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Abstract

been previously reported.

deterministic signal.

Background: MiRNAs often operate in feedback loops with transcription factors and represent a key mechanism
for fine-tuning gene expression. In transcription factor-induced reprogramming, miRNAs play a critical role; however,
detailed analyses of miRNA expression changes during reprogramming at the level of deep sequencing have not

Results: We use four factor reprogramming to induce pluripotent stem cells from mouse fibroblasts and isolate
FACS-sorted Thy1- and SSEAT+ intermediates and Oct4-GFP+ induced pluripotent stem cells (iPSCs). Small RNAs
from these cells, and two partial-iPSC lines, another iPSC line, and mouse embryonic stem cells (mES cells) were
deep sequenced. A comprehensive resetting of the miRNA profile occurs during reprogramming; however, analysis
of miRNA co-expression patterns yields only a few patterns of change. DIk1-Dio3 region miRNAs dominate the large
pool of miRNAs experiencing small but significant fold changes early in reprogramming. Overexpression of
DIk1-Dio3 miRNAs early in reprogramming reduces reprogramming efficiency, suggesting the observed
downregulation of these miRNAs may contribute to reprogramming. As reprogramming progresses, fewer

miRNAs show changes in expression, but those changes are generally of greater magnitude.

Conclusions: The broad resetting of the miRNA profile during reprogramming that we observe is due to small
changes in gene expression in many miRNAs early in the process, and large changes in only a few miRNAs late
in reprogramming. This corresponds with a previously observed transition from a stochastic to a more

Background

Deep sequencing technologies have opened numerous
windows into the mechanisms driving cell biological phe-
nomena. Sequencing at the RNA level quantifies the tran-
scriptome in a non-biased manner and, when applied to
a temporal series of cellular transitions, can detect co-
expression networks that suggest functional modules. Re-
programming of mouse embryonic fibroblasts (MEFs)
to induced pluripotent stem cells (iPSCs) is one such
series of cellular transitions and is of enormous interest to
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biologists. Reprogramming can be staged as an epigenetic
series of gene expression changes that begins with down-
regulation of fibroblast genes followed by induction of
temporally controlled mouse embryonic stem (mES) cell
markers, activation of endogenous mES self-renewal
genes, and the establishment of mES gene regulation net-
works [1,2]. Reprogramming epochs can be marked by the
loss of the membrane glycoprotein Thyl immunoreactiv-
ity as fibroblasts shed their identity, followed by activation
of the pluripotency markers alkaline phosphatase (AP)
and SSEA1 [1,2], and then activation of embryonic stem
cell factor genes such as Oct4, Sox2, Kif4, Nanog and Sall4
[3-5]. Failure to suppress differentiation-associated genes
or block differentiation signals leads to incomplete repro-
gramming [6].

More detailed analyses have shown that the immediate
response to the reprogramming factors includes upregu-
lation of mesenchymal-to-epithelial transition (MET)
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genes [7,8] and proliferation genes, consistent with both
¢-Myc expression [6] and the requirement to overcome
the barrier of cell-cycle arrest early [9,10]. These and
other studies highlight the patterns of mRNA expression
induced by single or multiple reprogramming factors;
however, microRNA (miRNA) expression patterns have
received less attention. Polo et al. [11] used microarrays
to investigate miRNA expression patterns in later stages
of reprogramming, but the role of miRNAs early in re-
programming remains incompletely defined.

miRNAs are highly accurate markers of cell identity
(reviewed in [12]). Their profiles unambiguously distin-
guish cell types, including embryonic stem cells [13,14],
a vast variety of precursor cells, terminally differentiated
cells, and tumor types, even among closely related can-
cers [15]. miRNAs play important functional roles in
stem cells, including the regulation of pluripotency, self-
renewal and reprogramming of somatic cells (reviewed
in [16]).

To investigate the overall pattern of miRNA expression
during reprogramming, we deeply sequenced the small
RNA population of mouse embryonic fibroblasts during
reprogramming. These datasets were analyzed by two
complementary statistical techniques - one to identify dif-
ferentially expressed miRNAs and the other to detect pu-
tatively co-regulated modules. The analysis identified
unique miRNA expression signatures among reprogram-
ming intermediates as well as the cell lines that failed to
achieve pluripotency. Deep sequencing’s large dynamic
range and ability to detect all expressed miRNAs demon-
strated with high resolution that large numbers of miR-
NAs undergo significant changes in expression during
reprogramming. We have identified sets of miRNAs that
undergo expression changes at transition points and show
that these miRNAs appear to be expressed as modules
with unique expression patterns, some with annotated
functional assignments. A staged expression pattern was
observed in which small fold changes among a large num-
ber of miRNAs occur at the earliest time point in repro-
gramming and this pattern shifts to large fold changes
among a small number of miRNAs as reprogramming
progresses. A recent report analyzed reprogramming at
the single-cell level and found that gene expression be-
tween sister cells varied greatly [17]. They proposed
that stochasticity was characteristic of the early stage of
reprogramming. Following this phase, cells destined for
pluripotency demonstrated a more uniform and pre-
dictable sequence of gene expression changes referred
to as a ‘'hierarchical mechanism' [17]. The pattern of
lower magnitude changes in miRNA levels observed
during the very early phase of reprogramming followed
by later stages characterized by large changes in only a
few miRNAs coincides with a stochastic early phase
followed by a later deterministic phase.
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Results

miRNAs identify distinct reprogramming stages
Intermediates of four factor reprogramming (Oct4, Sox2,
Klf4, c-Myc, abbreviated OSKM) [2] in mouse embryonic
fibroblasts were used to prepare the small non-coding
RNA fraction for deep sequencing and mapping to
miRNA sequences (Figure 1A-C; Figure S1 in Additional
file 1). The intermediary transitions analyzed were the loss
of the fibroblast marker Thyl (44.6% of fluorescence acti-
vated cell sorting (FACS)-sorted cells at day 5) followed by
the appearance of the SSEA1 marker (5.5% of cells at day
10), followed, in turn, by expression of endogenous Oct4
(also known as Pou5f1; 3.7% of cells at day 14). Eight
cell populations were chosen for deep sequencing: (1)
Oct4-GFP MEFs; (2) FACS-sorted Thyl- cells from cul-
tures at day 5 after OSKM (4F) transduced MEFs; (3)
sorted SSEA1+ cells harvested at day 9 to 10 post-
OSKM; (4) Oct4-GFP+ cells at day 14 post-OSKM; (5)
an established iPSC line (iPSC93-2 [18]) generated in
the same way as the cells reprogrammed here; (6) an
mES cell line, CCE [19]; and (7 and 8) two established
partial iPSC lines (cells trapped in an intermediate state).
These two partial iPSC lines have morphologies similar
to embryonic stem cells, but have not activated endogen-
ous self-renewal markers and remain Oct4-GFP-negative
(Figure S1 in Additional file 1).

Reads from these samples mapped to 892 individual
miRNA arms. miRBase version 16 contains 580 well-
authenticated mouse miRNA hairpins; however, many
hairpins have significant numbers of reads from both
strands [20]. We limited the dataset to the 581 individ-
ual miRNA arms with at least 4 counts per million
(cpm) in at least one library in each of the two replicates.
Of the 581 miRNAs used to assess differential expres-
sion across all samples (Additional file 2), 207 were dif-
ferentially expressed between MEFs and stem cells
(Oct4-GFP+, iPSCs, and mES cells; false discovery rate
(FDR) of 5%). This large fraction of miRNAs that
undergo changes in expression indicates that a major re-
structuring of miRNA expression patterns occurs during
reprogramming.

To detect collective variation among the samples,
the top 290 most variant miRNAs from all 16 samples
were analyzed by principal component analysis (PCA;
Figure 1D; Figure S2 in Additional file 1), which can
capture miRNA expression in low-dimensional space. As
observed in Polo et al. [11], this non-biased analysis re-
vealed clusters that corresponded to each of the cell
types. Thus, miRNAs have the property of defining cell
identity among reprogramming intermediates. Further-
more, the profiles from the reprogramming intermedi-
ates (MEF, Thyl-, SSEA1+, Oct4-GFP+) were spread
along a trajectory that corresponded to the progression
of reprogramming.
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Figure 1 Sample isolation and overall miRNA expression patterns. (A) Collection of the Thy1- population from day 5 cultures of
OSKM-infected MEFs. MEFs were transduced with OSKM virus supernatants for 5 days, harvested, and stained with phycoerythrin (PE)-conjugated
anti-mouse Thy1 antibody. Wt, wild type (B) Collection of the SSEA1+ population from day 10 cultures of OSKM-infected MEFs. OSKM-transduced
MEFs were stained with APC-conjugated anti-mouse SSEAT antibody. (C) Collection of the GFP + population from day 14 cultures of
OSKM-infected MEFs. Cells were sorted based on endogenous expression of GFP driven by the Oct4 promoter. (D) Principal component (PC)
analysis of the 290 most variant miRNAs. Replicate 1 is in black, replicate 2 is in blue. Arrows show the trajectory of reprogramming in each
replicate. (E) miRNAs differentially expressed (false discovery rate of 5%) during reprogramming in stage to stage transitions. (F) Histogram and
overlaid density plot of distribution of log, fold changes (FC) calculated by edgeR for the differentially expressed miRNAs in E). The fraction of
upregulated miRNAs with a log, fold change >5 in each transition is shown. See also Figures ST and S2 in Additional file 1.

A miRNA profile can distinguish the state of partially
reprogrammed lines

Partially reprogrammed iPSCs (piPSCs) are stable cell
lines trapped at intermediate stages of reprogramming
that have silenced the somatic program but failed to ac-
tivate the pluripotency program [6,21]. By PCA, piPSCs
clustered most closely to the SSEA1l+ intermediates
(Figure 1D). To identify miRNAs that were differentially
expressed between the piPSC lines compared to fully
reprogrammed iPSC lines and embryonic stem cells, the
entire data set was statistically analyzed by edgeR [22].
edgeR identified 87 miRNAs that were differentially
expressed between the piPSC lines compared to fully re-
programmed iPSC lines and embryonic stem cells. The
pluripotency-associated 106a ~ 363 and 290 ~ 295 clus-
ters were among the most significantly differentially
expressed miRNAs between these two clusters, and were
all elevated in stem cells compared to piPSCs, indicating
that basic changes necessary for establishing pluripo-
tency have not been established in the piPSC lines.
miRNAs associated with the MET (miR-200a, b, c-3p,
miR-141-3p, miR-429-3p, miR-205-5p) [23-26] were not
differentially expressed between the piPSC lines and
the stem cell lines, with the exception of miR-200c-3p.
In agreement with their placement in the PCA, these
piPSC lines appear stuck in the vicinity of the SSEA1+
stage, as the MET miRNAs are significantly upregulated
between Thyl- and SSEA1+ stages (see below), and the
pluripotency-associated 106a ~ 363 and 290 ~ 295 clus-
ters do not exhibit a pronounced increase in expression
until the transition from SSEA1+ to Oct4-GFP+.

miRNA expression changes at key reprogramming
transition points

To assess miRNA changes at successive stages of repro-
gramming, the re-programmed series alone (MEFs ver-
sus Thyl-, Thyl- versus SSEAl+, or SSEAl+ versus
Oct4-GFP+) was analyzed by edgeR; 543 miRNAs had at
least 4 cpm in at least one of the reprogramming librar-
ies in each replicate. Many (325 at an FDR of 5%) of
the 543 miRNAs included in the edgeR analysis were
differentially expressed either over the entire MEF to
Oct4-GFP+ time series (MEF versus Thyl-, MEF versus

SSEA1+, MEF versus Oct4-GFP+), or in the individual
stage-to-stage transitions (Figure 1E). This observation
again points to the massive resetting of miRNA levels
associated with reprogramming. The largest number of
differentially expressed miRNAs occurred during the
MEF to Thyl- transition, with 81 miRNAs downregu-
lated and 72 upregulated (Additional file 3). In the
Thyl- to SSEA1+ transition, 52 miRNAs were downreg-
ulated, and 39 were upregulated. From SSEA1+ to Oct4-
GFP+ cells, no miRNAs were downregulated and 17
were upregulated.

While the MEF to Thyl- transition had the highest
number of differentially expressed miRNAs, the fold
changes, albeit significant, were all relatively modest
whereas the Thyl- to SSEAl1+ and SSEAl+ to Oct4-
GEFP+ transitions had a larger fraction of miRNAs with
large, positive log, fold changes (Figure 1F). This pattern
of multiple miRNAs with small fold changes early in re-
programming followed by a much lower number of miR-
NAs with large fold changes later in reprogramming
could contribute to the transition from stochastic to de-
terministic behavior [17].

DIk1-Dio3 miRNAs dominate the earliest changes and
undergo isomiR switching

DlkI-Dio3 is an imprinted region activated in fully pluri-
potent mouse stem cells [27,28]. This region contains
one of the largest miRNA clusters in the genome
[27,29], comprising 59 miRNA hairpins in miRBase v.16.
DIk1-Dio3 protein-coding genes are expressed from the
paternal allele, while miRNAs and other non-coding
RNAs are expressed from the maternal allele. The miR-
NAs may be processed from only one or a few transcripts
[30]. During the earliest transition in reprogramming,
the transition from MEF to Thyl-, most of the downregu-
lated miRNAs lie within the DIkI-Dio3 gene region. Of
the 81 miRNAs significantly downregulated at an FDR
of 5%, 66 were in the DIk1-Dio3 cluster, out of a total of
85 miRNAs in that region in the dataset. One of the 66
was miR-134, which can target Nanog and LRHI, two
transcription factors that upregulate Oct4 [31]. The 19
Dlki-Dio3 miRNAs that were not differentially expressed
during this transition were generally poorly expressed. As
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reprogramming proceeds, five of these miRNAs from
the DIkI-Dio3 region were then upregulated at the Thyl-
to SSEAl+ and/or SSEAl+ to Oct4-GFP+ transitions
(Figure 2). By the Oct4-GFP+ stage, only 35 of the DiklI-
Dio3 miRNAs were still significantly downregulated when
compared to starting MEFs. Transient expression changes
such as those that occurred with the five D/kI-Dio3 miR-
NAs were not common during reprogramming. Only 10
miRNAs underwent significant up- or downregulation
during one of the early stage-to-stage transitions of repro-
gramming, followed by a significant change in expression
in the opposite direction in one of the later stages of re-
programming (Figure 2). Six miRNAs were temporarily
downregulated during reprogramming, five of which are
encoded in the DIkI-Dio3 locus. All six were significantly
downregulated at the MEF to Thyl- transition and then
significantly upregulated during either the Thyl- to
SSEA1+ (four miRNAs) or SSEA1+ to Oct4-GFP+ (two
miRNAs) transitions.

IsomiR switching has the potential to change the
mRNA targets of a miRNA especially when the switch
occurs within the seed region. miR-485-3p, which is lo-
cated in the DIkI-Dio3 region, was the only miRNA with
a greater than one nucleotide shift in the 5 start site in
more than 10% of reads. In iPSCs and mES cells, 40 to
70% of the miR-485-3p reads match the canonical se-
quence, whereas in MEFs 60% of the reads are shifted
three bases at the 5 start site (Figure S3A in Additional
file 1). Although many isomiRs work cooperatively with
the dominant mature miRNA by repressing similar targets
[32], the dominant isomiR in the MEF samples radically
changed the predicted targets. TargetScan analysis
yielded only four predicted targets; CCR4-NOT tran-
scription complex, subunit 2 (Cnot2), G protein-coupled
receptor 85 (Gpr85), hexamethylene bis-acetamide indu-
cible 1 (HeximI) and IKAROS family zinc finger 2 (Zkzf2)
overlap between the canonical start site targets and the
isomiR in MEFs.

Expression of MET miRNAs predominates at the transition
to SSEA1+ colonies

The MET occurs as colonies become SSEAl+ [7,8].
Concomitant with the large induction of epithelial-
associated genes and repression of mesenchymal regula-
tors, MET-associated miRNAs miR-205-5p and the
miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-
3p, miR-141-3p and miR-429-3p) [23-26] were markedly
upregulated (at least four-fold) in the Thyl- to SSEA1+
transition (Figure 2; Additional file 3). The miR-200
family did not significantly decline in the newly repro-
grammed Oct4-GFP+ line; however, many of these
miRNAs were expressed at lower levels in the iPSC
line with higher passages and in the mES cell line,
suggesting that, with additional passages, iPSCs more
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closely resemble mES cells. miR-181b-5p and miR-204-
5p are involved in the transforming growth factor
(TGF)P pathway [33,34], and their transient spike at the
Thyl- stage corresponds to MET entry. Another TGEB
pathway miRNA, miR-203-3p, was not upregulated until
the Thyl- to SSEAl+ transition, along with the miR-200
family [35].

Expression pattern of stem cell miRNAs during
reprogramming

The miRNAs from the mouse stem cell specific 290 ~
295 cluster have been reported to represent up to 70%
of total miRNA reads in deep-sequencing of embryonic
stem cells [36]. The 290 ~ 295 cluster begins to increase
at the MEF to Thyl- transition and continues to in-
crease throughout reprogramming, reaching its highest
levels at the Oct4-GFP+ stage (Figure 2). As shown in
previous work [18], the 290 ~ 295 paralogous clusters
(clusters 17 ~ 92, 106b ~ 25, 106a ~ 363 and 302b ~ 367)
were all highly upregulated in reprogramming (Figure 2;
Additional file 3); however, the miRNA 17 ~92 and
106b ~ 25 clusters were among the most significantly
upregulated miRNAs in the first (MEF to Thyl-) transi-
tion, while the 106a ~ 363 and 302b ~ 367 clusters were
not significantly upregulated at any single transition (ex-
cept miR-367-3p at the Thyl- to SSEA1+ transition), but
were highly significantly upregulated overall, and in gen-
eral exhibited a pattern similar to the 290 ~ 295 cluster.

The let-7 family counters the effect of the 290 ~ 295
cluster [37] by inhibiting self-renewal genes. Three of
the eight mature let-7 miRNAs, let-7b-5p, let-7e-5p and
let-7i-5p, showed significant downregulation across the
entire series from MEF to Oct4-GFP+. No let-7 miRNAs
showed a significant decrease in any of the stage-to-
stage transitions (Figure 2; Additional file 3).

The p53 tumor suppressor pathway is deeply involved
in stem cell differentiation, the inhibition of reprogram-
ming and embryonic stem cell self-renewal (reviewed in
[38]). p53’s effect on stem cell reprogramming is medi-
ated through multiple miRNAs, as well as p21. Of
the p53-upregulated miRNAs, miR-34a/b/c-5p [39],
miR-145-5p [40], miR-199a-2-3p [41], miR-34b-5p, miR-
34c-5p and miR-145-5p, but not miR-34a-5p and miR-
199a-2-3p, showed at least two-fold reduced expression
at the Thyl- to SSEA1+ transition.

Detection of communities of co-expressed miRNAs

Many of the differentially expressed miRNAs have no
known functional role in reprogramming. To determine
whether miRNAs of unknown function might be co-
regulated with miRNAs that have established roles in re-
programming we selected a subset of miRNAs known
from the literature to be involved in reprogramming
(known reprogramming dataset, KR; Additional file 4).
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Figure 2 (See legend on next page.)
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Figure 2 Heatmap of relative expression of key miRNAs. Log,(normalized counts per million) are centered and scaled by row. For clarity,
expression data from only the second replicate are shown. Sidebars show average log, cpm across all 16 treatments and significant fold changes
at each transition between stages of reprogramming as determined by edgeR. Dlk1-Dio3 miRNAs are shown in order from 5’ to 3'. EMT,

epithelial-mesenchymal transition. See also Figure S3 in Additional file 1.

This subset consisted of 125 miRNAs differentially
expressed between MEFs and iPSCs or mES cells in mice
or humans (KR dataset; Additional file 4). Of these 125
miRNAs, 120 met the criteria for edgeR analysis, and of
these, 102 (FDR of 5%) were differentially expressed in
our data. Using community detection techniques [42,43],
we built a co-regulatory network that divided these 120
miRNAs into co-expression modules (Supplementary
Methods in Additional file 1). We then carried out the
same network analysis with the larger number of miRNAs
with unknown functions that were differentially expressed
during reprogramming (at FDRs of 5% and a more strin-
gent 1%) to assess whether they clustered in the same
modules as the more thoroughly annotated miRNAs or
whether they formed new modules with unique expres-
sion patterns. Of the 221 miRNAs differentially expressed
during reprogramming with an FDR of 1% (FDRI1 dataset),
and 325 miRNAs differentially expressed at an FDR of
5% (FDR5 dataset), 66% and 69%, respectively, are miR-
NAs that were previously unknown to be differentially
expressed during reprogramming,.

Interestingly, the addition of the large number of
poorly annotated miRNAs to the network did not greatly
alter the modular structure (Figure 3; Tables S4 and S5
in Additional file 1). The patterns of expression in all
three datasets partitioned into similar modules of co-
regulated miRNAs (Figure 3; Figure S4 and Table S5 in
Additional file 1). With the exception of a very few miR-
NAs, the large numbers of miRNAs with unknown roles
in reprogramming in the FDR1 or the FDR5 datasets
did not create novel modules compared to the KR data-
set, but were included in those modules created from
miRNAs with known involvement in reprogramming.
To detect finer-scale modular structure, the structural
resolution parameter y was increased from the standard
value of 1 to 2.5 (Figure S5 in Additional file 1). The
major effect of the increase in y was a split of module 2
at y=1 into at least two modules, while modules 1 and
3 remained largely intact (Figure S5 in Additional file 1).
At y values above 2.5, additional modules formed were
largely composed of single miRNAs (data not shown).

The substructure within modules was investigated by
an independent analysis of the subset of miRNAs within
each module detected at the default resolution of y=1.
From this analysis multiple submodules arose (Figures 4
and 5; Figures S4 and S6 in Additional file 1). The pat-
tern of expression in submodule 1A is characteristic of
stem cell miRNAs upregulated early in reprogramming.

Among them are miRNAs expressed in piPSC as well
as iPSC and mES cell lines, including some members of
the 17 ~92 and 106b ~ 25 clusters and MET miRNAs
(Figure 4). Submodule 1B generally consisted of miRNAs
that were upregulated in the middle stages of repro-
gramming (mainly Thyl- to SSEA+), including members
of the 290 ~ 295 cluster and MET miRNAs. miRNAs in
this module had high expression in stem cells, but low
expression in piPSCs. Therefore, this module appears to
identify miRNAs that change relatively early to ensure
successful re-programming (Additional file 1). Submodule
1C had an expression pattern of transient upregulation dur-
ing reprogramming. miRNAs in this submodule included
the 302b ~ 367 cluster, and miR-489-3p. The 302b ~ 367
cluster is active in regulating the cell cycle of stem cells [44]
and the expression of these miRNAs alone can reprogram
fibroblasts to stem cells [45]. A fourth submodule, 1D,
was only found in the FDR1 and FDR5 datasets, and
had a trend of increasing expression during reprogram-
ming. Members of this submodule included those from
reprogramming- and pluripotency-associated miRNA clus-
ters 17 ~ 92a, 106a ~ 363, and 106b ~ 25.

The network analysis of module 2 miRNAs resulted in
two submodules in the KR and FDR1 datasets, and three
submodules in the FDR5 dataset (Figure 5). Submodule
2A is characterized by a sharp decrease in expression be-
tween the MEF and Thyl- samples, and all 11 miRNAs in
this submodule are DI/kI-Dio3 miRNAs, corresponding
well to the edgeR analysis, where DIkI-Dio3 miRNAs
made up 81% of miRNAs (66/81) with a significant de-
crease in expression between these two stages (Figure 5,
red rectangle). Submodule 2B is composed of miRNAs
that decrease in expression throughout reprogramming,
including let-7 miRNAs (let-7b,e,i-5p). The final submo-
dule, 2C, is found only in the FDR5 dataset and is com-
posed of only four miRNAs (miR-199a-5p, miR-145-5p,
miR-155-5p, miR-143-5p), including two differentiation-
associated miRNAs (miR-145-5p, miR-155-5p), and tends
to have significant decreases in expression early in repro-
gramming. In the y=1 network analysis, module 3
showed little overall variation in miRNA expression and
the expression patterns of several submodules were incon-
sistent between replicates (Figure S6 in Additional file 1).

Experimentally testing the role of DIk1-Dio3 miRNAs in
reprogramming

To validate the results of the deep sequencing patterns
and determine whether the downregulation of 66 DIklI-
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Dio3 miRNAs at the MEF to Thyl- transition affected
reprogramming efficiency, 15 DIlkI-Dio3 miRNAs were
tested in cells. Given the poor functional knowledge of
many of the miRNAs in this region, we used TargetScan
to identify miRNAs with potential roles in reprogram-
ming. TargetScan [46] data on the DIlkI-Dio3 miRNAs
were analyzed to identify putative mRNA targets that
play important roles in reprogramming, embryonic stem
cell biology, cell cycle and gene expression. The 15 miR-
NAs with the most predicted targets associated with
these functions were selected for further investigation
(Figure 6A). Many of these chosen miRNAs, such as
miR-673-5p, miR-369-3p and miR-1193-3p, have previ-
ously been linked to embryonic stem cells and newborn
mouse tissues [47-49].

To show the functional relevance of these 15 selected
miRNAs in iPSC induction, iPSCs were generated by
transfecting three pools of 5 miRNA mimics each into

Oct4-GFP MEFs on the same day as four-factor trans-
duction and then again 5 days post-infection. Mimics ra-
ther than inhibitors were transfected because the
miRNAs are already significantly downregulated during
four-factor induction and further inhibition may have a
negligible effect on the targets. Quantitative RT-PCR
analysis showed robust and highly specific miRNA ex-
pression three days post-transfection (Figure 6B). While
transfection levels measured by quantitative PCR were
high (approximately 500-fold), the actual active dose
within cells is much lower (on the order of 1 to 2%)
since not all copies reach the cytoplasm, and not all bind
to Ago2 [50].

Pool 1 miRNAs showed a clear effect on reducing the
efficiency of transition to Thyl-, to AP+, and to Oct4-
GFP+ (Figure 6). Pool 3 also impaired Thyl downregula-
tion while pool 2 induced an unexplained decrease in
Thyl mRNA levels (Figure 6C). At 12 to 16 days after
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Figure 4 Community structure of miRNAs found in module 1 of the representative partition of the original modular decomposition
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induction, all pools of mimics showed a decrease in the spikes in expression. Constitutive miRNAs are rare. To
mES cell marker AP and, in the case of pool 1, a de- reveal the details of these complex changes we have
crease in Oct4-GFP (Figure 6E). While transfection of analyzed reprogramming intermediates with two statis-
miRNAs could potentially result in non-specific interac-  tical techniques - edgeR to detect differentially expressed
tions that could cause a reduction in reprogramming miRNAs and community detection to identify putative
efficiency, the different response of the three pools co-regulatory modules. These statistical techniques ap-
suggests that this is not the case here. Overall, our re-  plied to deep sequencing data provide unprecedented de-
sults suggest that at least a subset of the downregulated  tail concerning stage by stage miRNA expression changes
miRNAs from the DIkI-Dio3 locus play a role in the during reprogramming.

transition from MEF to Thyl- and contribute to iPSC Sampling at each reprogramming transition simply
generation. delineates the constellation of miRNA changes across

a bulk sample associated with achieving the next step
Discussion in reprogramming, and not those changes sufficient to

The fine structure changes observed by deep sequencing achieve pluripotency. The barrier across the initial
throughout reprogramming reveal a massive re-setting MEF to Thyl- transition is not high, as indicated by
of the miRNA profile in which functionally related miR-  the large number of cells that become Thyl- after
NAs operate in co-expression networks. Among the ob- OSKM (Figure 1A). The barrier to each subsequent
served expression patterns are sets of miRNAs that stage coincides with a reduced number of differentially
gradually increase or decrease across reprogramming expressed miRNAs, a larger fraction of which undergo
and other patterns that show sharper, more transient large fold changes.
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miRNAs from the imprinted DIkI-Dio3 region on
chromosome 12qF1 dominated the miRNAs downregu-
lated at this transition. In MEF reprogramming the long
non-coding RNA Meg3 (also known as Gt/2), which is
expressed on the same imprinted maternal strand as the
DlkI-Dio3 miRNAs, was also downregulated by the time
reprogrammed MEFs became SSEA1+, but before the
upregulation of pluripotency-associated Nanog [51]. Our
data further localize the downregulation of the mater-
nally expressed, non-coding RNAs at this locus to the
MEF to Thyl- transition. While miRNAs at the DIkI-
Dio3 locus underwent a broad downregulation (66 of 85
miRNAs) of modest fold change at the MEF to Thyl-
transition, only five were upregulated at either of the
later stage-to-stage transitions. Nevertheless, comparing
the initial downregulated DIkI-Dio3 miRNA levels to the

levels of these miRNAs in Oct4-GFP+ cells, a broader
trend toward gradual re-expression was observed, with
only 35 miRNAs still downregulated compared to their
starting levels in MEFs.

Interestingly, a re-analysis of the microarray data in
Polo et al. [11] also suggested a decrease in expression
of DIkI-Dio3 region miRNAs during reprogramming of
MEFs to iPSCs (Figure S3 in Additional file 1). Polo
et al. [11] did not sample a Thyl- intermediate, and did
not detect downregulation of DIkI-Dio3 miRNAs in
their samples. In our re-analysis, we could detect down-
regulation of the DIlkI-Dio3 miRNAs when comparing
our MEF and SSEA1+ samples (our first and third time
points, comparable to Polo et al’s first and second time
points), although it was not as strong across this wider
interval. In our data between MEF and SSEA1+ stages,
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Figure 6 Effect of DIk71-Dio3 miRNAs on reprogramming. (A) Three pools of five downregulated miRNAs located within the DIk1-Dio3 gene
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SINTC, si no-template control, *p < 0.05, **p < 0.01, ***p < 0.001, determined by two-tailed Student’s t test.

58 of the 66 miRNAs downregulated at the MEF to
Thyl- transition, as well as four additional DI/kI-Dio3
miRNAs, were significantly downregulated. Reanalysis of
Polo et al’s data showed that 23 of 32 DIlkI-Dio3 miR-
NAs in their single replicate have a negative log, fold
change in the transition from MEF to SSEA1+ (Figure
S3B in Additional file 1; compared to 100 of 220 non-
DIk1-Dio3 miRNAs).

The pattern of abrupt downregulation and gradual up-
regulation was almost exclusively a feature of miRNAs
in the DIkI-Dio3 cluster and readily observable in the
analysis of co-regulatory modules (Figure 5). This sug-
gests one of two possibilities. First, that the majority
of cells were downregulated at the DIkI-Dio3 locus dur-
ing the MEF to Thyl- transition, but some maintained
higher, MEF-level expression at this locus, leading to a
net modest downregulation of these miRNAs. As repro-
gramming progressed, cells that downregulated DIkI-
Dio3 miRNAs were reprogrammed less efficiently and
therefore made up a decreasing proportion of the total
cells, thereby minimizing the role of the miRNA down-
regulation. Second, that nearly all cells in the ensemble
population undergo a transient downregulation of DlkI-
Dio3 miRNAs early in reprogramming, with the expres-
sion of these miRNAs increasing as reprogramming
progresses. This alternative is supported by overexpression

of miRNA mimics from this locus. Some of these miRNAs
decreased reprogramming efficiency. In particular, pool 1
mimics increased Thyl expression, while decreasing the
proportion of AP + and Oct4-GFP+ cells, and therefore re-
duced reprogramming efficiency. No pool of miRNA
mimics increased reprogramming efficiency. Although sin-
gle cell analyses will likely reveal additional details, the
downregulation of DlkI-Dio3 miRNAs at the earliest stage
of reprogramming, particularly those in pool 1, appear to
be beneficial for reprogramming efficiency, although not es-
sential for reprogramming success (Figure 6).

A possible function of DIkI-Dio3 miRNAs that would
increase reprogramming efficiency may be their role in
the epithelial-to-mesenchymal transition (EMT). A re-
cent study [52] demonstrated that reprogramming effi-
ciency in MEFs and several other cell types is improved
by inducing EMT at the initial stage of reprogramming
before MET occurs, via either TGFB or the sequential
introduction of reprogramming factors. They suggest
that since MEFs are usually not uniformly mesenchymal
(as they are generally derived from day 13.5 embryos,
as is the case here), an initial EMT serves to convert
MEFs to a more consistently mesenchymal state before
MET initiation [52]. Seven DIlkI-Dio3 miRNAs target
Twist] and other EMT-associated genes, and their
downregulation has been shown to induce EMT [53]. Of
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these seven, six were downregulated at the MEF to
Thyl- transition in our dataset. The seventh, which was
not significantly downregulated, had low abundance.
Interestingly, the DIkI-Dio3 miRNAs miR-369-5p and -3p
are able to reprogram MEFs when transfected with miR-
200c-3p and miR-302a/b/c/d-3p, albeit at lower efficiency
than OSKM [54]. Although the specific role of miR-369
has not been shown experimentally, it has been predicted
to target the TGFP pathway, indicating it may contribute
to reprogramming by promoting MET at the Thyl- to
SSEA1+ transition [54]. We speculate that early downreg-
ulation of these MET miRNAs may help induce an initial
EMT at the MEF to Thyl- transition, as in Liu et al. [52],
though via a different mechanism.

miR-369-3p and two of the seven miRNAs recognized
as affecting MET by Haga and Phinney [53], miR-543-3p
and miR-494-3p, were in pool one of the miRNA
mimics, whose overexpression resulted in a decrease in
both AP+ and Oct4-GFP+ cells (Figure 6). The overex-
pression of these mimics may, therefore, have reduced
reprogramming efficiency by preventing an early EMT.
Interestingly, pools 2 and 3 contained only one and zero,
respectively, of the EMT-targeting miRNAs [53] and had
less effect on reprogramming efficiency.

The patterns of miRNA expression described here are
more complex than the 'two waves' described by Polo
et al. [11] using microarrays. The greater dynamic range
of expression levels by deep sequencing revealed pat-
terns of regulation readily captured in the network ana-
lysis. The strong modularity observed in the networks of
the large datasets and the complexity within the fine
structure of the modules suggest the existence of net-
work motifs that generate considerably more complex
expression patterns than 'two waves.'

Reprogramming factors are believed to initiate a se-
quence of probabilistic events that generate a small and
unpredictable fraction of iPSCs [55,56]. Buganim et al.
[17] investigated patterns of gene expression in single
cells undergoing reprogramming and found variation in
the order of gene expression among sister cells of initial
colonies early in the process, but a clear sequence of
gene expression once core stem cell circuitry was acti-
vated. These data led to Buganim et al’s [17] hypothesis
that stochastic gene expression changes early in repro-
gramming are followed by a deterministic 'hierarchical’
gene expression pattern responsible for the activation of
the endogenous pluripotency circuitry. The sweeping
small fold changes at the earliest stage of reprogram-
ming may arise from heterogeneity within the popula-
tion of cells or may represent sample-wide small fold
changes. In either case, such phenomena are subject to
greater stochastic behavior because noise in the system
will have a greater proportional impact. Coinciding with
the shift from a stochastic phase to a more hierarchical
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phase, the overall miRNA expression pattern shifts to
larger magnitude changes among a smaller number of
deterministic miRNAs as reprogramming progresses
(Figure 7).

Conclusions

During reprogramming, the miRNA profile of cells
undergoes extensive changes. We identified key clusters
of putatively co-regulated miRNAs, identifying patterns
of coexpression during the reprogramming process.
DIk1-Dio3 miRNAs were downregulated at the earliest
stage of reprogramming, and functional experiments
suggest this downregulation may improve reprogram-
ming efficiency. While many miRNAs experienced small
changes in expression at the earliest stages of repro-
gramming, only a few miRNAs experienced large changes
in expression later in reprogramming, coinciding with the
previously proposed shift from a stochastic to a hierarch-
ical phase of reprogramming.

Materials and methods

Cell isolation

We seeded 5 x 10° Oct4-GFP MEFs (derived from Jackson
Lab stock number 008214) in 10-cm dishes and one day
later transduced these with 10 ml 4 F virus supernatant
(encoding Oct4, Sox2, Klf4, and cMyc; see Additional
file 1 for additional details) [57]. The next day, the cul-
ture medium was replaced with fresh MEF medium,
and 3 days later the medium was changed to embryonic
stem culture medium. Intermediate stages of reprogram-
ming were purified by FACS (Additional file 1). Several
partially programmed iPSCs (piPSC or pre-iPSCs) with
similar morphology and proliferative capacity as embry-
onic stem cells were derived, but remained reliant on
transgene expression, and were GFP-negative, indicating
they had not yet initiated the endogenous embryonic
stem cell self-renewal regulation network. Libraries
were prepared from these fractions and deep sequenced
(Additional file 1).

Mapping

Reads were mapped using the SOLiD Small RNA Ana-
lysis Tool (Applied Biosystems, Foster City, CA, USA),
first to miRBase v.16 mouse miRNAs and then to the
mouse genome. Reads were mapped uniquely allowing
0 or 1 color space mismatch. miRNA 5p and 3p arms
were considered separately, and multi-copy miRNAs
with identical mature miRNA sequences in several gen-
omic loci were collapsed into single miRNAs (for ex-
ample, miR-9-1-5p, miR-9-2-5p and miR-9-3-5p were
combined into miR-9-5p). The first replicate was pre-
pared with the Small RNA Expression Kit (Applied
Biosystems, part number 4399434), which yielded 14.9
to 17.4 million reads per sample. The second replicate
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Figure 7 Model of reprogramming stages. Initially the cell population undergoes relatively uniform small fold changes in miRNA expression or
experiences heterogeneous expression within the population. The downregulation of DIk7-Dio3 miRNAs at this stage may set up an initial EMT to
prepare the sample for subsequent MET. The initial stochasticity is followed by a hierarchical phase where only a few miRNAs are differentially

1
inhibits
reprogramming

used a more efficient library preparation (SOLiD Total
RNA-Seq Kit, Applied Biosystems, part number 4445374),
to increase the read number (24.4 to 29.5 million reads
per sample). An average of 3.8 million reads (1.9 and 5.6
million in each replicate, respectively) matched known
mouse miRNA precursors from miRBase and an add-
itional average of 4.5 million (2.3 and 6.6 million reads in
each replicate, respectively) matched exons, introns and
intergenic regions in the mouse genome. Reads for all
samples (MEFs, Thyl-, SSEA1+, Oct4-GFP+, iPSCs, mES
cells, piPS4, piPS5, both replicates) were previously
combined into a single bulk sample and analyzed for
isomiRs and isomoRs [20], but not for expression pat-
terns among the reprogramming samples. The data
have been made publicly available through the NCBI
Sequence Read Archive database under accession num-
bers SRP010169 and SRP 010170. The present study is
the first to compare individual samples at discrete time
points during reprogramming.

miRNA expression analysis

Data were trimmed mean of M (TMM) normalized
using the BioConductor package edgeR v.3.2.1 [22,58].
PCA was carried out in R [59] on the most variant top
half (290) of miRNAs, using TMM-normalized data cen-
tered and scaled across each miRNA. PCA revealed
systematic differences in expression between the bio-
logical replicates due to the different kits used in library
preparation. Differential expression analyses were there-
fore carried out in edgeR v.3.2.1 [22,58] using a multifac-
tor model to investigate differences among treatments
while taking into account differences between the two

replicates [60]. edgeR was used to investigate (a) which
miRNAs showed differential expression over the whole
course of reprogramming (MEF— Thyl-, MEF —
SSEA1+, MEF — Oct4-GFP+), and over each transition
between consecutive stages (MEF — Thyl-, Thyl- —
SSEA1l+, and SSEAl+ — Oct4-GFP+), and (b) which
miRNAs were differentially expressed in the piPSC lines
compared to MEFs, stem cells (Oct4-GFP+, iPSCs and
mES cells) and/or intermediate reprogramming stages
(Thyl-, SSEA1+). For edgeR analyses, data were filtered
to remove all miRNAs with fewer than 4 cpm in at least
one library in each replicate, and all comparisons utilized
a Benjamini-Hochberg correction for multiple tests. Iso-
miR analysis was conducted as previously described [20]
with some modification (Additional file 1). In a previous
study [20] investigating miRNA variation in a bulk, com-
bined sample of the samples presented here, as well as
hippocampal samples, we found the incidence of miRNA
editing to be low (<6%); therefore, we did not pursue
miRNA editing further in this study. A network analysis
was conducted [61] (Additional file 1) with the standard
structural resolution parameter (y) of 1.0.

Effect of DIk1-Dio3 miRNAs on reprogramming

EdgeR analysis of the deep sequencing data indicated
that 66 of the 81 miRNAs that were downregulated from
MEF to Thyl- were in the DIkI-Dio3 region. TargetScan
was able to predict target genes of 41 downregulated
DIk1-Dio3 miRNAs. To reduce the effects of TargetScan
false positives, subsequent pathway analysis using IPA
(Ingenuity Systems, Redwood City, CA, USA) [62] fo-
cused on the 1,296 genes that were targeted by at least 2
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different DIlkI-Dio3 miRNAs. These genes were filtered
by their annotated function and used to identifyl5 DIk1-
Dio3 miRNAs that regulate reprogramming genes for
experimental validation.

Oct4-GFP MEFs (derived from Jackson Lab, stock
number 008214 at E13.5) were cultured in DMEM with
10% fetal bovine serum, glutamine and nonessential
amino acids (NEAA). Retroviruses for reprogramming
were produced in the same way as the original repro-
gramming experiments (Additional file 1). MEFs were
transfected with small interfering RNA (Dharmacon,
Lafayette, CO USA) using Lipofectamine 2000 reagent
(Invitrogen, Carlsbad, CA USA) 3 hours prior to four-
factor transduction and again 5 days post-transduction.
For iPSC induction, Oct4-GFP MEFs were seeded in gel-
atin coated 12-well plates and transduced with the com-
bined virus plus 6 pg/ml polybrene the next day. The
viral supernatant was replaced with fresh MEF medium
the following day. On day 3 post-transduction, the culture
medium was changed to mES cell medium consisting of
DMEM with 15% fetal bovine serum (Hyclone, Logan, UT
USA) plus LIF (Millipore, Billerica, MA USA), thiogly-
cerol, glutamine and NEAA. GFP + colonies were counted
2 weeks post-transduction.

Total RNAs were extracted using Trizol (Invitrogen).
For mRNA assays, 1 mg was used for reverse transcrip-
tion using iScript (Bio-Rad, Hercules, CA USA) followed
by quantitative PCR using a Roche LightCycler480 II
(Roche, Basel, Switzerland) and SYBR Green (Bio-Rad).
miRNAs were assayed using approximately 1.5 to 3 mg
of total RNA for reverse transcription and quantitative
PCR using the QuantiMir Kit (System BioSciences,
RA420A-1, Mountain View, CA USA).

Additional files

Additional file 1: Supplemental Methods, Results, Figures S1 to S6,
and Tables S4 and S5. Supplemental Methods include additional
information about retrovirus and transduction, isolation of intermediate
reprogramming states, library preparation, SOLID sequencing, mapping,
principal component analysis, microarray re-analysis, isomiR analysis, and
network analysis. Supplemental Results include detailed results from
network analyses. Figure S1. experimental verification of Thy1- cells.
Figure S2. first four principal components of the principal component
analysis. Figure S3. isomiR variation for miR-485-3p and microarray
re-analysis. Figure S4. average correlation and partition similarity (z-score)
for network analysis. Figure S5. fine-scale community structure
uncovered at a larger value of the community resolution parameter
(gamma = 2.5). Figure S6. community structure of miRNAs found in
module 3 of the representative partition of the original modular
decomposition performed at gamma = 1. Table S4. summary statistics
for community structure analyses for all datasets. Table S5. statistical
comparisons between network partitions for all analyses [63-82].

Additional file 2: Table S1. EdgeR log, fold changes between MEFs,
intermediate reprogramming stages, stem cells (labeled SC; Oct4-GFP+
newly reprogrammed cells, iPSC, and mES cell lines combined), and
piPSCs. Values are significant at an FDR of 5%, bold values are significant
with an FDR of 1%.
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Additional file 3: Table S2. EdgeR log, fold changes in
reprogramming. Values are significant at an FDR of 5%, bold values are
significant with an FDR of 1%. log, cpm is log, of counts per million.

Additional file 4: Table S3. miRNAs that are known from the literature
to be differentially expressed between MEFs and iPSCs or embryonic
stem cells, and/or to enhance reprogramming. The five miRNAs in italics
did not meet the basic abundance requirements for edgeR analysis and
were not considered in further analyses, including the network analysis.
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