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Abstract A statistical application to Gene Set Enrichment
Analysis implies calculating the distribution of themaximum
of a certain Gaussian process, which is a modification of the
standard Brownian bridge. Using the transformation into a
boundary crossing problem for the Brownian motion and a
piecewise linear boundary, it is proved that the desired distri-
bution can be approximated by an n-dimensional Gaussian
integral. Fast approximations are defined and validated by
Monte Carlo simulation. The performance of the method for
the genomics application is discussed.
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1 Introduction

The subject of this paper is the computation of the distribution
of the following random variable:

Dg = max
0�t�1

Xt , (1)

where {Xt , 0 � t � 1} is a continuous centered Gaussian
process with covariance function:

RX (t, s) = min(t, s) − ts + g(t)g(s) , (2)

the function g being continuous on the interval [0,1] and such
that g(0) = g(1) = 0.

This type of problem recently arose in a statistical appli-
cation to Gene Set Enrichment Analysis (Charmpi and Ycart
2015). It is important to note that it is different from similar
problems with the look-alike covariance function:

RY (t, s) = min(t, s) − ts − g(t)g(s) . (3)

The latter appears in the vast literature devoted to
goodness-of-fit tests when parameters are estimated: see del
Barrio (2007), Parker (2013), and references therein.

Throughout the paper, W = {Wt , t � 0} denotes a
standard one-dimensional Brownian motion defined on a fil-
tered probability space (Ω,F , {Ft },P), B = {Bt = Wt −
tW1 , 0 � t � 1} is the corresponding Brownian bridge, and
ξ is a standard Gaussian random variable, independent from
B. A centered Gaussian process X with covariance function
(2) can be represented on (Ω,F , {Ft },P) as follows:

X = {Xt = Bt − g(t)ξ , 0 � t � 1} . (4)

Observe that X0 = X1 = 0. The tail probability of Dg at
x � 0 will be denoted by pg(x).
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pg(x) = P[Dg > x] = P

[
max
0�t�1

Xt > x

]
. (5)

The following family of functions g is of special relevance
to the genomics application:

ga(t) = (ta − t) , 1/2 < a < 1 . (6)

In particular, a = 2
3 corresponds to the case where gene

expression ranks are tested against a given gene set: see Sect
4 for more details.

The case g ≡ 0 is that of the classical Kolmogorov–
Smirnov test: see Durbin (1973) and Stephens (1992) for
historical aspects;

p0(x) = e−2x2 .

This explicit formula can be found in a personal letter from
A. Kolmogorov to P. Aleksandrov written in 1931 (Shiryaev
2003, p. 436), where Kolmogorov states that he nearly
proved the result. A complete derivation appeared in Smirnov
(1939).

Apart from the case g ≡ 0, no explicit expression exists
for pg(x). Our method to approximating it has already been
used in the context of nonparametric testing. It consists in:

1. Reducing the problem to a nonlinear boundary cross-
ing problem (BCP) for the Brownian motion W . This
is the classical approach to extrema of modified Brown-
ian bridges: see Durbin (1971), Krumbholz (1976), and
Bischoff et al. (2003); but analytic results for nonlinear
boundaries are scarce (Kahale 2008).

2. Replacing the nonlinear boundary by a piecewice lin-
ear approximation. This has been used in many papers,
including Novikov et al. (1999), Pötzelberger and Wang
(2001), Hashorva (2005), and Borovkov and Novikov
(2005).

Other approaches include the martingale transformation
method proposed by Khmaladze (1981) and of courseMonte
Carlo simulation. The martingale transformation method
requires calculations of compensators, which are difficult to
obtain in analytical form. Monte Carlo simulation was used
in Charmpi and Ycart (2015). However, for both reasons of
accuracy and computing cost, it cannot be considered as an
efficient method, in particular in view of the genomics appli-
cation, where a high throughput and a good accuracy for very
small p-values are both requested.

The paper is organized as follows. Section 2 contains
the theoretical results. The reduction to a nonlinear BCP
and the bounding inequalities are stated as Lemmas 1 and
2. Our main result, Theorem 1 gives an explicit bound on
the approximating error. An exact computing algorithm for

a piecewise linear boundary is described by Proposition 1.
Explicit expressions are given for the one-node case (Propo-
sitions 2 and 3). Section 3 addresses the practical issue. Two
fast approximation schemes are proposed and compared to
Monte Carlo simulations. Section 4 describes the statistical
applicationwhichmotivated the present study. Propositions 4
and 5 show that computing p-values for Gene Set Enrichment
Analysis amounts to computing pg(x) for some function g
depending on the genes to be tested. An example of applica-
tion to real genomic data is given.

2 Theoretical results

Throughout the paper, φ and Φ denote the pdf and cdf of the
standard Gaussian distribution, respectively;

φ(y) = 1√
2π

e−y2/2 and Φ(y) =
∫ y

−∞
φ(z) dz .

We begin with the transformation into a boundary crossing
problem.

Lemma 1 Denote by G the function defined on (0,+∞) by:

G(s) = (s + 1) g

(
s

s + 1

)
, 0 � s < ∞ . (7)

For x � 0 and y ∈ R, denote by S(x, y,G) the kernel:

S(x, y,G) = P

[
sup

0�s<∞
Ws − G(s)y

s + 1
> x

]
. (8)

Then:

pg(x) =
∫ +∞

−∞
S(x, y,G) φ(y)dy . (9)

Proof Using the representation (4),

pg(x) = P

[
max
0�t�1

Bt − g(t)ξ > x

]
.

The standard Brownian bridge has the following well-known
representation:

{Bt , 0 � t < 1} d= {
(1 − t)Wt/(1−t), 0 � t < 1

}
.

Hence:

pg(x) = P

[
sup

0�t<1
(1 − t)Wt/(1−t) − g(t)ξ > x

]

= P

[
sup

0�s<+∞
Ws − G(s)ξ

s + 1
> x

]
,
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from which (9) follows, choosing ξ independent from W . ��
Observe that the correspondance between g and G is one-to-
one. For 0 � t < 1:

g(t) = (1 − t)G

(
t

1 − t

)
. (10)

In the particular case where ga is defined by (6), one gets:

Ga(s) = (s + 1)1−asa − s . (11)

Obviously, the definition of S(x, y,G) is monotonic in G:
for given x and y, raising the boundary can only decrease
the crossing probability. This translates into the following
inequalities.

Lemma 2 Let Gl and Gu be two continuous functions
defined on [0,+∞), such that for 0 � s < ∞,

Gl(s) � G(s) � Gu(s) .

Then:

pg(x) �
∫ 0

−∞
S(x, y,Gl) φ(y)dy

+
∫ +∞

0
S(x, y,Gu) φ(y)dy ,

and

pg(x) �
∫ 0

−∞
S(x, y,Gu) φ(y)dy

+
∫ +∞

0
S(x, y,Gl) φ(y)dy .

Proof For 0 � s < ∞ and y � 0, yGu(s) � yG(s) � yGl .
Hence for all x � 0,

S(x, y,Gl) � S(x, y,G) � S(x, y,Gu) .

The inequalities above are reversed for y � 0. Hence the
result. ��
Once a lower bound and an upper bound are given, the ques-
tion arises naturally to control the approximation error in
terms of a certain distance. This is the object of the follow-
ing theorem.

Theorem 1 For i = 1, 2, let gi be a continuous function
defined on [0,1], derivable on (0,1), such that gi (0) =
gi (1) = 0. Denote by Gi its transform through the time
change t �→ s = t

1−t (formula (7)). Denote by Δ(G1,G2)

the following distance:

Δ(G1,G2) =
∫ +∞

0

(
d

ds
(G1(s) − G2(s))

)2

ds . (12)

Then for all x ∈ R,

|S(x, y,G1) − S(x, y,G2)| � 4Φ
( |y|

2

√
Δ(G1,G2)

)
− 2 ,

(13)

and:

∣∣pg1(x) − pg2(x)
∣∣ � 4

π
arctan

(
1

2

√
Δ(G1,G2)

)

� 2

π

√
Δ(G1,G2) . (14)

Proof Although the setting is different from that of Theorem
1 in Novikov et al. (1999), the proof is similar. It uses a
representation of the kernel S(x, y,G1) in terms of the BCP
from G2, through Girsanov’s theorem. Define the random
variable ζ as

ζ =
∫ +∞

0

(
d

ds
(G1(s) − G2(s))

)2

dWs . (15)

It turns out that

S(x, y,G1) = E

[
I

(
sup

0�s<∞
Ws − G2(s)y

s + 1
> x

)

e−yζ−y2Δ(G1,G2)/2

]
, (16)

where E denotes the mathematical expectation with respect
to P and I the indicator of an event.

To prove (16), consider the probability measure on
(Ω,F , {Ft }) defined by:

P̃[A] = I (A) e−yζ−y2Δ(G1,G2)/2 . (17)

By Girsanov’s theorem, the Brownian motion {Wt , t � 0}
has drift y(G2(t) − G1(t)) with respect to P̃. This implies:

E

[
I

(
sup

0�s<∞
Ws − G2(s)y

s + 1
> x

)
e−yζ−y2Δ(G1,G2)/2

]

= Ẽ

[
I

(
sup

0�s<∞
W̃s + y(G2(s) − G1(s)) − G2(s)y

s + 1
> x

)]

= Ẽ

[
I

(
sup

0�s<∞
W̃s − G1(s)y

s + 1
> x

)]

= E

[
I

(
sup

0�s<∞
Ws − G1(s)y

s + 1
> x

)]

= S(x, y,G1) ,

denoting by Ẽ the mathematical expectation and by W̃ the
standard Brownian motion with respect to P̃.
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The representation (16) will now be used to bound the
difference between S(x, y,G1) and S(x, y,G2). Indeed:

|S(x, y,G1) − S(x, y,G2)|
=

∣∣∣E[
I

(
sup

0�s<∞
Ws − G2(s)y

s + 1
> x

)
(
e−yζ−y2Δ(G1,G2)/2 − 1

)]∣∣∣
� E

[
I

(
sup

0�s<∞
Ws − G2(s)y

s + 1
> x

)

∣∣∣e−yζ−y2Δ(G1,G2)/2 − 1
∣∣∣
]

� E

[∣∣∣e−yζ−y2Δ(G1,G2)/2 − 1
∣∣∣] .

To compute the last expectation, observe that the random
variable ζ is normally distributed, with mean 0 and variance
Δ(G1,G2). Therefore:

E

[
e−yζ−y2Δ(G1,G2)/2 − 1

]
= 0 .

Denote by z+ = zI(z > 0) the positive part. Since |z| =
2z+ − z,

E

[∣∣∣e−yζ−y2Δ(G1,G2)/2 − 1
∣∣∣]

= 2E

[(
e−yζ−y2Δ(G1,G2)/2 − 1

)+]
.

A straightforward calculation shows that

E

[(
e−yζ−y2Δ(G1,G2)/2 − 1

)+]
= 2Φ

(
|y|

√
Δ(G1,G2)

2

)
− 1.

Hence (13), from which (14) follows because for c > 0,∫ +∞

−∞
(Φ(c|y|) − Φ(−c|y|)) φ(y)dy

= 2
∫ +∞

0

∫ +cy

−cy
φ(z)φ(y) dzdy

= 1

π

∫ +∞

0

∫ + arctan(c)

− arctan(c)
re−r2/2dθdr

= 2

π
arctan(c) . ��

Piecewise linear boundaries will now be considered.

Definition 1 Let s = (si )i=0,...,n be a tuple of reals such that
0 = s0 < s1 < · · · < sn . Let b = (bi )i=0,...,n be a tuple of
reals. We call n-node piecewise linear boundary the function
Gn,s,b, defined on [0,+∞) by:

Gn,s,b(s) =
(

n∑
i=1

(
bi−1 + bi − bi−1

si − si−1
(s − si−1)

)

I(si−1 � s < si )) + bnI(sn � s) . (18)

An obvious choice for approximating a given function G is
to define bi = G(si ), for i = 0, . . . , n. If G is concave, then
Gn,s,b(s) � G(s), for all s; this is the case for Ga defined
by (11). Assuming moreover that G has a continuous second
derivative such that

sup
0<s<+∞

|G ′′(s)| = M < +∞ ,

the distance Δ(G,Gn,s,b) can be bounded as follows.

Δ(G,Gn,s,b) � 4M2
n∑

i=1

(si − si−1)
3

+
∫ +∞

sn

(
d

ds
(G(s))

)2

ds .

Provided the derivative of G is square-integrable, it follows
from Theorem 1 that the approximation is numerically con-
sistent. Indeed taking for instance si − si−1 = log(n)/n, one
gets that Δ(G,Gn,s,b) tends to 0 as n tends to infinity. The
interest of piecewise linear boundaries for our problem lies
in the following result.

Proposition 1 Let Gn,s,b be defined by (18). For all x > 0,
and y ∈ R,

S(x, y,Gn,s,b)

= 1 − E

[(
n∏

i=1

(
1 − exp

(
− 2

si+1 − si
(bi−1y + x(1 + si−1)

−Wsi−1)
+((bi − bi−1)y + x(1 + si ) − Wsi )

+
)))

(
1 − exp

(
−2x

(
bn y + x(1 + sn) − Wsn

)+))]
.

Proof A more detailed derivation of a similar formula can
be found in Novikov et al. (1999). The following ingredients
are used.

1. Given the values of (Wsi )i=1,...,n , the processes {Ws −
Wsi−1 , si−1 � s � si } for i = 1, . . . , n, and {Ws −
Wsn , sn � s}, are conditionally independent; the condi-
tional distribution of {Ws−Wsi−1 , si−1 � s � si } is that
of a Brownian bridge; and the conditional distribution of
{Ws − Wsn , sn � s} is that of a Brownian motion.

2. For α, β ∈ R,

P

[
sup

0�s<∞
{Ws − α − βs} > 0

]
= e−2α+β+

. (19)

Formula (19) is usually credited to Bachelier: see (Doob
1949, p. 397). ��
Proposition 1 expresses S(x, y,Gn,s,b) as an expectation
with respect to the joint distribution of the Gaussian vec-
tor (Wsi )i=1,...,n . Using the independent increment property,
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it is easy to rewrite it as an integral with respect to the n-
dimensional standard Gaussian density. Denote by gn the
transform ofGn,s,b through (10). FromLemma 1, pgn (x) has
an explicit expression in terms of the (n + 1)-dimensional
standard Gaussian density. In view of Theorem 1, it can be
considered that the problem is solved, at least in theory: an
arbitrary close approximation of pg(x)by a ann-dimensional
Gaussian integral can be computed. This is not quite so in
practice, because of the computational cost of Gaussian inte-
grals: see Gentz and Bretz (2009) as a general reference. It is
therefore of interest to obtain expressions as explicit as possi-
ble, in order to reduce computing costs. Two results deduced
from Proposition 1 for one-node piecewise linear boundaries
follow.

Proposition 2 Let s1, b0, andb1 be three positive reals. Let
G1,s,b be defined by (18) with s = (0, s1)andb = (b0, b1).
Then:

S(x, y,G1,s,b) = I(b0y + x � 0) + I(b0y + x > 0)

(
Φ

(
− ν1

μ1

)

+ e−ν1+μ2
1/2 Φ

(
ν1

μ1
− μ1

)

+ e−ν2+μ2
2/2 Φ

(
ν1

μ1
− μ2

)

− e−(ν1+ν2)+(μ1+μ2)
2/2 Φ

(
ν1

μ1
− μ1 − μ2

) )
,

with:

μ1 = √
s1

(
2(b0y + x)

s1

)
,

ν1 = ((b1 − b0)y + x(1 + s1))

(
2(b0y + x)

s1

)
,

μ2 = √
s1(2x) ,

ν2 = (b1y + x(1 + s1))(2x) .

Proof From Proposition 1, S(x, y,G1,s,b) can be written as
follows:

S(x, y,G1,s,b) =
∫ +∞

−∞
S̃(x, y, z) φ(z) dz ,

with:

S̃(x, y, z) = 1 −
(
1 − exp

( − 2

s1
(b0y + x)+

(
(b1 − b0)y + x(1 + s1) + √

s1z)
+))

(
1 − exp

( − 2x(b1y + x(1 + s1) + √
s1z)

+))
.

If b0y + x � 0, S̃(x, y, z) = 1 for all z. Assume now b0y +
x > 0;

S̃(x, y, z)

= exp

(
−2(b0y + x)

s1
((b1 − b0)y + x(1 + s1) + √

s1z)
+
)

+ exp
(−2x(b1y + x(1 + s1) + √

s1z)
+)

− exp

(
−2(b0y + x)

s1
((b1 − b0)y + x(1 + s1) + √

s1z)
+
)

exp
(−2x(b1y + x(1 + s1) + √

s1z)
+)

.

Or else:

S̃(x, y, z) = exp
(−(μ1z + ν1)

+)
+ exp

(−(μ2z + ν2)
+)

− exp
(−(μ1z + ν1)

+)
exp

(−(μ2z + ν2)
+)

.

Observe that − ν2
μ2

< − ν1
μ1
. For i = 1, 2:

∫ +∞

−∞
exp{−(μi z + νi )

+} φ(z) dz

= Φ

(
− νi

μi

)
+ e−νi+μ2

i /2 Φ

(
νi

μi
− μi

)
.

Moreover:

∫ +∞

−∞
exp

(−(μ1z + ν1)
+)

exp
(−(μ2z + ν2)

+)
φ(z) dz

= Φ

(
− ν2

μ2

)
+ e−ν2+μ2

2/2
(

Φ

(
ν2

μ2
− μ2

)
− Φ

(
ν1

μ1
− μ2

))

+ e−(ν1+ν2)+(μ1+μ2)
2/2Φ

(
ν1

μ1
− (μ1 + μ2)

)
.

Hence the result. ��

Integrating S(x, y,G1,s,b) with respect to y against the
standard Gaussian distribution can be done with reason-
able precision and computing time using the Gauss-Hermite
quadrature. However, the calculation for many different val-
ues of x can hardly be vectorized, which makes the whole
algorithm relatively slow. It turns out that in the particular
case b0 = 0, the integral has an explicit expression in terms
of Φ. Thus it can be computed with high accuracy in vir-
tually null computing time, for a whole range of different
values of x .

Proposition 3 With the notations of Proposition 2 assume
b0 = 0. Let g1 be the transform of G1,s,b through (10). Then:

pg1(x) = Φ

(
−x 1+s1√

s1+b21

)

+ e2x
2(b21/s

2
1−1) Φ

(
−x

1−s1+2b21/s1√
s1+b21

)
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+ e2x
2(b21−1) Φ

(
−x

−1+s1+2b21√
s1+b21

)

− e2x
2(1+s1)2b21/s

2
1 Φ

(
−x

(1+s1)(1+2b21/s1)√
s1+b21

)
.

Proof Using again Proposition 1, pg1(x) can be written as
follows:

pg1(x) =
∫
R2

S̃(x, y, z) φ(y)φ(z) dydz ,

with:

S̃(x, y, z) = 1 −
(
1 − exp

(
−2x

s1
(b1y + x(1 + s1) − √

s1z)
+
))

(
1 − exp

( − 2x(b1y + x(1 + s1) − √
s1z)

+))

= exp

(
−2x

s1
(b1y + x(1 + s1) − √

s1z)
+
)

+ exp
(−2x(b1y + x(1 + s1) − √

s1z)
+)

− exp

(
−2x(1 + s1)

s1
(b1y + x(1 + s1) − √

s1z)
+
)

.

Thus pg1(x) is a linear combination of three integrals of the
following type:

∫
R2

exp{−(λy + μz + ν)+} φ(y)φ(z) dydz ,

That integral is easily computed using the change of variables
(y, z) �→ (λy + μz,−μy + λz);

∫
R2

exp{−(λy + μz + ν)+} φ(y)φ(z) dydz

= Φ

(
− ν√

λ2+μ2

)
+ e−ν+(λ2+μ2)/2 Φ

(
ν−(λ2+μ2)√

λ2+μ2

)
.

Hence the result. ��

3 Fast approximation schemes

Numerical experiments were made in R (R Development
Core Team 2008). At first, a simulation procedure for the
trajectories of X was implemented. A regular mesh of 104

discretization points in [0,1] was fixed. Brownian trajecto-
ries were simulated by iteratively adding Gaussian random
values along the mesh. A Brownian bridge correction for
the discretization bias was applied: see Sect. 6.4 of Glasser-
man (2004), in particular formula (6.50) p. 367. Borovkov
and Novikov (2005) give a precise evaluation of the error in
MonteCarlo computation of boundary crossing probabilities.

Over 106 simulated trajectories, the maxima and minima
were recorded, thus leading to a sample of size 2 × 106 for

the variable of interest. For a given function g, we denote by
p̂g(x) the empirical p-value at x calculated from the sample.
For a sample size of 2×106, the maximal absolute difference
between the empirical and the theoretical cdf’s should remain
below 10−3 to be accepted by the Kolmogorov–Smirnov test
at threshold 5%. Therefore, the target precision is

‖pg − p̂g‖∞ = sup
x>0

∣∣pg(x) − p̂g(x)
∣∣ < 10−3 .

In order to validate the simulation procedure, different one-
node piecewise linear boundaries were chosen; the exact p
values computed from Propositions 2 and 3 were compared
to the empirical p values from the sample. The absolute
difference remained below 10−3 in all experiments, which
validated both the simulation procedure, and the implemen-
tation of Propositions 2 and 3.

Two approximations of pg(x) were considered. The first
one used Proposition 3. With the notations of the previous
section, let s1 andb1 be twopositive reals, s = (0, s1)andb =
(0, b1). Denote by gs1,b1 the transformofG1,s,b through (10).
The intention being to approximate pg(x) by pgs1,b1

(x), it
is natural to choose for s1 and b1 the values that minimize
a certain distance between g and gs,b. Five distances were
tried, among which:

Δ(G,G1,s,b) ,

and

∫ 1

0

∣∣g(t) − gs,b(t)
∣∣ dt .

In view of Theorem 1, one could expect the first choice to
be the best. However, experimental evidence pointed at the
second choice instead. Hence the value of (s1, b1) was fixed
at

(s1, b1) = argmin
(s,b)

∫ 1

0

∣∣g(t) − gs,b(t)
∣∣ dt . (20)

We denote by p1,g(x) the p value at x calculated from Propo-
sition 3, with (s1, b1) defined by (20).

p1,g(x) = pgs1,b1
(x) . (21)

Our second approximation scheme relied on Lemma 2 and
Proposition 2. Only one parameter had to be chosen, s1. After
numeric trials, s1 was fixed at the point such that g( s1

s1−1 ) is
maximal. Here G is assumed to be increasing, concave, and
bounded. Let b1 = G(s1), s = c(0, s1), b = (0, b1). Since
G is concave, Gl = G1,s,b is such that for all s > 0,

Gl(s) � G(s) .
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For the same value of s1, let b1 = supG and b0 be such that
the line from (0, b0) to (s1, b1) is tangent to the graph of G.
Let s = (0, s1) and b = (b0, b1). Then Gu = G1,s,b is such
that for all s > 0,

G(s) � Gu(s) .

From Lemma 2, combining the integrals of S(x, y,Gl) and
S(x, y,Gu) over (−∞, 0] and [0,+∞) against the Gaussian
distribution leads to a lower bound and an upper bound for
pg(x). It is a natural choice for an approximation to use the
midpoint between the lower bound and the upper bound. We
denote by p2,g(x) the p value at x calculated as thatmidpoint,
from Propositions 2 and 3.

p2,g(x) = 1

2

(∫ +∞

−∞
S(x, y,Gl) φ(y)dy

+
∫ +∞

−∞
S(x, y,Gu) φ(y)dy

)
. (22)

The family of functions ga from (6) was considered:
ga(t) = ta − t . The values of a ranged from 0.55 to 0.95 by
step 0.05. The corresponding boundaries Ga defined by (11)
are increasing and concave, with 1 − a as a limit at +∞.

lim
s→+∞Ga(s) = 1 − a .

The array below gives the L∞-distances between approxi-
mated and empirical p values, for different values of a.

a ‖p1,ga − p̂ga‖∞ ‖p2,ga − p̂ga‖∞

0.55 0.00665 0.00488
0.60 0.00532 0.00362
0.65 0.00449 0.00321
0.70 0.00280 0.00161
0.75 0.00222 0.00138
0.80 0.00148 0.00096
0.85 0.00097 0.00070
0.90 0.00063 0.00067
0.95 0.00046 0.00043

Several remarksmust bemade. That the errors decrease as
a increases to 1 was expected, since ga becomes closer to 0.
The errors are above the target 10−3 for a <0.85: the approx-
imations are not perfect. However, the errors consistently
remain below 10−2. This may be considered acceptable,
especially as the largest errors concern p values which are not
statistically significant. The midpoint approximation p2,g is
definitely better than the one-node approximation p1,g , but
not by much. A trade-off with computing time must be con-
sidered. The calculation of p2,g was done from Proposition
2 with a Gauss-Hermite quadrature over 64 nodes. The run-
ning time for 105 values of x was 18.5 s, whereas the running

time for the calculation of p1,g is negligible (0.07 s for 105

values of x).
The Gauss-Hermite quadrature, even with a large number

of nodes, fails to output precise evaluations of the midpoint
approximation p2,g(x) for large values of x . On the contrary
p1,g(x), which is a linear combination of values of Φ is
accurate even for very large values of x . Another calculation
can be done for large x : Durbin’s approximation (see Durbin
(1985) and Parker (2013) for a useful review). Let v(t) denote
the variance function of X : v(t) = RX (t, t), where RX is
defined by (2). Assume v(t) has a unique maximum over
[0,1] and denote by t0 the point at which that maximum is
reached. Assume v has a continuous second derivative v′′.
From formula (33) of Parker (2013), Durbin’s approximation
is

pd,g(x) = 1√
2v(t0)v′′(t0)

exp

(
− d2

2v(t0)

)
. (23)

For the same values of a as above, Durbin’s approxima-
tion pd,ga (x) was compared to the one-point approximation
p1,ga (x) and to the empirical p values p̂ga (x), for values of
x such that all three p values are below 5%. It turned out that
Durbin’s approximation pd,ga performed slightly better than
p1,ga . For each of the two approximations, the relative error,
calculated as the absolute difference with p̂g(x) divided by
the same, remained smaller than 5%, over the range of val-
ues 10−4 < p̂g(x) < 10−2, where p̂g(x) could be used as
an estimate of pg(x).

4 Gene set enrichment analysis

This section describes the statistical application to genomics
thatmotivated the presentwork. It generalizes the description
of the Weighted Kolmogorov–Smirnov test that was given in
Charmpi and Ycart (2015).

Gene Set Enrichment Analysis (GSEA) was introduced
in Subramanian et al. (2005). It is now generally consid-
ered as a basic tool of genomic data treatment: see Huang
et al. (2009) for a review. GSEA aims at comparing a vec-
tor of numeric data indexed by the set of all genes, to the
genes contained in a given smaller gene set. The numeric data
are typically obtained from a microarray experiment. They
may consist in expression levels, p values, correlations, fold-
changes, t-statistics, signal-to-noise ratios, etc. The number
associated to any given gene will be referred to as its weight.
Many examples of such data can be downloaded from the
Gene Expression Omnibus (GEO) repository (Edgar et al.
(2002)). The gene set may contain genes known to be asso-
ciated to a given biological process, a cellular component, a
type of cancer, etc. Thematic lists of such gene sets are given
in the Molecular Signature (MSig) database (Subramanian
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et al. 2005). The word enrichment refers to the question: are
the weights inside the gene set significantly larger than the
weights in a random gene set of the same size?

Denote by N the total number of genes (N � 20,000 for
the humangenome). It is convenient to identify the genes to N
points on the interval [0,1], and their weights to the values of
some function h defined on [0,1]: gene number i corresponds
to point i/N and its weight wi to h(i/N ). Traditionally, the
numbering of the genes is chosen so that weights are ranked
in decreasing order. Thus, the weights usually appear to vary
smoothly between consecutive genes, and the function h can
be assumed to be continuously decreasing.

The gene set is included in the set of all genes. Let n be its
size. In practice, n ranges from a few tens to a few hundreds:
n is much smaller than N . With the identification above, it
is considered as a subset of size n of the interval [0,1], say
{U1, . . . ,Un}. If there is no particular relation between the
weights and the gene set (null hypothesis), then the gene set
must be considered as a random sample without replacement
from the set of all genes. The fact that the gene set size n is
much smaller than N justifies identifying the distribution of a
n-samplewithout replacement of {1/N , . . . , N/N }, to that of
a n-sample of i.i.d. points on [0,1]. The commonly accepted
null hypothesis is that the gene set is uniformly distributed
over all subsets of the same size, which amounts to assuming
that (U1, . . . ,Un) are i.i.d.with uniformdistributionon [0,1].
This was the setting of Charmpi and Ycart (2015).We extend
it here to the following null hypothesis.

H0:Thegene set is a tuple (U1, . . . ,Un)of i.i.d. random
variables on [0,1], with common cdf F .

The interest of this generalization is the following. It is a
common place observation that genes in databases have quite
different frequencies. A typical gene set contains several of
those ubiquitous genes that are detected as overexpressed in
most situations, thus are likely to be found also at the top
of the weight vector. Due to those genes stating, as a null
hypothesis that the gene set is a uniformly distributed sample
leads to an excessive False Discovery Rate, as explained in
Ycart et al. (2014). Taking into account, differential gene
frequencies through the distribution F solve the problem.

The basis of the test statistic in GSEA is the following
step function that cumulates the proportion of weights inside
the gene set, along the interval [0,1]. It is defined for all t
between 0 and 1 by:

Sn(t) =
∑n

k=1 h(Uk) IUk�t∑n
k=1 h(Uk)

. (24)

Testing enrichment amounts to testing whether the differ-
ence between Sn and its expectation under H0 has a high
maximum. The test statistic is

Dn = max
0�t�1

√
n

(
Sn(t) − EH0 [Sn(t)]

)
.

The procedure was called Weighted Kolmogorov–Smirnov
test (WKS) in Charmpi and Ycart (2015). Observe that the
meaning of “Weighted” is different from that of Csörgő et al.
(1986), although some techniques used here are similar.

Except in the case where h is constant, the exact distri-
bution of Dn for finite n cannot be expressed simply. Its
numerical computation is out of the scope of this article: see
Simard and L’Ecuyer (2011) for the classical Kolmogorov-
Smirnov test. However, an asymptotic approximation can be
obtained for large n. The proof of the following convergence
result is a simple application of well-known techniques of
empirical processes: see Kosorok (2008) as a general refer-
ence. It can be easily reduced to the uniformly distributed
case F(t) = t detailed in Sect. 2 of Charmpi and Ycart
(2015).

Proposition 4 Let:

Zn(t) = √
n

(
Sn(t) −

∫ t
0 h(u) dF(u)∫ 1
0 h(u) dF(u)

)
.

Under H0, as n tends to infinity, the stochastic process
{Zn(t) , 0 � t � 1} converges weakly in �∞([0,1]) to the
process {Zt , 0 � t � 1}, where:

Zt = 1∫ 1
0 h(u) dF(u)

(∫ t

0
h(u) dWF(u)

−
∫ t
0 h(u) dF(u)∫ 1
0 h(u)) dF(u)

∫ 1

0
h(u) dWF(u)

)
. (25)

The convergence in distribution of the extrema of Zn(t) to
those of Zt is an easy application of the continuous mapping
theorem (Kosorok 2008, p. 109). Therefore, the distribution
under H0 of the test statistic Dn converges to that of

D = max
0�t�1

Zt .

Replacing the distribution of Dn by that of D implies
an approximation error which could be minimized by a
small sample correction (Stephens 1970); this has not been
attempted yet.

It will now be shown that computing asymptotic p val-
ues for the WKS test reduces to computing pg(x) for some
function g related to h and F .

Proposition 5 For 0 � t � 1 denote by H1(t), H2(t), the
following integrals:

H1(t) =
∫ t

0
h(u) dF(u) ,
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and

H2(t) =
∫ t

0
h2(u) dF(u) .

With no loss of generality assume that H1(1) = 1, and set
γ2 = H2(1). Assume that h does not vanish on any interval,
hence H2 is strictly increasingand its inverse H

−1
2 is uniquely

defined. Let:

g(t) = H1(H
−1
2 (γ2t)) − t .

Then:

D
d= √

γ2 Dg .

Proof With H1(1) = 1, the definition of Zt becomes:

Zt =
∫ t

0
h(u) dWF(u)

−
∫ t

0
h(u) dF(u)

∫ 1

0
h(u) dWF(u) .

Observe that {Zt , 0 � t � 1} is a centered Gaussian
process, with Z(0) = Z(1) = 0. The covariance function
is

E[Zs Zt ] = min{H2(s), H2(t)}
−H1(s)H2(t) − H1(t)H2(s)

+ γ2H1(s)H1(t) .

The following identities hold for the distribution of D;

D
d= max

0�t�1
WH2(t) − H1(t)Wγ2

d= max
0�s�γ2

Ws − H1(H
−1
2 (s))Wγ2

d= √
γ2 max

0�t�1
Wt − H1(H

−1
2 (γ2t))W1

d= √
γ2 max

0�t�1
Bt − g(t) ξ = √

γ2 Dg .

To justify the first identity, it suffices to observe that Zt and
WH2(t) − H1(t)Wγ2 are two centered Gaussian processes,
with the same covariance function. The second identity is
obtained through the change of time H2(t) �→ s, which
does notmodify ordinates of trajectories. The third identity is
the invariance of Brownian motion through scaling. The last
identity follows again by comparing covariance functions. ��
Here is an example, which turns out to be a frequently
encountered particular case. Take F(t) = t . Assume that the
weights are replaced by their ranks, as usual in robust statis-
tics. Thus the weight function is h(t) = 2(1 − t) if weights

are ranked in decreasing order, or h(t) = 2t in increasing
order. Observe that the distribution of {Zt , 0 � t � 1} is
invariant through time reversal t �→ 1 − t . With h(t) = 2t ,

H1(t) = t2 ,

H2(t) = 4

3
t3 ,

γ2 = 4

3
,

H1(H
−1
2 (γ2t)) = t2/3 ,

g(t) = t2/3 − t .

More generally, with b > 1/2 and h(t) = btb−1,

H1(t) = tb ,

H2(t) = b2

2b − 1
t2b−1 ,

γ2 = b2

2b − 1
,

H1(H
−1
2 (γ2t)) = tb/(2b−1) ,

g(t) = tb/(2b−1) − t .

Hence the definition (6) of ga(t), with a > 1/2. From our
observations of real data, it appears that the weight functions
h encountered in practice often lead to functions g resembling
ga for 0.6< a<0.8.

In Charmpi and Ycart (2015), it had been proposed to
evaluate the distribution of D by Monte Carlo simulation.
Although it is a commonly used method in many statis-
tical applications including classical GSEA, Monte Carlo
simulation is not acceptable, for both precision and com-
puting cost reasons. In real applications, the test must
often be applied to several hundred vectors, each tested
against several thousand gene sets. The number of val-
ues of pg(x) to be computed can be of order 107. Thus
a running time of more than 10−3 s per test cannot be
accepted. Moreover, the most significant gene sets, which
are of greatest biological relevance, often have very small
p values (<10−10), which must be accurately calculated.
The Monte Carlo method proposed in Charmpi and Ycart
(2015) takes about 10−2 s per test, for only 104 simulated
trajectories of Z . On such a small number, the smallest p
values that can be returned are of order 10−3. The conclu-
sion is that neither the computing cost nor the precision on
the results match the needs of the real application. On the
contrary, the approximation schemes described in Sect. 3 are
both computationally efficient and precise enough for the
application.

The remarks above will be illustrated on a typical exam-
ple of application. We have considered the Cancer Cell
Line Encyclopedia of Barretina et al. (2012) (GEO data set
GSE36133, Edgar et al. 2002). It contains RNA expression
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data for 917 tumor cell lines. The data was reduced to 16775
protein coding genes; thus 917 vectors of length 16775 were
considered. The rank statistics of each vector was tested for
enrichment in the gene sets of theMSig C2 database (version
5.1, Subramanian et al. 2005). The database was reduced to
the same protein coding genes and comprised 3751 gene sets.
Thus 919 × 3751 = 3.44 × 106 p values were computed.
The calculation was made using the one-node approximation
p1,g and frequency correction; it took 3412 s, i.e., 10−3 s per
p value. Denote by P the 3751 × 917 matrix of p values so
obtained. The test being repeated for each vector over 3751
gene sets, a multiple testing adjustment has to be applied on
the columns of P . Dependencies in the data suggest choos-
ing the method of Benjamini and Yekutieli (2001). After
multiple testing adjustment, the number of p values smaller
than 5% among the 3751 was counted for each of the 917
columns of P: these numbers ranged from 297 to 450, with
a mean of 394. The numbers of p values smaller than 10−10

(still after multiple testing adjustment) ranged from 32 to
128 with a mean of 76. Interestingly enough, there were 17
gene sets whose p value was smaller than 10−10 for all 917
vectors. All 17 gene sets had biological connections with
cancer.

In order to evaluate the effect of multiple testing adjust-
ment on Monte Carlo estimated p values, all columns of
P were Winsorized replacing any p value smaller than
10−3 by 10−3. After applying multiple testing adjustment
to each Winsorized column, no p value smaller than 0.05
remained. This implies that the Monte Carlo method would
have missed all significant gene sets. Of course, one could
consider improving Monte Carlo accuracy by speeding it up,
for instance using parallelization. However, a 100- fold gain
in speed is equivalent to a 10-fold gain in accuracy for a
given computing time: speeding up the Monte Carlo method
will not allow it to accurately estimate p values smaller than
10−10, precisely those detecting relevant biological informa-
tion.
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