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Abstract Viruses are often transmitted via food and the

environment. Contamination may be controlled either by

preventing its occurrence or by inactivating the contami-

nating virus. The majority of agents transmitted in this way

are human enteric viruses, produced either in the intestines

or the liver. They are shed in human feces (noroviruses also

in vomitus) in a broad range of circumstances, and they are

relatively stable outside the host. Non-enteric viruses are

less often transmitted via foods and are generally less

environmentally stable. Insofar as vaccines are available,

they are able to prevent fecal shedding. Viruses shed in

feces via the water-carriage toilet may be eliminated by

proper treatment and disinfection of the wastewater. In the

foods context, the most effective antiviral measures are

cooking and hand washing. Detection methods are most

useful after the fact, in investigating outbreaks and devising

preventive measures.
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Introduction

Virus transmission via food and the environment is now a

well-recognized problem. An extensive literature has

accumulated on the subject (Cliver et al. 2006; Koopmans

et al. 2008). This review is a brief overview of available

control measures, based on epidemiological and laboratory

studies. It appears that the majority of viruses transmitted

to humans via food and the environment are of human

enteric origin, so preventing fecal contamination consti-

tutes the first line of defense, but further defense measures

in the event of fecal contamination will be discussed. A

few non-enteric viruses will also be considered.

Enteric Viruses

Viruses shed in feces may have been produced in the small

intestine (Widdowson and Vinjé 2008) or in the liver with

drainage into the intestine via the bile (Aggarwal and Naik

2008). Since feces may present other health threats in

addition to viruses, one might hope to contain them as near

to their source as possible. However, practical consider-

ations such as their value in enhancing soil quality may

preclude this.

Human

In some of the poorer parts of the world, the nutrients in

human urine and feces are essential to food production.

More affluent nations may prefer alternatives, but ‘‘night

soil’’ fertilization represents the ultimate in sustainable

agriculture. There are certainly some health risks from

recycling waste; however, in sufficiently isolated commu-

nities, herd immunity may afford protection against many

bacteria and viruses, though not against parasites. As

communities grow and involvement in food production

decreases, there is likely to be an informal phase of waste

disposal, such as emptying slop jars out of second-story

windows as was done in cities long ago (cf. gardyloo in

many English-language dictionaries). This clearly entails a
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threat to public health; bacterial diseases spread in this

way, such as typhoid and cholera, apparently obscured the

risk of virus transmission. There are now options for

dealing with human waste, close to the point of origin (on-

site treatment), for isolated households and very small

communities (Crites and Tchobanoglous 1998). These may

have significant capital costs, but provide the best available

alternative with limited means at hand.

With the current commitment to water-carriage toilets,

larger communities are obliged to provide sanitary sewer

systems. These were once designed simply to carry liquid

waste away from the households of origin, but communities

have recently been obliged consider the environmental and

public health impacts of their waste disposal. Cities dis-

charging to tide waters or rapidly flowing streams were

formerly satisfied to see their waste go away. Now inland and

most coastal cities treat their wastewater to the secondary or

even tertiary level and disinfect it before discharge. Prob-

lems are arising with the adequacy of water supplies for this

purpose, the need to recycle water that has been used, and the

adequacy of current wastewater treatment technologies to

control viruses, as well as the bacteria for which the pro-

cesses were designed (Payment et al. 2001).

Controlling viruses in waste from large sedentary pop-

ulations is certainly a challenge; however, the increasing

mobility of humans results in generation of significant

quantities of waste aboard conveyances. Such conveyances

include trains, ships, motor vehicles, airplanes, and even

spacecraft. In most instances, such wastes are contained

and emptied for treatment at destination. There have been

problems with ships discharging waste or waste-contami-

nated ballast water at or close to shore and with dock

facilities that discharged human waste to the water (Roos

1956). Regulations abound but are difficult to enforce. At

least, one hears of fewer instances of aircraft waste falling

from the sky in recent years.

Animal

Animal manures may contain a variety of zoonotic patho-

gens, but few viruses are apparently transmissible to

humans in this way (Cliver et al. 2006; Cliver and Moe

2004). Detection of animal enteroviruses may serve to

demonstrate problems with run-off into waterways, but

these viruses are seldom a direct threat to human health.

Hepatitis E virus may sometimes be transmitted to humans

by swine manure, but the main source appears to be raw

porcine liver (Aggarwal and Naik 2008). Tick-borne

encephalitis virus is transmitted zoonotically only via the

milk of infected animals (Grešiková 1994). Zoonotic

transmission of the SARS agent, during the outbreak that

occurred in 2002–2003, is still an open question (Bell et al.

2004; Duizer and Koopmans 2008); the virus was detected

in human sewage (Wang et al. 2005a, b). Transmission of

avian influenza virus via food has not been demonstrated,

but remains a possibility (Duizer and Koopmans 2008).

Stability

A common property of enteric viruses is their relative

stability outside the host. They typically withstand pH 3 for

periods of time, which allows them to pass through the

stomach (Duizer et al. 2004); however, this is not an

absolute necessity, as some highly efficient bacterial

pathogens infect perorally without acid stability. Viruses

cannot multiply in the environment but they persist for

days to months over a range of temperatures and are pre-

served by refrigeration or freezing. Some (notably the

noroviruses and hepatitis A virus) withstand air drying

(Appleton 2000; Mbithi et al. 1991).

Non-Enteric Viruses

The majority of viruses that infect humans are transmitted

by other than fecal–oral means. These will be surveyed

briefly here (Cliver and Moe 2004; Heymann 2004).

Respiratory

A great many viruses are transmitted by the respiratory

route, including those that cause respiratory ailments (rhi-

noviruses, influenza and parainfluenza viruses,

coronaviruses), as well as the formerly common childhood

diseases (chickenpox, measles, mumps, varicella). Most

appear to be transmitted in aerosols over short distances or

by contact and not to persist in the environment for long.

An exception is the adenoviruses, which often cause

respiratory or eye infections but may be shed in feces

(types 40 and 41) and are sometimes transmitted in

swimming pool water. Smallpox, which has hopefully been

eradicated, was transmitted by the respiratory route and

was very persistent in the dry state on surfaces. The SARS

virus, which has not been heard from lately, persists rather

well in the environment (Rabenau et al. 2005). The avian

influenza virus, on the other hand, is apparently quite labile

(Forster et al. 2008).

Vector-Borne

Several encephalitides, as well as yellow fever, are trans-

mitted by mosquitoes. These are not generally thought to

be transmitted through the environment without vectors,

but I have a personal recollection that some of the viral

encephalitides were regarded as potential biological war-

fare agents, during my year (1961–1962) in the US Army
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Biological Laboratories, Fort Detrick, Maryland. Tick-

borne encephalitis will be mentioned under zoonoses.

Venereal

Venereally transmitted viruses tend not to be shed from the

digestive tract. Some are probably shed in urine; but

indirect, environmental transmission seems unlikely, with

the possible exception of deposits on toilet seats (Joseph

1992). HIV-positive persons are permitted to handle food

in the US, except at times when they are suffering from

gastroenteritis.

Zoonoses

As was stated earlier, hepatitis E virus may sometimes be

transmitted to humans who eat raw porcine liver (Aggarwal

and Naik 2008). This may be a strain-specific property, in

that hepatitis E virus is highly prevalent in US swine, but

relatively rare among Americans in contact with the

infected animals and in consumers. Studies on this question

are continuing. Dairy animals infected with tick-borne

encephalitis virus transmit the virus to humans via raw

milk and products made with raw milk (Grešiková 1994).

This, too, is not a universal property—not all tick-borne

encephalitis viruses are known to be transmissible in this

way; the majority of human infections result from tick

bites. Milk and meat of infected animals have long been

feared sources of rabies virus; for some reason, experi-

ments to determine whether rabies virus can occur in these

foods evidently have not been done. The SARS and avian

influenza viruses were mentioned earlier.

Prevention

Given that the great majority of viruses transmitted to

people via food or water emanate from the human intes-

tines, a first question is, ‘‘How can human waste be

contained and processed so as not to be the means of

transmitting human viruses?’’ There are three major modes

by which viruses in human feces may be transmitted to

other people: (1) via unwashed hands—directly, as well as

indirectly, via food or environmental surfaces touched by

unwashed hands; (2) via casual disposal of contaminated

human feces to soil or water; (3) by disposal of contami-

nated feces via the water-carriage toilet (common in most

developed countries), followed by inadequate treatment of

the wastewater. Good manufacturing practices and the

hazard analysis-critical control points (HACCP) system are

probably useful, but critical control points designed spe-

cifically to preclude or eliminate viral hazards are scarce at

this time.

Hand Washing

A few studies of hand washing for virus removal have been

reported (Ansari et al. 1989; Bidawid et al. 2000a, b;

Bidawid et al. 2004; Cliver and Kostenbader 1984; Mbithi

et al. 1992; Mbithi et al. 1993; Sattar and Ansari 2002). In

general, it appears that reasonably diligent conventional

hand washing will substantially eliminate the risk of

transmitting virus from fecally contaminated fingers, either

to other people, to food, or to environmental surfaces.

Experimental conditions in each of these studies were

necessarily established for consistency and reproducibility,

so they could not possibly subsume all possible variations

in human behavior.

Environmental Inactivation

Virus in casually disposed feces or in the untreated

wastewater is subject to slow inactivation by physical,

chemical, and biological effects. Virus may be shed in

association with coproantibody, as well as with fecal solids

(Cliver and Kostenbader 1979). Virions may associate with

soil particles; some viruses have more than one isoelectric

point (Mandel 1971). The rate of virus inactivation at or

below 30� depends on the pH and the ionic composition of

the aqueous environment (Salo and Cliver 1976). The

changes that result in loss of infectivity under these con-

ditions have not been well documented. An early study

suggested that the target of low-temperature inactivation

was principally the RNA (Dimmock 1967), but it has been

shown more recently that some virus inactivated at low-

temperature loses its ability to attach to host cell receptors,

which implies a subtle denaturation of the coat protein

(Nuanualsuwan and Cliver 2003). It would be especially

useful to know how noroviruses are inactivated under these

conditions, in that present methods of norovirus detection

typically do not distinguish infectious from inactivated

virus (Hewitt and Greening 2006; Nuanualsuwan and

Cliver 2002).

In certain contexts, bacteria are able to attack and

inactivate human enteric viruses; some, but not all, such

attacks appear to entail enzymatic action on the capsid

(Cliver and Herrmann 1972; Deng and Cliver 1992; Deng

and Cliver 1995a; Deng and Cliver 1995b). Some bacteria

produce low molecular weight substances that apparently

inactivate viruses (Deng and Cliver 1995a). Other bacteria

appear to use viral capsid protein as substrate (Herrmann

et al. 1974).

Waste Treatment

For feces disposed appropriately via a water-carriage toilet,

the focus is on the adequacy of wastewater treatment to
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remove or inactivate virus. The distinction between

removal and inactivation is critical, in that removal typi-

cally entails retention of the virus in the solid fraction

generated in wastewater treatment, which eventually must

also be disposed. Urban wastewater treatment typically

includes grit separation, primary sedimentation, secondary

biological treatment, various optional tertiary treatments,

and terminal disinfection. Grit may be treated as mineral

matter; it should be expected to include viruses. Primary

sludge and waste activated (or other biological) sludge are

typically dewatered, blended, and digested before disposal.

There is considerable information regarding virus

destruction in this phase (Berg et al. 1988; Bertucci et al.

1977; Brashear and Ward 1983; Fenters et al. 1979; Ward

and Ashley 1977a; Ward and Ashley 1977b; Ward and

Ashley 1977c; Ward and Ashley 1978; Ward et al. 1976),

and viruses have been shown to be biodegradable (Cliver

and Herrmann 1972; Ward 1982; Ward and Ashley 1977b).

Both urban wastewater biosolids and sludge from septic

tanks or other on-site wastewater treatment appliances

must be disposed with caution. Virus that has not been

removed from or inactivated in the liquid phase must be

controlled by terminal disinfection. Whether a chemical,

such as chlorine or ozone, or UV is applied at this point,

virus inactivation will be complete only if the wastewater

has been adequately treated and the disinfectant dose is

sufficient (Hajenian and Butler 1980; Hartemann et al.

1983; Olivieri et al. 1983; Tree et al. 1997; Warriner et al.

1985). Carry-over solids, and even some solutes, can

interfere with disinfection (Babich and Stotzky 1980).

Disinfection

Antiviral disinfection is needed in other contexts as well.

Drinking water is typically treated to remove extraneous

matter and then disinfected before distribution. Food-con-

tact surfaces, and even food surfaces, may require

disinfection. Food-processing water is often reused, and

may be disinfected with difficulty (Mariam and Cliver

2000a). Viruses are most susceptible to strong oxidizing

agents and UV; ionizing radiation does not appear to be an

option because the size of viral target is so small (DiGi-

rolamo et al. 1972; Harewood et al. 1994; House et al.

1991).

Cooking

If food cannot be reliably disinfected before serving, ade-

quate cooking becomes the critical control point. Many

studies have shown, for example, that depuration of virus-

contaminated shellfish is highly unreliable (Abad et al.

1997; Croci et al. 1999; Croci et al. 2005; DiGirolamo et al.

1975; McDonnell et al. 1997; Power and Collins 1989;

Power and Collins 1990), so those who choose to eat

shellfish raw are at considerable risk. Thorough cooking of

shellfish eliminates this risk, though at some gastronomic

price (Croci et al. 1999; Croci et al. 2005; DiGirolamo

et al. 1970; McDonnell et al. 1997). Cooking of other foods

has also been shown to inactivate viruses (Baert et al. 2008;

Feagins et al. 2008; Mishu et al. 1990; Pagliaro et al. 1995).

However, conventional pasteurization of milk apparently

does not inactivate hepatitis A virus completely (Bidawid

et al. 2000a, b; Mariam and Cliver 2000b). Much remains

to be learned about thermal inactivation of viruses in foods.

Immunization

The enteric viruses against which successful vaccines have

been developed to date are the polioviruses, hepatitis A

virus, and rotaviruses. These vaccines could enable eradi-

cation of poliomyelitis and hepatitis A from the earth,

given sufficient resources and political will, since the

viruses essentially infect only humans. If all food handlers

were immunized, at the least they would not be potential

sources of food contamination. However, hepatitis A

immunization is costly and requires two doses at least

6 months apart; worker turnover in some segments of the

food industry is too great to ensure that the two-shot series

will be completed. Some state governments in the United

States require hepatitis A immunization of food handlers,

regardless of problems.

Detection

Detection of viruses in environmental samples, including

food and water, was first derived from the available clinical

diagnostic methods (Cliver 2008). Cell culture infectivity

was a mainstay for a very long time, but it was eventually

established that available host cell systems did not support

replication of noroviruses and most strains of hepatitis A

and E viruses. The advent of reverse transcription-poly-

merase chain reaction (RT-PCR) has changed the situation

greatly. The RT-PCR is now a first line of diagnostic

testing, and is also applied to food and environmental

samples (Widdowson and Vinjé 2008). With added

sequencing of amplicons, important epidemiologic associ-

ations can be established. The concern about RT-PCR

detection, as applied to food and environmental samples

but not to clinical specimens, is the general inability to

determine whether the detected virus was infectious at the

time of sampling. All the same, the ability to detect these

viruses by RT-PCR (including real-time RT-PCR, or by

microarrays) is of great importance in outbreak investiga-

tion and may provide information that is useful in devising

preventive measures.
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Summary

The majority of microbial agents transmitted to people via

food and the environment are human enteric viruses, pro-

duced either in the intestines or the liver. They are shed in

human feces (noroviruses also in vomitus) in a broad range

of circumstances, and they are relatively stable outside the

host. Contamination may either be controlled by preventing

its occurrence or by inactivating the contaminating virus.

Non-enteric viruses are less often transmitted via foods and

are generally less environmentally stable. A few available

vaccines are able to prevent fecal shedding but are not yet

fully exploited. Viruses in casually disposed feces undergo

slow inactivation in the environment, either by physical

loss of ability to infect or through microbial action. Virus-

containing feces disposed via the water-carriage toilet may

be eliminated by proper treatment and disinfection of the

wastewater. The most effective antiviral measures appli-

cable to foods are cooking and hand washing. Detection

methods are more useful after the fact, in investigating

outbreaks and devising preventive measures, than as pre-

emptive means to preclude transmission.

Acknowledgment This review was derived from a presentation to

the COST 929 Symposium: ‘‘Current Developments in Food and

Environmental Virology,’’ in Pisa, Italy, on 11 October 2008.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

Abad, F. X., Pinto, R. M., Gajardo, R., & Bosch, A. (1997). Viruses in

mussels: Public health implications and depuration. Journal of
Food Protection, 60, 677–681.

Aggarwal, R., & Naik, S. (2008). Enterically transmitted hepatitis. In

M. P. G. Koopmans, D. O. Cliver, & A. Bosch (Eds.), Food-
borne viruses: Progress and challenges (pp. 65–85). Washing-

ton, DC: ASM (American Society for Microbiology) Press.

Ansari, S. A., Sattar, S. A., Springthorpe, V. S., Wells, G. A., &

Tostowaryk, W. (1989). In vivo protocol for testing efficacy of

hand-washing agents against viruses and bacteria: Experiments

with rotavirus and Escherichia coli. Applied and Environmental
Microbiology, 55, 3113–3118.

Appleton, H. (2000). Control of food-borne viruses. British Medical
Bulletin, 56, 172–183.

Babich, H., & Stotzky, G. (1980). Reductions in inactivation rates of

bacteriophages by clay minerals in lake water. Water Research,
14, 185–187.

Baert, L., Uyttendaele, M., Van Coillie, E., & Debevere, J. (2008).

The reduction of murine norovirus 1, B. fragilis HSP40 infecting

phage B40–8 and E. coli after a mild thermal pasteurization

process of raspberry puree. Food Microbiology, 25, 871–874.

Bell, D., Roberton, S., & Hunter, P. R. (2004). Animal origins of

SARS coronavirus: Possible links with the international trade in

small carnivores. Philosophical Transactions of the Royal
Society of London B Biological Sciences, 359, 1107–1114.

Berg, G., Sullivan, G., & Venosa, A. D. (1988). Low-temperature

stability of viruses in sludges. Applied and Environmental
Microbiology, 54, 839–841.

Bertucci, J. J., Lue-Hing, C., Zenz, D., & Sedita, S. J. (1977).

Inactivation of viruses during anaerobic sludge digestion.

Journal—Water Pollution Control Federation, 49, 1642–1651.

Bidawid, S., Farber, J. M., & Sattar, S. A. (2000a). Contamination of

foods by food handlers: Experiments on hepatitis A virus transfer

to food and its interruption. Applied and Environmental Micro-
biology, 66, 2759–2763.

Bidawid, S., Farber, J. M., Sattar, S. A., & Hayward, S. (2000b). Heat

inactivation of hepatitis A virus in dairy foods. Journal of Food
Protection, 63, 522–528.

Bidawid, S., Malik, N., Adegbunrin, O., Sattar, S. A., & Farber, J. M.

(2004). Norovirus cross-contamination during food handling and

interruption of virus transfer by hand antisepsis: Experiments

with feline calicivirus as a surrogate. Journal of Food Protec-
tion, 67, 103–109.

Brashear, D. A., & Ward, R. L. (1983). Inactivation of indigenous

viruses in raw sludge by air drying. Applied and Environmental
Microbiology, 45, 1943–1945.

Cliver, D. O. (2008). Historic overview of food virology. In M. P. G.

Koopmans, D. O. Cliver, & A. Bosch (Eds.), Food-borne
viruses: Progress and challenges (pp. 1–28). Washington, DC:

ASM (American Society for Microbiology) Press.

Cliver, D. O., & Herrmann, J. E. (1972). Proteolytic and microbial

inactivation of enteroviruses. Water Research, 6, 797–805.

Cliver, D. O., & Kostenbader, K. D., Jr. (1979). Antiviral effective-

ness of grape juice. Journal of Food Protection, 42, 100–104.

Cliver, D. O., & Kostenbader, K. D., Jr. (1984). Disinfection of virus

on hands for prevention of food-borne disease. International
Journal of Food Microbiology, 1, 75–87.

Cliver, D. O., Matsui, S. M., & Casteel, M. (2006). Infections with

viruses and prions. In H. P. Riemann & D. O. Cliver (Eds.),

Foodborne infections and intoxications (3rd ed., pp. 367–448).

London, Amsterdam: Academic Press (Elsevier).

Cliver, D. O., & Moe, C. L. (2004). Prospects of waterborne viral

zoonoses. In J. A. Cotruvo, A. Dufour, G. Rees, J. Bartram, R.

Carr, D. O. Cliver, G. F. Craun, R. Fayer, & V. P. J. Gannon

(Eds.), Waterborne zoonoses: Identification, causes and control
(pp. 242–254). London: IWA (International Water Association

Publishing).

Crites, R. W., & Tchobanoglous, G. (1998). Small and decentralized
wastewater management systems. Boston: WCB/McGraw-Hill.

Croci, L., Ciccozzi, M., De Medici, D., Di Pasquale, S., Fiore, A.,

Mele, A., et al. (1999). Inactivation of hepatitis A virus in heat-

treated mussels. Journal of Applied Microbiology, 87, 884–888.

Croci, L., De Medici, D., Di Pasquale, S., & Toti, L. (2005).

Resistance of hepatitis A virus in mussels subjected to different

domestic cookings. International Journal of Food Microbiology,
105, 139–144.

Deng, M. Y., & Cliver, D. O. (1992). Inactivation of poliovirus type 1

in mixed human and swine wastes and by bacteria from swine

manure. Applied and Environmental Microbiology, 58, 2016–

2021.

Deng, M. Y., & Cliver, D. O. (1995a). Antiviral effects of bacteria

isolated from manure. Microbial Ecology, 30, 43–45.

Deng, M. Y., & Cliver, D. O. (1995b). Persistence of inoculated

hepatitis A virus in mixed human and human wastes. Applied
and Environmental Microbiology, 61, 87–91.

DiGirolamo, R., Liston, J., & Matches, J. (1970). Survival of virus in

chilled, frozen, and processed oysters. Applied Microbiology, 20,

58–63.

Food Environ Virol (2009) 1:3–9 7

123



DiGirolamo, R., Liston, J., & Matches, J. (1972). Effects of

irradiation on the survival of viruses in west coast oysters.

Applied Microbiology, 24, 1005–1006.

DiGirolamo, R., Liston, J., & Matches, J. (1975). Uptake and

elimination of poliovirus by west coast oysters. Applied Micro-
biology, 29, 260–264.

Dimmock, N. J. (1967). Differences between the thermal inactivation

of picornaviruses at ‘‘high’’ and ‘‘low’’ temperatures. Virology,
31, 338–353.

Duizer, E., Bijkerk, P., Rockx, B., De Groot, A., Twisk, F., &

Koopmans, M. (2004). Inactivation of caliciviruses. Applied and
Environmental Microbiology, 70, 4538–4543.

Duizer, E., & Koopmans, M. (2008). Emerging food-borne viral

diseases. In M. P. G. Koopmans, D. O. Cliver, & A. Bosch

(Eds.), Food-borne viruses: Progress and challenges. Washing-

ton, DC: ASM (American Society for Microbiology Press).

Feagins, A. R., Opriessnig, T., Guenette, D. K., Halbur, P. G., &

Meng, X. J. (2008). Inactivation of infectious hepatitis E virus

present in commercial pig livers sold in local grocery stores in

the United States. International Journal of Food Microbiology,
123, 32–37.

Fenters, J., Reed, J., Lue-Hing, C., & Bertucci, J. (1979). Inactivation

of viruses by digested sludge components. Journal—Water
Pollution Control Federation, 51, 689–694.

Forster, J. L., Harkin, V. B., Graham, D. A., & McCullough, S. J.

(2008). The effect of sample type, temperature and RNAlater on

the stability of avian influenza virus RNA. Journal of Virological
Methods, 149, 190–194.
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