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Abstract Severe impacts on biodiversity are predicted to arise from climate change. These
impacts may not be adequately addressed by conventional approaches to conservation. As a
result, additional management actions are now being considered. However, there is currently
limited guidance to help decision makers choose which set of actions (and in what order) is
most appropriate for species that are considered to be vulnerable. Here, we provide a decision
framework for the full complement of actions aimed at conserving species under climate change
from ongoing conservation in existing refugia through various forms of mobility enhancement
to ex situ conservation outside the natural environment. We explicitly recognize that allocation
of conservation resources toward particular actions may be governed by factors such as the
likelihood of success, cost and likely co-benefits to non-target species in addition to perceived
vulnerability of individual species. As such, we use expert judgment of probable tradeoffs in
resource allocation to inform the sequential evaluation of proposed management interventions.
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Anthropogenic emissions of greenhouse gases have committed Earth to warmer global
temperatures and associated changes in the climate system through the 21st century
(Meehl et al. 2007). Some loss of global biodiversity is predicted as a consequence
(Thomas et al. 2004), regardless of policy intervention to reduce emissions. Existing
conservation strategies will remain relevant (Hunter et al. 2010), but additional management
actions are being considered to ameliorate climate change impacts that cannot be offset by
conventional approaches to conservation that generally focus on existing locations (Heller
and Zavaleta 2009). Importantly, however, managers lack a clear framework that explicitly
sets out the potential actions for a particular species, the relative costs and likelihood of
success of different actions, potential co-benefits for non-target species as well as important
knowledge gaps that (if resolved) might improve adaptation. Here, we provide a decision
framework in which conservation actions are linked to evaluations of species’ genetic
adaptability and potential to adjust their ranges in response to climate change. We believe
that this is an important first step toward optimizing allocation of resources aimed at
conserving species under climate change.

The first challenge is to ensure that vulnerable species are identified as candidates for
management intervention (Williams et al. 2008). High-risk species might be characterized by
a high probability that the area of environmental suitability will decline by a threshold
amount within a specified timeframe (e.g. 30% within 3 generations, [IUCN Red List
Vulnerable criteria) as a direct consequence of climate change in conjunction with actual
observations of declines and/or additional empirical evaluations of vulnerability (Thomas et
al. 2011).

Next we seek to match likely species response scenarios with interventions that might
assist these adjustments, beginning with low level interventions and progressively deferring
to higher levels of intervention (lower in Fig. 1). The logical motivation for this sequencing
is the presumption that higher levels of intervention are also likely to be more expensive, less
certain, have fewer co-benefits to non-target species and be where societal values will
increasing impinge on which species will be saved or lost. Although there are likely to be
uncertainties and anomalies with specific species, we believe that this structured approach to
evaluating the necessity and appropriateness of different adaptation action/s, informed by the
expected cost of management actions, the likelihood that the management will succeed (e.g.
Joseph et al. 2009) and also opportunities for joint benefits arising from actions (e.g.
restoration of habitat within shared refugia), represents an important advance on generic
recommendations (e.g. Heller and Zavaleta 2009). The approach also builds on previous
efforts that have focused mainly on vulnerability (Dawson et al. 2011) or evaluations of
resistance and resilience to prioritize actions (Prober et al. 2012).

J. K. Scott
CSIRO Climate Adaptation Flagship, Private Bag 5, PO Wembley, WA 6913, Australia

D. Alagador )
“Rui Nabeiro” Biodiversity Chair, CIBIO, University of Evora, Casa Cordovil 2° andar, Rua Dr. Joaquim
Henrique da Fonseca, 7000-890 Evora, Portugal

Present Address:

L. P. Shoo (X))

School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
e-mail: l.shoo@ugq.edu.au

@ Springer



Climatic Change (2013) 119:239-246 241

Monitor and
reappraise, continue
to improve
conventional
conservation
approaches

Is there a high risk that environmental
suitability will decline under climate
change?

Are there adequate Secure/restore
internal refugia? internal refugia

umnna

Secure/restore

Are there adequate :
external refugia

external refugia?

Can species move quickly enough? @

Are movement pathways adequate or can@ Secure /restore
they be restored? movement paths

No

Enough population genetic variation for Yes
evolutionary response? 1

No

ssssEEEEEEEEEEEEEEEEEEEEEEEEEEEEEg
Re-evaluate *
Develop genetic
assisted
colonization plan

SN NN NN NN EEEEE SN NN EEEEEEEEEEEEEEEEEEEEE

Yes
Geographic genetic variation? @

No

Develop assisted

Yes
Assisted colonization possible? @ S
colonization plan

No "™ asssssssssssnnnnnns

Re-evaluate
Extinction in the wild likely (EW)

\is

Develop ex situ

EXx situ conservation possible? @ :
conservation plan

No

Extinction likely

Fig. 1 Decision framework for management actions focused on ameliorating impacts of climate change on
wild species. ‘M’ is used to identify movement options for species, while ‘£” and ‘Ex’ concern evolutionary
and ex situ options respectively

Actions concerned with species’ spatial adjustments begin with assessments of potential
refugia. The term “refugia” was originally used to describe locations where species survived
the last glacial period (Bennett and Proven 2008). Increasingly, it refers to areas buffered
from the impacts of contemporary climate change (Ashcroft 2010; Keppel et al. 2011). The
protection of these areas has emerged as a priority for biodiversity management in the face of
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climate change (Heller and Zavaleta 2009). Analytical tools are already being used to identify
important refugia, for example, drought refugia in Australia (Mackey et al. 2012), cool environ-
ments in Australian tropical rainforests (Shoo et al. 2011), and geomorphological features that
promote stable, wet environments in the Neotropics (Killeen et al. 2007). These tools could be
rapidly expanded and generated at increasingly fine scales (e.g. Ashcroft et al. 2012) to target
conservation investment (e.g. land protection and restoration) toward existing locations where
species are most likely to persist under climate change (Shoo 2010).

More difficult will be evaluating the adequacy of refugia to promote the persistence of
species given large uncertainties around predictions of both climate and species responses
(Fig. 1- M1). Thresholds could be set for area of suitable climate and extent to which refugial
climate stays within predetermined tolerances. Alternatively, it may be sensible to nominate
a threshold population size above which persistence to the end of the century is highly likely,
though caution is needed to avoid ‘magic numbers’. Rather, thresholds based on empirical
species-specific data should be used wherever possible (Flather et al. 2011; Garnett and
Zander 2011). Failure to meet these criteria could then be used as a trigger to prompt more
interventionist management actions.

Internal refugia are those within the present ranges of species, providing the most certain
strongholds and requiring least intervention. In some cases, however, there will be little or no
spatial overlap between suitable environments predicted under current and future climates.
This requires a search for external refugia — climatically suitable areas outside species’
present ranges (Fig. 1 — M2) - or tracking of suitable habitat. For example, Willis et al.
(2009) used species distribution models to identify climatically suitable but unoccupied
areas of the UK to facilitate northward range shifts of two butterfly species.

The next decision is whether those species that need to move will be able to do so quickly
enough to track suitable climates (Fig. | — M3). Local velocity of temperature change along
the Earth’s surface has a global mean of 0.42 kmyr ' but is predicted to be lower in
mountain biomes and higher in flat areas like flooded grasslands, mangroves and deserts
(Loarie et al. 2009). Dispersal permitting, movement pathways that will allow species to
move to external refugia need to be identified and conserved (Fig. 1 — M4). Phillips et al.
(2008) showed how land protection could be optimized to facilitate shifts in the geographic
ranges of South African plants under climate change. The value of such intervention is
supported by emerging evidence that protected areas facilitate species’ range expansions
(Thomas et al. 2012). However, on its own, protection of remaining habitat within move-
ment pathways may not be enough. There is already evidence that some species are not
shifting their ranges at a pace comparable to rates of climate change (Chen et al. 2011) and
habitat specialists and species with an inability to occupy human-dominated landscapes
appear to be particularly slow to move (Warren et al. 2001). Managers might therefore need
to couple information on available movement pathways with actions designed to restore
habitat within range shift corridors. As with population size, it will be important to
reappraise management decisions, especially given that the ‘push and pull of climate
change’ may result in unexpected patterns of range shift (e.g. Tingley et al. 2012).

Natural colonization of external refugia might not be achievable for species restricted to
highly fragmented habitats or that have range-shift routes blocked by physical barriers (e.g.
major rivers, urban centers, land use change) (Asner et al. 2010; Yates et al. 2010). Distances
required to reach external refugia or track habitats are expected to be large in some circum-
stances (Midgley et al. 2003; Wright et al. 2009; Yates et al. 2010). In select cases, where there
is good reason to believe that a species has the evolutionary capacity to adapt to climate change,
it may be preferable to monitor and reappraise rather than pursue intervention (Fig. 1 — E1).
Otherwise, the controversial actions of genetic translocation (Fig. 1 — E2) or assisted
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colonization (Fig. 1 — M5) might be considered to prevent extinction in the wild (Miller et al.
2012). There is now evidence that evolutionary adaptation has occurred in a variety of species
in response to climate change over relatively short time spans (e.g., 5 to 30 years) (Bradshaw
and Holzapfel 2006). Ability to adapt is likely to be a function of heritable variation in selected
traits, indirect effects of population size on evolution, and the rate of environmental change
(Berger and Lynch 1995; Hoffmann and Sgro 2011). Further work is needed to examine the
genetic architecture of traits that may be linked to species distributions (Kellermann et al. 2009).
Such information will be critical in determining whether enough population genetic variation
exists to support an evolutionary response, though there remains great uncertainty about the link
between such variation and adaptive capacity. In assessing vulnerability to climate change there
must also be recognition that some species have persisted in situ through multiple climates with
little or no genetic variation (Byrme 2008).

Genetic assisted colonizations aimed at increasing population fitness and the evolutionary
potential of populations could involve introducing genetic material from one population into
another. One form of genetic assisted colonization involves genetic rescue whereby genetic
material is introduced to rescue an existing population from loss of fitness due to inbreeding
depression or the accumulation of deleterious alleles (Hedrick and Fredrickson 2010), unless
there is evidence that deleterious genes have already been purged from such populations
(Mosblech et al. 2011). In general, however, locally adapted alleles in resident populations
can be maintained (i.e., not swamped by outside gene flow) by ensuring that around 20% of
the population carries genes from the introduced area (Hedrick and Fredrickson 2010). An
example of this approach is the rescue of the Florida panther by introducing genetic material
from Texas (Johnson et al. 2010). This type of genetic assisted colonization is not usually
considered within the framework of evolutionary climatic adaptation. Alternatively, genetic
material may be introduced to boost genetic variation in populations and restore evolution-
ary potential (Weeks et al. 2011). This approach requires that populations then expand
rapidly to prevent further loss of genetic variation (Willi et al. 2006) unless there are repeated
introductions of new genetic material (Weeks et al. 2011).

Another form of genetic assisted colonization involves the introduction of genotypes into
populations that are adapted to different conditions. This approach has been promoted
particularly within the context of revegetation and restoration. Conventionally, restoration
has involved local provenancing where material for propagating plants is selected from near
a target area. However, it has now been recognized that provenancing might instead involve
a mix of locally adapted genotypes and those more suited to future conditions (Broadhurst et
al. 2008; Jones and Monaco 2009; Sgro et al. 2010). This approach is particularly applicable
to long-lived species where in situ adaptation might be too slow to keep pace with rapid
environmental change (Lynch and Lande 1993). There is a risk that new genetic material can
produce a loss of population fitness through outbreeding depression, although this risk
appears to have been overstated and it can be minimized by following some simple guide-
lines (Frankham et al. 2011; Weeks et al. 2011). Successful augmentation of evolutionary
potential could then be followed by a reappraisal of movement options beginning with
evaluation of the adequacy of internal refugia.

At the species level, decision frameworks are already available for assessing possible
candidates for assisted colonization and optimal timing of intervention (Hoegh-Guldberg et
al. 2008; McDonald-Madden et al. 2011). Experimental introductions of two UK butterflies
demonstrate the feasibility of applying assisted colonization in this context (Willis et al.
2009) However, as an adaptation strategy, assisted colonization remains a controversial
action (Ricciardi and Simberloff 2009) as there is concern that risks may ultimately
outweigh the benefits (Webber et al. 2011).
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It is important to recognize that intervention to assist evolutionary adaptation or move-
ment will not be able to forestall the loss of all species in the wild. If a species is confined to
a disappearing climate and cannot mount an evolutionary response, then extinction in the
wild is likely. Ex situ conservation such as zoos, botanical gardens, seed banks and tissue
storage might then be invoked to prevent extinction (Fig. 1 — Ex1), as is already happening
with a range of species now listed as Extinct in the Wild. However, the more intensive the
intervention the higher the likely costs. This will likely increase pressure on managers to
make some hard decisions - a situation that could be made worse depending on how much
society limits the amount of funding available to respond to these emerging challenges
(Bottrill et al. 2008). In any case, for species that are successfully maintained in
captivity, it would be desirable to periodically reevaluate opportunities for repatriation
back into the wild.

In conclusion, transparent decision making linked to specific management interventions will
be critical in assisting biological systems to respond to climate change. We have provided a
hierarchical framework with actions arranged according to the expected level of intervention
and potential cost, probability of success and likely co-benefits. We have used our best
judgment to inform this process but acknowledge that new information may in turn cause us
to reflect on the preferred sequencing of potential intervention strategies presented in this
framework. Research now has an important role to play in decreasing uncertainty, refining
information on costs, benefits and risks of alternative actions, and optimizing resource alloca-
tion among projects (Joseph et al. 2009). It has yet to be determined, for example, whether
restoration of movement corridors will be more beneficial and less expensive than expanding
the area of existing conservation reserves (Doerr et al. 2011; Hodgson et al. 2009) or assisted
colonization. Further, advances in spatial modeling (e.g. fine sale climate surfaces) and
quantification of adaptive variation (functional genomics) are progressing at a rapid pace
meaning that the information needed to use the framework is becoming increasingly available.
Similarly, advances in decision science are providing avenues to tackle the problem of resource
allocation in situations where information is uncertain or incomplete.
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