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Abstract: We consider double scaled little string theory on K3. These theories are la-

belled by a positive integer k ≥ 2 and an ADE root lattice with Coxeter number k. We

count BPS fundamental string states in the holographic dual of this theory using the super-

conformal field theory K3×
(
SL(2,R)k

U(1) × SU(2)k
U(1)

)/
Zk. We show that the BPS fundamental

string states that are counted by the second helicity supertrace of this theory give rise to

weight two mixed mock modular forms. We compute the helicity supertraces using two

separate techniques: a path integral analysis that leads to a modular invariant but non-

holomorphic answer, and a Hamiltonian analysis of the contribution from discrete states

which leads to a holomorphic but not modular invariant answer. From a mathematical

point of view the Hamiltonian analysis leads to a mixed mock modular form while the

path integral gives the completion of this mixed mock modular form. We also compare

these weight two mixed mock modular forms to those that appear in instances of Umbral

Moonshine labelled by Niemeier root lattices X that are powers of ADE root lattices and

find that they are equal up to a constant factor that we determine. In the course of the anal-

ysis we encounter an interesting generalization of Appell-Lerch sums and generalizations

of the Riemann relations of Jacobi theta functions that they obey.
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1 Introduction and motivation

Little string theory (LST) originated in the study of the dynamics of modes localized on

solitonic fivebranes that act as a source for the massless two form field B that originates

in the Neveu-Schwarz sector of superstring theory. These fivebranes are often called NS5-

branes and exist in type IIA and IIB string theory as well as in heterotic string theory [1–4].

As is the case for D-branes, it is possible to take a limit in which the dynamics on the

fivebranes decouples from the bulk, but unlike the corresponding limit for D-branes, the

limit in which the dynamics on fivebranes decouples keeps the energy scale E fixed relative

to the string scale ms. Taking the string coupling gs → 0 with E ∼ ms leads to a

six-dimensional theory on the fivebranes, dubbed little string theory (LST) in [5], which

is a non-trivial interacting theory with fascinating properties. In particular it is a six-

dimensional supersymmetric theory with either (2, 0) or (1, 1) supersymmetry in IIA or

IIB string theory respectively and has stringy excitations and behavior including T-duality

and a Hagedorn density of states. Unlike critical string theory, it does not include gravity

as there is no massless spin two particle in the spectrum. Evidence that such theories exist

and discussions of the properties described above can be found in [5–9] with [10] and [11]
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containing useful reviews. Some important earlier ideas with important applications to

black hole physics appeared in [12, 13]. The papers [14–16] are particularly useful references

for many of the aspects of LST that we will utilize in our analysis.

Techniques for analyzing little string theory are unfortunately limited. Some early

analysis was based on discrete light-cone gauge theory and Matrix theory [6, 17, 18] and

there is also an approach using deconstruction [19], but most recent analyses have utilized

a holographic description [20–22] of the theory of k fivebranes based on the superconformal

field theory (SCFT)

M6 × Rφ × SU(2)k (1.1)

that describes the space-time background sourced by fivebranes in the decoupling limit

above [2]. Here Rφ is a supersymmetric linear dilaton background, SU(2)k is a level k su-

persymmetric Wess-Zumino-Witten (WZW) model and in the simplest case of fivebranes in

flat space M6 = R
5,1 is the free superconformal field theory describing the space-time coor-

dinates tangent to the fivebrane world-volume. In this paper we will take M6 = M4 × R
1,1

with M4 a hyperKähler manifold. The utility of this holographic description is limited by

the presence of a strong coupling region: since the dilaton field is linear in the coordinate φ,

the theory has one asymptotic region in which the string coupling goes to zero and another

asymptotic region where the string coupling goes to infinity and thus one needs to be able

to do strong coupling computations to fully study the theory in both regions.

The strong coupling problem can be circumvented by Higgsing the theory, that is by

separating the fivebranes so that they are located in a Zk symmetric fashion on a circle

of radius r0 in a two-dimensional plane in the four-dimensional space transverse to the

fivebrane before taking the scaling limit [8, 9, 23]. The Higgsing breaks the SU(2)× SU(2)

symmetry of the string theory in the background (1.1) down to U(1)× Zk. If we consider

fivebranes in type IIB string string theory then by S-duality we know there is a U(k)

gauge theory on the fivebrane broken down to U(1)k and that there are D1 branes that

can stretch between the fivebranes with mass of order r0/gs whose lowest energy states

include the massive gauge bosons from breaking U(k) down to U(1)k. One then considers

the double scaling limit gs → 0, r0 → 0 with r0/gs fixed. In this limit the massive gauge

bosons survive as states with finite mass and one can study physics at the string scale

rather than taking a low-energy limit.

Although our description so far involves a U(k) = Ak−1×U(1) gauge theory arising on

k coincident fivebranes in type IIB string theory, there are dual descriptions of this theory

which arise when we identify an S1 in one of the directions transverse to the fivebranes.

In particular, T-duality relates the Ak−1 fivebrane theory to string theory near a C
2/Zk

singularity [24]. In the dual picture, separating the NS5-branes on a circle corresponds

to deforming the singularity with a deformation parameter µ. The double scaling limit,

gs, µ → 0 with gs/µ
1/k fixed, is then described by the SCFT

R
1,1 ×M4 ×

(
SL(2,R)k

U(1)
× SU(2)k

U(1)

)/
Zk (1.2)

where SL(2,R)k/U(1) is the supersymmetric, non-compact, “cigar” conformal field theory

and SU(2)k/U(1) is a coset theory that describes the N = 2 minimal model SCFTs. The
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infinite throat region that led to a strong coupling region has now been capped off and as

a result it is possible to do reliable perturbative computations on aspects of double scaled

little string theory (DSLST) using this SCFT. The Zk orbifold is present in this construc-

tion in order to project onto a set of U(1)R charges that are consistent with imposition of

the GSO projection needed to obtain a theory with space-time supersymmetry. Note that

the elliptic genus of the SCFT (1.2) minus the R
1,1 ×M4 factor has been studied in [25]

in connection with mirror symmetry.

The McKay correspondence between simply laced (ADE) root diagrams and finite

subgroups Γ of SU(2) suggests that we can define an ADE extension of this construc-

tion by considering string theory on C
2/Γ. This extension to include Dk and E6, E7, E8

theories is supported by the structure of the SCFT (1.2) which also has an ADE clas-

sification of modular invariant partition functions that are compatible with space-time

supersymmetry [26–29].

Thus the SCFT appearing in (1.2) is labelled by a hyperKähler manifold M4, a positive

integer k ≥ 2 and a choice of ADE root system or Dynkin diagram which can be Ak−1 for

any choice of k, D1+k/2 for k even, and E6, E7 or E8 for k = 12, 18, 30 respectively1

and this SCFT provides a holographic description of the corresponding ADE DSLST

compactified on M4.

In this paper we will focus on the case M4 = K3. Although this choice could be

motivated by the desire to study LST in situations with reduced supersymmetry, our moti-

vation arises from the fact that with this choice there is a natural object, the second helicity

supertrace, that counts BPS states, and that from the analysis in [30] for k = 2 seems to

have some connection to the mock modular form appearing in Mathieu moonshine [31–35].

Given that Mathieu moonshine has an extension to Umbral moonshine [36, 37] and that

Umbral moonshine is classified by root lattices with ADE components, total rank 24 and

common Coxeter number, it is natural to ask whether the mock modular forms of Um-

bral moonshine also appear in helicity supertraces of LST on K3 at higher values of k

and whether there is a connection between the ADE classification of LST and the ADE

classification of Umbral Moonshine. A related analysis for M4 = T 4 can be found in [38].

The second helicity supertrace that we will study is given by

χ̂2(τ) = Tr J2
s (−1)Fs qL0−c/24 qL̃0−c̃/24 (1.3)

where the trace is over all space-time states, that is including both Ramond (R) and

Neveu-Schwarz (NS) sectors of the SCFT with GSO projection. Js is the generator of

a U(1) rotation in space-time which we take to be rotation about the asymptotic S1 in

the cigar CFT and Fs is the space-time fermion number which is 0 for bosons and 1 for

fermions. Standard arguments show that this quantity receives contributions only from

BPS states, and in a theory with a discrete spectrum, is a holomorphic function of τ . See

e.g. [39] for a review.

One important fact about the SCFT (1.2) is that the SL(2,R)k/U(1) factor describes

string propagation on a non-compact space. As a result the spectrum contains both dis-

1In the ADE classification of modular invariant partition functions at level k the Coxeter number of the

ADE root system must equal k.
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crete, normalizable states, as well as a continuum of scattering states. Recent analysis

of the elliptic genus of the SL(2,R)k/U(1) SCFT in (1.2) [40–42] has revealed a tension

between modularity and holomorphicity in computations of the elliptic genus. Contribu-

tions from discrete states are holomorphic functions of τ because of cancellations between

fermions and bosons, but since modular transformations mix characters of discrete states

with those of continuum states, the contribution of discrete states alone is not modular

invariant. Including the continuum states leads to a modular invariant expression for the

elliptic genus, but it is no longer holomorphic because violations of holomorphy arise from

continuum states due to differences between the density of states of fermions and bosons.

This kind of tension between holomorphy and modularity is precisely the defining

feature of mock modular forms. Mock modular forms were first introduced by Ramanujan

in the last letter he wrote to Hardy in 1920, but were only understood in more depth in

recent times due to work of Zwegers [43] and others. For reviews see [44, 45]. Recall that a

modular form of weight k is a holomorphic function f(τ) on the upper half plane H obeying

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
a b

c d

)
∈ SL2(Z) . (1.4)

In the simplest case a weakly holomorphic mock modular form of weight k for SL2(Z) is

a holomorphic function on H with at most exponential growth as τ → i∞ which is part

of a pair of holomorphic functions (h(τ), g(τ)) where g(τ), called the shadow of h(τ), is a

modular form of weight 2− k and the completion of h(τ), ĥ(τ), given by

ĥ(τ) = h(τ) + g∗(τ) (1.5)

with

g∗(τ) = (4i)k−1

∫ ∞

−τ
(z + τ)−kg(−z)dz , (1.6)

transforms like a modular form of weight k on SL2(Z). Note that h(τ) is holomorphic,

but not modular if the shadow g(τ) is non-zero, while in this case the completion ĥ(τ) is

modular but not holomorphic, and obeys the equation:

(4πτ2)
k ∂ĥ(τ)

∂τ
= −2πi g(τ) . (1.7)

Mathieu moonshine is the observation that a particular mock modular form of weight

1/2, HA24
1 with q expansion

HA24
1 = 2q−1/8

(
−1 + 45 q + 231 q2 + 770 q3 + 2277 q4 + 5796 q5 + · · ·

)
(1.8)

appears in the decomposition of the elliptic genus of K3 into characters of the N = 4 super-

conformal algebra (SCA) and that the coefficients 45, 231, 770, 2277, 5796 are dimensions of

irreducible representations (irreps) of the sporadic Mathieu group M24 while the higher co-

efficients have decompositions into small numbers of irreps. The shadow of HA24
1 is 24η(τ)3

where η(τ) is the Dedekind eta function. Strictly speaking, the pair (HA24
1 , 24η(τ)3) does

not satisfy the definition above because η(τ)3 acquires a phase (an eighth root of unity)
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under modular transformations. Thus as is often done for modular forms, we need to gen-

eralize the definition (1.5) to allow for a multiplier system which can be a phase, or more

generally for vector valued modular or mock modular forms with n components, a multi-

plier ρ : SL2(Z) → GLN (C) that determines the matrix transformation on the components

of the (mock) modular form that accompanies a modular transformation on τ .

We will also need to extend the definition (1.5) to include mixed mock modular forms.

If Mk is the space of weight k modular forms then we define a mixed mock modular form

of weight k|ℓ to be a holomorphic function with polynomial growth at the cusps that has

a completion

ĥ = h(τ) +
∑

j

fj g
∗
j , fj ∈ Mℓ, gj ∈ M2−k−ℓ , (1.9)

such that ĥ transforms like a modular form of weight k. As an example, the product

η(τ)3HA24
1 is a mixed mock modular form of weight 2 with shadow 24 η(τ)3 η(τ)3.

In [30] it was shown that the second helicity supertrace of the SCFT (1.2) at k = 2 is the

completion of this mixed mock modular form, χk=2
2 = −(1/2) η(τ)3ĤA24

1 (τ). This result

suggests a possible connection between the the k = 2 DSLST and Mathieu moonshine.

Mathieu moonshine has been extended to Umbral Moonshine in which vector-valued mock

modular forms HX are labelled by the root lattices X of the 23 even, self-dual rank 24

lattices with non-empty root systems, that is by the 23 Niemeier root lattices LX , and

exhibit moonshine properties for groups GX which are defined in terms of the Niemeier

lattice LX as

GX = Aut
(
LX

)
/WX (1.10)

where WX is the Weyl group of X.

The Niemeier root lattices X are composed of ADE components with total rank 24

and equal Coxeter numbers m(X). Umbral Moonshine generalizes Mathieu moonshine in

that X = A24
1 with m(X) = 2 leads to the moonshine group GA24

1 = M24 and to the mock

modular form HA24
1 given above. The weight 3/2 shadow η(τ)3 appearing for X = A24

1 has

a generalization involving the vector-valued weight 3/2 theta functions

Sm,r(τ) =
∑

n∈Z
(2mn+ r) q(2mn+r)2/4m (1.11)

with r = 1, 2, · · ·m− 1, and for each X labeling an instance of Umbral moonshine we can

associate a mixed mock modular form of weight 2 given by

χX
2 =

∑

r

Sm(X),r(τ)H
X
r (τ) . (1.12)

For m = 2 we have S2,1(τ) = η(τ)3.

We thus have on the one hand the SCFT (1.2), specified by an integer k ≥ 2 and a

choice Y of ADE root diagram with Coxeter number k with its second helicity supertrace

χ̂Y
2 (τ) (which we now label by Y ) and we will show later that χ̂Y

2 (τ) is the completion of

a mixed mock modular form of weight two. On the other hand we have the quantities χX
2

labelled by Niemeier lattices X with an ADE classification and these are also mixed mock

– 5 –
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modular forms of weight two. By comparing shadows we conclude that the χ̂Y
2 are, up to a

numerical factor that we will determine, the completions of the χX
2 when the X are powers

of a single ADE component.

To summarize, we have two motivations for the computations done in this paper. The

first is to explore further the structure of DSLST compactified on K3 by computing the

second heliticy supertrace that counts the BPS states of this theory. The second is to further

explore possible connections between DSLST on K3 and Mathieu and Umbral moonshine.

The outline of this paper is as follows. In section 2 we describe the structure of the

superconformal field theory (1.2) in more detail, discuss the structure of the helicity super-

trace and then compute the full, non-holomorphic supertrace by generalizing the techniques

used in [30] which involve performing an integral over the holonomy of a U(1) gauge field on

the torus. In section 3 we analyze the holomorphic contribution to the helicity supertrace by

performing an explicit sum over the discrete characters of the superconformal field theory.

We compare our results to the holomorphic part of the previous computation and find

perfect agreement. The result of these computations involves a sum of the form
∑

r Sk,rhr
where the hr are vector-valued mock modular forms. We turn in section 4 to a discussion

of the relation between the mock modular forms hr arising in these computations and the

vector-valued mock modular forms HX
r of Umbral Moonshine. In section 5 we conclude

and offer some thoughts about possible future directions of research. The appendices con-

tain many technical and interesting mathematical details that appear in this work. These

include a generalization of the Riemann identities for Jacobi theta functions to Riemann-

like identities involving Appell-Lerch sums and a generalization of the Appell-Lerch sum

that appears prominently in [43] to a Appell-Lerch like sum depending on the modular

parameter τ as well as on three elliptic variables.

2 The holographic dual of DSLST

We consider the holographic dual of DSLST as described by the SCFT (1.2) withM4 = K3,

with N = 4 supersymmetry [14, 46, 47] on the worldsheet. This SCFT describes string

propagation in the background of k NS5-branes that are wrapped on K3, and separated

along the transverse R4 in a ring structure, in a near-horizon double scaling limit [48]. The

geometric picture of the SL(2)/U(1) coset is a semi-infinite cigar [49–51], which is asymp-

totically a linear-dilaton times a circle. Translation around the circle is an exact symmetry

of the theory, and the conserved U(1) momentum corresponds to the spacetime R-charge.

The string theory based on the above SCFT has 16 conserved supercharges. We

would like to compute the second helicity supertrace (1.3) of fundamental strings in this

background, thus generalizing the calculation of [30] for the k = 2 A-type theory. In path-

integral language this is a torus partition function with two insertions of the spacetime R-

charge. We will essentially follow the ideas and calculations of [30] to compute the second

string helicity supertrace. We will briefly sketch the procedure below, mainly focussing

on the new aspects compared to [30] and relegating many details to the appendices. We

begin by considering a string wrapped on the S1 and moving in time. The full string theory

includes the reparametrization ghosts of the N = 1 string worldsheet, which have the effect

– 6 –
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of cancelling the oscillator modes of the R × S1 factor in the above SCFT. This leaves

us2 with the momentum and winding modes around the S1 and all the fluctuations in the

“internal” theory with central charge c = c̃ = 12:

K3×
(
SL(2)k
U(1)

× SU(2)k
U(1)

)/
Zk . (2.1)

We shall consider the K3 to be at the T 4/Z2 orbifold point. Physically we expect that

our results should be independent of the moduli ofK3 since we are counting BPS states and

these do not change as we move in the moduli space of K3 surfaces. To be more precise,

the holomorphic part of our result should depend only on BPS states and the completion

is then fixed by demanding modular invariance. However since we are dealing with a non-

compact theory the issue of moduli independence is not completely straightforward and

this issue deserves further attention. As a small check on this claim we have done the

computation for several different orbifold limits of K3 and in each case find that the final

result of our calculation only depends on the elliptic genus of K3 which does not depend

on the moduli of the K3 surface.

A new ingredient compared to the k = 2 situation is the supersymmetric SU(2)k/U(1)

theory with central charge c = 3− 6
k (which becomes trivial at k = 2). The characters of this

theory are defined in terms of a branching relation using the characters of the SU(2) WZW

model after splitting off a U(1) factor [52]. We gather some useful information about

the characters in appendix A.2. We treat the non-compact gauged WZW SL(2)k/U(1)

model based on the more recent work of [40–42]. The coset is expressed as SL(2)k ×
U(1)C/U(1) where U(1)C is a complexification of the gauged U(1) subgroup, to which one

adds a (b, c)cig ghost system of central charge c = −2. The supersymmetric SL(2)k consists

of a bosonic H+
3 WZW model at level k + 2, and two free fermions ψ± (and their right-

moving counterparts). The coset U(1)C/U(1) is represented by the real boson Y . Related

string worldsheet calculations that combine the two cosets have been discussed in [14, 15]

in a different context.

The holonomies of the U(1) gauge field around the two cycles of the torus are repre-

sented by a complex parameter3 u = aτ + b. It is useful to consider a combination of the

boson Y and the gauge field holonomy which is called Y u, as in [40, 42]. This field Y u

is a compact real boson at radius R =
√

2/k, and can be thought of, in the asymptotic

variables, as the angular direction of the cigar. In the exact theory it is described by

the compact level k CFT U(1)k. The bosonic H+
3 , the two fermions, the Y u boson, and

the (b, c)cig ghosts are all solvable theories and are coupled by the holonomy u that has to

be integrated over the elliptic curve E(τ) = C/(Zτ + Z).

We now write down the partition functions of the various fields entering (2.1). We will

keep track of the gauge field holonomy u as well as a parameter z which we introduce as the

chemical potential of the spacetime R-charge. This R-charge is the diagonal J3 component

2As mentioned in [30], one can also obtain this SCFT using a gauge-fixing condition on the string

worldsheet.
3Throughout this paper, we will use the subscripts 1 and 2 on a complex variable to denote its real and

imaginary parts, i.e. τ = τ1 + iτ2, u = u1 + iu2 etc.

– 7 –
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of the SU(2)× SU(2) R-symmetry rotations of the CHS solution, and it is identified with

the U(1) momentum around the cigar (see [48, 53] for a discussion). The appearance of

the two potentials u and z is governed by the corresponding charges of the above fields.

Our notations and conventions are summarized in appendix A.

The bosonic H+
3 = SL(2,C)/SU(2) model at level k contributes:

ZH+
3
(τ ;u) =

(k + 2)
√
k

τ
1/2
2

e2πu
2
2/τ2

1

|θ11(τ ;u)|2
. (2.2)

The (b, c)cig ghosts have the contribution:

Zgh(τ) = τ2 |η(τ)2|2 . (2.3)

The two left-moving fermions ψ± have a contribution in the NS sector4 [54]:

chNS
ψ±(τ ;u) =

1√
k + 2

e−πu2
2/τ2 e2πiu1u2/τ2

θ00(τ ;u)

η(τ)
, (2.4)

the other NS(−1)F , R,R(−1)F characters can be derived from this by N = 2 spectral flow

on the worldsheet. We shall denote these four characters by ch
(ab)
ψ± where a = 0, 1 stands for

NS,R, and b = 0 and 1 stands for the trace with an insertion of 1 and (−1)F respectively.

The characters of the N = 2 minimal model SU(2)k/U(1) are labelled by5 (j, r),

(a, b) [52] and have the form:

Cj
r [

a
b ] (τ ; v) = eiπab/2

(
χj,a
r (τ ; v) + (−1)bχj,a+2

r (τ ; v)
)
. (2.5)

Here v is the chemical potential for the U(1)R symmetry of the minimal model, and in

what follows we will only need these characters evaluated at v = 0. The explicit form of

the functions χj,a
r are presented in equations (A.63), (A.59), (A.45). In this section we will

only use that they obey the branching relation (see equation (A.64)):

∑

r∈Z2k

χj,a
r (τ ; 0)ϑk,r

(
τ ;

w

2

)
= χj(τ ;w)ϑ2,a

(
τ ;

w

2

)
(2.6)

where the functions χj are defined by:

χj(τ ; z) = − ϑk,j+1(τ ; z/2)− ϑk,−j−1(τ ; z/2)

θ1(τ, z)
. (2.7)

The U(1)k fibered over the coset has the characters:

chk,r(τ ;u, z) = e−πk(u2+z2)2/2τ2
ϑk,r (τ ;−(u+ z)/2)

η(τ)
. (2.8)

4The prefactor in front of the usual expression for free fermions arises because of a factor of k+2 in the

action of these fermions. This prefactor cancels an equivalent one in the numerator of the bosons in (2.2).
5In this section we work at a fixed level k and do not display it in the various formulas in order to avoid

clutter. In section 3 and the appendices, there is an explicit superscript on the functions Cj
r , χ

j,a
r , and χj

that shows the k-dependence (see (A.66), (A.63), (A.45)).
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On tensoring the chiral part of the free fermions, the U(1)k and the SU(2)/U(1) char-

acters above, we obtain:

C(τ ;u, z)
∑

r∈Z2k

ch
(ab)
ψ± (τ ;u) chk,−r(τ ;u, z)C

j
r [

a
b ] (τ ; 0) (2.9)

=
θab(τ ;u)

η2(τ)

∑

r∈Z2k

ϑk,r(τ ; (u+ z)/2)
(
χj,a
r (τ ; 0) + (−1)bχj,a+2

r (τ ; 0)
)
,

=
θab(τ ;u)

η2(τ)

(
χj(τ ;u+ z)ϑ2,a(τ ; (u+ z)/2) + (−)bχj(τ ;u+ z)ϑ2,a+2(τ ; (u+ z)/2)

)
,

where we have performed the sum over r using the branching relation (2.6). The last line

in (2.9) can further be rewritten as

θab(τ ;u) θab (τ ;u+ z)

η2(τ)
χj(τ ;u+ z). (2.10)

The prefactor C(τ ;u, z) in (2.9) can be read off from equations (2.4), (2.5), (2.8), and

we shall keep track of the overall normalisations separately in what follows. The above

manipulations show that the characters from the SU(2)/U(1) factor and the U(1) of the

cigar recombine to give back the SU(2) characters χj in the path integral computation of

the second helicity supertrace.

So far we have discussed the two cosets in the theory (2.1), and we are left to deal

with the K3 SCFT, for which we use its description as a T 4/Z2 oribifold. The partition

sum naturally splits into the untwisted and twisted sectors of this orbifold, which we label

by a subscript (r, s) with r, s = 0, 1. This description is fairly standard in the literature,

we present some details in section 3. The excitations that contribute to the K3 characters

do not couple to the U(1) gauge field of the cigar coset, nor do they carry any spacetime

R-charge. As we are only interested in these two charges, the K3 characters contribute to

our observable of interest with vanishing value of the elliptic parameter.

As for the coset part, we separately consider the chiral fermionic part of the K3 SCFT.

For the spacetime helicity supertrace computation we need to combine their characters,

presented in section 3, with that of the chiral partition function of the two cosets (2.10),

and we then sum over the worldsheet spin structures. Performing these steps, we obtain,

in the untwisted sector:

Zj
(0,0)(τ ;u, z) =

1

2

1

η4(τ)

(
θ200(τ ; 0) θ00(τ ;u) θ00(τ ; z + u)− θ201(τ ; 0) θ01(τ ;u) θ01(τ ; z + u)

− θ210(τ ; 0) θ10(τ ;u) θ10(τ ; z + u)
)
χj(τ ;u+ z)

=
1

η4(τ)
θ211(τ ; z/2) θ

2
11(τ ; z/2 + u)χj(τ ;u+ z) , (2.11)

where we have used, in the second line, the identity R2 of [55]. Note that the only

j-dependence is in terms of χj(τ ;u) which is an overall factor. In a similar fashion, we
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obtain the twisted sector partition functions:

Zj
(0,1)(τ ;u, z) =

1

η4(τ)
θ211(τ ; z/2) θ

2
10(τ ; z/2 + u)χj(τ ;u+ z) ,

Zj
(1,0)(τ ;u, z) =

1

η4(τ)
θ211(τ ; z/2) θ

2
01(τ ; z/2 + u)χj(τ ;u+ z) , (2.12)

Zj
(1,1)(τ ;u, z) =

1

η4(τ)
θ211(τ ; z/2) θ

2
00(τ ; z/2 + u)χj(τ ;u+ z) .

These equations are the analog of equations (3.16) of [30]. We note that the charac-

ter χj(τ, u) factors out in equation (2.10), and consequently in all the following expressions.

The expressions (2.11), (2.12) contain the chiral fermionic contributions from all the

elements in (2.1) to the spacetime helicity supertrace (1.3). To obtain the the helicity

supertrace, we need to further perform the following steps. First we include the characters

from the rest of the fields, i.e. the bosonic characters (2.2), (2.3), as well the bosonic K3

characters given in section 3. Then we add the right-movers, and then we sum over j ∈ Z2k.

Thus we obtain an expression Z(τ ;u, u, z, z), which has to be integrated over (u, u) to give

the partition function as a function of (τ, z, z). Finally, we need two insertions of the

spacetime R-charge, which is implemented by two derivatives in z−z. Combining all these

elements, we obtain the helicity supertrace:

χ̂k
2(τ) =

1

4

∫

E(τ)

du1du2
τ2

(
1

2πi
(∂z − ∂z)

)2

Z(τ ;u, u, z, z)
∣∣∣
z=z=0

. (2.13)

The various intermediate steps proceed exactly as in [30]. In the following section we shall

display more details of these steps as part of a Hamiltonian analysis of the BPS spectrum

of the DSLST. The final result for the helicity supertrace is:

χ̂k
2(τ) =

√
kτ2
4

∫

E(τ)

du1du2
τ2

e−πku2
2/τ2

η(τ)6

θ1(τ ;u)
θ1(τ ;u)

∑

ℓ∈Z2k

|χℓ(τ ;u)|2Zell(K3; τ, u). (2.14)

It is convenient to introduce the standard notation

ϕ−2,1(τ ;u) =
θ1(τ ;u)

2

η(τ)6
, ϕ0,1(τ ;u) =

∑

i=2,3,4

θi(τ ;u)
2

θi(τ ; 0)2
, P (τ ;u) =

ϕ0,1(τ ;u)

ϕ−2,1(τ ;u)
. (2.15)

The functions ϕ−2,1 and ϕ0,1 are elements of the standard basis of weak Jacobi forms

(see (A.1) and [56]). The elliptic genus of K3 is given by Zell(K3; τ, u) = 2ϕ0,1(τ ;u). The

function P (τ ;u) is a multiple of the Weierstrass ℘-function P (τ ;u) = − 3
π2℘(τ, u).

Using this notation and equation (2.7), we can rewrite (2.14) as (cf. eq. (3.30) of [30]):

χ̂k
2(τ) =

∫

E(τ)

du1du2
τ2

P (τ ;u)Bk(τ ;u) , (2.16)

where

Bk(τ ;u) =

√
kτ2
2

e−πku2
2/τ2

∑

ℓ∈Z2k

|ϑk,ℓ(τ ;u/2)− ϑk,−ℓ(τ ;u/2)|2 . (2.17)
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In the above equations (2.14), (2.17), the summed variable ℓ takes values in Z2k. It is clear

however, from the definition of the theta functions, that ϑ̂k,0 = ϑ̂k,k = 0 and ϑ̂k,ℓ = −ϑ̂k,−ℓ

are non-zero for ℓ = 1, 2, . . . k − 1 with

ϑ̂k,ℓ(τ ; z) = ϑk,ℓ(τ ; z)− ϑk,−ℓ(τ ; z) (2.18)

so that only k−1 of the 2k summed expressions are distinct and non-zero. We can therefore

restrict the summation so that one has

Bk(τ ;u) =
√
kτ2 e

−πku2
2/τ2

k−1∑

r=1

|ϑ̂k,r(τ ;u/2)|2 . (2.19)

We shall use this expression in the following sections. Note that the function B2(τ ;u)

is equal to the function denoted by H(τ, u) in [30] after using the identity θ1(τ ;u) =

−ϑ̂2,1(τ ;u/2).

2.1 ADE DSLST

There is a natural extension of the above analysis to the more general SCFTs labelled by

ADE root systems as follows. For any divisor d of k, define

B(k,d)(τ ;u) =
1

2

√
kτ2 e

−πku2
2/τ2

∑

r,r′∈Z2k

ϑ̂k,r(τ ;u/2) ϑ̂k,r′(τ ;u/2)Ω
(k,d)
r,r′ , (2.20)

where

Ω
(k,d)
r,r′ =

{
1 if r + r′ = 0 mod 2d and r − r′ = 0 mod 2k/d ,

0 otherwise .
(2.21)

Further, for Y an ADE root system, define BY (τ ;u) by

BY (τ ;u) =
1

2

√
kτ2 e

−πku2
2/τ2

∑

r,r′∈Z2k

ϑ̂k,r(τ ;u/2) ϑ̂k,r′(τ ;u/2)Ω
Y
r,r′ , (2.22)

where ΩY
r,r′ are the (r, r′) components of the matrices defined6 in table 1.

In this notation, the function (2.19) is

Bk = B(k,1) = BAk−1
. (2.23)

Next, define:

χ̂
(k,d)
2 (τ) =

∫

E(τ)

du1du2
τ2

P (τ ;u)B(k,d)(τ ;u) , (2.24)

and

χ̂Y
2 (τ) =

∫

E(τ)

du1du2
τ2

P (τ ;u)BY (τ ;u) . (2.25)

From calculations parallel to the one in the last subsection, the functions χ̂Y
2 (τ)

are the second helicity supertraces evaluated in the holographic dual of DSLST of type

Y = A, D or E.

6The matrices ΩY are the same ones as those appearing in table 5 of [37], that paper uses the notation

Ωm(d) for Ω(m,d).
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Y m(Y ) ΩY

Am−1 m Ω(m,1)

Dm/2+1 m Ω(m,1) +Ω(m,m/2)

E6 12 Ω(12,1) +Ω(12,4) +Ω(12,6)

E7 18 Ω(18,1) +Ω(18,6) +Ω(18,9)

E8 30 Ω(30,1) +Ω(30,6) +Ω(30,10) +Ω(30,15)

Table 1. Coxeter numbers and matrices ΩY for ADE root systems Y.

2.2 The helicity supertraces, their completions and their shadows

The modular properties of the functions χ̂Y
2 (τ) can be deduced by following arguments

similar to those presented in [30], as we now briefly discuss.

The function P (τ ;u) is a Jacobi form of weight 2 and index 0, i.e. it is invariant under

elliptic transformations. We can check that the function Bk(τ ;u) is invariant under the full

Jacobi group. The measure du1du2/τ2 is also invariant under the elliptic transformations.

This means that the integral (2.16) over the coset E(τ) is indeed well-defined, and further,

it transforms like a modular form of weight 2.

The pole of the P -function at u = 0 necessitates some care in the definition of (2.16).

As in [30], we define the integral as a limit:

χ̂k(τ) = lim
ε→0

∫

Eε

Bk(τ ;u)P (τ ;u)
du1du2

τ2
, (2.26)

where Eε(τ) is the torus with a small disk of size ε centered at the origin removed from it.

The τ -derivative of χ̂k(τ) can be computed easily using the trick in [30]. We first notice

that ∂τ B(τ ; aτ + b) = i
2πk ∂

2
uB(τ ;u)|u=aτ+b. Using this heat equation, the τ -derivative

of χ̂k(τ) reduces to a contour integral around the origin:

∂τ χ̂k(τ) =
1

4πk

∮

∂Dε

∂uBk(τ ;u)P (τ ;u)
du

τ2

= − 1

4πkτ2

3

π2
(2πi)Resu→0

(
∂uBk(τ ;u)

1

u2

)

=
3i√
kτ2

∑

r∈Z2k

Sk,r(τ)Sk,r(τ) , (2.27)

where the weight 3/2 modular forms Sk,r(τ) are defined in (A.25). In other words,

χ̂k is the completion of a mixed mock modular form of weight 2 and shadow

− 3√
πk

∑
r∈Z2k

Sk,r(τ)Sk,r(τ).
7

It is now also clear from their definitions that χ̂(k,d) and χ̂Y are completions of weight 2

mixed mock modular forms with shadows proportional to
∑

r,r′∈Z2k

Sk,r(τ)Sk,r′(τ) Ω
(k,d)
r,r′ , and, respectively

∑

r,r′∈Z2k

Sk,r(τ)Sk,r′(τ) Ω
Y
r,r′ . (2.28)

7This corrects an error in the normalization of equations (A.12) and (A.13) of [30].
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The integral (2.26) is analyzed in [57] and explicit expressions for the mixed mock

modular forms χ(k,d)(τ) are found in terms of elementary number-theoretic sums as follows.

Define, for d|k,

F (k,d)
2 (τ) =


d

∑

r,s
kr>d2s>0

−k

d

∑

r,s
d2r>ks>0


 s qrs , (2.29)

and for Y an ADE root system define FY
2 to be the linear combination of Fk,d

2 using the

matrices of table 1 as above. Thus

FAk−1

2 = F (k,1)
2 , (2.30)

FDk/2+1

2 = F (k,1)
2 + F (k,k/2)

2 , (2.31)

FE6
2 = F (12,1)

2 + F (12,4)
2 + F (12,6)

2 , (2.32)

FE7
2 = F (18,1)

2 + F (18,6)
2 + F (18,9)

2 , (2.33)

FE8
2 = F (30,1)

2 + F (30,6)
2 + F (30,10)

2 + F (30,15)
2 . (2.34)

The result of [57] is

χ
(k,d)
2 (τ) =

(
k

d
− d

)
E2(τ)− 24F (k,d)

2 (τ) , (2.35)

which further implies

χY
2 (τ) = rk(Y )E2(τ)− 24FY

2 (τ) . (2.36)

Here the second Eisenstein series is given by

E2(τ) = 1− 24
∞∑

n=1

σ1(n) q
n , (2.37)

with σ1(n) is the sum of the divisors of n.

In the following section we will show, using a Hamiltonian analysis, that the re-

sult (2.36) also arises as the discrete part of the helicity supertrace of the string background

described by (1.2). Our Hamiltonian analysis complements the functional integral analysis

of the present section, and provides us with an independent point of view on the associated

physics, as well as a independent derivation of the mixed mock modular forms (2.25) that

we now briefly summarize. We begin with the the identity (B.114), which can be rewritten

in the form

P (τ ;u) =
12

rk(Y )
η(τ)3


−µY (τ ;u, u, 0) +

1

3

∑

w∈Π2

µY (τ ;w,w, 0)


 , (2.38)

where Π2 =
{
1
2 ,

τ
2 ,

τ+1
2

}
and µY (τ ; v, u, w) is a multi-variable Appell-Lerch sum defined in

appendix B. Substituting this into (2.25), we obtain

χ̂Y
2 (τ)=

∫

E(τ)

du1du2
τ


 12

rk(Y )
η(τ)3


1

3

∑

w∈Π2

µY (τ ;w,w, 0)−µY (τ ;u, u, 0)


BY (τ ;u)


. (2.39)
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The first term in square brackets in (2.39) is independent of u, and the integral of BY (τ ;u)

can be performed using a slight modification of the technique used in appendix A of [30]

to yield ∫

E(τ)

du1du2
τ2

BY (τ ;u) = rk(Y ) . (2.40)

This term, as in the analogous computation for k = 2 in [30], gives the holomorphic

contribution to χ̂Y
2 (τ), while the second term in square brackets in (2.39) provides the non-

holomorphic completion. From (2.39) and (2.40), we find that the holomorphic contribution

to the second helicity supertrace is given by

χY
2 (τ) = 4 η(τ)3

∑

w∈Π2

µY (τ ;w,w, 0) . (2.41)

It is indeed a nontrivial fact that (2.41) is equal to (2.36) and gives the weight two mock

modular form whose completion is χ̂Y
2 (τ). This follows from the following argument, that

we have also used earlier. By the corollary (B.16), the expression (2.41) for χY
2 (τ) has a

weight two completion

χ̂Y
2 (τ) = χY

2 (τ)−
3√
πk

∑

j,j′∈Z2k

ΩY
j,j′Sk,j(τ)S

∗
k,j′(τ). (2.42)

Comparing this with equation (2.27), we deduce that both the expressions (2.36) and (2.41)

are mixed mock modular forms with the same shadow. Therefore their difference has

vanishing shadow and must be a holomorphic modular form of weight two. But there are

no such modular forms, so their difference must vanish.

3 Evaluation of the BPS index via characters

In this section, we will isolate the contributions to the helicity index, χY
2 (τ), that arise

from the discrete characters of the SL(2,R) affine algebra. In this way we will explicitly

verify that modes localized at the tip of the cigar account for the holomorphic part of the

helicity index. In other words, we will compute

χY
2,dis(τ) = Tr (−1)Fs qL0−c/24 qL̃0−c̃/24

(
J3 − J̃3

)2
, (3.1)

where the trace omits the sum over momentum and winding modes associated with S1 as

before but now also omits contributions associated with continuous characters of SL(2,R).

The charge J3 and its right moving counterpart J̃3 are global charges coming from the

level k super SL(2,R) algebra. In the path integral formulation of section 2, the associated

currents are gauged via an integral over the variable u. This equates these charges with

the left and right momenta of the Y u boson (J3 → pL and −J̃3 → pR). The level k super

SL(2,R)/U(1) algebra is built out of a bosonic SL(2,R)/U(1) algebra at level k + 2 and

two free fermions giving a further level −2 contribution. Therefore, J3 = : ψ+ψ− : + j3,

where ψ± are the free fermions and j3 is the global charge associated with the bosonic

SL(2,R)/U(1) coset descending from a bosonic parent SL(2,R) algebra at level k + 2.
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Further details on both the bosonic and the supersymmetric SL(2,R)/U(1) cosets and

their characters can be found in [58–60]. See also [61] for a nice summary.

The momentum around the cigar corresponds to J3 − J̃3 which is the unbroken U(1)

of the full N = (4, 4) SCFT, [SL(2,R)k/U(1)× SU(2)k/U(1)] /Zk [46, 47]. J3 + J̃3, on the

other hand, is the winding number which is only conserved modulo Zk.

If we put the [SL(2,R)k/U(1)× SU(2)k/U(1)] /Zk and T4/Z2 factors together, we get:
8

χY
2,dis(τ) =

1

2

∑

r,s∈Z2

1

2

∑

a,b∈Z2

(−1)a+b+ab 1

2

∑

a,b∈Z2

(−1)a+b ZT4/Z2

[
r a a
s b b

]
(τ, τ)

×
k−2∑

2l,2l′=0

k+1∑

2j′=1

a(2j′)
∑

2p,2p∈Z
Ω̂Y
2l+1,2l′+1 C2l,k

−2p−a [
a
b ] (τ ; 0) C

2l′,k
−2p−a

[
a
b

]
(τ ; 0)

×
[(

p+
a

2

)
−

(
p+

a

2

)]2
chkd [

a
b ] (j

′, p; τ, 0) ch
k
d

[
a
b

]
(j′, p; τ , 0), (3.2)

where the sum over r, s goes over Z2 twists of the T4/Z2 orbifold and the sums over

a, b, a, b perform the GSO projections (for Type IIA string). The bosonic and fermionic

oscillator contributions from Rt×S1 factor are canceled by the (b, c, β, γ) ghosts as before.

Ω̂Y
2l+1,2l′+1 is the ADE invariant matrix9 corresponding to the simply laced root system Y

having Coxeter number k. In terms of ΩY
r,r′ defined in the table 1 we have

Ω̂Y
r,r′ = ΩY

r,r′ − ΩY
r,−r′ . (3.3)

• T4/Z2 contribution:

ZT4/Z2

[
r a a
s b b

]
(τ, τ) = Zbos

T4/Z2
[ rs ] (τ, τ) Z

frm
T4/Z2

[ r a
s b ] (τ) Z

frm
T4/Z2

[
r a
s b

]
(τ), (3.4)

where

Zfrm
T4/Z2

[ r a
s b ] (τ) =

θ
[

a+r
−b−s

]
(τ ; 0) θ

[
a−r
−b+s

]
(τ ; 0)

η(τ)2
, (3.5)

Zbos
T4/Z2

[ 00 ] (τ, τ) =
Θ4,4(τ, τ)

η(τ)4 η(τ)4
, (3.6)

and for (r, s) 6= (0, 0)

Zbos
T4/Z2

[ rs ] (τ, τ) =
16 η(τ)2 η(τ)2

θ
[
1+r
1−s

]
(τ ; 0) θ

[
1−r
1+s

]
(τ ; 0) θ

[
1+r
1−s

]
(τ ; 0) θ

[
1−r
1+s

]
(τ ; 0)

. (3.7)

• SU(2)k/U(1) contribution: the expressions C l,k
r [ ab ] are the supersymmetric SU(2)/

U(1) characters. Further details are given in appendix A.2.

• SL(2,R)k/U(1) contribution: discrete N = 2 characters that appear in supersym-

metric SL(2,R)k/U(1) contributions to χY
2,dis(τ) are

chkd [
a
b ] (j

′, p; τ, x) =
q

−(j′−1/2)2+(p+a/2)2

k y
2(p+a/2)/k
x

1 + (−1)b yx qp+a/2−j′+1/2

θab(τ ;x)

η(τ)3
. (3.8)

8See equation 4.29 in [14].
9See appendix A.2 for details.
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The x variable counts the R charge of the N = 2 superconformal algebra formed out

of the SL(2,R)k/U(1) coset. This expression assumes p − j′ ∈ Z and otherwise we

take it to be zero.

These are states that descend from the discrete series of representations for SL(2,R)

algebra, D̂±
j , by gauging J3. For these two representations j′ ∈ R

+ and states at the

ground level have j3 ∈ ±(j′ + Z
+
0 ). Note that for p ≥ j′ we can find a state with

∆ =
−j′(j′ − 1) + (p+ a/2)2

k
+

a2

8
and R =

2(p+ a/2)

k
+

a

2
, (3.9)

at the lowest q-power level of chkd [
a
b ] (j

′, p; τ, z). These are precisely the conformal

weight and R-charge for the SL(2,R)/U(1) primary V
sl,η=a/2
j=j′−1,m=p. This notation for

the vertex operator follows [16].

One last factor that appears in the equation (3.2) is10

a(2j′) =

{
1/2 if 2j′ = 1 or j′ = k + 1 ,

1 if 2j′ = 2, . . . , k .
(3.11)

To account for the
[(
p+ a

2

)
−
(
p+ a

2

)]2
of the equation (3.2) we will compute a sum

in which we replace
[(
p+ a

2

)
−
(
p+ a

2

)]2
factor with

e2πiz(p−j′+(1+a)/2) e−2πiz(p−j′+(1+a)/2). (3.12)

We will finally get back to χY
2,dis by acting

[
1

2πi
(∂z + ∂z)

]2 ∣∣∣∣∣
z=z=0

(3.13)

on the expression we get.11 Note that j′ − 1
2 factors cancel once we get to χY

2,dis; however,

we have included them in the equation (3.12) to get nice modular properties in the z

dependent function we will compute.

Let us start our computation by focusing on
∑

2p∈Z
C2l,k
−2p−a [

a
b ] (τ ; t) ch

k
d [

a
b ] (j

′, p; τ, x) yp−j′+(1+a)/2
z . (3.14)

We first note that C2l,k
−2p−a [

a
b ] (τ ; t) = (−1)abC2l,k

2p+a [
a
b ] (τ ;−t). Since chkd [

a
b ] (j

′, p; τ, x) is

zero unless p− j′ ∈ Z we define n = p− j′ + a and the expression in (3.14) becomes

(−1)ab
∑

n∈Z
C2l,k
2n+2j′−a [

a
b ] (τ ;−t) chkd [

a
b ] (j

′, j′ + n− a; τ, x) yn+(1−a)/2
z , (3.15)

10This factor reflects an ambiguity in the character decomposition as

chk
d [

a
b ] (1/2, n+ 1/2; τ, x) + chk

d [
a
b ] ((k + 1)/2, n+ (k + 1)/2; τ, x) (3.10)

can be rewritten in terms of a continuous character (see [15]). In any case, we will see that the j′ = 1/2

and (k + 1)/2 terms do not contribute to χY
2,dis(τ).

11The sign difference compared to (2.13) is because we are keeping track of J3 and J̃3 here instead of pL
and pR as we did there.
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or, using the equation (3.8) for chkd [
a
b ] (j

′, p; τ, x),

(−1)ab
∑

n∈Z
C2l,k
2n+2j′−a [

a
b ] (τ ;−t)

q
−(j− 1

2)
2
+(j′+n−

a
2 )

2

k y
2(j′+n−a

2 )/k
x

1 + (−1)b yx q
n+ 1−a

2

θab(τ ;x)

η(τ)3
y
n+ 1−a

2
z . (3.16)

If we introduce variables v, u, w by

x = v, t = v − w, z = u+

(
1− 2

k

)
w − v , (3.17)

we obtain

(−1)ab
θab(τ ; v)

η(τ)3

∑

n∈Z
y(2j

′−1)/k
v

q(n+
1−a
2 )

2
/k q(2j

′−1)(n+ 1−a
2 )/k

1 + (−1)b yv q
n+ 1−a

2

×
(
yuy

1−2/k
w

y
1−2/k
v

)n+ 1−a
2

C2l,k
2n+2j′−a [

a
b ] (τ ;w − v). (3.18)

This is exactly equal to

(−1)ab Bk,2l+1,2j′−1
ab (τ ; v, u, w)

= (−1)ab Bk,2l+1,2j′−1
ab

(
τ ;x, z +

2

k
x+

(
1− 2

k

)
t, x− t

)
. (3.19)

The expression Bk,j,j′

ab is defined in appendix B.4 as

Bk,j,j′

ab (τ ; v, u, w) =
θab(τ ; v) θab(τ ;u)

η(τ)3
µk,j,j′ (τ ; v + τab, u+ τab, w) , (3.20)

where τab ≡ (a− 1)τ/2 + (b− 1)/2 and

µk,j,j′(τ ; v, u, w) =
y
j′/k
v

θ11(τ ;u)

∑

n∈Z

qn
2/k qj

′n/k

1− yv qn

(
yu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v). (3.21)

Some algebraic and modular properties of µk,j,j′(τ ; v, u, w) are worked out in detail in

appendix B. Moreover, as shown in appendix B.4, Bk,j,j′

ab (τ ; v, u, w) satisfies analogues of the

Riemann relations for theta functions. This will be an important ingredient in simplifying

χY
2,dis(τ). Moreover, appendix B.4 tells us that Bk,j,j′

ab (τ ; v, u, w) is an entire function of v,

u and w and Bk,j,j′

11 (τ ; 0, 0, 0) = δj,j′ .

To summarize this discussion, our goal now is to compute

1

2

∑

r,s∈Z2

Zbos
T4/Z2

[ rs ] (τ, τ)

η(τ)2η(τ)2

k−1∑

l,l′=1

k∑

j′=0

a(j′ + 1) Ω̂Y
l,l′

× 1

2

∑

a,b∈Z2

(−1)a+b η(τ)2 Zfrm
T4/Z2

[ r a
s b ] (τ) B

k,l,j′

ab (τ ; 0, z, 0)

× 1

2

∑

a,b∈Z2

(−1)a+b+ab η(τ)2 Z
frm
T4/Z2

[
r a
s b

]
(τ) B

k,l′,j′

ab
(τ ; 0, z, 0) (3.22)

using the machinery developed in the appendices. Note that we have redefined 2l+1, 2l′+
1, 2j′ − 1 → l, l′, j′ compared to the equation (3.2).
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GSO projections. We will start simplifying the equation (3.22) by performing the GSO

projections first, i.e. by computing its second and third lines:

1

2

∑

a,b∈Z2

(−1)a+b θ
[

a+r
−b−s

]
(τ ; 0) θ

[
a−r
−b+s

]
(τ ; 0) Bk,l,j′

ab (τ ; 0, z, 0) , (3.23)

and
1

2

∑

a,b∈Z2

(−1)a+b+ab θ
[

a+r
−b−s

]
(τ ; 0) θ

[
a−r
−b+s

]
(τ ; 0) B

k,l′,j′

ab
(τ ; 0, z, 0). (3.24)

Untwisted sector (r, s) = (0, 0). First we study the holomorphic side, keeping in mind

that θ11(τ ; 0) = 0:

1

2

(
θ00(τ ; 0) θ00(τ ; 0)B

k,l,j′

00 (τ ; 0, z, 0)− θ01(τ ; 0) θ01(τ ; 0)B
k,l,j′

01 (τ ; 0, z, 0)

− θ10(τ ; 0) θ10(τ ; 0)B
k,l,j′

10 (τ ; 0, z, 0)
)
. (3.25)

According to the identity (R̃5) of section B.4 this is equal to

θ11(τ ; z/2) θ11(τ ;−z/2)Bk,l,j′

11 (τ ;−z/2, z/2, 0). (3.26)

Similarly, for the anti-holomorphic side we get

θ11(τ ; z/2) θ11(τ ;−z/2)B
k,l′,j′

11 (τ ;−z/2, z/2, 0). (3.27)

Due to the θ11 terms, (r, s) = (0, 0) contribution to the equation (3.22) behaves as

z2 z2 as z, z → 0. Therefore the untwisted sector does not give any contribution to χY
2,dis

which we get after the action of the operator (3.13).

Twisted sectors. We start with the (r, s) = (1, 0) sector. From the holomorphic side

we get

1

2

(
θ10(τ ; 0) θ10(τ ; 0)B

k,l,j′

00 (τ ; 0, z, 0)− θ00(τ ; 0) θ00(τ ; 0)B
k,l,j′

10 (τ ; 0, z, 0)

− θ01(τ ; 0) θ01(τ ; 0)B
k,l,j′

11 (τ ; 0, z, 0)
)

= − θ11(τ ; z/2) θ11(τ ;−z/2)Bk,l,j′

01 (τ ;−z/2, z/2, 0) (3.28)

using the identity (R̃13). We can similarly employ the identity (R̃11) and find the contri-

bution of the anti-holomorphic side as:

− θ01(τ ; z/2) θ01(τ ;−z/2)B
k,l′,j′

11 (τ ;−z/2, z/2, 0). (3.29)

The crucial point is that the only nontrivial contributions after the action of

[
1

2πi
(∂z + ∂z)

]2 ∣∣∣∣∣
z=z=0

(3.30)
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come from ∂2
z acting on the θ11(τ ; z/2) θ11(τ ;−z/2) term in the holomorphic contribution.

Taking derivatives and setting z = 0, these two theta functions give 1
2η(τ)

6. Setting z and

z to zero for the rest, we get the (r, s) = (1, 0) contribution to χY
2,dis as

1

2

Zbos
T4/Z2

[ 10 ] (τ, τ)

η(τ)2η(τ)2

k−1∑

l,l′=1

k∑

j′=0

a(j′ + 1) Ω̂Y
l,l′

(
− η(τ)6

2
Bk,l,j′

01 (τ ; 0, 0, 0)

)

×
(
− θ01(τ ; 0) θ01(τ ; 0)B

k,l′,j′

11 (τ ; 0, 0, 0)
)
. (3.31)

Substituting Zbos
T4/Z2

[ 10 ] and noting that B
k,l′,j′

11 (τ ; 0, 0, 0) is δl′,j′ in the relevant range we

can rewrite this as

4 η(τ)3
k−1∑

l,l′=1

Ω̂Y
l,l′ µ

k,l,l′(τ ; τ/2, τ/2, 0). (3.32)

We can repeat the same arguments for the other two twisted sectors as well. Using

Riemann-like relations (R̃8) and (R̃9) we find the contribution of (r, s) = (0, 1) sector to be

4 η(τ)3
k−1∑

l,l′=1

Ω̂Y
l,l′ µ

k,l,l′(τ ; 1/2, 1/2, 0). (3.33)

(R̃15) and (R̃16), on the other hand, gives the (r, s) = (1, 1) sector contribution to be

4 η(τ)3
k−1∑

l,l′=1

Ω̂Y
l,l′ µ

k,l,l′
(
τ ;

τ + 1

2
,
τ + 1

2
, 0

)
. (3.34)

In summary, the result of this section is that

χY
2,dis(τ) = 4η(τ)3

∑

w∈Π2

k−1∑

l,l′=1

Ω̂Y
l,l′µ

k,l,l′(τ ;w,w, 0), (3.35)

where Π2 =
{
1
2 ,

τ
2 ,

τ+1
2

}
. We notice that this is exactly χY

2 (τ), the holomorphic part of the

helicity supertrace.

4 Connections to Umbral Moonshine

The upshot of the preceding two sections is that for each choice of k and an ADE root

system Y with Coxeter number k, the second helicity trace χ̂Y
2 is the completion of a mixed

mock modular form of weight 2 with shadow proportional to

∑

r,r′∈Z2k

Sk,r(τ)Sk,r′(τ) Ω
rr′

Y . (4.1)

The holomorphic part of χ̂Y
2 is a mixed mock modular form of weight two. In section 2 we

found that the holomorphic part of χ̂Y
2 is given by

χY
2 (τ) = −rk(Y )E2(τ) + 24FY

2 (τ) (4.2)
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or by

χY
2 (τ) = 4η(τ)3

∑

w∈Π2

µY (τ ;w,w, 0) , (4.3)

where the latter expression is indeed equal to the contribution to χ̂Y
2 from the discrete

characters of the SCFT as we worked out in section 3. Although it is not obvious, these

two expressions are in fact identical. We proved their equality in section 2 by asserting

that they are weight two mixed mock modular forms with equal shadows. That means

their difference is a true modular form of weight two for SL(2,Z), but there are no such

forms so their difference must vanish.

We now want to compare our result for χY
2 to the weight two mixed mock modular

forms that appear in Umbral Moonshine. Recall that in [37] an instance of Umbral Moon-

shine was associated to the root system X of each Niemeier lattice with a non-vanishing

root system. The root systems X are uniquely characterized by having components con-

sisting of ADE root systems with equal Coxeter numbers m(X) and with total rank 24. For

each X there exists a vector-valued weight 1/2 mock modular form HX
r , r = 1, · · ·m(X)

which exhibits moonshine for a finite group GX = Aut(LX)/WX where LX is the Niemeier

lattice associated to X, Aut(LX) its automorphism group and WX the Weyl group of X.

For each X there exists a weight one, index m(X) mock Jacobi form given by

ψX
1,m(τ, z) =

∑

r

HX
r (τ) ϑ̂m,r(τ, z) . (4.4)

The first coefficient in the Taylor series expansion of ψX
1,m about z = 0 is given by

χX
2 =

∑

r

HX
r Sm,r . (4.5)

While the Niemeier root lattices X have an ADE classification, it is distinct from the

ADE classification of the the SCFT in equation (1.2) since a mixture of ADE components

is allowed for X while the classification of the SCFT only allows a single, distinct, A,D or

E component.12 In comparing our results to those of Umbral Moonshine we will therefore

consider only X which are powers of single A, D, or E components, namely

X = A24
1 , A12

2 , A8
3, A

6
4, A

4
6, A

3
8, A

2
12, A24, D

6
4, D

4
6, D

3
8, D

2
12, D24, E

4
6 , E

3
8 . (4.6)

To each of these X ′s we associate a single ADE root system Y via X = Y
24/rk(Y )
rk(Y ) so that

Y = A1, A2, A3, A4, A6, A8, A12, A24, D4, D6, D8, D12, D24, E6, E8 (4.7)

respectively. For these cases the results of [37] show that χX
2 is a weight two mixed mock

modular form with shadow proportional to

∑

r,r′∈Z2k

Sk,r(τ)Sk,r′(τ) Ω
Y
rr′ . (4.8)

12Attempts to combine the partition functions of SCFT’s with different ADE components leads either to

partition functions that do not have integer multiplicities for states or partition functions that correspond

to SCFT’s that do not have a unique vacuum state.
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Since the shadows of χX
2 and χY

2 are equal up to a proportionality constant, χX
2 and

χY
2 must also be equal up to the same constant factor. We determine the constant by the

following argument and then verify this by direct comparison of q expansions. In DSLST

the massless fields consist of rk(Y ) fields in a multiplet which is equivalent to a vector

multiplet of N = 2 supersymmetry in four dimensions. Each vector multiplet contributes

+1 to the second helicity supertrace, so the leading term in χY
2 (τ) should be rk(Y )q0. On

the other hand, the mock modular forms of Umbral Moonshine are characterized by the fact

that the only polar term occurs in HX
r for r = 1 with HX

1 = −2q−1/4m(X)+O(q1−1/4m(X)).

As a result the leading term in
∑

r Sm,rH
X
r is −2 and we therefore deduce that

χY
2 (τ) = − rk(Y )

2
χX
2 (4.9)

which can also be verified by comparing the q expansions of both sides using the explicit

q-series for HX
r given in [37]. For X = A24

1 with Y = A1 and rk(Y ) = 1 the relation (4.9)

reduces to that found in [30].

The holomorphic part of the second helicity supertrace χY
2 can of course be computed

for any single ADE root lattice Y and will be a mixed mock modular form of weight two,

so it is natural to ask whether there is anything special about those Y which appear in

Umbral Moonshine via Niemeier lattices X. For the Niemeier lattices with pure ADE root

systems built out of a component Y , the rank 24 condition for the rank of the Niemeier

lattices implies that rk(Y ) divides 24, and therefore we can write X = Y 24/rk(Y ). We

will call such cases the Umbral Y . For these cases we know that χX
2 has a q expansion

with coefficients that are even integers. From the formula (4.2), we deduce that all the

coefficients in the q expansion of χY
2 are divisible by rk(Y ).

As remarked above, this divisibility can be understood for the coefficient of q0 since

there are rk(Y ) massless states contributing to χY
2 , but it is not clear why this should

be true for the coefficients of higher powers of q that count massive BPS states. In fact

this divisibility by rk(Y ) does not occur for non-Umbral choices of Y . For example, while

for Y = A3, the q expansion of χ2 is given by:

χY=A3
2 = 3− 96 q − 288 q2 − 384 q3 − 576 q4 − 360 q5 + · · · (4.10)

where all coefficients are divisible by 3, the q expansion of χY=A7
2 which is a non-Umbral

example is given by

χY=A7
2 = 7− 192 q − 576 q2 − 768 q3 − 1344 q4 − 1152 q5 + · · · (4.11)

where the coefficients 7, 192 are relatively prime so there is no common factor that can

be factored out. More generally, we have χY=Ak
2 = k − 24(k + 1) q + O(q2), χY=Dk

2 =

k − 24(k − 1) q + O(q2) and χY=E7
2 = 7 − 72 q + O(q2) and it is clear that the coefficient

of the q0 term does not divide the coefficient of the q1 term for non-Umbral Y ’s. For the

convenience of the reader we give low order terms in the q expansions of the χX
2 for the

choices of X appearing in the list (4.6) in table 2.
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X\ n 0 1 2 3 4 5 6 7 8 9

A24
1 −2 96 192 144 384 240 768 336 768 720

A12
2 −2 72 216 216 336 240 648 336 816 648

A8
3 −2 64 192 256 384 240 608 336 768 624

A6
4 −2 60 180 240 420 300 588 336 744 612

A4
6 −2 56 168 224 392 336 672 392 720 600

A3
8 −2 54 162 216 378 324 648 432 810 648

A2
12 −2 52 156 208 364 312 624 416 780 676

A24 −2 50 150 200 350 300 600 400 750 650

D6
4 −2 36 192 252 384 372 612 336 768 540

D4
6 −2 40 120 248 384 360 616 472 768 704

D3
8 −2 42 126 168 384 354 618 462 768 696

D2
12 −2 44 132 176 308 264 620 452 768 688

D24 −2 46 138 184 322 276 552 368 690 598

E4
6 −2 16 128 216 352 376 648 488 800 648

E3
8 −2 −6 78 102 246 300 474 384 768 648

Table 2. Coefficient of qn in the q expansion of χX
2

for pure ADE Umbral X.

5 Conclusions and open problems

In this paper we performed a path integral evaluation of the second heliticty supertrace of

the SCFT describing the holographic dual of ADE little string theory on K3 and showed

that the answer has the form of the completion of a mixed mock modular form of weight

2. We identified the holomorphic part of the supertrace as the contribution from localized

states on the non-compact, “cigar” component of the SCFT by using a Hamiltonian anal-

ysis to sum only over these normalizable contributions and showed that this matched the

holomorphic part of the previous computation.

Our results have a very suggestive connection to the mock modular forms appearing

in Umbral Moonshine in that the ADE label Y which are Umbral in the sense that X =

Y 24/rk(Y ) is the root lattice of a Niemeier lattice lead to second helicity supertraces χY
2 with

special divisibility properties. In trying to refine this connection the most pressing problem

is to identify the symmetries of the SCFT (1.2) that preserve space-time supersymmetry

and in particular to understand to what degree these extend the known such symmetries

that act on the K3 component and have a relation to the Umbral symmetry groups GX .

It is clear that we have not identified a physical criterion that would single out precisely

the Umbral choices of Y . The computation we have done goes through for any choice of Y

and we see no sign of any inconsistency or instability of the theory for non-Umbral choices.

This problem also afflicts other related attempts to find a relation between Umbral Moon-

shine and explicit non-compact Conformal Field Theories. For example, the decomposition

of the elliptic genus given in the appendix of [38] in terms of Umbral Jacobi forms ψX(τ, z)

can be extended to an infinite class of non-Umbral Jacobi forms.
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To some degree our results are inevitable mathematical consequences of modular in-

variance in the context of non-compact SCFT. It is nonetheless interesting that the precise

mock modular forms appearing have such a close relation to mock modular forms that

have appeared in to context of Umbral Moonshine. Our results makes these mock modular

forms manifest in a physical system. The string theory computation also leads to other

findings such as the divisibility condition rk(Y )|24 — this was not guaranteed by modular

invariance. The significance of the divisibility criterion is not entirely clear to us. If one

divides χY
2 by rk(Y )/24 then one still obtains a possible second helicity supertrace in that

it still has integer coefficients in the q expansion of the holomorphic part. The question

then is whether it is possible to associate this supertrace to some physical background in

string theory. One possibility is that it should be interpreted as a possible helicity super-

trace of the long sought for theory of a single fivebrane. The problem with this idea is that

it is not clear why a background corresponding to k fivebranes in the double scaling limit

should factorize in this way.

We noted earlier that one can view the SCFT (1.2) as describing the behavior of string

theory near a singularity C2/Γ with Γ as finite subgroup of SU(2). We can further view this

singularity as a local singularity in a global K3 manifold which can develop singularities of

type ADE with rank up to 20. If we do this then we are considering type II string theory on

K3×K3 with the second K3 factor developing a local ADE singularity and then focusing

attention at the behavior near the singularity. In the global context this background has a

tadpole in the antisymmetric tensor field B [62] due to a space-time coupling of the form

−
∫

B ∧X8(R) . (5.1)

Furthermore, for geometric compactification on an eight-dimensional manifold M the in-

tegral of X8 is proportional to the Euler number of M ,

∫

M
X8(R) =

χ(M)

24
. (5.2)

As a result, for K3 × K3 which has Euler number 242, there is a tadpole which can be

cancelled by the addition of 24 fundamental strings tangent to the remaining R1,1 (or R×S1

is we compactly the spatial direction as discussed earlier). As we approach a singularity

in K3 to obtain the SCFT used here we lose the global structure and there is no tadpole

condition since the flux can escape off to infinity. Nonetheless, the SCFT we have used does

not have a flux of the B field at infinity and thus we expect that it describes a situation

in which the local contribution to X8(R) coming from the singularity is cancelled by a

contribution from fundamental strings. It would be interesting to understand the role of

these background fundamental strings in more detail.
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A Definitions and conventions

We use variables: q ≡ e2πiτ for τ ∈ H, y ≡ e2πiz for z ∈ C, and similarly we use yz, yx, yu,

. . . etc. for e2πiz, e2πix, e2πiu, . . . , respectively, where z, x, u, . . . ∈ C.

A.1 Basic modular, elliptic and Jacobi functions

a) The Dedekind η function is defined as:

η(τ) ≡ q1/24
∞∏

n=1

(1− qn) = q1/24
∑

n∈Z
qn(3n−1)/2. (A.1)

Under the generators of modular transformations η transforms as

η(τ + 1) = eiπ/12 η(τ), (A.2)

η(−1/τ) = e−iπ/4 τ1/2 η(τ). (A.3)

b) The Jacobi theta function θab with a, b ∈ {0, 1} is:

θab(τ ; z) ≡ θ [ ab ] (τ ; z) ≡
∑

n∈Z
q(n+a/2)2/2 e2πi(z+b/2)(n+a/2). (A.4)

We use the notation θ [ ab ] (τ, z) for a, b /∈ {0, 1} as well using the infinite series above.

i) Product formulae and other conventions:

θ00(τ ; z) = θ3(τ ; z) =

∞∏

n=1

(1− qn)
(
1 + yqn−1/2

)(
1 + y−1qn−1/2

)

=
∑

m∈Z
qm

2/2ym, (A.5)

θ01(τ ; z) = θ4(τ ; z) =
∞∏

n=1

(1− qn)
(
1− yqn−1/2

)(
1− y−1qn−1/2

)

=
∑

m∈Z
(−1)mqm

2/2ym, (A.6)

θ10(τ ; z) = θ2(τ ; z) = q1/8y1/2
∞∏

n=1

(1− qn) (1 + yqn)
(
1 + y−1qn−1

)

=
∑

m∈Z
q(m+1/2)2/2ym+1/2, (A.7)

θ11(τ ; z) = −i θ1(τ ; z) = i q1/8y1/2
∞∏

n=1

(1− qn) (1− yqn)
(
1− y−1qn−1

)

= i
∑

m∈Z
(−1)mq(m+1/2)2/2ym+1/2. (A.8)

The conventions here for θ00, θ01, θ10, θ11 are consistent with [55] and the con-

ventions for θi, i = 1, 2, 3, 4 are consistent with [36].
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ii) Transformation under shifts:

θ00

(
τ ; z +

a

2
τ +

b

2

)
= q−a2/8 y−a/2 e−iπab/2 θab(τ ; z), (A.9)

θ11

(
τ ; z +

a− 1

2
τ +

b− 1

2

)
= eiπb(1−a)/2 q−(1−a)2/8 y(1−a)/2 θab(τ ; z). (A.10)

We also note the following relations for reference:

θ00(τ ; z + 1/2) = θ01(τ ; z),

θ01(τ ; z + 1/2) = θ00(τ ; z),

θ10(τ ; z + 1/2) = θ11(τ ; z),

θ11(τ ; z + 1/2) = −θ10(τ ; z). (A.11)

θ00(τ ; z + τ/2) = q−1/8 y−1/2 θ10(τ ; z),

θ01(τ ; z + τ/2) = −i q−1/8 y−1/2 θ11(τ ; z),

θ10(τ ; z + τ/2) = q−1/8 y−1/2 θ00(τ ; z),

θ11(τ ; z + τ/2) = −i q−1/8 y−1/2 θ01(τ ; z). (A.12)

θ00(τ ; z + (τ + 1)/2) = −i q−1/8 y−1/2 θ11(τ ; z),

θ01(τ ; z + (τ + 1)/2) = q−1/8 y−1/2 θ10(τ ; z),

θ10(τ ; z + (τ + 1)/2) = −i q−1/8 y−1/2 θ01(τ ; z),

θ11(τ ; z + (τ + 1)/2) = −q−1/8 y−1/2 θ00(τ ; z). (A.13)

iii) In [43], ϑ(z) is defined as:

ϑ(z) ≡ ϑ(z; τ) = θ11(τ ; z). (A.14)

It obeys the following properties:

θ11(τ ; z + 1) = − θ11(τ ; z) and θ11(τ ; z + τ) = − q−1/2 y−1 θ11(τ ; z), (A.15)

and moreover, z → θ11(τ ; z) is the unique entire function satisfying these two

properties up to an overall multiplicative constant.

θ11(τ ;−z) = − θ11(τ ; z), (A.16)

and more generally θab(τ ;−z) = (−1)ab θab(τ ; z).

iv) Under modular transformations:

θ11(τ + 1; z) = eπi/4 θ11(τ ; z), (A.17)

θ11(−1/τ ; z/τ) = e−3πi/4 τ1/2 eπiz
2/τ θ11(τ ; z). (A.18)

1

2πi
θ′11(τ ; 0) = i η(τ)3. (A.19)
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c) Let

x0 =
1

2
(x+ z + v + u) , z0 =

1

2
(x+ z − v − u) ,

v0 =
1

2
(x− z + v − u) , u0 =

1

2
(x− z − v + u). (A.20)

Then, we have the following Riemann theta relations [55].

(R5) : +θ00θ00θ00θ00 − θ01θ01θ01θ01 − θ10θ10θ10θ10 + θ11θ11θ11θ11 = 2θ11θ11θ11θ11,

(R8) : −θ01θ01θ00θ00 + θ00θ00θ01θ01 − θ11θ11θ10θ10 + θ10θ10θ11θ11 = −2θ11θ11θ10θ10,

(R9) : −θ01θ01θ00θ00 + θ00θ00θ01θ01 + θ11θ11θ10θ10 − θ10θ10θ11θ11 = −2θ10θ10θ11θ11,

(R11) : −θ10θ10θ00θ00 − θ11θ11θ01θ01 + θ00θ00θ10θ10 + θ01θ01θ11θ11 = 2θ01θ01θ11θ11,

(R13) : −θ10θ10θ00θ00 + θ11θ11θ01θ01 + θ00θ00θ10θ10 − θ01θ01θ11θ11 = 2θ11θ11θ01θ01,

(R15) : −θ11θ11θ00θ00 − θ10θ10θ01θ01 + θ01θ01θ10θ10 + θ00θ00θ11θ11 = 2θ00θ00θ11θ11,

(R16) : −θ11θ11θ00θ00 + θ10θ10θ01θ01 − θ01θ01θ10θ10 + θ00θ00θ11θ11 = −2θ11θ11θ00θ00.

In these relations, the arguments of the theta functions on the left hand side are

(τ ;x), (τ ; z), (τ ; v), (τ ;u) in that order, and arguments for the theta functions on the

right hand side are (τ ;x0), (τ ; z0), (τ ; v0), (τ ;u0) again in that order.

d) Level k Jacobi theta functions ϑk,r(τ ; z) are defined as

ϑk,r(τ ; z) ≡
∑

n∈Z
n≡ r mod 2k

qn
2/4k yn =

∑

n∈Z+r/2k

qkn
2
y2kn. (A.21)

Note that there is another theta function definition, which is used commonly in affine

algebra characters

Θr,k(τ ; z) ≡
∑

n∈Z+r/2k

qkn
2
ykn. (A.22)

It is related to the Jacobi theta function as

ϑk,r(τ ; z) = Θr,k(τ ; 2z). (A.23)

In this paper, we exclusively use Jacobi theta functions, ϑk,r, even in cases involving

affine SU(2) characters.

We also define a combination that appears often

ϑ̂k,r(τ ; z) = ϑk,r(τ ; z)− ϑk,−r(τ ; z). (A.24)

From the Taylor expansion of the Jacobi theta function we also have the weight 3/2

unary theta function

Sk,r(τ) =
1

2πi

∂

∂z
ϑk,r(τ ; z)

∣∣∣∣
z=0

=
∑

n∈Z
(2kn+ r)q(2kn+r)2/4k. (A.25)
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i) Identities:

ϑk,r+2k(τ ; z) = ϑk,r(τ ; z), (A.26)

ϑk,−r(τ ; z) = ϑk,r(τ ;−z), (A.27)

ϑk,r(τ ; z) + ϑk,r+k(τ ; z) = ϑk/2,r(τ/2; z), (A.28)

Sk,r+2k(τ) = Sk,r(τ), (A.29)

Sk,−r(τ) = −Sk,r(τ). (A.30)

ii) Elliptic transformations:

ϑk,r(τ ; z + 1) = ϑk,r(τ ; z), (A.31)

ϑk,r(τ ; z + τ) = q−k y−2k ϑk,r(τ ; z), (A.32)

ϑk,r(τ ; z + 1/2) = (−1)r ϑk,r(τ ; z), (A.33)

ϑk,r(τ ; z + τ/2) = q−k/4 y−k ϑk,k+r(τ ; z). (A.34)

iii) Modular transformations:

ϑk,r(τ + 1; z) = eπir
2/2k ϑk,r(τ ; z), (A.35)

ϑk,r(−1/τ ; z/τ) =
√
−iτ e2πiz

2k/τ
k∑

r′=−k+1

S(k)
r,r′ ϑk,r′(τ ; z), (A.36)

Sk,r(τ + 1) = eπir
2/2k Sk,r(τ), (A.37)

Sk,r(−1/τ) = e−πi/4 τ3/2
k∑

r′=−k+1

S(k)
r,r′ Sk,r′(τ)

= (−iτ)3/2
k−1∑

r′=1

Ŝ(k)
r,r′ Sk,r′(τ), (A.38)

where

S(k)
r,r′ =

1√
2k

e−πirr′/k and Ŝ(k)
l,l′ ≡

√
2

k
sin

πll′

k
= i

(
S(k)
l,l′ − S(k)

l,−l′

)
. (A.39)

e) Jacobi forms

The modular and elliptic transformation laws of Jacobi theta functions provide a

template for the definition of the broader class of functions known as Jacobi forms.

Following [56] we say that a holomorphic function φ : H×C → C is a Jacobi form of

weight k and index m if it transforms under the Jacobi group SL2(Z)⋉ Z
2 as

φ(τ, z)=(cτ+d)−k exp

(
−2πim

cz2

cτ+d

)
φ

(
aτ+b

cτ+d
,

z

cτ+d

)
,

(
a b

c d

)
∈ SL2(Z) (A.40)

φ(τ, z)=exp
(
2πim(λ2τ + 2λz)

)
φ(τ, z + λτ + µ), λ, µ ∈ Z . (A.41)
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Invariance under the transformations τ → τ + 1 and z → z + 1 implies that we can

write a Fourier expansion in the form

φ(τ, z) =
∑

n,r∈Z
c(n, r)qnyr (A.42)

and the elliptic properties imply that the coefficients c(n, r) depend only on the

discriminant r2 − 4mn and on r mod 2m. A weak Jacobi form is a Jacobi form

whose coefficients obey c(n, r) = 0 whenever n < 0. In our analysis an important

role is played by the weak Jacobi forms ϕ0,1(τ, z) and ϕ−2,1(τ, z) with (weight,index)

of (0, 1) and (−2, 1) respectively given by

ϕ0,1(τ ; z) = 4

(
θ00(τ ; z)

2

θ00(τ ; 0)2
+

θ01(τ ; z)
2

θ01(τ ; 0)2
+

θ10(τ ; z)
2

θ10(τ ; 0)2

)

=
y2 + 10y + 1

y
+ 2

(y − 1)2(5y2 − 22y + 5)

y2
q + . . . (A.43)

ϕ−2,1(τ ; z) = − θ11(τ ; z)
2

η(τ)6

=
(y − 1)2

y
− 2

(y − 1)4

y2
q + . . . . (A.44)

A.2 SU(2)k/U(1) characters

a) Affine SU(2) characters:

The character of the spin l− 1 representation of affine SU(2) algebra at level k− 2 is

χ
(k−2)
l−1 (τ ; z) =

ϑk,l(τ ; z/2)− ϑk,−l(τ ; z/2)

ϑ2,1(τ ; z/2)− ϑ2,−1(τ ; z/2)
= i

ϑ̂k,l(τ ; z/2)

θ11(τ ; z)
, (A.45)

where l is an integer in the range 1 ≤ l ≤ k − 1. It is an entire and even function of

the variable z.

i) Elliptic transformations:

χ
(k−2)
l−1 (τ ; z + 1) = (−1)l+1 χ

(k−2)
l−1 (τ ; z), (A.46)

χ
(k−2)
l−1 (τ ; z + τ) = q−(k−2)/4 y−(k−2)/2 χ

(k−2)
k−l−1(τ ; z). (A.47)

ii) Modular transformations:

χ
(k−2)
l−1 (τ + 1; z) = eπil

2/2k e−πi/4 χ
(k−2)
l−1 (τ ; z), (A.48)

χ
(k−2)
l−1 (−1/τ ; z/τ) = eπiz

2(k−2)/2τ
k−1∑

l′=1

Ŝ(k)
l,l′ χ

(k−2)
l′−1 (τ ; z). (A.49)

b) Modular invariant combinations:

The modular transformation for ϑk,r involves matrices

S(k)
r,r′ =

1√
2k

e−πirr′/k and T (k)
r,r′ = eπir

2/2k δr,r′ . (A.50)

for r, r′ ∈ Z2k. Both of these matrices are symmetric and unitary.
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For each divisor d of k we define 2k × 2k matrices

Ω
(k,d)
r,r′ =

{
1 if r + r′ = 0 mod 2d and r − r′ = 0 mod 2k/d,

0 otherwise.
(A.51)

These matrices then satisfy

S(k)†Ω(k,d) S(k) = Ω(k,d) and T (k)†Ω(k,d) T (k) = Ω(k,d). (A.52)

That means, in particular, that the form of
∑

r,r′∈Z2k
ϑ∗
k,r Ω

(k,d)
r,r′ ϑk,r′ is preserved

under the modular transformations. Also, note that Ω
(k,d)
r,r′ = Ω

(k,d)
r′,r .

The modular transformations of χ
(k−2)
l−1 , ϑ̂k,r and Sk,r on the other hand involves the

matrix

Ŝ(k)
l,l′ = i

(
S(k)
l,l′ − S(k)

l,−l′

)
, l, l′ = 1, . . . , k − 1. (A.53)

It satisfies

Ŝ(k)
l,l′ = Ŝ(k)

l′,l , Ŝ(k)∗
l,l′ = Ŝ(k)

l,l′ , Ŝ(k)
l,k−l′ = (−1)l+1 Ŝ(k)

l′,l and
k−1∑

r=1

Ŝ(k)
l,r Ŝ(k)

r,l′ = δl,l′ . (A.54)

It is natural to define then the (k − 1)× (k − 1) matrices

Ω̂
(k,d)
r,r′ = Ω

(k,d)
r,r′ − Ω

(k,d)
r,−r′ for r, r′ = 1, . . . k − 1. (A.55)

From (A.51) we immediately deduce that

Ω̂
(k,d)
r,r′ = Ω̂

(k,d)
k−r,k−r′ . (A.56)

Moreover, Ω̂
(k,d)
r,r′ = 0 unless r2 − r′2 ∈ 4kZ and this gives

Ω̂
(k,d)
r,r′ eπi(r

2−r′2)/2k = Ω̂
(k,d)
r,r′ . (A.57)

Finally, using (A.52) we see that

Ŝ(k)† Ω̂(k,d) Ŝ(k) = Ω̂(k,d). (A.58)

c) String functions:

The function z → χ
(k)
l (τ ; 2z) satisfies χ

(k)
l (τ ; 2(z+1)) = χ

(k)
l (τ ; 2z) and χ

(k)
l (τ ; 2(z+

τ)) = q−ky−2kχ
(k)
l (τ ; 2z). In other words, under elliptical transformations it trans-

forms like an index k Jacobi form and hence has a theta decomposition. This follows

from the fact that there is a U(1) symmetry we can gauge in the level k affine SU(2)

algebra so that the characters have a branching relation

χ
(k)
l (τ ; z) =

∑

r∈Z2k

c
(k)
l,r (τ)ϑk,r(τ ; z/2), (A.59)

where we define string functions c
(k)
l,r (τ) using this decomposition.
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From (A.59) and from the properties of χ
(k)
l (τ ; z) it is easy to show that

c
(k)
l,r (τ) = c

(k)
l,r+2k(τ) = c

(k)
l,−r(τ) = c

(k)
k−l,k−r(τ). (A.60)

Since χ
(k)
l (τ ; z + 1) = (−1)l χ

(k)
l (τ ; z) and ϑk,r(τ, (z + 1)/2) = (−1)r ϑk,r(τ ; z/2)

c
(k)
l,r (τ) = 0 if l − r 6= 0 (mod 2). (A.61)

d) Supersymmetric coset:

The supersymmetric coset theory SU(2)k/U(1) gives rise to N = 2 minimal models

with central charge

ĉ =
c

3
= 1− 2/k, k = 2, 3, 4, . . . . (A.62)

We will need characters in the R and NS sector. There is also a T sector in which

the two supercharges have different periodicity. We use the conventions of [14] where

(adding superscript k to their notation to specify the level)

χl,s,k
r (τ ; z) =

∑

n∈Zk−2

c
(k−2)
l,r−s+4n(τ)ϑ2k(k−2),2r+k(4n−s)(τ ; z/2k), (A.63)

where s = 0, 2, 1, 3 denotes NS sector states with (−1)F = 1,−1 and R sector states

with (−1)F = 1,−1 respectively. c
(k−2)
l,r (τ) are the SU(2)k−2 string functions defined

through (A.59). χl,s,k
r (τ ; z) satisfies the branching relation

χ
(k−2)
l (τ ;w)ϑ2,s

(
τ ;

w − z

2

)
=

∑

r∈Z2k

χl,s,k
r (τ ; z)ϑk,r

(
τ ;

w

2
− z

k

)
. (A.64)

Specifically for k = 2, χ
(k−2=0)
l (τ ; z) = 1 and this branching relation implies

χl=0,s,k=2
r (τ ; z) = δr,s (mod 4). (A.65)

Finally, we define supersymmetric SU(2)k/U(1) characters by combining χl,s,k
r (τ ; z) as

C l,k
r [ ab ] (τ ; z) = eiπab/2

(
χl,a,k
r (τ ; z) + (−1)bχl,a+2,k

r (τ ; z)
)
, (A.66)

where a = 0, 1 denotes NS and R sectors in that order and b = 0, 1 states whether the

trace defining the character is taken with or without a (−1)F insertion, respectively.

Using (A.63) we can also write it as

C l,k
r [ ab ] (τ ; z) = eiπab/2

∑

n∈Z2(k−2)

(−1)bn c
(k−2)
l,r+2n−a(τ)ϑ2k(k−2),2r+k(2n−a)(τ ; z/2k).

(A.67)

Note that from (A.61) it follows that

C l,k
r [ ab ] (τ ; z) = 0 if l + r + a 6= 0 (mod 2). (A.68)
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i) Identities:

Using (A.67) we can show

C l,k
−r [

a
b ] (τ ; z) = (−1)abC l,k

r [ ab ] (τ ;−z), (A.69)

C l,k
r+2k [

a
b ] (τ ; z) = C l,k

r [ ab ] (τ ; z), (A.70)

Ck−2−l,k
r+k [ ab ] (τ ; z) = (−1)bC l,k

r [ ab ] (τ ; z). (A.71)

C l,k
r+a [

0
0 ]

(
τ ; z+

a

2
τ+

b

2

)
= q−a2(k−2)/8k y−a(k−2)/2k eiπab/2

× eiπb(r+a)/k C l,k
r [ ab ] (τ ; z), (A.72)

C l,k
r+a−1[

1
1 ]

(
τ ; z+

a−1

2
τ+

b−1

2

)
= −q−(1−a)2(k−2)/8k y(1−a)(k−2)/2k eiπ(a+1)b/2

× eiπ(b−1)(r+a−1)/k C l,k
r [ ab ] (τ ; z). (A.73)

C l,k
r [ 11 ] (τ ; z) is particularly important for our discussion. It satisfies the branch-

ing relation

χ
(k−2)
l

(
τ ;w+

2z

k

)
θ11

(
τ ;w− k−2

k
z

)
=

∑

r∈Z2k

C l,k
r [ 11 ] (τ ; z)ϑk,r (τ ;w/2) . (A.74)

Formally χ
(k−2)
l+2k (τ ; z) = χ

(k−2)
l (τ ; z) and χ

(k−2)
−l−2 (τ ; z) = −χ

(k−2)
l (τ ; z). This in

turn leads to

C l+2k,k
r [ 11 ] (τ ; z) = C l,k

r [ 11 ] (τ ; z), (A.75)

C−l−2,k
r [ 11 ] (τ ; z) = −C l,k

r [ 11 ] (τ ; z), (A.76)

C−1,k
r [ 11 ] (τ ; z) = Ck−1,k

r [ 11 ] (τ ; z) = 0. (A.77)

Setting z → 0 in the branching relation (A.74) we get

C l−1,k
r [ 11 ] (τ ; 0) = i

(
δr,l (mod 2k) − δ−r,l (mod 2k)

)
. (A.78)

ii) Elliptical transformations:

Using (A.67) one can easily obtain

C l,k
r [ ab ] (τ ; z + 1) = e2πir/k e−πiaC l,k

r [ ab ] (τ ; z), (A.79)

C l,k
r [ ab ] (τ ; z + τ) = q−(k−2)/2k y−(k−2)/k (−1)bC l,k

r−2 [
a
b ] (τ ; z). (A.80)

iii) Modular transformations:

Using (A.48), (A.49) and (A.74) one can work out the behavior of C l,k
r [ 11 ] (τ ; z)

under modular transformations as

C l−1,k
r [ 11 ] (τ + 1; z) = eπi(l

2−r2)/2k C l−1,k
r [ 11 ] (τ ; z) (A.81)

C l−1,k
r [ 11 ] (−1/τ ; z/τ) = −i eπiz

2(k−2)/kτ
k−1∑

l′=1

∑

r′∈Z2k

Ŝ(k)
l,l′ S

(k)∗
r,r′ C l′−1,k

r′ [ 11 ] (τ ; z).

(A.82)
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iv) Explicit expressions:

According to [63] we can write C l,k
r [ 00 ] (τ ; z) as

C l−1,k
r [ 00 ] (τ ; z) = q

l2−r2

4k y
r
k
θ00(τ ; z)

η(τ)3
(A.83)

×
∑

n∈Z
qkn

2+ln

(
1

1 + y−1qkn+
l+r
2

+
1

1 + yqkn+
l−r
2

− 1

)

or as

C l−1,k
r [ 00 ] (τ ; z) =

i q(l
2−r2−k2)/4k yr/k θ00(τ ; z) θ11(kτ ; lτ)

θ10(kτ ; z − l+r
2 τ) θ10(kτ ; z +

l−r
2 τ)

η(kτ)3

η(τ)3
(A.84)

whenever l−1 = r (mod 2). We find then explicit expressions for C l−1,k
r [ ab ] (τ ; z)

using equation (A.72). From these expressions, it is easy to check that z →
C l−1,k
r [ ab ] (τ ; z) is an entire function.

B Appell-Lerch sums

In [43] Zwegers defines a function µ(u, v; τ) as

µ(u, v; τ) ≡ eiπu

ϑ(v, τ)

∑

n∈Z

(−1)n qn(n+1)/2 e2πinv

1− qn e2πiu
. (B.1)

We will define now a generalization:13

Definition B.1.

µk,j,j′(τ ; v, u, w) ≡ y
j′/k
v

θ11(τ ;u)

∑

r∈Zk

∑

n∈Z+ r
k

qkn
2+j′n

1− yv qkn

(
yku y

k−2
w

yk−2
v

)n

Cj−1,k
2r+j′ [

1
1 ] (τ ;w − v) (B.2)

or equivalently

µk,j,j′(τ ; v, u, w) =
y
j′/k
v

θ11(τ ;u)

∑

n∈Z

qn
2/k qj

′n/k

1− yv qn

(
yu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v) (B.3)

where τ ∈ H, w ∈ C and v, u ∈ C − (Zτ + Z). The superscripts, k, j and j′, are integers

and k ≥ 2.

We will usually deal with j and j′ in the range {j, j′ = 1, . . . , k − 1}, but we will not

restrict them for now, aside from requiring them to be integers, and use the expression

above to define it for general j and j′. An important property is that

µk,j,j′(τ ; v, u, w) = 0 if j 6= j′(mod 2). (B.4)

This follows from the property (A.68) of Cj−1,k
2n+j′ [

1
1 ] function. For the rest of this section

we will implicitly assume j = j′ (mod 2) if we do not state otherwise.

13Multivariable generalizations of Appell-Lerch sums which are distinct from those presented here are

discussed in [64].
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Definition B.2. We define

µ(k,d)(τ ; v, u, w) =
k−1∑

j,j′=1

Ω̂
(k,d)
j,j′ µk,j,j′(τ ; v, u, w) (B.5)

for d|k and

µY (τ ; v, u, w) =

k−1∑

j,j′=1

Ω̂Y
j,j′ µ

k,j,j′(τ ; v, u, w) (B.6)

for a simply laced root system Y with Coxeter number k.

In the following, we will work out some properties for these functions generalizing the

properties of µ(u, v; τ) as worked out in [43].

Remark. µ2,1,1(τ ; v, u, w) is equal to i µ(v, u; τ) of [43] and to µ(v, u; τ) of [65]. This can

be seen explicitly from (B.3) using C0,2
2n+1 [

1
1 ] (τ ;w − v) = i (−1)n (see A.65).

B.1 Basic properties and behavior under elliptical transformations

Proposition B.3. The function µk,j,j′(τ ; v, u, w) is holomorphic on the set it is defined

(τ ∈ H, w ∈ C and v, u ∈ C − (Zτ + Z)). Moreover both u → µk,j,j′(τ ; v, u, w) and

v → µk,j,j′(τ ; v, u, w) are meromorphic functions with at most simple poles at u = a1τ + b1
and v = a2τ + b2 respectively with a1, a2, b1, b2 ∈ Z. In particular, the residue of the pole

at v = 0 for the function v → µk,j,j′(τ ; v, u, w) is − 1
2πi

Cj−1,k

j′ [ 11 ](τ ;w)

θ11(τ ;u)
.

Proof. That µk,j,j′(τ ; v, u, w) is holomorphic for τ ∈ H, w ∈ C and v, u ∈ C − (Zτ + Z) is

easy to see from (B.2) using the convergence of the sum over n and also the holomorphicity

of Cj−1,k
j′ [ 11 ] (τ ;x) for τ ∈ H and x ∈ C. That u → µk,j,j′(τ ; v, u, w) has at most simple

poles on Zτ + Z is immediate from the fact that θ11(τ ;u) has simple zeros on Zτ + Z.

v → µk,j,j′(τ ; v, u, w) may have poles at v’s satisfying 1 − yv q
−a1 = 0 for an integer a1

(see (B.3)). This happens on Zτ + Z where each location gives a simple pole on these

locations unless there is a zero contribution from the Cj−1,k
j′ [ 11 ] term. In particular, v = 0

pole comes from the n = 0 term of (B.3). The associated residue is

lim
v→0

v µk,j,j′(τ ; v, u, w) =
1

θ11(τ ;u)
lim
v→0

(
v

1− e2πiv

)
Cj−1,k
j′ [ 11 ] (τ ;w)

= − 1

2πi

Cj−1,k
j′ [ 11 ] (τ ;w)

θ11(τ ;u)
. (B.7)

Proposition B.4.

(a) µk,j,j′(τ ; v, u+ 1, w) = −µk,j,j′(τ ; v, u, w),

(b) µk,j,j′(τ ; v + 1, u, w) = −µk,j,j′(τ ; v, u, w),

(c) µk,j,j′(τ ; v, u, w + 1) = − e2πij
′/kµk,j,j′(τ ; v, u, w),

(d) µk,j,j′(τ ; v + τ, u+ τ, w) = µk,j,j′(τ ; v, u, w),

(e) µk,j,j′(τ ;−v,−u,−w) = µk,k−j,k−j′(τ ; v, u, w).
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Proof. (a) follows trivially from the fact that θ11(τ ;u+ 1) = −θ11(τ ;u).

For (b), we first point out that

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v − 1) = −e−2πi(2n+j′)/k Cj−1,k

2n+j′ [
1
1 ] (τ ;w − v). (B.8)

The e−2πi(2n+j′)/k factor is then canceled by e2πij
′/k produced by y

j′/k
v and e4πin/k produced

by y
−(1−2/k)n
v in the sum.

The proof for (c) is quite similar to the proof for (b). Cj−1,k
2n+j′ produces a − e2πi(2n+j′)/k

factor. e−4πin/k produced by y
(1−2/k)n
w in the sum cancels a portion of this and we are left

with the phase factor − e2πij
′/k as stated in the proposition.

For (d) we simply write

µk,j,j′(τ ; v + τ, u+ τ, w) =
y
j′/k
v qj

′/k

−q−1/2 y−1
u θ11(τ ;u)

∑

n∈Z

qn
2/k qj

′n/k

1− yv qn+1
q2n/k

(
yu y

1−2/k
w

y
1−2/k
v

)n

×
(
−q−(k−2)/2k

(
yw
yv

)1−2/k

Cj−1,k
2n+j′+2 [

1
1 ] (τ ;w − v)

)
. (B.9)

By rearranging various factors we get

y
j′/k
v

θ11(τ ;u)

∑

n∈Z

q(n+1)2/k qj
′(n+1)/k

1− yv qn+1

(
yu y

1−2/k
w

y
1−2/k
v

)n+1

Cj−1,k
2(n+1)+j′ [

1
1 ] (τ ;w − v) (B.10)

which is just µk,j,j′(τ ; v, u, w) after shifting the dummy summation variable n → n− 1.

Finally, µk,j,j′(τ ;−v,−u,−w) is

y
−j′/k
v

−θ11(τ ;u)

∑

n∈Z

qn
2/k qj

′n/k

1− y−1
v qn

(
yu y

1−2/k
w

y
1−2/k
v

)−n

Cj−1,k
2n+j′ [

1
1 ] (τ ; v − w) (B.11)

= − y
−j′/k
v

θ11(τ ;u)

∑

n∈Z

qn
2/k q−j′n/k

1− y−1
v q−n

(
yu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
−2n+j′ [

1
1 ] (τ ; v − w), (B.12)

where we changed the summation variable n → −n on the second line. Using (A.69), (A.71),

and 1
1−y−1

v q−1
= − yv qn

1−yv qn , (e) follows.

Proposition B.5.

(a)

µk,j,j′(τ ; v, u, w)+yv y
−1
u q−1/2 µk,j,j′(τ ; v, u+ τ, w) =

q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v)

(b)

µk,j,j′(τ ; v, u, w)+ y(k−2)/k
w q(k−2)/2k µk,j,j′+2(τ ; v, u, w + τ) =

q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v)
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(c)

µk,j,j′(τ ; v, u, w)+µk,k−j,k+j′(τ ; v, u, w) =

q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v) .

Proof. We start with (a) by writing µk,j,j′(τ ; v, u+ τ, w) as

y
j′/k
v

−q−1/2y−1
u θ11(τ ;u)

∑

n∈Z

qn
2/kqj

′n/k

1− yvqn

(
qyu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v). (B.13)

Using qn

1−yvqn
= y−1

v

(
1

1−yvqn
− 1

)
we can rewrite this as

− q1/2yu
yv

[
µk,j,j′(τ ; v, u, w)− y

j′/k
v

θ11(τ ;u)

∑

n∈Z
qn

2/kqj
′n/k

(
yu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v)

]
.

(B.14)

This tells us that we can express the combination

qj
′2/4k

(
yuy

1−2/k
w

yv

)j′/2 [
µk,j,j′(τ ; v, u, w) + yvy

−1
u q−1/2µk,j,j′(τ ; v, u+ τ, w)

]
(B.15)

as

1

θ11(τ ;u)

∑

n∈Z
q(n+j′/2)2/k

(
yu y

1−2/k
w

y
1−2/k
v

)n+j′/2

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v). (B.16)

Using (A.70) and separating the sum over n ∈ Z as a sum over s ∈ Z and p ∈ Zk by writing

n = ks+ r we obtain

1

θ11(τ ;u)

∑

r∈Zk

∑

s∈Z
q
k
(

s+ 2r+j′

2k

)2
(
yu y

1−2/k
w

y
1−2/k
v

)k
(

s+ 2r+j′

2k

)

Cj−1,k
2r+j′ [

1
1 ] (τ ;w − v). (B.17)

=
1

θ11(τ ;u)

∑

r∈Zk

ϑk,2r+j′

(
τ ;

1

2
(u+ (w − v)(1− 2/k))

)
Cj−1,k
2r+j′ [

1
1 ] (τ ;w − v). (B.18)

We can extend the sum over Zk to a sum over Z2k using (A.68) as

1

θ11(τ ;u)

∑

r∈Z2k

ϑk,r

(
τ ;

1

2
(u+ (w − v)(1− 2/k))

)
Cj−1,k
r [ 11 ] (τ ;w − v). (B.19)

Finally the branching relation (A.74) tells us this is just χ
(k−2)
j−1 (τ ;w + u− v) finishing the

proof for (a).

Note that from (A.47) and part (d) of proposition (B.4) we find a similar identity for

v → v + τ transformation.

µk,j,j′(τ ; v, u, w)+yuy
−1
v q−1/2µk,j,j′(τ ; v + τ, u, w) =

q−(k−j′)2/4k

(
yuy

1−2/k
w

yv

)(k−j′)/2

χ
(k−2)
k−j−1(τ ;w + u− v) .

For part (b) we use (A.80) and follow a proof very similar to that we had in part (a).
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Finally, by part (a)

− µk,j,j′(τ ; v, u, w) + q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v) (B.20)

is yvy
−1
u q−1/2µk,j,j′(τ ; v, u+ τ, w). By (B.13) this combination is

− y
(k+j′)/k
v

θ11(τ ;u)

∑

n∈Z

qn
2/kqj

′n/kqn

1− yvqn

(
yu y

1−2/k
w

y
1−2/k
v

)n

Cj−1,k
2n+j′ [

1
1 ] (τ ;w − v). (B.21)

Using (A.71), we see that this is just µk,k−j,k+j′(τ ; v, u, w) proving part (c).

We now give a lemma generalizing Proposition 1.4.7 of [43]. It will be an important

ingredient both in working out the modular properties of the µ functions defined here and

in the proof of the Riemann relations of section B.4.

Lemma B.6.

µk,j,j′(τ ; v + z,u+ z, w)− µk,j,j′(τ ; v, u, w)

=
iη(τ)3 Cj−1,k

j′ [ 11 ] (τ ;w) θ11(τ ; z) θ11(τ ; v + u+ z)

θ11(τ ; v) θ11(τ ;u) θ11(τ ; v + z) θ11(τ ;u+ z)
, (B.22)

for u, v, u+ z, v + z /∈ Zτ + Z.

Proof. Let us define

f(z) ≡
θ11(τ ; v + z) θ11(τ ;u+ z)

[
µk,j,j′(τ ; v + z, u+ z, w)− µk,j,j′(τ ; v, u, w)

]

θ11(τ ; z) θ11(τ ; v + u+ z)
. (B.23)

Using (A.15) and parts (a), (b) and (d) of proposition B.4 it is easy to check that

f(z + 1) = f(z) and f(z + τ) = f(z). (B.24)

In other words, f(z) is a meromorphic function of z which is doubly periodic.

In fact, parts (a), (b) and (d) of proposition B.4 tell us that [µ− µ] term alone is a

meromorphic function in z which is doubly periodic. By proposition B.3

z →
[
µk,j,j′(τ ; v + z, u+ z, w)− µk,j,j′(τ ; v, u, w)

]
(B.25)

part has simple poles at z = −v+ a1τ + b1 and at z = −u+ a2τ + b2 with a1, a2, b1, b2 ∈ Z

(or double poles if u = v (modZτ + Z) but we will assume that this is not the case since

generalization of our arguments to this case is straightforward). Moreover, this [µ− µ]

combination has zeros on z ∈ Zτ + Z.

The theta function prefactor in f(z) preserves the double periodicity and cancels the

poles at −u+Zτ+Z and at −v+Zτ+Z. In return, the theta functions in the denominator

have simple zeros at Zτ+Z and at −u−v+Zτ+Z which would be poles for f(z). However,

the zeros of the denominator at Zτ + Z are canceled by the zeros of the [µ− µ] term on
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the same set. In summary, f(z) is a doubly periodic function with at most one simple pole

per fundamental parallelogram (at −u− v + Zτ + Z).

A doubly periodic function with at most one simple pole per fundamental parallelogram

is a constant. Therefore,

µk,j,j′(τ ; v+z, u+z, w)−µk,j,j′(τ ; v, u, w) =
θ11(τ ; z) θ11(τ ; v + u+ z)

θ11(τ ; v + z) θ11(τ ;u+ z)
g(τ ; v, u, w), (B.26)

for some meromorphic function g(τ ; v, u, w).

By proposition B.3 the residue of the left hand side of equation (B.26) at z = −v is

− 1

2πi

Cj−1,k
j′ [ 11 ] (τ ;w)

θ11(τ ;u− v)
. (B.27)

For the right hand side the residue at the same position is

θ11(τ ;−v) θ11(τ ;u)

θ11(τ ;u− v)

(
1

2πi

1

iη(τ)3

)
g(τ ; v, u, w). (B.28)

Equating both expressions gives g(τ ; v, u, w) and completes the proof.

Corollary B.7. Taking z = −u− v in Lemma B.6 gives

µk,j,j′(τ ;−u,−v, w) = µk,j,j′(τ ; v, u, w). (B.29)

Then, using part (e) of Proposition B.4 we get

µk,k−j,k−j′(τ ;u, v,−w) = µk,j,j′(τ ; v, u, w). (B.30)

B.2 Modular behavior of µ functions

The behavior of µk,j,j′ under τ → τ + 1 is easy to work out from its definition.

Proposition B.8.

µk,j,j′(τ + 1; v, u, w) = e−πi/4 e2πi[j
2−j′2]/4k µk,j,j′(τ ; v, u, w) . (B.31)

Proof. This easily follows from (A.17) and (A.81).

The transformation under τ → −1/τ , v → v/τ , u → u/τ and w → w/τ is not as

simple and we need to develop some tools first for this discussion.

Definition B.9. For τ ∈ H and u ∈ C we define

hk,r(τ ;u) ≡ i

∫

R

dx
e2πi kτx

2−4πkux

1− e2πx−πir/k
. (B.32)

We also define

ĥk,r(τ ;u) ≡ 2 [hk,r(τ ;u/2)− hk,−r(τ ;u/2)] ,

= i

∫

R

dx eπi kτx
2/2 e−πkux

(
1

1− eπx−πir/k
− 1

1− eπx+πir/k

)
, (B.33)

for r = 1, . . . , k − 1.
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Remark. For r = 1, 2, . . . , 2k − 1, the definition here coincides with the definition of

hr(u; τ) in Proposition 3.3.6 of [43]. According to our definition we find hk,r = hk,2k+r.

Also, we note that ĥ2,1(τ ;u) is exactly h(u; τ) defined in Definition 1.1 of [43].

Proposition B.10. u → ĥk,r(τ, u) are entire functions satisfying the following properties:

(a) ĥk,r(τ ;u) + (−1)r+1 ĥk,r(τ ;u+ 1) =
2√
−iτ

k−1∑

p=1

Ŝ(k)
r,p eiπk(u+p/k)2/2τ .

(b) ĥk,r(τ ;u) + e−πiku−πikτ/2 ĥk,k−r(τ ;u+ τ) = 2 e−πiru−πir2τ/2k for r = 1, . . . , k − 1.

(c) ĥk,r(τ ;u) = ĥk,r(τ ;−u).

Proof.

(a) We write ĥk,r(τ ;u) + (−1)r+1 ĥk,r(τ ;u+ 1) as

i

∫

R

dx eπi kτx
2/2 e−πkux

(
1+(−1)r+1e−πkx

)(
1

1−eπx−πir/k
− 1

1−eπx+πir/k

)
. (B.34)

Note that

1 + (−1)r+1e−πkx

1− eπx−πir/k
= −e−πx+πir/k 1−

(
e−πx+πir/k

)k

1− e−πx+πir/k
= −

k∑

p=1

(
e−πx+πir/k

)p
(B.35)

and similarly

1 + (−1)r+1e−πkx

1− eπx+πir/k
= −

k∑

p=1

(
e−πx−πir/k

)p
. (B.36)

p=k terms cancel each other and for ĥk,r(τ ;u)+(−1)r+1ĥk,r(τ ;u+1) we eventually get

i

∫

R

dx eπi kτx
2/2 e−πkux

k−1∑

p=1

e−πxp
(
e−πirp/k − eπirp/k

)
(B.37)

= 2
k−1∑

p=1

sin
πrp

k

∫

R

dx eπi kτx
2/2e−πk(u+p/k)x. (B.38)

Now we can easily compute the integral to find our result.

(b) We start by noting that

− i

∫

R+i

dx eπi kτx
2/2 e−πkux

(
1

1− eπx−πir/k
− 1

1− eπx+πir/k

)
(B.39)

is simply

e−πiku−πikτ/2 ĥk,k−r(τ ;u+ τ). (B.40)
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Using this, we can express ĥk,r(τ ;u) + e−πiku−πikτ/2 ĥk,k−r(τ ;u+ τ) as

i



∫

R

−
∫

R+i


 dx eπi kτx

2/2 e−πkux

(
1

1− eπx−πir/k
− 1

1− eπx+πir/k

)
. (B.41)

This integral can be easily computed as

2πi Res
x=ir/k

(
i eπi kτx

2/2 e−πkux

1− eπx−πir/k

)
= 2 e−πiru−πir2τ/2k. (B.42)

(c) Changing the integration variable x → −x we get

ĥk,r(τ ;−u) = i

∫

R

dx eπi kτx
2/2 e−πkux

(
1

1− e−πx−πir/k
− 1

1− e−πx+πir/k

)
. (B.43)

Using
(

1

1−e−πx−πir/k
− 1

)
+

(
1− 1

1−e−πx+πir/k

)
=− 1

1−eπx+πir/k
+

1

1−eπx−πir/k
(B.44)

gives us ĥk,r(τ ;u) from equation (B.43).

Remark. u → ĥk,r(τ, u) functions are the only entire functions satisfying parts (a) and

(b) of proposition B.10. To see this suppose there are two entire functions, ĥ
(1)
k,r(τ ;u) and

ĥ
(2)
k,r(τ ;u), satisfying these two properties. Then their difference f̂k,r(τ ;u) ≡ ĥ

(1)
k,r(τ ;u) −

ĥ
(2)
k,r(τ ;u) satisfies

f̂k,r(τ ;u)− (−1)r f̂k,r(τ ;u+ 1) = 0 and f̂k,r(τ ;u) + e−πiku−πikτ/2 f̂k,k−r(τ ;u+ τ) = 0

(B.45)

for r = 1, . . . , k − 1. The second equation then gives

f̂k,r(τ ;u)− e−2πiku−2πikτ f̂k,r(τ ;u+ 2τ) = 0. (B.46)

By considering f̂k,r(τ ;u+m+ 2nτ) with integer m,n and restricting u to a parallelogram

formed by 1 and 2τ we see that u → f̂k,r(τ ;u) is a bounded function which goes to zero as

u → i∞. Liouville’s theorem implies then f̂k,r(τ ;u) = 0.

Definition B.11. For u ∈ C and τ ∈ H, [43] defines

Rk,r(τ ;u) =
∑

n≡ rmod2k

[
sgn

(
n+

1

2

)
−E

(
(n+2ku2/τ2)

√
τ2/k

)]
e−πin2τ/2k−2πinu, (B.47)

where

E(z) ≡ 2

z∫

0

du e−πu2
(B.48)
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We also define

R̂k,r(τ ;u) ≡ Rk,r(τ ;u/2)−Rk,−r(τ ;u/2). (B.49)

More explicitly, R̂k,r(τ ;u) is

( ∑

n∈r+2kZ

−
∑

n∈−r+2kZ

)[
sgn

(
n+

1

2

)
− E

(
(n+ ku2/τ2)

√
τ2/k

)]
e−πin2τ/2k−πinu.

(B.50)

Remark. For r = 1, . . . , k − 1 we can write R̂k,r(τ ; 0) as

R̂k,r(τ ; 0) = 2
∑

n∈r+2kZ

[
sgn (n)− E

(
n
√
τ2/k

)]
e−πin2τ/2k. (B.51)

Since E(z) = sgn (z)
[
1− Γ

(
1
2 , πz

2
)
/
√
π
]
, we see that

R̂k,r(τ ; 0) = (πk)−1/2 S∗
k,r(τ), (B.52)

where S∗
k,r(τ) is the non-holomorphic Eichler integral of Sk,r(τ), which solves the equation

(4πτ2)
1/2

∂S∗
k,r(τ)

∂τ
= −2πi Sk,r(τ). (B.53)

It is easy to see from this definition that

• Rk,r(τ ;u) = Rk,r+2k(τ ;u) and R̂k,r(τ ;u) = R̂k,r+2k(τ ;u),

• R̂k,r(τ ;u) = − R̂k,−r(τ ;u),

• For r = 0 (modk), R̂k,r(τ ;u) = 0.

Proposition B.12. For r = 1, . . . , k − 1

(a) R̂k,r(τ ;u) = R̂k,r(τ ;−u).

(b) R̂k,r(τ ;u) + (−1)r+1 R̂k,r(τ ;u+ 1) = 0.

(c) R̂k,r(τ ;u) + e−πiku−πikτ/2 R̂k,k−r(τ ;u+ τ) = 2 e−πiru−πir2τ/2k.

Proof.

(a) This property follows by changing the dummy summation variable n → −n.

(b) The only term in the equation (B.50) that is affected by the u → u+1 transformation

is e−πinu, which produces a factor of e−πi(±r+2kZ) = (−1)r.

(c) We write e−πiku−πikτ/2 R̂k,k−r(τ ;u+ τ) as

( ∑

n∈k−r+2kZ

−
∑

n∈r+k+2kZ

)[
sgn

(
n+

1

2

)
− E

(
(n+ k(u2 + τ2)/τ2)

√
τ2/k

)]

× e−πiku−πikτ/2e−πin2τ/2k−πin(u+τ). (B.54)
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Shifting the dummy summation variable as n → n− k we get
( ∑

n∈−r+2kZ

−
∑

n∈r+2kZ

)[
sgn

(
n−k+

1

2

)
−E

(
(n+

ku2
τ2

)

√
τ2
k

)]
e−

πin2τ
2k

−πinu. (B.55)

We can write this expression as

− R̂k,r(τ ;u)+

( ∑

n∈r+2kZ

−
∑

n∈−r+2kZ

)[
sgn

(
n+

1

2

)
−sgn

(
n−k+

1

2

)]
e−

πin2τ
2k

−πinu.

(B.56)[
sgn(n+ 1

2)− sgn
(
n− k + 1

2

)]
term is only nonzero (and is equal to 2) for integers

in the interval −1
2 < n < k− 1

2 and hence it picks the n = +r term in the sum giving

us the desired result.

Proposition B.13. For r = 1, . . . , k − 1

(a) R̂k,r(τ + 1;u) = e−πir2/2k R̂k,r(τ + 1;u).

(b) R̂k,r(τ ;u) +
eπiku

2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p R̂k,p

(
−1

τ
;
u

τ

)
= ĥk,r(τ ;u).

Proof.

(a) In equation (B.50), τ → τ + 1 transformation only affects the e−πin2τ/2k term which

produces a factor of e−πi(±r+2kZ)2/2k = e−πir2/2k.

(b) Let us define h̃k,r(τ ;u) as

h̃k,r(τ ;u) ≡ R̂k,r(τ ;u) +
eπiku

2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p R̂k,p

(
−1

τ
;
u

τ

)
. (B.57)

Our proof will start by showing that h̃k,r(τ ;u) has the same behavior under u → u+1 and

u → u+ τ as ĥk,r(τ ;u) (see parts (a) and (b) of proposition B.10). Since u → ĥk,r(τ ;u) are

the unique entire functions having this behavior we will finish our proof by showing that

u → h̃k,r(τ ;u) are entire functions.

We start with h̃k,r(τ ;u) + e−πiku−πikτ/2 h̃k,k−r(τ ;u+ τ). There are two contributions

to this object which are

R̂k,r(τ ;u) + e−πiku−πikτ/2 R̂k,k−r(τ ;u+ τ) (B.58)

and

eπiku
2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p R̂k,p

(
−1

τ
;
u

τ

)
+ e−πiku−πikτ/2 e

πik(u+τ)2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
k−r,p R̂k,p

(
−1

τ
;
u+ τ

τ

)
.

(B.59)

The first factor gives 2 e−πiru−πir2τ/2k by part (c) of proposition B.12 and the second one

is zero by Ŝ(k)
k−r,p = (−1)p+1 Ŝ(k)

r,p and using part (b) of proposition B.12.
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Similarly, we can separate h̃k,r(τ ;u)+(−1)r+1 h̃k,r(τ ;u+1) into the sum of two factors.

The first one is R̂k,r(τ ;u) + (−1)r+1 R̂k,r(τ ;u + 1) which is zero by part (b) of proposi-

tion B.12. The second contribution is

eπiku
2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p R̂k,p

(
−1

τ
;
u

τ

)
+(−1)r+1 e

πik(u+1)2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p R̂k,p

(
−1

τ
;
u+1

τ

)
. (B.60)

Using (−1)r+1 Ŝ(k)
r,p = Ŝ(k)

r,k−p and then changing the dummy summation variable of the

second factor as p → k − p we get

eπiku
2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p

[
R̂k,p

(
−1

τ
;
u

τ

)
+ eπiku/τeπik/2τ R̂k,k−p

(
−1

τ
;
u

τ
+

1

τ

)]
. (B.61)

The part (c) of proposition B.12 then tells us that the factor in square brackets is just

2 eπipu/τeπip
2/2kτ . This finally gives

h̃k,r(τ ;u) + (−1)r+1 h̃k,r(τ ;u+ 1) =
2√
−iτ

k−1∑

p=1

Ŝ(k)
r,p eiπk(u+p/k)2/2τ . (B.62)

Our final task is to show that u → h̃k,r(τ ;u) are entire functions. It is straightforward

to work out

∂

∂ u
R̂k,r (τ ;u) = i

√
k

τ2
e−πku 2

2 /τ2 [ϑk,r(−τ , u/2)− ϑk,−r(−τ , u/2)] (B.63)

and

∂

∂ u
R̂k,p

(
−1

τ
;
u

τ

)
=

√
k

τ2

√
−i τ√
i τ

eπk(uτ−uτ)2/4τ2|τ |2
[
ϑk,p

(
1

τ
,− u

2τ

)
− ϑk,−p

(
1

τ
,− u

2τ

)]
.

(B.64)

Then we rewrite

k−1∑

p=1

Ŝ(k)
r,p

∂

∂ u
R̂k,p

(
−1

τ
;
u

τ

)
= i

∑

p∈Z2k

S(k)
r,p

∂

∂ u
R̂k,p

(
−1

τ
;
u

τ

)
(B.65)

as

i

√
k

τ2

√
−i τ√
i τ

eπk(uτ−uτ)2/4τ2|τ |2

 ∑

p∈Z2k

S(k)∗
−r,p ϑk,p

(
1

τ
,− u

2τ

)
−

∑

p∈Z2k

S(k)∗
r,−p ϑk,−p

(
1

τ
,− u

2τ

)
.

(B.66)

Using equation (A.36) this expression is equal to

− i

√
k

τ2

√
−i τ eπk(uτ−uτ)2/4τ2|τ |2 e−πiku2/2τ [ϑk,r(−τ , u/2)− ϑk,−r(−τ , u/2)] . (B.67)

Combining equations (B.63) and (B.67) we get

∂

∂ u
R̂k,r(τ ;u) +

eπiku
2/2τ

√
−iτ

k−1∑

p=1

Ŝ(k)
r,p

∂

∂ u
R̂k,p

(
−1

τ
;
u

τ

)
= 0 (B.68)

as was to be shown.
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We finally relate R̂k,r and ĥk,r to the µk,j,j′ ’s modular transformation properties.

Proposition B.14. For j, j′ = 1, . . . , k − 1 and j = j′ (mod 2)

1

2

[
µk,j,j′ (τ ; v, u, w) + µk,k−j,k−j′ (τ ; v, u, w)

]

+
eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)

=
1

4

[
χ
(k−2)
j−1 (τ ;u− v + w) ĥk,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) ĥk,k−j′(τ ;u− v + w(1− 2/k))

]
. (B.69)

Remark. We will find it convenient to define

µk,j,j′

sym (τ ; v, u, w) =
1

2

[
µk,j,j′ (τ ; v, u, w) + µk,k−j,k−j′ (τ ; v, u, w)

]
. (B.70)

Since Ŝ(k)
j,p = (−1)j+1Ŝ(k)

j,k−p and since we are considering the j = j′ (mod 2) case (as other-

wise µk,j,j′ is zero) we have

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
=

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
. (B.71)

Furthermore, since Ω̂
(k,d)
j,j′ = Ω̂

(k,d)
k−j,k−j′ we have

k−1∑

j,j′=1

Ω̂
(k,d)
j,j′ µk,j,j′

sym (τ ; v, u, w) =
k−1∑

j,j′=1

Ω̂
(k,d)
j,j′ µk,j,j′ (τ ; v, u, w) . (B.72)

Using (B.30) we also see that

µk,j,j′

sym (τ ;u, u, 0) = µk,j,j′ (τ ;u, u, 0) . (B.73)

Then with this definition, the proposition above can be equivalently expressed as

µk,j,j′

sym (τ ; v, u, w) +
eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)

=
1

4

[
χ
(k−2)
j−1 (τ ;u− v + w) ĥk,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) ĥk,k−j′(τ ;u− v + w(1− 2/k))

]
. (B.74)

Proof. Using lemma B.6 with z → z/τ , v → v/τ , u → u/τ , w → w/τ and τ → −1/τ

we get

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′

[
µk,p,p′

sym

(
−1

τ
;
v + z

τ
,
u+ z

τ
,
w

τ

)
− µk,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)]

=
i η

(
− 1

τ

)3
θ11

(
− 1

τ ;
z
τ

)
θ11

(
− 1

τ ;
v+u+z

τ

)

θ11
(
− 1

τ ;
v
τ

)
θ11

(
− 1

τ ;
u
τ

)
θ11

(
− 1

τ ;
v+z
τ

)
θ11

(
− 1

τ ;
u+z
τ

)

× 1

2

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′

[
Cp−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)
+ Ck−p−1,k

k−p′ [ 11 ]

(
−1

τ
;
w

τ

)]
. (B.75)
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The first factor

i η
(
− 1

τ

)3
θ11

(
− 1

τ ;
z
τ

)
θ11

(
− 1

τ ;
v+u+z

τ

)

θ11
(
− 1

τ ;
v
τ

)
θ11

(
− 1

τ ;
u
τ

)
θ11

(
− 1

τ ;
v+z
τ

)
θ11

(
− 1

τ ;
u+z
τ

) (B.76)

can be rewritten using η and θ11’s modular transformation as

−
√
−iτ e−πi(u−v)2/τ i η (τ)3 θ11 (τ ; z) θ11 (τ ; v + u+ z)

θ11 (τ ; v) θ11 (τ ;u) θ11 (τ ; v + z) θ11 (τ ;u+ z)
. (B.77)

We can rewrite the second factor,

1

2

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′

[
Cp−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)
+ Ck−p−1,k

k−p′ [ 11 ]

(
−1

τ
;
w

τ

)]
(B.78)

using equations (A.70), (A.71), (A.82) and properties of Ŝ(k)
r,r′ and S(k)

r,r′ to get

1

2

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′

[
Cp−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)
− Cp−1,k

−p′ [ 11 ]

(
−1

τ
;
w

τ

)]

=
i

2

k−1∑

p,p′=1

Ŝ(k)
j,p

[
S(k)
j′,p′ − S(k)

j′,−p′

] [
Cp−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)
− Cp−1,k

−p′ [ 11 ]

(
−1

τ
;
w

τ

)]

=
i

2

k−1∑

p=1

k∑

p′=−k+1

Ŝ(k)
j,p

[
S(k)
j′,p′ C

p−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)
− S(k)

− j′,p′ C
p−1,k
p′ [ 11 ]

(
−1

τ
;
w

τ

)]

=
1

2
eπiw

2(1−2/k)/τ
[
Cj−1,k
j′ [ 11 ] (τ ;w)− Cj−1,k

−j′ [ 11 ] (τ ;w)
]

=
1

2
eπiw

2(1−2/k)/τ
[
Cj−1,k
j′ [ 11 ] (τ ;w) + Ck−j−1,k

k−j′ [ 11 ] (τ ;w)
]
. (B.79)

Combining these two factors and using lemma B.6 once more we see that the left hand side

of equation (B.75) is equal to

−
√
−iτ e−πi(u−v)2/τ eπiw

2(1−2/k)/τ
[
µk,p,p′

sym (τ ; v+z, u+z, w)−µk,p,p′

sym (τ ; v, u, w)
]
. (B.80)

Therefore,

µk,j,j′

sym (τ ; v, u, w)+
eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
(B.81)

depends on u and v only through u− v. Let us call it 1
2H

k,j,j′(τ ;u− v, w).

Looking at its definition in equation (B.81), u → Hk,j,j′(τ ;u − v, w) can have poles

only at u ∈ Zτ + Z. However, since Hk,j,j′(τ ;u− v, w)’s dependence on u is only through

u− v, it can not have any poles at all. Therefore, z → Hk,j,j′(τ ; z, w) is an entire function.

We will now find two properties for Hk,j,j′(τ ; z, w) which will turn out to characterize these

functions completely.
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The first one of these two properties is

e−πiτ−2πizHk,j,j′ (τ ; z + τ, w) +Hk,j,j′ (τ ; z, w) = q−j′2/4k
(
yzy

1−2/k
w

)−j′/2
χ
(k−2)
j−1 (τ ; z + w)

+ q−(k−j′)2/4k
(
yzy

1−2/k
w

)−(k−j′)/2
χ
(k−2)
k−j−1(τ ; z + w) . (B.82)

To see this, let us use the definition of 1
2H

k,j,j′ (τ ;u− v, w) as given in equation (B.81) to

write 1
2H

k,j,j′ (τ ;u− v + τ, w) as

µk,j,j′

sym (τ ; v, u+τ, w) +
eπi(u−v+τ)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
+1,

w

τ

)
.

(B.83)

The first factor, µk,j,j′
sym (τ ; v, u+ τ, w), is equal to

q1/2y−1
u yv

[
−µk,j,j′

sym (τ ; v, u, w) +
1

2
q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v)

+
1

2
q−(k−j′)2/4k

(
yv

yuy
1−2/k
w

)(k−j′)/2

χ
(k−2)
k−j−1(τ ;w + u− v)

]
(B.84)

by part (a) of Proposition B.5. Then, using part (b) of Proposition B.4 we see that

µk,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
+ 1,

w

τ

)
= −µk,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
. (B.85)

Finally, using that eπi(u−v+τ)2/τ =q1/2y−1
u yve

πi(u−v)2/τ we rewrite 1
2H

k,j,j′ (τ ; τ+u−v, w) as

q1/2y−1
u yv

[
−µk,j,j′

sym (τ ; v, u, w) +
1

2
q−j′2/4k

(
yv

yuy
1−2/k
w

)j′/2

χ
(k−2)
j−1 (τ ;w + u− v)

+
1

2
q−(k−j′)2/4k

(
yv

yuy
1−2/k
w

)(k−j′)/2

χ
(k−2)
k−j−1(τ ;w + u− v)

− eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)]
. (B.86)

Combining the first and fourth terms contained in the brackets as − 1
2H

k,j,j′ (τ ;u− v, w)

and replacing u with v + z we get to the statement of equation (B.82).

The second property we would like to use is

Hk,j,j′ (τ ; z + 1, w) +Hk,j,j′ (τ ; z, w)

=χ
(k−2)
j−1 (τ ; z + w)

1√
−iτ

k−1∑

p′=1

Ŝ(k)
j′,p′ e

πik(z+w(1−2/k)+p′/k)2/2τ

+ χ
(k−2)
k−j−1(τ ; z + w)

1√
−iτ

k−1∑

p′=1

Ŝ(k)
k−j′,p′ e

πik(z+w(1−2/k)+p′/k)2/2τ . (B.87)
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To see this, we will again use the definition of 1
2H

k,j,j′ (τ ;u− v, w) from equation (B.81)

to write 1
2H

k,j,j′ (τ ;u− v + 1, w) as

µk,j,j′

sym (τ ; v, u+1, w)+
eπi(u−v+1)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u+ 1

τ
,
w

τ

)
.

(B.88)

The first factor µk,j,j′
sym (τ ; v, u+ 1, w) is simply equal to −µk,j,j′

sym (τ ; v, u, w) by part (b) of

Proposition B.4.

The second factor is more complicated and we should be very careful applying part

(a) of Proposition B.5. δp,p′ (mod 2) factor in

µk,p,p′(τ ; v, u− τ, w) + yvy
−1
u q1/2µk,p,p′(τ ; v, u, w) =

q−p′2/4k qp
′/2

(
yv

yuy
1−2/k
w

)p′/2

χ
(k−2)
p−1 (τ ;w + u− v − τ) δp,p′ (mod 2) (B.89)

is especially important. Using equation (A.47) we can express this as

yv y
−1
u q1/2


q−(k−p′)2/4k

(
yuy

1−2/k
w

yv

)(k−p′)/2

χ
(k−2)
k−p−1(τ ;w + u− v) δp,p′ (mod 2)


 . (B.90)

If we substitute v → v/τ , u → u/τ , w → w/τ and τ → −1/τ we get

µk,p,p′
(
−1

τ
;
v

τ
,
u+1

τ
,
w

τ

)
= e−πi/τe−2πi(u−v)/τ

[
− µk,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
+ eπi(k−p′)2/2kτ

× eπi(u−v+w(1−2/k))(k−p′)/τχ
(k−2)
k−p−1

(
−1

τ
;
w + u− v

τ

)
δp,p′ (mod 2)

]
. (B.91)

Using this expression in (B.88) together with equation (B.71) we find 1
2H

k,j,j′(τ ;u−v+1, w)

to be equal to

−µk,j,j′

sym (τ ; v, u, w)− eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ µ
k,p,p′

sym

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)

+
eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ e
πi(k−p′)2/2kτ eπi(u−v+w(1−2/k))(k−p′)/τ

× χ
(k−2)
k−p−1

(
−1

τ
;
w + u− v

τ

)
δp,p′ (mod 2) . (B.92)

We recognize the first line as − 1
2 H

k,j,j′ (τ ;u− v, w). At this point we replace u with

v + z and change the dummy summation variables in the second line as p → k − p,

p′ → k−p′. Since Ŝ(k)
j,k−p = (−1)j+1Ŝ(k)

j,p , Ŝ
(k)
j′,k−p′ = (−1)j

′+1Ŝ(k)
j′,p′ and since we are assuming

j = j′ (mod 2) we find

Hk,j,j′ (τ ; z + 1, w) +Hk,j,j′ (τ ; z, w) (B.93)
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to be

2 eπiz
2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ e
πip′2/2kτ eπi(z+w(1−2/k))p′/τ

× χ
(k−2)
p−1

(
−1

τ
;
w + z

τ

)
δp,p′ (mod 2). (B.94)

We can rearrange the exponential factors to get

2√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ e
πik(z+w(1−2/k)+p′/k)2/2τ e−πi(k−2)(z+w)2/2τ

× χ
(k−2)
p−1

(
−1

τ
;
w + z

τ

)
δp,p′ (mod 2). (B.95)

Next, we use 2 δp,p′ (mod 2) = 1 + (−1)p+p′ , Ŝ(k)
j,p Ŝ(k)

j′,p′(−1)p+p′ = Ŝ(k)
k−j,p Ŝ

(k)
k−j′,p′ and equa-

tion (A.49) to find

1√
−iτ

k−1∑

r,p,p′=1

[
Ŝ(k)
j,p Ŝ(k)

j′,p′ + Ŝ(k)
k−j,p Ŝ

(k)
k−j′,p′

]
eπik(z+w(1−2/k)+p′/k)2/2τ Ŝ(k)

p,r χ
(k−2)
r−1 (τ ;w + z) .

(B.96)

Summing over p first, then over r finally proves (B.87).

Equations (B.82) and (B.87) completely determine Hk,j,j′ (τ ; z, w) because any entire

function of z satisfying these two equations should be equal to Hk,j,j′ (τ ; z, w). To prove

that, suppose there are two entire functions g1(z) and g2(z) obeying them. Then their

difference f(z) = g1(z)− g2(z) is an entire function satisfying

f(z) + f(z + 1) = 0 and f(z) + e−2πiz−πiτf(z + τ) = 0. (B.97)

Then for arbitrary integers m and n we get

f(z0 +mτ + n) = (−1)m+neπim
2τ+2πimz0f(z0). (B.98)

Varying z0 over 0, 1, τ , 1+τ parallelogram andm and n over all integers for equation (B.98)

to see that f(z) is a bounded function and hence has no z dependence at all by Liouville’s

theorem. Letting m to infinity in (B.98) shows that it is in fact zero.

As our final task let us define

Gk,j,j′ (τ ; z, w) ≡ 1

2

[
χ
(k−2)
j−1 (τ ; z + w) ĥk,j′(τ ; z + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ; z + w) ĥk,k−j′(τ ; z + w(1− 2/k))

]
(B.99)

for j, j′ = 1, . . . , k − 1 and j = j′ (mod 2). Since z → Gk,j,j′ (τ ; z, w) is an entire function,

our proof of (B.14) will be complete if we can show Gk,j,j′ (τ ; z, w) satisfies equations (B.82)

and (B.87). This, in turn, follows from equations (A.46), (A.47 )and parts (a) and (b) of

Proposition B.10.
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Theorem B.15. We define a completion for µk,j,j′
sym = 1

2

[
µk,j,j′ + µk,k−j,k−j′

]
functions as:

µ̃k,j,j′(τ ; v, u, w) ≡ 1

2

[
µk,j,j′ (τ ; v, u, w) + µk,k−j,k−j′ (τ ; v, u, w)

]
− 1

4
δj,j′ (mod 2)

×
[
χ
(k−2)
j−1 (τ ;u− v + w) R̂k,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) R̂k,k−j′(τ ;u− v + w(1− 2/k))

]
. (B.100)

for τ ∈ H and u, v ∈ C− (Zτ + Z). Then this function satisfies:

(a) µ̃k,j,j′(τ + 1; v, u, w) = e−πi/4 eπi(j
2−j′2)/2k µ̃k,j,j′(τ ; v, u, w).

(b)

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ

(k)
j′,p′ µ̃

k,p,p′
(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
=−

√
−iτe−πi(u−v)2/τeπiw

2(1−2/k)/τ µ̃k,j,j′(τ ; v, u, w).

Proof. (a) This part quickly follows from equation (A.48), Proposition B.8 and part (a) of

Proposition B.13.

(b) Let us define

F k,j,j′(τ ; v, u, w) ≡ 1

4
δj,j′ (mod 2)

[
χ
(k−2)
j−1 (τ ;u− v + w) R̂k,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) R̂k,k−j′(τ ;u− v + w(1− 2/k))

]
. (B.101)

Our statement will be proven if we can show that

F k,j,j′(τ ; v, u, w) +
eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ F
k,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)

=
1

4
δj,j′ (mod 2)

[
χ
(k−2)
j−1 (τ ;u− v + w) ĥk,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) ĥk,k−j′(τ ;u− v + w(1− 2/k))

]
. (B.102)

That is because if this is the case, the right hand side of equation (B.102) will cancel the

error term that comes from the S transformation of µk,j,j′ + µk,k−j,k−j′ part of µ̃k,j,j′ (see

Proposition B.14).

We start by writing

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ F
k,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
as

1

8

k−1∑

p,p′=1

[
Ŝ(k)
j,p Ŝ

(k)
j′,p′+Ŝ(k)

k−j,pŜ
(k)
k−j′,p′

][
χ
(k−2)
p−1

(
−1
τ
;
u−v+w

τ

)
R̂k,p′

(
−1

τ
;
u−v+w(1−2/k)

τ

)

+ χ
(k−2)
k−p−1

(
−1

τ
;
u− v + w

τ

)
R̂k,k−p′

(
−1

τ
;
u− v + w(1− 2/k)

τ

)]
. (B.103)

We have used 2 δp,p′ (mod 2) = 1+(−1)p+p′ and Ŝ(k)
j,p Ŝ(k)

j′,p′(−1)p+p′ = Ŝ(k)
k−j,p Ŝ

(k)
k−j′,p′ to obtain

this form. Changing the dummy variables p, p′ → k − p, k − p′ for the χ
(k−2)
k−p−1R̂k,k−p′ term
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yields a (−1)j+j′ factor to give

δj,j′ (mod 2)

4

k−1∑

p,p′=1

[
Ŝ(k)
j,p Ŝ(k)

j′,p′ + Ŝ(k)
k−j,p Ŝ

(k)
k−j′,p′

]

×
[
χ
(k−2)
p−1

(
−1

τ
;
u− v + w

τ

)
R̂k,p′

(
−1

τ
;
u− v + w(1− 2/k)

τ

)]
. (B.104)

Using equation (A.49) then and combining exponential factors we can rewrite

eπi(u−v)2/τ e−πiw2(1−2/k)/τ

√
−iτ

k−1∑

p,p′=1

Ŝ(k)
j,p Ŝ(k)

j′,p′ F
k,p,p′

(
−1

τ
;
v

τ
,
u

τ
,
w

τ

)
(B.105)

as

eπik(u−v+w(1−2/k))2/2τ

4
√
− i τ

[
χ
(k−2)
j−1 (τ ;u− v + w)

k−1∑

p′=1

Ŝ(k)
j′,p′R̂k,p′

(
−1

τ
;
u− v + w(1− 2/k)

τ

)

+ χ
(k−2)
k−j−1(τ ;u−v+w)

k−1∑

p′=1

Ŝ(k)
k−j′,p′R̂k,p′

(
−1

τ
;
u−v+w(1−2/k)

τ

)]
δj,j′ (mod 2). (B.106)

Using part (b) of Proposition B.13 this is equal to

−F k,j,j′(τ ; v, u, w) +
δj,j′ (mod 2)

4

[
χ
(k−2)
j−1 (τ ;u− v + w) ĥk,j′(τ ;u− v + w(1− 2/k))

+ χ
(k−2)
k−j−1(τ ;u− v + w) ĥk,k−j′(τ ;u− v + w(1− 2/k))

]
, (B.107)

proving equation (B.102).

We also define

µ̃(k,d)(τ ; v, u, w) =
k−1∑

j,j′=1

Ω̂k,d
j,j′ µ̃

k,j,j′(τ ; v, u, w) (B.108)

for d|k and

µ̃Y (τ ; v, u, w) =

k−1∑

j,j′=1

Ω̂Y
j,j′ µ̃

k,j,j′(τ ; v, u, w) (B.109)

for a simply laced root system Y with Coxeter number k. We notice that because of the

Ω̂
(k,d)
j,j′ = Ω̂

(k,d)
k−j,k−j′ property and because Ω̂

(k,d)
j,j′ = 0 unless j = j′ (mod 2), these combina-

tions have simple forms such as

µ̃Y (τ ; v, u, w) = µY (τ ; v, u, w)− 1

2

k−1∑

j,j′=1

Ω̂Y
j,j′χ

(k−2)
j−1 (τ ;u−v+w) R̂k,j′(τ ;u−v+w(1−2/k)).

(B.110)

Lastly, u = v and w = 0 case is specifically important for this work. We note that

χ
(k−2)
j−1 (τ ; 0) =

Sk,j(τ)

η(τ)3
, and R̂k,j′(τ ; 0) = (πk)−1/2 S∗

k,j′(τ) . (B.111)
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Corollary B.16. For τ ∈ H and z ∈ C− (Zτ + Z) we have

µ̃Y (τ ; z, z, 0) = µY (τ ; z, z, 0)− 1

η(τ)3
1√
4πk

k−1∑

j,j′=1

Ω̂Y
j,j′ Sk,j(τ)S

∗
k,j′(τ) (B.112)

= µY (τ ; z, z, 0)− 1

η(τ)3
1√
16πk

∑

j,j′∈Z2k

ΩY
j,j′ Sk,j(τ)S

∗
k,j′(τ) , (B.113)

which obeys:

(a) µ̃Y (τ + 1; z, z, 0) = e−πi/4 µ̃Y (τ ; z, z, 0).

(b) µ̃Y
(
− 1

τ ;
z
τ ,

z
τ , 0

)
= −

√
−iτ µ̃Y (τ ; z, z, 0).

(c) [η(τ + 1)]3 µ̃Y (τ + 1; z, z, 0) = [η(τ)]3 µ̃Y (τ ; z, z, 0).

(d) [η(−1/τ)]3 µ̃Y
(
− 1

τ ;
z
τ ,

z
τ , 0

)
= τ2 [η(τ)]3 µ̃Y (τ ; z, z, 0).

Proof. These properties quickly follow from modular transformation properties of η(τ),

Theorem B.15 and equations (A.57) and (A.58).

B.3 Decomposing ϕ0,1

In this subsection we will prove the identity

ϕ−2,1(τ ; z) η(τ)
3
[
− µY (τ ; z, z, 0) +

1

3

∑

w∈Π2

µY (τ ;w,w, 0)
]
=

rk(Y )

12
ϕ0,1(τ ; z), (B.114)

where Π2 = {1
2 ,

τ
2 ,

τ+1
2 } and ϕ0,1, ϕ−2,1 are the weak Jacobi forms defined in (A.43), (A.44).

At k = 2 with Y = A1 this reduces to the relation given in [65, 66] and employed in [30]

(eq. A.24) for the evaluation of the helicity supertrace.

Our proof is an easy application of the Lemma B.6 which gives

µk,j,j′(τ ;w,w, 0)− µk,j,j′(τ ; z, z, 0)

=
i η(τ)3 Cj−1,k

j′ [ 11 ] (τ ; 0) θ11(τ ;w − z) θ11(τ ;w + z)

θ11(τ ; z)2 θ11(τ ;w)2
(B.115)

for each w ∈ Π2. Since Cj−1,k
j′ [ 11 ] (τ ; 0) = iδj′,j in the range j, j′ = 1, . . . , k − 1 and

k−1∑

j=1

Ω̂Y
j,j = rk(Y ), we can rewrite the left hand side of the equation (B.114) as

rk(Y )

3

∑

w∈Π2

θ11(τ ;w − z) θ11(τ ;w + z)

θ11(τ ;w)2
(B.116)

which is just rk(Y )
12 ϕ0,1(τ ; z).
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We can also generalize this identity by replacing µY ’s with µ(k,d) functions. Similar

arguments apply to this case; the only change is replacing rk(Y ) with
k−1∑

j=1

Ω̂
(k,d)
j,j which is

just k
d − d. We get

ϕ−2,1(τ ; z) η(τ)
3


−µ(k,d)(τ ; z, z, 0)+

1

3

∑

w∈Π2

µ(k,d)(τ ;w,w, 0)


 =

k
d − d

12
ϕ0,1(τ ; z). (B.117)

B.4 Riemann relations

We start by defining

Bk,j,j′

ab (τ ; v, u, w) ≡ θab(τ ; v) θab(τ ;u)

η(τ)3
µk,j,j′ (τ ; v + τab, u+ τab, w) , (B.118)

where τab ≡ (a− 1)τ/2+ (b− 1)/2, k ≥ 2 is an integer, j, j′ = 1, . . . , k− 1 and a, b ∈ {0, 1}.
Using equation (B.7) we find

Bk,j,j′

11 (τ ; 0, u, w) = − i Cj−1,k
j′ [ 11 ] (τ ;w). (B.119)

Since Cj−1,k
j′ [ 11 ] (τ ; 0) = i

(
δj′,j (mod 2k) − δ−j′,j (mod 2k)

)
, in the range j, j′ = 1, . . . , k − 1

(and also for j′ = 0 or k as we will need in the main text) we get

Bk,j,j′

11 (τ ; 0, u, 0) = δj,j′ . (B.120)

In this section we will prove some identities which are similar to the Riemann relations

satisfied by theta functions. In particular, we will show that

θ00(τ ;x) θ00(τ ; z)B
k,j,j′

00 (τ ; v, u, w)− θ01(τ ;x) θ01(τ ; z)B
k,j,j′

01 (τ ; v, u, w)

− θ10(τ ;x) θ10(τ ; z)B
k,j,j′

10 (τ ; v, u, w) + θ11(τ ;x) θ11(τ ; z)B
k,j,j′

11 (τ ; v, u, w)

= 2 θ11(τ ;x0) θ11(τ ; z0)B
k,j,j′

11 (τ ; v0, u0, w), (B.121)

where

x0 =
1

2
(x+ z + v + u) , z0 =

1

2
(x+ z − v − u) ,

v0 =
1

2
(x− z + v − u) , u0 =

1

2
(x− z − v + u). (B.122)

We will use Lemma B.6 to get

µk,j,j′(τ ; v + τab,u+ τab, w)− µk,j,j′(τ ; v, u, w)

=
iη(τ)3 Cj−1,k

j′ [ 11 ] (τ ;w) θab(τ ; 0) θab(τ ; v + u)

θ11(τ ; v) θ11(τ ;u) θab(τ ; v) θab(τ ;u)
. (B.123)
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If we use this on the left hand side of (B.121), we find
∑

a,b=0,1

(−1)a+bθab(τ ;x) θab(τ ; z)B
k,j,j′

ab (τ ; v, u, w)

=
µk,j,j′ (τ ; v, u, w)

η(τ)3

∑

a,b=0,1

(−1)a+bθab(τ ;x) θab(τ ; z) θab(τ ; v) θab(τ ;u) (B.124)

+
i Cj−1,k

j′ [ 11 ] (τ ;w)

θ11(τ ; v) θ11(τ ;u)

∑

a,b=0,1

(−1)a+bθab(τ ;x) θab(τ ; z) θab(τ ; 0) θab(τ ; v + u) .

Using the Riemann theta relation (R5) this is equal to

2µk,j,j′ (τ ; v, u, w)

η(τ)3
θ11(τ ;x0) θ11(τ ; z0) θ11(τ ; v0) θ11(τ ;u0)

+
2i Cj−1,k

j′ [ 11 ] (τ ;w)

θ11(τ ; v) θ11(τ ;u)
θ11(τ ;x0) θ11(τ ; z0) θ11(τ ; v0 − v) θ11(τ ; v0 + u) (B.125)

which we can rearrange as

2 θ11(τ ;x0) θ11(τ ; z0)
θ11(τ ; v0) θ11(τ ;u0)

η(τ)3

[
µk,j,j′ (τ ; v, u, w)

+
i η(τ)3Cj−1,k

j′ [ 11 ] (τ ;w) θ11(τ ; v0 − v) θ11(τ ; (v0 − v) + u+ v)

θ11(τ ; v) θ11(τ ;u) θ11(τ ; v0) θ11(τ ;u0)

]
. (B.126)

Noting that u0 = (v0 − v) + u, v0 = (v0 − v) + v and employing Lemma B.6 once more we

obtain

2 θ11(τ ;x0) θ11(τ ; z0)
θ11(τ ; v0) θ11(τ ;u0)

η(τ)3
µk,j,j′ (τ ; v0, u0, w) (B.127)

which is just

2 θ11(τ ;x0) θ11(τ ; z0)B
k,j,j′

11 (τ ; v0, u0, w) (B.128)

as we wanted to show.

Shifting x, z in equation (B.121) by various factors of ±1/2,±τ/2,±(1+τ)/2 we obtain

(R̃5) : +θ00θ00B
k,j,j′

00 − θ01θ01B
k,j,j′

01 − θ10θ10B
k,j,j′

10 + θ11θ11B
k,j,j′

11 = 2θ11θ11B
k,j,j′

11 ,

(R̃8) : −θ01θ01B
k,j,j′

00 + θ00θ00B
k,j,j′

01 − θ11θ11B
k,j,j′

10 + θ10θ10B
k,j,j′

11 = −2θ11θ11B
k,j,j′

10 ,

(R̃9) : −θ01θ01B
k,j,j′

00 + θ00θ00B
k,j,j′

01 + θ11θ11B
k,j,j′

10 − θ10θ10B
k,j,j′

11 = −2θ10θ10B
k,j,j′

11 ,

(R̃11) : −θ10θ10B
k,j,j′

00 − θ11θ11B
k,j,j′

01 + θ00θ00B
k,j,j′

10 + θ01θ01B
k,j,j′

11 = 2θ01θ01B
k,j,j′

11 ,

(R̃13) : −θ10θ10B
k,j,j′

00 + θ11θ11B
k,j,j′

01 + θ00θ00B
k,j,j′

10 − θ01θ01B
k,j,j′

11 = 2θ11θ11B
k,j,j′

01 ,

(R̃15) : −θ11θ11B
k,j,j′

00 − θ10θ10B
k,j,j′

01 + θ01θ01B
k,j,j′

10 + θ00θ00B
k,j,j′

11 = 2θ00θ00B
k,j,j′

11 ,

(R̃16) : −θ11θ11B
k,j,j′

00 + θ10θ10B
k,j,j′

01 − θ01θ01B
k,j,j′

10 + θ00θ00B
k,j,j′

11 = −2θ11θ11B
k,j,j′

00 .

In these relations, the arguments of the θab’s and Bk,j,j′

ab on the left hand side are (τ ;x),

(τ ; z), (τ ; v, u, w), in that order, and the arguments for θab’s and Bk,j,j′

ab on the right hand

side are (τ ;x0), (τ ; z0), (τ ; v0, u0, w), again in that order.
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