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Abstract

The detection and tracking of moving objects (DATMO) in an outdoor environment from a mobile robot are
difficult tasks because of the wide variety of dynamic objects. A reliable discrimination of mobile and static
detections without any prior knowledge is often conditioned by a good position estimation obtained using Global
Positionning System/Differential Global Positioning System (GPS/DGPS), proprioceptive sensors, inertial sensors or
even the use of Simultaneous Localization and Mapping (SLAM) algorithms. In this article a solution of the DATMO
problem is presented to perform this task using only a microwave radar sensor. Indeed, this sensor provides
images of the environment from which Doppler information can be extracted and interpreted in order to obtain
not only velocities of detected objects but also the robot’'s own velocity.
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1 Introduction

The detection and tracking of moving objects
(DATMO) are among the most challenging problems
concerning autonomous driving in a dynamic environ-
ment. Although the DATMO problem has been exten-
sively studied for decades [1-6], it is still very difficult to
accomplish these tasks from a ground vehicle at high
speeds in outdoor environments.

Indeed, the most difficult issue is to separate moving
objects from stationary objects. A classical approach in
indoor environments is to use appearance-based or fea-
ture-based techniques with cameras and laser [7-9].
Both methods rely on prior knowledge of the targets. In
an outdoor context, there are many types of mobile
objects such as pedestrians, animals, vehicles of different
sizes (cars, trucks, etc.), which are all very difficult to
detect and identify.

Furthermore, in an outdoor environment DATMO is
more complex under various climatic constraints. In this
context, classical sensors are limited due to the technol-
ogies used: ultrasound is perturbed by wind, optical sen-
sors (laser, vision) by rain, fog or the presence of dust
or by poor lighting conditions. One of the particularities
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of this work is the use of a microwave radar sensor. In
our case, the information from this sensor regarding the
signal power reflected by the targets with a 360° per sec-
ond rotating antenna and a range from 5 to 100 m is
used. The long range and the robustness of radar waves
to atmospheric conditions make this sensor well suited
for extended outdoor SLAM and DATMO applications.

In classical detection and tracking approach, multiple
detections of a same object have to be done in order to
obtain target velocity. Each potential moving object is
tracked and its model representing both position and
speed is initialized and updated. In such a method, the
large number of false tracks launched, combined with
incorrect data association lead to algorithm failures. In
this article, based on the radar frequency modulation
principle, the sensor is able to provide two simultaneous
images of the environment from which Doppler infor-
mation can be extracted. Also, both the distance and
velocity of the targets can be estimated simultaneously.
It allows to create and initialize tracks at the first detec-
tion reducing following false data association.

In Section 2 a review of articles related to our
research work is carried out. Section 3 briefly presents
the microwave radar scanner developed by a Cemagref
Institute team working on environmental sciences and
technologies. Section 5 gives the principle used in this
article in order to estimate the robot’s own velocity.
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Sections 6 and 7 present, respectively the DATMO.
Finally Section 8 shows experimental results of this
work. Section 9 concludes.

2 Related work

In most applications, in order to accomplish DATMO
from a mobile platform, an accurate localization systems
are essential [10,11]. Unfortunately, inertial measure-
ment system is often very expensive and Global Posi-
tionning System (GPS) or Differential Global Positioning
System (DGPS) often fail in an urban or covered envir-
onment such as forests because of the canyon effect. In
the past decade, the simultaneous localization and map-
ping (SLAM) problem has been intensively studied in
robotics because it can provide an accurate estimate of
the robot position without expensive inertial sensors or
GPS and it allows to build consistent map of the sur-
roundings without prior knowledge. For a broad and
quick review of the different approaches developed to
address this problem, the reader can consult the follow-
ing articles [12-15].

Most of the existing SLAM methods assume that the
environment is static. If there is a moving object, and
the data is erroneously associated with a landmark in
the map database, many localization algorithms will fail,
and the map will be deteriorated by the data of the
moving object. The key point to solve this problem is to
isolate the data of moving and static objects. Wang pre-
sented an approach to tackle SLAM and DATMO pro-
blems and proved that both problems are mutually
beneficial [15]. These two research areas are studied
jointly under the denotation SLAM and Moving Object
Tracking (SLAMMOT).

In order to deal with dynamic objects, Hahnel et al.
[16] filtered out moving people, and created a difference
map between consecutive laser scans to remove those
static but people-like objects. An implicit assumption
here is that dynamic objects move all the time during
their measurements. However this is not normally true.
Wang [15] did on-line calculations of an occupancy
map, and detected the objects that entered an object-
free space. More recently, Xie et al. [17], developed a
SLAMMOT application based on probabilistic occu-
pancy grids.

In order to perform outdoor SLAM or SLAMMOT,
laser sensors are widely used [15-20]. Research work
will continue to use them due to the success story of
the Velodyne HDL-64 3D LIDAR [21]. Visual sensors
are also used to solve SLAMMOT problems. Ess et al.
[22] presented an approach of multiperson tracking
using a stereo rig mounted on a mobile platform. Sola
et al. [23] described a system based on a framework
called BiCamSLAM, that combines the advantages of
monocular reconstruction with the advantages of
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stereo vision. Marzorati et al. [24] showed that the
problem of SLAMMOT can be solved with a single
camera.

In the naval field [25], the use of radar sensor for
SLAM(MOT) application is self-evident but in ground
mobile robotics few works use such a kind of sensor. In
[26], we described a trajectory-oriented SLAM. It is
based on radar information over important distances
using Fourier-Mellin transform for scan matching con-
sidering a static environment. Radar is an interesting
sensor because not only range and bearing can be
obtained but also Doppler information can be used to
extract velocities. This Doppler information allows to
relax the assumption of static environment and to
extend Radar SLAM to a SLAMMOT algorithm. In clas-
sical applications, successive acquisitions are compared
knowing the localization (or computing it) in order to
have an idea of the movements in the surroundings of
the vehicle. In our proposition, as Doppler information
is measured, we do not have to wait for two successive
observations to obtain detection velocities. As a result,
the estimation of ego-motion from different sensor
acquisitions or proprioceptive sensors is not needed. In
our case, the DATMO problem can be solved without
SLAM information considering moving objects in the
radar frame due to the fact that Doppler is measured
directly. In this article a DATMO algorithm based on
Doppler information is described using the IMPALA
radar sensor.

3 The IMPALA radar

The IMPALA radar was developed by the Cemagref
Institute in Clermont-Ferrand, France, for applications
in the environmental monitoring domain and robotics.
It is a Linear Frequency Modulated Continuous Wave
(LEFMCW) radar [27]. The principle of a LFMCW radar
consists in transmitting a continuous frequency modu-
lated signal, and measuring the frequency difference
(called beat frequency F)) between the transmitted and
the received signals. One can show that F, can be writ-
ten as:

4AFF,,R 2V
Fy = +
c A (1)
——
F. Fy;

where AF is the frequency excursion, F,, the modula-
tion frequency, c¢ the light velocity, A the wavelength, R
the radar-target distance (R <Rn.,x) and V the radial
velocity of the target. The first part F, of Equation (1)
only depends on the range R, and the second part F; is
the Doppler frequency introduced by the radial velocity
V. In order to solve the distance-velocity ambiguity, a
triangular modulation function is applied (see Figure



Vivet et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:45

http://asp.eurasipjournals.com/content/2012/1/45

Page 3 of 13

Frequency

Figure 1 Triangular modulation function. (a) The time delay t is the time of flight between the radar and the target. The vertical shift is the
Doppler frequency introduced by the radial velocity. (b) Frequency difference between transmitted and received signals. The sum and the
difference of f, allow to estimate the distance R and the radial velocity V of the target.

time

(b)

la). Considering the modulation slope, the shift intro-
duced by the Doppler effect is added (negative slope) or
subtracted (positive slope). Thus the sum and the differ-
ence of Fj, allow to determine without ambiguity the
distance and velocity of the target (see Figure 1b). An
example of radar power spectra obtained with the
IMPALA radar is presented in Figure 2. Four targets are
detected within the radar beam: three stationary targets
and a moving one. This figure illustrates a well known
problem of LFMCW radar: under certain conditions, the
frequency matching step may lead to target mismatch-
ing, and thus may result in the creation of ghost targets
[28]. One objective of the tracking step is to identify
and eliminate these ghost targets.

3.1 Range resolution
Considering a zero radial velocity, the radar-target range
is easily estimated from (1) with

C
-F
Y 4AFF, 2)

The range resolution JR is obtained by substituting
the beat frequency F, by the frequency resolution JF:

C
SR = SF,
" 4AFE, ©)

Considering a triangular modulation of duration T,
OF, can be expressed as
§F,= > =2F (4)
b= T, ~%m
(the signal is observed twice during the modulation
period, up-slope and down-slope). Substituting (4) into
(3), the well-known relationship between the signal
bandwidth and the range resolution is obtained:

c
SR = 5
2AF ®)
This expression of the range resolution is a theoretical
relationship, it assumes a perfect linear modulation of
the transmitted signal.

3.2 Velocity resolution

Two spectra are computed within the triangular fre-
quency modulation: one for the up-slope part of the
modulation, the other one for the down-slope part. The
radial velocity of a target is computed by measuring the
frequency shift 0F between the corresponding peaks in
the up and down spectra (see mark D in Figure 2). JF is
expressed as:

4V
8F =2F; = N (6)
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Figure 2 Example of radar power spectra. Blue: positive slope of the modulation. Red: negative slope. Four targets are detected: three

stationary (A, B and C marks) and a moving one (D mark).
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The velocity resolution 6V corresponds to the mini-
mum value of oF:
F;
in(8F) = 7
min(8F) N 7)
with F; the sampling frequency and N the number of

frequency points. Substituting (7) into (6), the expres-
sion of the velocity resolution is obtained:

AF

AN (8)

8V =

3.3 IMPALA radar characteristics

The IMPALA radar is panoramic. It is a monostatic
radar, i.e., a common antenna is used for both transmit-
ting and receiving. The rotating antenna achieves a
complete 360° scan around the vehicle in 1 s, and a sig-
nal acquisition is realized at each degree. The maximum
range of the radar is 100 m. The radar includes micro-
wave components, electronic devices for emission and
reception, data acquisition and signal processing unit
(see Figure 3b). An example of radar image is presented
in Figure 4. The radar is positioned at the center of the
image (red cross). The gray scale level indicates the
amplitude of the backscattered signal. Each element of
the image is positioned through its polar coordinates (d,
0). Data acquisition and signal processing units are
based on an embedded Pentium Dual Core 1.6 GHz
PC/104 processor. Computed data is transmitted using
an Ethernet link for visualization and further processing.
Main characteristics of the radar are described in Table
1.

4 Issues of DATMO using a mobile ground-based
radar sensor

In order to tackle the DATMO problem with our
ground-based radar sensor, different problems have to
be analyzed and solved. Before detecting moving objects
and estimating their speed, the Doppler effect created
by the vehicle’s own velocity has to be estimated. In this

CTemage!

(b)

Figure 3 Vehicle and sensor. (a) LASMEA lab’s experimental
vehicle: Vélac. (b) General view of the IMPALA radar. Overall
dimensions: 24 x 27 x 30 cm (L X [ X H).
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Figure 4 Example of a panoramic radar image. The radar is
positioned at the center of the image (red cross).

step, the Doppler disturbance created by the vehicle
itself has to be removed from the radar data. Next, in
order to extract non coherent entities, both corrected
images obtained from the up and down modulations are
compared. Differences between the scans indicate poten-
tial moving objects. As the radar is subjected to impor-
tant noises detected as differences between up and
down images, false detections occur and have to be fil-
tered out. Once moving objects are detected, a tracking
process can be launched. Each moving object detection
is compared and associated to the list of existing moving
objects in order to update or create a new track. The
approach that is used here is based on a classical Kal-
man process. The choice of Kalman filter does not affect
the reliability of our solution, even though we are aware
that better alternatives could be used, especially when
dealing with the problem of data association [2,29,30].
But our goal in this article was to focus our study on
the behavior of a DATMO algorithm based on the Dop-
pler information in a ground-based radar environment,
using a well-known filter to make correct conclusions.
In the remaining part of this article we detail the pro-
cess of vehicule’s own velocity estimation (cf. Section 5).
In Section 6, extraction and filtering steps of non-

Table 1 Characteristics of the IMPALA radar

Transmitter power Pt 20 dBm

Antenna gain G 20 dB

Range 3/100 m

Carrier frequency FO 24.125 GHz (K band)
Angular resolution (horizontal) 4°

Distance resolution oR Tm

Velocity resolution oV 0.6 m/s

Size (length-width-height) 29-24-33 cm
Weight 10 kg
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coherent entities considered as mobile objects are
explained. Finally Section 7 presents the tracking metho-
dology and all the experimental results are discussed in
Section 8.

5 Robot velocity estimation

The Doppler effect is the frequency shift between the
emitted and received signals when the distance between
emitter and receiver is modified during the acquisition
time. It is easy to demonstrate that for an emitter (or
receiver) moving at velocity V in the direction of the
receiver (emitter respectively), emitting at frequency F,
the frequency modification F, is given by (1). In case
the movement is not in the direction of the receiver,
radial velocity has to be considered, so:

V x cos(6)
Fi=2x N

with 6 € [0, 2n]

By measuring this F, for different directions 0, radial
velocity can be estimated. It is reminded that Doppler
effect is produced from the vehicle’s own displacement
and also from the moving objects in the surroundings.
In order to extract the robot’s own velocity, we use the
global coherence of the surroundings. The required
assumption is that more than 50% of the environment is
static. For each radar beam, both the up and down
modulations are compared in order to extract the Dop-
pler shift using a correlation of each spectrum. From
this shift, radial velocity is obtained for each ray of the
observation. As radial velocity is a projection of global
velocity in each observed direction, velocity profile looks
like a cosine function from which parameters have to be
estimated.

VDoppler = V(t) S COS(G)

V(¢) is the velocity of the radar bearing robot during
the panoramic acquisition. Let us denote the robot’s
velocity profile V(¢) with a polynomial function of the
time £:

V() =X(1) x "+ X(2) x t" 1 4.4 X(m + 1)

VDoppler 1 COS(91 )

. 1]X) o )

VDopplern cos (Hn)

where © is the Hadamard product function.

Median least square algorithm [31] is applied to esti-
mate the parameters of X of the function V(£) based on
Doppler estimates for each radar beam. This principle is
illustrated in Figure 5.

Each measurement of Doppler velocity Vpoppier i has
an uncertainty Opoppler- As a result, parameters of X of
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Figure 5 Doppler velocity profile estimation during the

acquisition.

the function V(t) are estimated with their own uncer-
tainty. Vehicle’s own velocity profile V(£) and uncer-
tainty oy, can be known during the radar acquisition.

6 Search of non coherent entities

A Doppler image representing the Doppler effect cre-
ated by the vehicle is obtained based on the previous
estimated robot’s velocity profile and (9). This result is
presented in Figure 6.

If no mobile object is present in the scan, no differ-
ence of velocity should be detected. In order to correct
radar images, each power spectrum S, and Sg,, of the
up and down acquisitions is modified based on the
expected Doppler effect Af; in the observed direction 6;
to obtain the corrected data Sc,, and Scgy.

{ Scupgi(fc) = Supgi(f - Afl)
Scdw(;i (fc) = SdW(-)i (f - Afl)
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Figure 6 Doppler image based on velocity profile. Each red
arrow is the Doppler velocity of the detected targets.
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Corrected images and spectrum comparison allow to
extract the area not conforming to the Doppler profile.
The difference ¢ is given by:

& = Scup, (fc) — Scaw,,,, (fc)

In each area, entities are extracted with a local
descriptor created from original up and down radar
images. Examples of local descriptors are given in Figure
7. The correlation score in the depth direction (direction
where the Doppler effect is visible) gives the global
coherence of the extracted object and so its own Dop-
pler velocity.

As radar is subjected to important noises detected as
differences between up and down images, false detec-
tions occur. A correlation score is used in order to filter
some of false detections. Other false detections will be
filtered out by the temporal moving object tracking pro-
cess and the probabilistic approach (see Section 7).

In order to characterize the detections, a probabilistic
study of this moving object detector has been done. As
radar response varies as a function of the distance, the
probabilities of correct and false detection knowing the
presence of mobile objects have been computed as a
function of the distance and are presented in Figure 8.
The experiment was conducted in a complex and
uncontrolled environment. Only known mobile objects
were considered as good detections whereas pedestrians

Up modulation Down modulation
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5 0 3 0
B =
) - ) k2
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=} =}
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0 20 40 60 0 20 40 60
Frequency indices Frequency indices
Up modulation Down modulation
-10 -10
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> > ——
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s ]
< <
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Frequency indices Frequency indices
Figure 7 Local polar descriptor of entities detected as moving
object in up (left) and down (right) radar images.

Page 6 of 13

or uncontrolled parasite vehicles were treated as noise.
As a consequence the probabilistic study is a pessimistic
evaluation.

In order to explain these true positive (TP) and false
negative (FN) rates, radar and Doppler characteristics
need to be considered. Doppler represents the radial
velocity of objects. When an object is moving perpendi-
cularly to the sensor, Doppler is null and so there is no
detection. This explains the 20% FN rates at low range.
Moreover, because of radar signal properties, detections
at a high range are less powerful and much more noised
than detections at a short distance. So the longer the
range of the detection is, the lower the TP rates of mov-
ing object detection are.

At the end of this detection step, each potential mov-
ing object detected (noted O) is initialized as follows: O
= [Xo Vo po] where X, = (x,, y,) is the position of the
object in the radar frame, V, = (Vo,, Vo,) is the object’s
velocities and p, is the probability of being a mobile
object. This probability is obtained based on the detec-
tor characterization and varies according to the distance
from the radar.

7 Tracking of moving objects

Each moving object detection is compared and asso-
ciated to the list of existing moving objects in order to
update or create a new track. This Detection association
is based on the classical Mahalanobis distance taking
into account both position and Doppler measurement
along with their uncertainties. For each potential mobile
object, tracking is done with a classical Kalman
approach based on a constant velocity model. Other
tracking methods using Interacting Multiple Model
(IMM) and Multiple Hypothesis Tracking (MHT) tech-
niques could be used to refine detection and data asso-
ciation [3]. Additional difficulty with radar sensor is the
absence of shape information.

At each detection and association step, position and
velocity of moving objects are estimated by the Kalman
process and a concurrent process updates the probabil-
ity of each track according to the detection or not of
the moving object (see (10) and (11), respectively). Pos-
terior probability p(O|d) and p(O|d) are processed as
follows:

p(Old) = p(O)p(d|O) (10)
p(d|0)p(0) +p(d|0))(1 — p(O))

_ p(O)p(dl0)
p(d|0)p(0) + (1 = p(d|O)(1 —p(0))

with p(O) the prior probability of the track, p(d|O)
and p(d|O) the TP and FN rates of the detector

p(Old) = (11)
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Figure 8 Rate of TP and FN detections as a function of the
range.

respectively. These rates are linked to the distance of the
detected object (cf. Figure 8). Then posterior probability
p(O|d) or (p(O|d)) becomes the new object existence
probability p(O).

Track management is done based on different criteria:
in case of out of range moving objects (> 100 m) or low
probability of existence (p, < 0.05).

8 Experimental results

For these experiments, two experimental vehicles have
been used. One was equipped with proprioceptive sen-
sors, D-GPS for ground truth estimation and IMPALA
FMCW panoramic radar imager. The other one called
Vélac acts as the target (cf. Figure 3), and was equipped
with proprioceptive sensors and D-GPS as well to have
ground truth for moving object detection and tracking.
Experiments were conducted in Clermont-Ferrand,
France, on Blaise Pascal University campus, at variable
speeds (with maximum 30 km/h).

8.1 Robot’s own velocity estimation

As a first step, the robot’s own velocity has been esti-
mated with different data sets acquired from the
IMPALA radar sensor. Ground truth for velocity was
taken from odometer and D-GPS. Speed estimation has
been done on different kinds of displacements, i.e., recti-
linear displacement and also classical road traffic displa-
cement with different curves. Results of velocity profile
extraction based on the method described in Section 5
are presented in Figure 9: on top, the two radar images
obtained with the up and down modulation. For each
acquired radar beam, velocity is estimated (in blue dots)
based on correlation techniques. The median least
square method using covariance of the extracted
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Figure 9 Robot’s velocity profile estimation step: top left, up
radar image, top right, down radar image. Bottom, extracted
Doppler velocity and robot's velocity profiles in green and red lines,
respectively.

Doppler is used to select inliers Doppler detection (in
red dots) and to process the robot’s velocity profile dur-
ing the acquisition (in red line). The Doppler velocity
profile is estimated in green line.

The robot’s velocity obtained during a 10 min, 2 km,
travel is presented in Figure 10. Maximum speed during
this travel was approximately 30 km/h. Trajectory is
presented on aerial image in Figure 11. Ground truth
for velocity is taken from filtered odometer data and
DGPS. The acquisition system encountered a problem
at the end of the experiment, so no reference is available
for the last few meters.

Doppler velocity estimation with correlation presents a
standard deviation of 0.3 m/s which corresponds to the
correlation resolution. The estimated speed with its
respective uncertainty is presented in Figure 10. A sta-
tistical evaluation of our Doppler odometry has been
done. The linear velocity estimate error €, has a stan-
dard deviation o0, =0.76m/s and a mean
ev = 0.27m/s. An error during the classical odometer
recording occurred at the end of the trajectory, which
explains the 0 values on the red data while Doppler is
still estimating the velocity.

8.2 Detection and tracking of moving objects

Different experiments have been conducted with a GPS
referenced vehicle in complex and noisy environment
resulting in several false detections. During this experi-
ment, the vehicle equipped with the radar is static. Each
potential mobile object is tracked and updated based on
Doppler observations. The evolution of the existence
probability of each detection and their respective
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Figure 10 Robot’s velocity profile estimation during the entire acquisition based on Doppler effect analysis. In red, ground truth

00
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given by the method with the associated 1 o uncertainty in green.

trajectories are presented in Figures 12 and 13. Among the
false detections, we can observe that their probabilities
decrease quickly and then their tracks are deleted. Real
mobile objects are tracked for a longer time and their
probability increases at each new detection. We can see
two moving objects in the data: one at time ¢ = 25 to 50
represented in red, the other one at time ¢ = 58 to 78 in
blue. Respective trajectories are represented in Figure 13.
Each track is plotted with the same color used in Figure
12. The trajectories of the two real moving objects are the
two vertical straight lines. The accuracy of these tracks,

both on position and velocity, has been processed based
on D-GPS and proprioceptive sensor ground truth. The
longest track (in red in Figure 12) is analyzed in Figure 14.
The tracking error of the moving object has a mean of 4
m in position and a mean error of 0.3 m/s in velocity.
Trajectories presented in Figure 13 represent all the
launched tracks. Two of them are due to real moving
objects, while the remaining tracks are due to noises.
Nevertheless, even if noise is important, their probability
of existence is always decreasing and after five acquisi-
tions (indeed 5 s) the majority of them are deleted as

\

Figure 11 Robot’s ground truth trajectory (using D-Gps) during the velocity estimation experiment (2 km).
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Figure 12 Evolution of moving object tracks and of their
existence probability: each track has got a different color.

considered disturbances, while the remaining are con-
firmed as real mobile objects.

Tracking of multiple objects has been done in differ-
ent formations (cf. Figure 15): with vehicles in a convoy
and also with vehicles crossing one another near the
radar sensor. A total of four vehicles moved in the sur-
roundings of the IMPALA sensor at various speeds. In
the presented experiment, a convoy of three vehicles
started from time 20 to 30 s (cf. Figure 16a,c,e) and
crossed a vehicle coming from the opposite direction at
time 55 s (cf. Figure 17a). Then the three vehicles
returned from time 110 to 140 s (Figure 17c,e,g). Trajec-
tories and probabilities of moving objects from the first
part of the experiment are given in Figure 16. Results
concerning the vehicles coming from the opposite direc-
tion are presented in Figure 17. For each mobile object,
a discontinuity in the track is observed due to (1) its
proximity to the radar sensor and (2) to the fact that
the Doppler effect of the mobile object becomes too

80

60

40

201 *

Distance in meter
o
T

L L L L ,
-100 -80 -60 -40 -20 0 20 40 60 80 100
Nictanra in matar

-100 L L L

Figure 13 Trajectory of moving objects: each track has got a
different color, the green hashed line is the reference
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trajectory. In red dot the radar position.
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Figure 16 Trajectory of each moving object. (a, ¢, €) Temporal evolution of the probabilities of the tracks. (b, d, f) Shows the global
trajectory of the track in the radar image of the environment.

small to be detected (as a function of radial velocity). All trajectories and all probabilities including false
This explains as to why two different tracks are initia- tracks and detection are super-imposed in Figures 18
lized for the same mobile object. and 19.
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Figure 17 Trajectory of each moving object. (a, ¢, e, g) Temporal evolution of the probabilities of the tracks. (b, d, f, h) Shows the global
trajectory of the track in the radar image of the environment.

9 Conclusion

A method based on Doppler measurements for com-
puting position and instantaneous velocity of moving
objects in the surroundings of a robot using an original

panoramic radar sensor was presented. Our IMPALA
radar uses LFMCW in order to obtain both the radar-
target distance and radial velocity of the target. With
such a kind of ground-based radar sensor, the
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Figure 18 Trajectories of all moving objects detected: each
track has got a different color, the green hashed line is the
reference trajectory. In red dot the radar position.

-

extraction and processing of landmarks remain a chal-
lenge because of detection ambiguity, false detection,
Doppler Speckle effect and the absence of detection
descriptors. Moreover, the data is affected by the Dop-
pler effect created by the vehicle’s own velocity. Cor-
rection based on a Doppler velocimetry has been
applied in order to globally correct radar data. Once
data is free from radar movement disturbances, non-
coherent radar echoes are extracted and supposed as
new moving objects. The probabilistic evaluation of
our detector has been done and used to confirm or
invalidate launched tracks at each new detection.
Tracking of each entity is based on a classical extended
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Figure 19 Evolution of all moving object tracks and of their
existence probabilities: each track has got a different color.
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Kalman filter. This approach was evaluated on real
radar data, first, showing exteroceptive Doppler veloci-
metry feasibility and reliability at high speed (~ 30 km/
h), then detecting a D-GPS referenced moving object
in a very noisy environment. A comparison between
radar DATMO results and ground truth has been
done. The main novelties of the proposed approach
are the use of a panoramic LFMCW radar sensor and
Doppler information for a ground mobile robotic
application for DATMO purpose. Future work will
include improving our radar SLAM (SLAM) process
[26] by adding consideration of distortion due to non
instantaneous data acquisition, Doppler information,
and, as a consequence, a DATMO algorithm to tackle
radar SLAMMOT problems in an extended outdoor
environment. Moreover implementation of other filter
techniques such as GM-CPHD (Gaussian mixture car-
dinalized probability hypothesis density) [32] will be
compared with the actual Kalman method.
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