-SURFACE-FITTING ALGORITHM

The DD-surface-fitting algorithm we have implemented to
recover the configuration parameters is quite complicated.
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Figure 11: Each subfigure is the top view of a 3D scatter plot of peak locations similar to that of Figure 10. The four subfigures labelled (a)
through (d) correspond to the configurations of Figures 3a–3d, respectively.

For purpose of conciseness, we limit ourselves here to de-
scribing its general principle.

We start from the 3D constellation of points (extracted
peak locations) that can be thought of as lying on an experi-
mental DD surface that, we hope, approximates well the un-
derlying theoretical DD surface. Our goal is to recover the
set of configuration parameters that characterizes this theo-
retical DD surface (Figure 2). (We know that there may be 2
such sets and that they are related.) Since it is quite logical to
assume that we know H and vR, we only need to estimate xR,
yR, zR, vT , αR, and δ. First, we derive the tightest possible con-
straints on the possible values of xR, yR, and zR to reduce the
search space. Then, we explore each allowed position (xR, yR)
and estimate the other parameters.

11.1. Determination of constraints on xR, yR, and zR
We apply the same method as in [7]. However, the sparsity
of the estimated peak locations prevents us from directly ob-
taining the estimates ν̂min

s,l and ν̂max
s,l of the extremities, along

the νs-axis, of the DD curve at each l. We have thus devel-
oped a new method to derive reliable estimates ν̂min

s,l and ν̂max
s,l

at each l by taking into account the set of peaks for all l’s in
L. Results have proven to be more accurate at shorter ranges
Rb. Therefore, we focus on a single short range (typically for
l = 4 rather than for l = 0 to improve accuracy) and deter-
mine the constraints on xR, yR, and zR exactly as in [7].

11.2. Determination of zR, vT , αR, and δ for each (xR, yR)

As in [7], we apply the following procedure to each allowed
pair (xR, yR). First, we compute zR using a formula we have
derived, which relates zR to xR, yR, ν̂min

s,l , and ν̂max
s,l . This for-

mula is quite lengthy and is thus omitted. If zR satisfies the
constraints specified in [7], we proceed. Otherwise, we dis-
card the candidate pair. To proceed, we rely on exact analyti-
cal expressions for DD surfaces in terms of θ.2 For each can-
didate position (xR, yR, zR) of R, we first insert the values of
(xR, yR, zR) in the analytical expressions for the DD surface.

2Deriving these equations is quite complicated. Furthermore, the equa-
tions themselves are also quite complicated. Thus, providing the derivation
or even the equations is beyond the scope of this paper.
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Figure 12: The end-to-end performance of a STAP processor using
RBC and working in TP mode (known θ) is a direct reflection of
the performance of the RBC module (see Figure 6). Performance is
shown in terms of cuts of SINR loss at νs = 0. The performances of
the OP (the best achievable) and of the straight-averaging processor
(no RD compensation) are also shown as references.

Then, we estimate the remaining unknown parameters vT ,
αR, and δ by least-square fit of the resulting parametric sur-
face to the extracted peak locations. We have found that the
upper part of the DD surface is better suited for estimating
vT , αR, and δ. As a result, we perform the fitting using only
the Nlr longest ranges. The resulting least-square fit error is
also computed. The influence of the choice of value for Nlr is
discussed in Section 12.2.

11.3. Final parameter selection

The procedure just described (in Section 11.2) is repeated for
all allowed pairs (xR, yR). The set of parameters resulting in
the smallest least-square fit error is ultimately chosen. These
parameters, as well as the knownH and vR, make up the final
θ̂.

12. PERFORMANCE EVALUATION

We first discuss the individual performances of the RBC and
CPE modules. Then, we compare the end-to-end perfor-
mance of STAP processors working in TP mode and in EP
mode to those of the OP and of the straight-averaging pro-
cessor (no compensation).

12.1. Performance of RBCmodule

To evaluate the individual performance of the RBC module,
we consider an end-to-end STAP processor using RBC and
working in TP mode. Indeed, this mode of operation only
involves the RBC module (see Figure 6). The performance of
this processor is shown in Figure 12 in terms of SINR loss
plots.
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Figure 13: Cuts of SINR loss at νs = 0 for various values of expan-
sion coefficient p. OP is shown for reference. (a) Topmost curve
corresponds to OP. Other curves, from bottommost to topmost,
correspond to p increasing from 1 to 20. (b) Alternate visualiza-
tion, where grayscale corresponds to SINR loss. Curves are shown
in the same order as in (a), with topmost row corresponding to OP.
Performance increases with increasing p and gets very close to that
of OP for large p.

With reference to Figures 7 and 8, recall that we must
typically expand the size of Γ̃

q
(k) when the source range

k is smaller than the destination range l. This is done by
zero-padding. The relative size of this padding plays a crit-
ical role in the performance of the RBC module. To char-
acterize this expansion, we define the expansion coefficients
p = P/(2M − 1) and q = Q/(2N − 1), where P, Q, N , andM

are related to the sizes P ×Q and (2M − 1)× (2N − 1) of Γ̃
p

and Γ̃
q
, respectively. In our experiments, all arrays are square

and, thus, p = q.
Figure 13 illustrates the influence of p on the SINR

loss. Figure 13a shows the SINR loss as a function of νd
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Figure 14: Four different views of the true DD surface color coded with the absolute value of the fit error for the configuration of Figure 3c.

for νs = 0. The topmost curve corresponds to the OP,
while the other curves, from bottommost to topmost, cor-
respond to processors using values of p increasing from 1
to 20. Figure 13b provides an alternate visualization of the
same information as in Figure 13a: the vertical axis now
corresponds to p and the grayscale to SINRL. Both plots
clearly show that performance increases with p. Further-
more, performance for large p’s gets very close to that of the
OP.

Getting close to OP performance with stochastic snap-
shots implies using a large p, which leads to significant
computational requirements. However, this is counterbal-
anced by a reduction of the sample-support size, Nl. In-
deed, the results shown in Figure 13 were obtained with
only Nl = 32 snapshots, whereas the rule of Reed, Mal-
lett, and Brennan (RMB) [15] requires at least 288 snap-
shots for M = N = 12. Figure 13a shows the im-
provement over the 3 dB loss associated with the RMB
rule.

12.2. Performance of CPEmodule

To evaluate the individual performance of the CPE module,
we pick some parameter θ, generate corresponding stochas-
tic snapshots y

q
(l), l ∈ L, run the CPE algorithm, and ex-

amine the output θ̂. We then compute the (absolute value of
the) “horizontal” (i.e., in the (νs, νd)-plane) fit error between
the estimated DD surface corresponding to θ̂ and the true
DD surface corresponding to θ. Figure 14 shows the errors
as colors on the true DD surface. Observe that the largest er-
rors occur at short ranges, this is because DD curves change
more rapidly with range at short ranges than at long ranges.
Figure 15 shows the RMS horizontal error between estimated
and true DD surfaces for the four configurations of Figure 3.
Since the errors are measured in the (νs, νd)-plane, they are
unitless just as νs and νd are. Since νs and νd vary from −0.5
to 0.5, the maximum possible value of the absolute error is 1.
The values given in Table 1 show that the estimated and true
DD surfaces nearly coincide.
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Figure 15: Each subfigure quantifies the end-to-end performance of TP, EP, OP, and SAP processors for a given configuration. The four
subfigures correspond to the four configurations of Figure 3. Each subfigure shows cuts of SINR loss at νs = 0 for the OP (topmost curve),
SAP (bottommost curve), and TP and EP (middle curves, with TP above EP). Conclusions drawn from the graphs are given in the text.

Figure 16 shows the RMS horizontal error between the
estimated and true DD surfaces as a function of the number
of “long ranges,”Nlr . We see that an acceptable fit is obtained
for relatively small values of Nlr . This is significant since a
reduction in Nlr results in a reduction of the computational
load.

12.3. End-to-end performance

We now characterize the performance of a STAP processor
using TP mode (known θ) and EP mode (unknown θ) RD
compensation. The performance of the OP (known R

q
; no

need for RD compensation) and of the straight-averaging
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Figure 16: RMS horizontal error (between estimated and true DD surfaces) as a function of the number of long ranges, Nlr , used by the
DD-surface-fitting algorithm for the four configurations of Figure 3. In all cases, the error tends to decrease with increasing Nlr . However,
past about Nlr = 15, there is little improvement.

Table 1: RMS horizontal error between estimated and true DD sur-
faces.

Configuration RMS horizontal error (unitless)

Figure 3a 0.0024

Figure 3b 0.0062

Figure 3c 0.0026

Figure 3d 0.0019

processor (SAP; no RD compensation) are also shown for
reference. Figure 15 shows the SINR loss curves correspond-
ing to the TP, EP, OP, and SAP processors for the four config-
urations of Figure 3. The plots show that the performance of
TP is close to that of OP and much better than that of SAP,
thereby demonstrating the soundness of our registration-
based approach to RD compensation. The plots also show
that EP performance is close to that of TP, thereby demon-
strating the soundness of our combined peak extraction and
DD-surface-fitting approaches for estimating the configura-
tions parameters.

13. CONCLUSION

The range-dependence (RD) problem in STAP originates
from the lack of stationarity of the snapshot statistics w.r.t.
range. Its clearest manifestation is the deformation with
range of the power spectrum. The usual maximum likeli-

hood estimate of the interference-plus-noise covariance ma-
trix (CM) R

q
is no longer optimal and leads to poor target-

detection performance. Therefore, it becomes imperative to
develop RD compensation methods.

In [7], we introduced registration-based methods for
known R

q
and developed a general strategy for estimating

the CM at each range. This strategy is based on the registra-
tion of clutter ridges and direction-Doppler (DD) curves at
each range, using known (theoretical) CMs R

q
at neighbor-

ing ranges.
In this paper, we adapted the strategy of [7] to handle

single realizations of stochastic snapshots. The main diffi-
culty lies in the estimation of the configuration parameters.
The main contributions of this paper are the modification of
the peak-extraction algorithm of [7] and the development of
a new 3D DD-surface-fitting algorithm generalizing the 2D
DD-curve-fitting algorithm of [7]. The performance of the
new algorithms was evaluated in detail.
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