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Abstract Through time domain observation, typical

wireless signal strength values seems to exhibit some forms

of mean-reverting and discontinuous ‘‘jumps’’ behaviour.

Motivated by this fact, we propose a wireless link predic-

tion and triggering (LPT) technique using a modified

mean-reverting Ornstein–Uhlenbeck (OU) jump diffusion

process. The proposed technique which we refer as OU-

LPT is an integral component of wireless mesh network

monitoring system developed by ICT FP7 CARrier grade

wireless MEsh Network project. In particular, we demon-

strate how this technique can be applied in the context of

wireless mesh networks to support link switching or

handover in the event of predicted link degradation or

failure. The proposed technique has also been implemented

and evaluated in a real-time experimental testbed. The

results show that OU-LPT technique can significantly

enhance the reliability of wireless links by reducing the rate

of false triggers compared to a conventional linear

prediction technique and therefore offers a new direction

on how wireless link prediction, triggering and switching

process can be conducted in the future.

Keywords Wireless mesh networks �Monitoring system �
Link prediction � Link triggering � Data analysis

1 Introduction

Monitoring of a wireless link is a tough challenge due to

the nature of the wireless link which is constantly affected

by interference and temporary fading. An efficient and

reliable network monitoring system is generally expected

to collect information regarding current system configura-

tion, observe current values of parameters influencing

performance metrics, detect abnormal behaviour of a node

or link and in some cases, predict the performance degra-

dation events. Accurate and timely prediction is critical to

ensure that there is sufficient time for mitigation actions

such as self (re)configuration or healing to take place [3].

In wireless multi-hop [4] or mesh [5] environment, the

behaviour of links particularly those which are closer to a

gateway is becoming the primary concern as they carry the

traffic of other nodes further down the hops. Through time

domain observation typical wireless signals’ signal strength

seem to exhibit some forms of mean-reverting behaviour

(converging towards a long term mean) as well as dis-

continuous ‘‘jumps’’ (missing values for a certain period of

time). Therefore it is natural for us to look at models with

these properties. One such stochastic model which we are

considering in this paper is the Ornstein–Uhlenbeck (OU)

diffusion process which was first applied in physics [7] to

describe Brownian motion of particles suspended in a fluid

with friction. In this paper due to the inherent jump
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properties of wireless signal strength or received signal

strength indicator (RSSI) values, we propose the modelling

of this behaviour using a modified Ornstein–Uhlenbeck

jump diffusion process. The proposed technique is an

integral part of the monitoring system developed by ICT

FP7 CARMEN (CARrier grade wireless MEsh Network)

project [1, 2, 6, 8].

The remainder of this paper is organised as follows.

Section 2 discusses the related works and motivations

behind this research. Section 3 presents the modelling, and

calibration of the proposed method and the novel link

prediction and triggering algorithms. Section 4 shows the

OU-LPT analysis. It also demonstrates the design and real-

time implementation of OU-LPT technique. Finally con-

clusions are drawn in Sect. 5.

2 Related work

Many studies have been done on wireless link monitoring

in general and each of them provided us with different

approaches, methods or techniques. On work to improve

monitoring accuracy, the efficient and accurate link-quality

monitor (EAR) developed by [9] exploits three comple-

mentary measurement schemes namely: passive, coopera-

tive and active monitoring. It maximizes the measurement

accuracy by dynamically and adaptively adopting one of

the above mentioned measurement schemes. For link

quality monitoring, many are using signal to noise ratio

(SNR) or RSSI measurement as quality measure [10–13].

According to MadWiFi driver [14], the reported RSSI for

each frame is actually equivalent to the SNR and therefore

the terms can actually be used interchangeably except that

the definition of RSSI usually varies between vendors. The

work in [10] confirms that the SNR is a very good indicator

for choosing the optimum bit rate for IEEE802.11 [15] in

general when trained on a particular link. Authors in [13]

found that RSSI is an appropriate metric for quantifying the

link quality and channel dynamics when compared with the

value measured by a spectrum analyzer. The work in [12]

proposes an accurate, low-complexity, on-line prediction

mechanism for the long range prediction of wireless link

quality. Similarly this work also uses RSSI as the basic

measure for signal strength. Here the past measurements of

the received signal strength are employed and then through

segmentation, filtering and regression process, the future

trend in the received signal strength is forecasted. [11]

proposes XCoPred, which is a pattern matching based

scheme to predict link quality variations. The nodes mon-

itor and store the links SNR values to their neighbours in

order to obtain time series of SNR measurements. When a

prediction on the future state of a link is required, the node

looks for similar SNR patterns to the current situation in

the past using a cross correlation function. Mesh-Mon [13]

on the other hand aims to actively cooperate and predict,

detect, diagnose and resolve network problems in a scal-

able manner. It is independent of the underlying routing

protocol and can operate even if the mesh routing protocol

fails completely. In our work, we propose a novel tech-

nique that takes advantage of mean-reverting behaviour of

a RSSI as well as its discontinuous ‘‘jumps’’ characteristic.

As revealed in [10], it is understood that though RSSI or

SNR alone is good enough for a single link, it may not

achieve sufficient accuracy in deciding the end-to-end or

network wide transmission quality. In such situation, other

cross layer metrics such as (MAC/IP layer) latency,

throughput and loss may provide a more accurate means to

evaluate the quality of a link. Metrics such as expected

transmission count (ETX) and expected transmission time

(ETT) have been widely proposed to support routing

decision in wireless mesh [16]. However these metrics

depend very much on the types of application and hence

pose additional complexities when performing prediction.

First and foremost, the monitoring system would need to

know exact traffic pattern of the sender, then there is a

foreseen challenge on trigger timeliness since a specific

period is required to collect, compute and analyze cross-

layer frame information. In this paper therefore, we only

focus on the SNR/RSSI as it generally provides a reason-

ably good indication on the quality of the link without

having to know the traffic characteristics, patterns or dis-

tribution. Despite saying that, the proposed link prediction

and triggering technique can be applied on any desired

metric such as throughput, delay, jitter or loss rate as long

as it exhibits some forms of mean-reverting behaviour and

discontinuous ‘‘jump’’.

3 Link prediction and triggering with OU diffusion

process (OU-LPT)

To make a reliable forecast of local and neighbouring mesh

links, we propose a diffusion process models for a selected

window size of a series of RSSI values. The prediction can

be applied to any channel info received from the neigh-

bouring radios. Instead of using statistical time series

modelling which involves comprehensive model identifi-

cation process and then parameters estimation that are

numerically intensive, we propose a much more simpler

and effective way to estimate diffusion process model

parameters from historical data.

3.1 Ornstein–Uhlenbeck jump diffusion process

Figure 1 shows both the time series of raw and smoothed

RSSI values of a typical WLAN link with a time step of
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100 ms. The latter is smoothen via moving average method

with an average of 10 values in order to reduce short term

fluctuations. By observing the time domain behaviour, the

RSSI data seems to exhibit some forms of mean-reverting

behaviour as well as discontinuous ‘‘jumps’’, therefore it is

natural for us to look at one such stochastic model such as

the Ornstein–Uhlenbeck (OU) diffusion process.

We propose the modelling of such behaviour using a

modified mean-reverting diffusion process called the OU

jump diffusion process, OU(j, h, r, J), defined by the

stochastic differential equation (SDE):

dXt ¼ j h� Xtð Þdt þ r dWt þ log Jt dNt ð1Þ

where dWt�N 0; dtð Þ is a Wiener process, j[ 0 is the mean

reversion rate, h is the mean and r[ 0 is the volatility.

The process dNt is a Poisson process with parameter k
such that

dNt ¼
1 with probability k dt

0 with probability 1� k dt

�

The random variable Jt [ 0 is the jump amplitude with

log Jt�N lJ ; r2
J

� �
, and dWt; dNt and Jt are mutually

independent. Using the analysis given by [18] for each

forecast step ahead ‘ � 1 and a constant time step Dt we

can solve the SDE as

Xtþ‘Dt ¼ Xte
�j‘Dt þ hþ klJ

j

� �
1� e�j‘Dt
� �

þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2j‘Dt

2j

r
Z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2j
l2

J þ r2
Jð Þ

r
Z2 ð2Þ

and given Xt it has expectation E Xtþ‘Dtð Þ ¼ Xte
�j‘Dt

þ hþ klJ

j

� 	
1� e�j‘Dt
� �

, and variance Var Xtþ‘Dtð Þ ¼

r2 1�e�2j‘Dt

2j

� 	
þ k

2j l2
J þ r2

J

� �
where Z1, Z2 * N(0,1) and Z1,

Z2 are independent.

3.2 Model calibration

In order to calibrate the parameters j, h, r, k, lJ and rJ, we

can subdivide the OU jump diffusion process as follows:

To begin with, the jump diffusion model in its simplest

form needs an estimate of probability of jump, measured

by k, and its size Jt. However, this can be made more

complicated by having a distribution for Jt. Given that we

have an array of parameters to estimate and if we were to

set up a maximum likelihood method for the full model

(mixing jumps and diffusion), it may be hard for the

algorithm to distinguish what are jumps, and what are
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Fig. 1 Time series of raw and

smoothed WLAN RSSI values

dXt ¼
jðh� XtÞdt þ rdW þ log Jt dNt if Poisson event occurs

jðh� XtÞdt þ rdWt if Poisson event does not occurs

�
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diffusions. Hence there is a need for us to subdivide the

parameter estimation of jump components and mean

reversion diffusion process into two parts.

As seen from the normal probability plot of returns

rt = Xt?Dt - Xt where Dt = 0.1 s in Fig. 2, the existence

of fat tails suggest the probability of rare events occurring

is higher than predicted by a Gaussian distribution. In

addition from the scatter plot of Xt?Dt against Xt, a linear fit

to describe their interaction is inappropriate with the

presence of jumps. In addition the histogram of the returns

together with a fitted normal density (see Fig. 3) shows

there is a significant existence of fat tails in which the

returns data are not normally distributed.

In order to extract the jump components from a series of

returns rt ¼ XtþDt � Xt, we can use the following

pseudo-code:

Begin

Set R = {r1, r2, …, rN} and its complement RC = / where N

is the number of observations.

Repeat

• Find the mean �r and standard deviation rr of the set R

• For all elements in the set R, filter out the return rt if

rt � �rj j[ 3rr: Set the filtered out set RC = RC[{rt} and

R = R – {rt}

Until no further returns are filtered.

End

From the output of the filtered set RC, we can estimate

the frequency of jumps k̂, mean l̂J and variance r̂2
J as

k̂ ¼
RC


 



Rj j þ RCj j

� �
Dt; l̂J ¼ �rC and r̂2

J ¼ r2
rC ð3Þ

where RC


 

 and Rj j are the cardinal numbers of the filtered

out series RC and the filtered series R respectively, �rC and

r2
rC are the mean and variance of the set RC respectively.

Once we have extracted out the jump components

from the original series, we can see from the normal

probability plot of filtered returns in Fig. 5 that there is a

high proportion of residuals being on the straight line

passing through zero. The histogram also shows that most

of data that constitute fat tails have been removed. This

shows that the normal plot of filtered residuals is well

behaved.

In addition from the scatter plot of filtered Xt?Dt against

Xt in Fig. 4, we can deduce that there is a strong linear

relationship between them, and hence we can fit a linear

model to describe their interaction. In order to estimate the

remaining mean reversion parameters we can use a subset

of the filtered series {Xt} to estimate the parameters for

each time step. Having identified which part of the original

series have jump components or statistically significant

jumps, we can then extract out a subset of the original

series where the returns are continuous which follow an

OU process given as:

dXt ¼ jðh� XtÞdt þ rdWt ð4Þ

Taking note that

Fig. 2 Q-Q normal probability

plot of returns (top) and scatter

plot of Xt?Dt against Xt (bottom)

Fig. 3 Histogram of returns rt = Xt?Dt - Xt with a fitted normal

density is shown overlaid
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dðejtXtÞ ¼ jejtXtdt þ ejtdXt þ
1

2
j2ejtXtðdtÞ2 þ � � � ð5Þ

and from Ito’s lemma [19] such that

ðdXtÞ2 ¼ r2dt; ðdtÞm ¼ oð1Þ; m[ 1 ð6Þ

for any arbitrary time step Dt [ 0, the Ornstein–Uhlenbeck

process has a unique solution

XtþDt ¼ Xte
�jDt þ hð1� e�jDtÞ þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2jDt

2j

r
Z ð7Þ

where Z * N(0,1) follows a standard normal distribution.

In this study, rather than accurately finding the param-

eter values using expensive maximum likelihood estima-

tion method we can instead rely on simple regression

analysis. As shown in Fig. 4, we can see that there is a

strong linear relationship between Xt?1 and Xt (we take

Dt = 0.1 s) for all t values. Hence the first step in our

parameter estimation using regression analysis is to find the

best fit of the RSSI time series {Xt} to its past values in

order to make future forecasts.

To begin with by taking N [ 2 to be the size of the

window for the series of data and Dt be the step size, we let

the relationship between consecutive RSSI values Xt, Xt?Dt,

Xt?2Dt, …, XT

XtþDt ¼ aXt þ bþ et; et�Nð0; r2
e Þ ð8Þ

where T = t?NDt, a and b are the regression parameters, et

is normally distributed and is independent and identically

distributed.

By comparing the relationship between the linear fit and

the OU process model, the parameters can be equated as

a ¼ e�jDt; b ¼ hð1� e�jDtÞ; re ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2jDt

2j

r
ð9Þ

Given we require j[ 0 and provided a [ (0,1) we can then

set the jump-diffusion process model with the formulas

h ¼ b

1� a
; j ¼ � log a

Dt
; r ¼ re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 log a

ð1� a2ÞDt

s
ð10Þ

In order to find the optimal values â and b̂ we can solve the

following least-squares regression optimization problem

subject to a bound constraint:

P
minimize

PT
i¼tþDt

Xi � aXi�Dt � bð Þ2

a; b
subject to 0\a\1:

8>><
>>:

Instead of using computationally expensive optimization

subroutines such as L-BFGS-B method [17] to solve problem

P iteratively, we can utilise least-squares regression analysis

by first calculating the following quantities

Fig. 4 Normal probability plot of filtered returns (top) and scatter plot of filtered Xt?1 against Xt (bottom)

Fig. 5 Histogram of filtered returns with a fitted normal density is

shown overlaid
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Sx ¼
XT

i¼tþDt

Xi�Dt; Sy ¼
XT

i¼tþDt

Xi; Sxx ¼
XT

i¼tþDt

X2
i�Dt; Sxy

¼
XT

i¼tþDt

Xi�DtXi; Syy ¼
XT

i¼tþDt

X2
i

ð11Þ

and set

â0 ¼
N Sxy � SxSy

N Sxx � S2
x

ð12Þ

Hence the optimal values â and b̂ can be estimated as

follows:

â ¼
â0 if 0\â0\1

e if â0� 0 and b̂ ¼ Sy�âSx

N

1� e otherwise

8<
: ð13Þ

where e 2 ð0; 1Þ.
In addition under the assumption that the error term has a

constant variance, once we have found the optimal values â

and b̂, the estimated standard deviation of the error term is

r̂e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSyy � S2

y � âðNSxy � SxSyÞ
NðN � 2Þ

s
ð14Þ

Note that if jDt � 1 then we can approximate

a � 1� jDt; b � hjDt; re � r
ffiffiffiffiffi
Dt
p

ð15Þ

with errors of order O((jDt)2). Hence the mean reversion

model parameters can be approximated as

ĥ ¼ b̂

1� â
; ĵ ¼ 1� â

Dt
; r̂ ¼ r̂effiffiffiffiffi

Dt
p ð16Þ

Collectively we can then write

X̂tþDt ¼ Xte
�ĵDt þ ĥþ k̂l̂J

ĵ

 !
1� e�ĵDt
� �

þ r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2ĵDt

2ĵ

r
Z1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂

2ĵ
l̂2

J þ r̂2
Jð Þ

s
Z2 ð17Þ

where Z1, Z2 * N(0,1) and Z1, Z2 are independent.

3.3 Prediction algorithm

Once the parameter values ĵ, ĥ, r̂, k̂, l̂J and r̂J are esti-

mated, we can then deduce the estimated forecast X̂tþK‘

follows

X̂tþ‘Dt � E X̂tþ‘Dt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var X̂tþ‘Dt

� �q � N 0; 1ð Þ ð18Þ

Assuming the current mesh node has the knowledge on

all (or some of) the neighbouring mesh nodes’ channel’s

RSSI of which it can form a link with. The mesh node

would only issue a trigger when its present forecasted RSSI

value falls below its threshold value, and the forecasted

RSSI value of a target neighbouring mesh node exceeds its

threshold value. By denoting the neighbouring mesh nodes

RSSI values as Y
ðiÞ
t where i-1, 2,…,M, where M is the total

number of neighbouring mesh nodes (or mesh radios in

multi-radio case), the current mesh node would only issue a

trigger when it current link’s RSSI

X̂tþ‘Dt� �X and Ŷ
ðjÞ
tþ‘Dt [ �Y ðjÞ ð19Þ

where the index j is defined as

j ¼ fi : maxfŶ ðiÞtþ‘Dt � �YðiÞ; 0g; i ¼ 1; 2; . . .;Mg ð20Þ

where �X is the current link RSSI threshold representing the

minimal QoS it must support in order to operate success-

fully, �Y ðiÞ is the ith neighbouring RSSI threshold value and

Ŷ
ðjÞ
tþ‘Dt is the predicted RSSI value of the jth neighbouring

mesh node if which it could form a new link with. The

criteria given in (19)–(20) denotes that the OU-LPT

method would only choose the ‘‘best’’ neighbouring mesh

node. On the other hand if there is no better mesh node,

then the scheme will not trigger a link handover event.

The Link Going Down (LGD) event is introduced to

help wireless nodes to prepare for link handover or

switching prior to Link Down (LD) so that switching

delays and service interruptions can be minimized. Based

on the forecasted RSSI values of the current link and in

order to minimize the error of decision making, wireless

card manufacturers like Intel [20] would introduce a pro-

tection margin for LGD (or hysteresis factor) DGD
x � 0. The

purpose of having this protection margin is to augment it to

the RSSI threshold value, �X so that the current link has an

enhanced threshold value, �X þ DGD
x to ensure a better QoS.

If the forecasted RSSI value is greater than the enhanced

threshold value, then the system would not trigger a link

handover to another mesh node. In the following Table 1

we list the trigger thresholds that are being used in this

report where DU
x [ DCU

x [ DGD
x [ 0:

With this protection margin DGD
x , and for a forecasted

RSSI value �Xtþ‘Dt the probability in making a trigger is

defined as

Table 1 Thresholds for link handover trigger

Link-Up threshold (LU_TH) �X þ DU
x

Link-coming-up threshold (LCU_TH) �X þ DCU
x

Link-going-down threshold (LGD_TH) �X þ DGD
x

Link-down threshold (LD_TH) �X

384 Wireless Netw (2014) 20:379–396
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PðX̂t þ ‘Dt � �X þ DGD
x Þ

¼ P Z �
�X þ DGD

x � E X̂tþ‘Dt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var X̂tþ‘Dt

� �q
0
B@

1
CA ð21Þ

and if

E X̂tþ‘Dt

� �
� �X þ DGD

x and P X̂tþ‘Dt� �X þ DGD
x

� �
� a ð22Þ

where a [ (0,1) is a margin error then the current mesh

node will issue a trigger at time t to initiate a link handover

to an alternative mesh node or radio.

In addition, for the forecasted RSSI values of neigh-

bouring mesh nodes and for each of the ith node we also

introduce a protection margin DðiÞy � 0 so as to minimize the

error of false selection of a node for handover. By analogy

with the probability of making a trigger for the mesh link,

for each neighbouring mesh radios, we define the proba-

bility of selecting a new node:

P Ŷ
ðiÞ
tþ‘Dt � �Y ðiÞ þ DCU

yðiÞ

� 	
¼ P Z�

�Y ðiÞ þ DCU
yðiÞ � E Ŷ

ðiÞ
tþ‘Dt

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ŷ

ðiÞ
tþ‘Dt

� 	r
0
BB@

1
CCA;

i ¼ 1; 2; . . .;M

ð23Þ

and if

P Ŷ
ðiÞ
tþ‘Dt � �YðiÞ þ DCU

yðiÞ

� 	
� b ð24Þ

where b [ (0,1) is a margin error, then the ith n can be

selected to be the link handover target. By augmenting a

protection margin to our OU-LPT method we can now

redefine our criterion of a handover from a current mesh

node to the jth mesh node at time t as:

E X̂tþ‘Dt

� �
� �X þ DGD

x and

P X̂tþ‘Dt � �X þ DGD
x

� �
� a

( )
and

E Ŷ
ðjÞ
tþ‘Dt

� 	
� �Y ðjÞ þ DCU

yðjÞ and

P Ŷ
ðjÞ
tþ‘Dt� �Y ðjÞ þ DCU

yðjÞ

� 	
�b

8<
:

9=
;
ð25Þ

where the index j is defined as

j ¼ i : max P Ŷ
ðiÞ
tþ‘Dt� �YðiÞ þ DCU

yðjÞ

� 	
; i ¼ 1; 2; . . .;M

n on o

ð26Þ

By analogy with statistical hypothesis testing, the

procedure described above would lead us to commit a

false trigger (or false positive) error. With this protection

margin Dx, and for a forecasted RSSI value X̂tþ‘Dt, here we

define the probability in making a false trigger (or false

alarm) at time t as

P X̂tþ‘Dt� �X þ DGD
x



Xt‘Dt [ �X þ DGD
x

� �
ð27Þ

where it is the error of committing a false trigger when the

true RSSI value Xtþ‘Dt is greater than the enhanced threshold

requirement but the forecasted RSSI value, X̂tþ‘Dt shows that

it is lower than the threshold value plus the protection

margin. From (22) we can deduce via Kolmogorov–Smirnov

goodness-of-fit test that the residuals of the smoothed and

fitted RSSI values êt ¼ Xt � X̂t follow

êt ¼ Xt � X̂t �N lê; r2
ê

� �
ð28Þ

where EðêtÞ ¼ lê and VarðêtÞ ¼ r2
ê . Hence we can write

that P(false trigger) =

PðX̂t þ ‘Dt � �X þ DGD
x j Xt þ ‘Dt [ �X þ DGD

x Þ

¼

R x ¼ �X þ DGD
x

�1 1 � U
�X þ DGD

x � x � lê
rê

� 	h i
fX̂ xð Þ dx

1 �
R 1
�1 U

�X þ DGD
x � x � lê

rê

� 	
fX̂ xð Þ dx

ð29Þ

where Z * N(0,1), Uð�Þ denotes the cumulative standard

normal distribution function and fX̂ðxÞ ¼ 1

rX̂tþ‘Dt

ffiffiffiffi
2p
p e

� 1
2

x�lX̂tþ‘Dt

rX̂tþ‘Dt

� �2

is the probability density function (pdf)

of the forecasted RSSI values. On the other hand we can

also define the probability of making a false non-trigger (or

missed trigger) as

PðX̂t þ ‘Dt [ �X þ DGD
x j Xt þ ‘Dt � �X þ DGD

x Þ

¼

R1
x¼ �X þ DGD

x
U

�X þ DGD
x � x � lê

rê

� 	
fX̂ xð Þ dx

R 1
�1 U

�X þ DGD
x � x � lê

rê

� 	
fX̂ xð Þ dx

ð30Þ

which is the error when the true RSSI value Xtþ‘Dt is less

than the enhanced threshold requirement but the forecasted

RSSI value, X̂tþ‘Dt shows that it is greater than the

threshold value plus the protection margin. For a complete

derivation of these two results, please refer to the

‘‘Appendix’’.

In addition, for the forecasted RSSI values of neigh-

bouring mesh nodes, by analogy with the probabilities of

making a false trigger of the current mesh node, for each

neighbouring mesh node, we define the probability of

making false selection at time t of an ith node as

P Ŷ
ðiÞ
tþ‘Dt [ �Y ðiÞ þ DCU

yðiÞ




YðiÞtþ‘Dt � �YðiÞ þ DCU
yðiÞ

� 	
;

i ¼ 1; 2; . . .;M
ð31Þ

where Ŷ
ðiÞ
tþ‘Dt and �Y ðiÞ are the ith mesh node’s forecasted

RSSI value for leads ‘� 1 and its RSSI threshold value

respectively. Furthermore by deducing the residuals Y
ðiÞ
t �

Ŷ
ðiÞ
t as
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êðiÞt ¼ Y
ðiÞ
t � Ŷ

ðiÞ
t �N lðiÞe ; rðiÞe

� 	2
� �

ð32Þ

where E êðiÞt

� 	
¼ lt

ê, VarðêðiÞt Þ ¼ rðiÞê

� 	2

and Y
ðiÞ
t is the

smoothed RSSI value at time t for ith neighbouring mesh

node. Hence in analogy with (31) we can write that P(false

node selection) =

PðŶ ðiÞt þ ‘Dt [ �Y ðiÞ þ DCU
y ið Þ j Y

ðiÞ
t þ ‘Dt � �Y ðiÞ þ DCU

y ið Þ Þ

¼

R 1
y ¼ �YðiÞ þ DCU

y ið Þ
U

�YðiÞ þ DCU

y ið Þ � y � lðiÞê

rðiÞê

� �
fŶðiÞ yð Þ dy

R 1
�1 U

�Y ðiÞ þ DCU

y ið Þ � y � lðiÞê

rðiÞê

� �
fŶðiÞ yð Þ dy

ð33Þ

where Z * N(0,1), Uð�Þ denotes the cumulative standard

normal distribution function and fŶðiÞ ðyÞ ¼ 1

r
Ŷ
ðiÞ
tþ‘Dt

ffiffiffiffi
2p
p

e

�1
2

y�l
Ŷ
ðiÞ
tþ‘Dt

r
Ŷ
ðiÞ
tþ‘Dt

 !2

is the probability density function (pdf) of

the forecasted RSSI values of the neighbouring ith mesh

node with mean l
Ŷ
ðiÞ
tþ‘Dt

and variance r2

Ŷ
ðiÞ
tþ‘Dt

. Hence we can

now redefine our criterion of a handover at time t from a

current mesh node to the jth mesh node as:

E X̂tþ‘Dt

� �
� �X þ DGD

x and

P X̂tþ‘Dt� �X þ DGD
x

� �
� a and

P X̂tþ‘Dt� �X þ DGD
x



Xtþ‘Dt [ �X þ DGD
x

� �
� �a

8><
>:

9>=
>; ð34Þ

and

E Ŷ
ðjÞ
tþ‘Dt

� 	
� �Y ðjÞ þ DCU

yðjÞ and

P Ŷ
ðjÞ
tþ‘Dt� �Y ðjÞ þ DCU

yðjÞ

� 	
� b and

P Ŷ
ðjÞ
tþ‘Dt� �YðjÞ þ DCU

yðjÞ




ŶðjÞtþ‘Dt\�Y ðjÞ þ DCU
yðjÞ

� 	
� �b

8>>><
>>>:

9>>>=
>>>;
ð35Þ

where �a; �b 2 ð0; 1Þ and the index j is defined as

j ¼ i : max P Ŷ
ðiÞ
tþ‘Dt� �YðiÞ þ DCU

yðiÞ

� 	
; i ¼ 1; 2; . . .;M

n on o

ð36Þ

In order to reduce the probability of making false trigger

and the probability of selecting the wrong AP to a wider

margin, we can modify the above decision criteria to the

following scheme:

Trigger from a current mesh node to the jth mesh node

at time t when

1
m

P‘þm�1

i¼‘
E X̂tþiDt

� �
� �X þ DGD

x and

1
m

P‘þm�1

i¼‘
P X̂tþiDt � �X þ DGD

x

� �
� a and

1
m

P‘þm�1

i¼‘
P X̂tþiDt� �X þ DGD

x XtþiDt [ �X þ DGD
x



� �
� �a

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
ð37Þ

and

1
m

P‘þm�1

i¼‘
E Ŷ

ðjÞ
tþiDt

� 	
� �Y ðjÞ þ DCU

yðjÞ and

1
m

P‘þm�1

i¼‘
P Ŷ

ðjÞ
tþiDt� �YðjÞ þ DCU

yðjÞ

� 	
� b and

1
m

P‘þm�1

i¼‘
P Ŷ

ðjÞ
tþiDt� �YðjÞ þ DCU

yðjÞ Ŷ
ðjÞ
tþiDt\�YðjÞ þ DCU

yðjÞ




� 	
� �b

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð38Þ

where m C 1, �a; �b 2 ð0; 1Þ and the index j is defined as

j ¼ i : max P Ŷ
ðiÞ
tþ‘Dt� �YðiÞ þ DCU

yðiÞ

� 	
; i ¼ 1; 2; . . .;M

n on o

ð39Þ

3.4 Trigger algorithm

Based on the analysis so far, the following is the proposed

algorithm in the form of a pseudo-code:

Given the parameter values ‘, m, a, �a, b, �b, �X, �Y ðiÞ, DGD
x ,

DCU
yðiÞ , i = 1, 2, …, M

Step 1. Select a window size N from the latest smoothed

RSSI values Xif gN
i¼1 of the current mesh node

and also Y
ðiÞ
j

n oNðiÞ

j¼1
for each M neighbouring

mesh nodes with their respective window size

N(i), i = 1, 2, …, M

Step 2. Extract out the jump-components from Xif gN
i¼1

and Y
ðiÞ
j

n oNðiÞ

j¼1
, i = 1, 2, …, M and estimate the

OU jump diffusion process model parameters

Step 3. Forecast smoothed RSSI values for lead time

‘�Dt for all current and neighbouring mesh

nodes
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Step 4. If

Step 5. Update the latest RSSI values and return to Step 1.

4 Analysis, design and implementation of OU-LPT

technique

In the previous chapter we proposed the OU jump diffusion

algorithm based on modified mean-reverting diffusion pro-

cess. It allows for a reliable forecast of RSSI values of local

and neighbouring mesh links. This chapter contains some

analyses of the proposed solution in Matlab simulation as well

as in a real-time experimental testbed. The datasets adopted in

our analyses represent two distinct environments namely the

indoors and the outdoors. Further experimentations with dif-

ferent datasets may result in different levels of improvement

but for initial proof of concept of our proposed OU-LPT, the

existing datasets are believe to be sufficient to provide some

valuable insights on what this technique may offer.

4.1 OU-LPT simulation analysis

In this section we evaluate the performance of the proposed

OU-LPT technique using real RSSI data (courtesy from

Intel and Fraunhofer FOKUS) using Matlab. For the Intel

dataset, RSSI values of beacon frames were measured in an

indoor office environment between a laptop and an IEEE

802.11g Access Point with transmission power of 15 dBm.

The laptop moved with speed of approximately 0.5 m/s

around the office. The Fraunhofer dataset on the other

hand, were measured outdoor (open field) between two

stationery wireless mesh nodes 50 m apart. Each node was

equipped with IEEE802.11g radio card with transmit

power of 14 dBm.

In this analysis we strictly follow the criteria set by Intel

[20] in defining the LD and LGD thresholds using its RSSI.

Here the LD threshold value is set at -80 dBm and LGD

threshold is set at -76 dBm which results in a protection

margin, DGD
x of 4 dB. As the RSSI values do not seem to

exhibit any trends or seasonal patterns and for fast com-

putational results, the moving average (MA) technique is

the best approach as all the weights are equally distributed

to the data. As for other smoothing techniques such as

weighted moving average (WMA), there is a need to

choose the weighting factors in an ad hoc manner or

through some estimation methods and is therefore

impractical for our study. Detailed analysis on various

smoothing techniques though desirable, is not the focus of

this paper. In the following experiments, the OU-LPT

parameters used are: N = 30, ‘ ¼ 5, DGD
x ¼ 4 dB, m = 5,

a = 0.60, �a ¼ 0:10 and smoothing window size of 10.

In Figs. 6 and 7, we display two snapshots of the trig-

gering activities between the time 150–200 and 300–350 s

respectively. From the figures we can see that the predic-

tion mechanism is able to issue a trigger at a very early

stage in preparation before the smoothed RSSI values fall

below the LGD threshold. Furthermore, the presence of

small number of false trigger (or false alarm) and false non-

trigger (missed trigger) attest the suitability of modelling

the RSSI values as a stochastic process.

In Figs. 8 and 9, we display the triggering mechanism

using the same set of parameters and time intervals for the

OU jump diffusion process with the exception that the

prediction of future smoothed RSSI values is obtained via a

linear regression (LR) method. Here for a series of N

consecutive smoothed RSSI values Xt, Xt?Dt, Xt?2Dt, …,

Xt?(N-1)Dt the model is defined as

Xk ¼ b1 	 tk þ b0 þ e; e�N 0; r2
e

� �
ð40Þ

where tk is the time index for Xk,

b1 ¼

PtþðN�1ÞDt

k¼t

ðtk � �tÞðXk � �XÞ

PtþðN�1ÞDt

k¼t

ðtk � �tÞ2
; b0 ¼ �X � b1 	 �t ð41Þ

such that �X ¼ 1
N

PtþðN�1ÞDt
k¼t Xk and �t ¼ 1

N

PtþðN�1ÞDt
k¼t tk.
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By comparing Figs. 6, 7, 8 and 9 we can see by using

the linear regression approach there is a higher likelihood

that a false trigger would occur as compared with the

approach taken by the proposed OU-LPT technique. In this

paper we only compare OU-LPT with LR as both mod-

els are linear in construction and hence we are assessing
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Fig. 6 Trigger results between

150 and 200 s using OU-LPT

technique
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Fig. 7 Trigger results between

300 and 350 s using OU-LPT

technique
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Fig. 8 Trigger results between

150 and 200 s using linear

regression technique
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like-for-like. Take note that the proposed OU-LPT is based

on stochastic process modelling of the velocity of the

random movements of RSSI values whilst the LR only

looks into the relationship between explanatory and

response variables. On the other hand time series models

are not considered in this study as they are too computa-

tionally intensive such as there is a need to perform sta-

tionary test of the data, model identification, parameters

estimation as well as diagnostic checking before one can

fully use it. Therefore due to time constraints in the trig-

gering process we have to exclude this technique. Fur-

thermore time series models are not as practical as our

OU-LPT technique from the implementation point of view.

Table 2 shows the comparison of trigger statistics

between OU-LPT and linear regression method. From the

table we can see that using our proposed method there is a

significant improvement in reducing the rate of committing

false trigger (7.63 % out of 24.20 % of trigger occurrences)

as compared with the conventional linear regression

method (38.10 % out of 36.49 % of trigger occurrences)

which is a brute strength method without taking into

account of modelling fat-tails distribution. However the

percentage of committing a false non-trigger for either both

methods are quite comparable (10.46 and 9.90 %). We also

notice that, the percentage of false non-trigger (missed

trigger) = 10.46 % whilst the percentage of false trigger

(false alarm) = 7.63 %. The discrepancy can be due to the

high volatility of the signal as well as the selection of the

protection margin of 4 dB in which most of the RSSI

values reside near -76 dB. This observation is therefore
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Fig. 9 Trigger results between

300 and 350 s using linear

regression technique

Table 2 Trigger results for Intel dataset of OU-LPT and linear

regression techniques

Description of Trigger OU-LPT (%) LR (%) Improvement (%)

Triggers 24.20 36.49 -12.29

False triggers 7.63 38.10 -30.47

Non-triggers 75.80 63.51 ?12.29

False non-triggers 10.46 9.90 ?0.56

Fig. 10 Histograms of errors with fitted normal densities (shown

overlaid) for OU-LPT and linear regression techniques

Table 3 Link state prediction result or trigger

Output/prediction Description Event

type

LINK_DOWN Link completely down State

change

LINK_GOING_DOWN High probability of the link

losing its connection status

Predictive

LINK_UP The Link is above the

threshold value

State

change

LINK_GOING_UP The probability of the link

recovering its signal is high

Predictive
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specific to Intel’s dataset. In Fig. 10 we show the error

analysis of both methods and from the histogram plots we

can deduce that the errors generated from both methods are

approximately normal distributed. However by comparing

the two approaches we can see that the errors from OU-

LPT tend to have a smaller standard deviation, and hence

the errors are less dispersed.

Although both methods have comparable lead time

which is the time difference between the first successful

trigger until the signal strength goes below the LD

threshold, by reducing the chances of making a false trig-

ger or missed trigger, the proposed OU-LPT technique is

by far a more reliable method than linear regression.

4.2 OU-LPT module design and real-time

implementation

Fast variations of radio channel characteristics entail the

need of smoothing mechanism introduction to deal with

raw data measurements, as well as to avoid incorrect

decisions based on temporary measured values of param-

eters. To overcome this problem, a double level averaging

process has been implemented within a measurement

modules and monitoring aggregation module as well.

Additional long-term statistics repository has been created

to provide feedback mechanism for routing with link sta-

bility description. Also link related events are predicted

and reported by link triggering and prediction module. It

determines state change and predictive events as shown in

Table 3 as defined in IEEE802.21 [21]. In mesh environ-

ment, the reliability of wireless backhaul links is extremely

critical as any link disruption may affect more than one

Monitoring data  
(e.g. Signal strength, throughput delay, etc) 

Data 
Aggregator

Data Pre-
processor  

Predictor 

Data 
Buffer 

Store back in Monitoring database 

Link 
predictions/triggers, 
supporting stats 

Fig. 11 General architecture of the OU-LPT Module

Table 4 Default settings for OU-LPT operation

General OU-LPT

Data sample interval/step size 100 ms

Moving average window size 10

Jump diffusion algorithm

Prediction Window size, N 30

Prediction steps (or look ahead time) 5 steps (500 ms)

Protection margin 4 db

LD threshold -80 dBm

Simulation
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Fig. 12 Comparison between

real-time and Matlab prediction

on RSS values (Intel data)
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node. For that reason, such predictive triggers are partic-

ularly important to ensure carrier-grade performance.

Figure 11 presents the general architecture of the OU-

LPT module. The Data Aggregator submodule is respon-

sible for pulling the required raw data. The data, which is

generally retrieved on a fixed interval, can be RSSI,

throughput or delay depending on the usage requirement.

After gathering of the required data, these values would

then be passed on to the Data Pre-processor submodule.

The Data Pre-processor submodule is generally responsible

to prepare the data before passing on to the prediction

submodule. The tasks include reformatting, synchroniza-

tion with real-time clock, re-sampling and smoothing as

required by the predictor submodule. The smoothing pro-

cess aims to reduce the fluctuation in the raw signal values

and also helps to convert the time series data into a data set

with fewer fluctuations. This will help prevent unnecessary

triggers later on. As the name implies, predictor submodule

analyzes the time series data and predict the future state of

the link i.e. LGD. Alternatively, other conventional pre-

diction algorithms such as Linear Regression, Lagrange or

Newton extrapolation, etc., can be used. The link state

prediction results, together with computed data such as

trigger and errors probabilities are subsequently stored in

Data Buffer. This prediction data can also be stored back

inside some repository for further processing.

The OU-LPT module has been implemented using C

and runs on a relatively slow Soekris net5501 500 MHz

586 class embedded system board together with other

modules defined in the CARMEN project for the mesh

node architecture (resource aware routing, admission con-

trol, spectrum management, monitoring, self-configuration

and support for mobile users). The OU-LPT module

comprises of around one thousand over lines of code and

utilizing only C native libraries. When comparing with

Matlab implementation, the real-time implementation posts

a greater set of challenges as there are different options to

implement the same math function. The decision on which

approach to be adopted will have an impact on the accu-

racy and computation time. In our implementation, the

average time required to generate a prediction using the

above-mentioned board with 512 Mbyte DDR-SDRAM

running UBUNTU LTE 8.04 operating system is less than

28 ms. This is much lower than 100 ms, which is the time

interval in order for a prediction to be useful. The
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Fig. 13 Error histogram comparing Matlab simulation and real-time

OU-LPT implementation (Intel dataset)
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prediction process also consumes around 6.9 MIPS of CPU

usage. Although the OU-LPT module is able to do real-

time capture, we have instructed it to read the same pre-

recorded datasets (from Intel and Fraunhofer) as if it is

acquiring the signal from the WLAN card in real-time to

enable direct comparison between the performance of real-

time implementation and Matlab implementation. Table 4

summarizes the parameters used:

Figure 12 compares the predicted RSS values of real-

time and Matlab simulation using the Intel dataset. As

observed, the predicted values are relatively close. On

average however, Matlab produces less bursty values

across the whole data set. This can be observed around

time 3,400 s, where the real-time result shows higher

variance compared to Matlab result.

Figure 13 shows the error histogram comparing Matlab

and real-time OU-LPT technique. The result shows that the

predictions generated by the real-time OU-LPT are only

slightly deviated from the predictions generated by Matlab.

When investigating across time, the predicted values are

basically the same except at certain points when differences

appear. The errors mainly occur during the drastic change of

signal strength at around 3400 s (Fig. 12). This is confirmed

by fat-tail effect at the left hand side of the scatter plot in

Fig. 14. It is also observed that the errors generally occur at

lower RSS values (\-98 dBm) therefore may not affect the

accuracy of triggers. The discrepancies between Matlab and

real-time C implementation are believed to be caused by

different approaches in implementing certain mathematical

functions such as the integration.

Figure 15 shows the analysis using another dataset

(contributed by Fraunhofer FOKUS). This data does not

have drastic drop of signal strength and even there is, the

drop is very gradual and hence easy to be predicted.

It can be observed from Figs. 16 and 17 that when

analyzing the dataset provided by FHG, the error between

the Matlab and real-time is relatively small. The issue of fat

tail does not exist in this case. This is due to the less drastic

trend in signal fluctuation. The above evaluation shows that

the OU-LPT technique can be implemented with relatively

small computation overhead and complexity.

The OU-LPT graphical visualizer has also been devel-

oped using GTK toolbox (http://www.gtk.org) which is

also part of the GNU project. It is a cross-platform widget
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Fig. 15 Comparison between

real-time and Matlab prediction

on RSSI values (FHG dataset)
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Fig. 16 Error histogram comparing Matlab and real-time OU-LPT

implementation (FHG dataset)
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toolkit used to develop GUI. Figure 18 gives a snapshot of

the OU-LPT visualizer.

The visualizer shows the current smooth signal and also

the predicted signal. The yellow markers indicate the LGD

trigger events while the red markers indicate the LD events.

The dark blue line represents the LD threshold. Other sta-

tistics such as trigger probability and false trigger probability

of each trigger can be computed and shown in real-time.

5 Conclusions

Monitoring system is an integral part of every wireless mesh

network. It provides to other modules accurate and timely

information regarding the status of a network as well as to

predict the quality of the wireless link. The results of pre-

diction are used to reconfigure the network in advance to

avoid service disruption. This paper proposes an novel link

prediction and triggering technique based on a modified

mean-reverting diffusion process. The analysis shows that

the proposed OU-LPT method can significantly enhance the

reliability of wireless links which is particularly critical in

wireless mesh environment. A significant improvement has

been observed in reducing the rate of committing false

trigger (from 38.1 to 7.63 % out of total trigger occurrences)

as compared with the conventional linear regression method.

The proposed method also incurs a very small percentage of

false trigger when compared to the conventional linear

regression method. On top of that when comparing the errors,

OU-LPT experiences a smaller standard deviation implying

that the errors are less dispersed. The link-up scenario is not

addressed in this paper because it generally operates in the

direct opposite manner as link-down scenario. The predic-

tion on link-up however can be used for early preparation of

link to its normal operation. The proposed OU-LPT algo-

rithm has also been successfully implemented and evaluated

using a real-time embedded system board. Overall the OU-

LPT technique is found to be promising and it offers a new

direction on how wireless link prediction, triggering and

switching process can be conducted in the future.
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Appendix

The following are the steps to derive the probabilities of

making a false trigger (or false alarm) and making a false

non-trigger (or missed trigger) for the link handover process.

Pðfalse triggerÞ ¼ PðX̂tþ‘Dt� �X þ DGD
x jXtþ‘Dt [ �X þ DGD

x Þ

¼ PðX̂tþ‘Dt� �X þ DGD
x ; Xtþ‘Dt [ �X þ DGD

x Þ
P Xtþ‘Dt [ �X þ DGD

x

� �

¼ PðXtþ‘Dt [ �X þ DGD
x ; X̂tþ‘Dt� �X þ DGD

x Þ
P Xtþ‘Dt [ �X þ DGD

x

� �

¼
P Z [

�XþDGD
x �X̂tþ‘Dt�lê

rê
; X̂tþ‘Dt� �X þ DGD

x

� 	

P Z [
�XþDGD

x �X̂tþ‘Dt�lê
rê

� 	

¼

R �XþDGD
x

�1 1� P Z� �XþDGD
x �X̂�lê
rê




X̂ ¼ x
� 	h i

fX̂ðxÞdx

1�
R1
�1 P Z� �XþDGD

x �X̂�lê
rê




X̂ ¼ x
� 	

fX̂ðxÞdx

¼

R x¼ �XþDGD
x

�1 1� U
�XþDGD

x �x�lê
rê

� 	h i
fX̂ xð Þdx

1�
R1
�1 U

�XþDGD
x �x�lê
rê

� 	
fX̂ xð Þdx

: ð42Þ

Pðfalse non - triggerÞ¼PðX̂tþ‘Dt [ �XþDGD
x jXtþ‘Dt� �XþDGD

x Þ

¼PðX̂tþ‘Dt [ �XþDGD
x ;Xtþ‘Dt� �XþDGD

x Þ
P Xtþ‘Dt� �XþDGD

x

� �

¼PðXtþ‘Dt� �XþDGD
x ; X̂tþ‘Dt [ �XþDGD

x Þ
P Xtþ‘Dt� �XþDGD

x

� �

¼
P Z� �XþDGD

x �X̂tþ‘Dt�lê
rê

; X̂tþ‘Dt [ �XþDGD
x

� 	

P Z� �XþDGD
x �X̂tþ‘Dt�lê

rê

� 	

¼

R1
�XþDGD

x
P Z� �XþDGD

x �X̂�lê
rê




X̂¼ x
� 	

fX̂ðxÞdx

R1
�1P Z� �XþDGD

x �X̂�lê
rê




X̂¼ x
� 	

fX̂ðxÞdx

¼

R1
x¼ �XþDGD

x
U

�XþDGD
x �x�lê
rê

� 	
fX̂ xð Þdx

R1
�1U

�XþDGD
x �x�lê
rê

� 	
fX̂ xð Þdx

: ð43Þ
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