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1 Introduction

LHC’s discovery of the Standard Model’s Higgs closes a chapter in its original formulation,

while both dark matter and massive neutrinos [1, 2] indicate an incomplete description of

Nature and open two new chapters, “Physics Beyond the Standard Model”, and “Physics

Well Beyond the Standard Model”.

The search for BSM physics proceeds by direct searches for new massive particles; for

WBSM physics it proceeds through the detection of rare processes, including proton decay,

and precision measurements of neutrino masses and mixings.

An important legacy of the Standard Model is the quark-lepton unification [3–6] at

large energies (“GUT scale”), a pattern that is consistent both with the gauge quantum

numbers of the three matter families, and the near convergence of its three couplings at

large energy. This implies also several relations between quark and (at least) charged lepton

masses, with mixed success. The origin and values of fermion masses remains a mystery

well worth investigating.1

1“You want more than a Nobel Prize? You want to become a king? Figure that out!” (R.P. Feynman,

1978).
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Mixing the left-handed neutrinos with Majorana neutrinos with masses at GUT scales

provides a natural explanation for small neutrino masses [7–13], but the principle(s) which

determines the right-handed Majorana neutrino masses and mixing patterns is unknown

physics of the WBSM variety.

Moreover, physics at GUT scale runs into two conceptual difficulties: one, the values of

the Higgs and top quark masses suggest a breakdown of the Standard Model’s potential at

energies orders of magnitudes lower than the GUT scale; second, quark-lepton unification

does not naively apply to all masses and mixings, since the striking hierarchy of the quarks

is not seen in neutrinos.

The first conceptual hurdle can be finessed in the Supersymmetric Standard Model

(SSM) where the potential is no longer unstable, and has the added benefit of the remark-

able convergence of the three gauge coupling constants [14, 15]: the implementation of

grand-unified theories requires supersymmetry.

The second hurdle is not so clearly overcome. We investigate in this paper a model in

which the SSM is supplemented with the family symmetry Z7 ⋊ Z3, the smallest discrete

non-Abelian subgroup of SU(3). Its effect is to restrict flavor patterns and, together with

GUT-like assumptions, to relate the light neutrino mixing and mass patterns with the

seesaw GUT-scale Majorana matrix.

Motivated by GUT ideas, we take the neutral Dirac mass matrix to show the same

hierarchy as the up quarks. Since neutrinos do not show this extreme hierarchy, the

Majorana matrix must itself be hierarchical so as to cancel that of the Dirac matrix.

We find one remarkable Majorana matrix compatible with µ-τ symmetry. It is gen-

erated by either a particular linear combination of two dimension-five operators with two

familon fields, or a single dimension-six operator with three familon fields. The familon

vacuum values can explain not only the hierarchy of this Majorana matrix, but also re-

late it to that of the quarks, at the expense of introducing unknown familon physics. In

some sense this is a “bottom-up” approach, where we hope that a particularly interesting

operator can shed light on the physics of the familon sector.

This special matrix predicts the normal hierarchy, with Tri-bimaximal mixing for the

seesaw mixing angles, and specific values for the neutrino masses. However, comparison

with neutrino data requires a knowledge of the matrix which diagonalizes the charged lepton

Yukawa matrix. By GUT ideas it is controlled by Cabibbo effects, forming a “Cabibbo

Haze” through which the neutrino parameters must be inferred. In particular, the value of

θ13 must be generated by the charged lepton sector.

2 The family group Z7 ⋊ Z3

The choice of family symmetry is dictated by the extreme quark and charged lepton

hierarchies,






0 0 0

0 0 0

0 0 1






. (2.1)
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This pattern with two zeros on the diagonal suggests an SU(3) rather than SO(3) or SU(2)

family symmetry. This follows by considering the bilinear products of their respective

triplet representations.

For SO(3), the symmetric product of two triplets breaks into a symmetric traceless

matrix (5s) and the trace (1). The zeros of eq. (2.1) must then be produced by an exact

conspiracy between Yukawa couplings. Such a trace decomposition does not occur in

SU(3) [9].

Finite subgroups of SU(2) which have both doublet (for quarks and charged leptons),

and triplet representations (for neutrinos), do not treat leptons and quarks on the same

footing, and are anathema to the spirit of quark-lepton unification.

We therefore focus on Z7 ⋊ Z3, the smallest finite, non-Abelian subgroup of SU(3).

As can be seen in appendix A, this twenty-one element group has, besides a real singlet

representation, a complex triplet, a complex one-dimensional representation, and their

conjugates. Its distinguishing feature is that Yukawa couplings between two triplets will

either be completely diagonal or completely off-diagonal.

We consider as our background a unified framework in which the quarks and leptons

are related, such as SU(5) or SO(10). To avoid hierarchy problems and naturally single

out particular couplings, we will also assume our model to be supersymmetric. All SU(5)

matter superfields, 5(ψ), 10(χ), and 1(N), transform as Z7 ⋊ Z3 triplets, an assignment

that easily generalizes to the 16 of SO(10).

According to Z7 ⋊ Z3, the quadratic combinations of two matter fields transform

either as family triplets or anti-triplets, requiring Higgs anti-triplets or triplets, respectively.

This differs from an earlier model [19] in which the Higgs fields Hu,d were Z7 ⋊ Z3 singlets.

If the Higgs fields were family triplets, the matter field bilinears would combine into

antitriplets, (χχ)
3
, (ψχ)

3
, and (ψN)

3
, with only off-diagonal elements, and thus with un-

wanted tree-level mass degeneracies.

The assignments which reproduce the hierarchy eq. (2.1) require both Hu,d to be

antitriplets (3̄), and the matter field bilinears to be triplets. The tree-level superpotential

W = y10(χχ)3Hu + y5̄(ψχ)3Hd + y1(ψN)3Hu + . . . , (2.2)

reproduces the extreme quark hierarchy with the simple (approximate) Higgs vacuum,

〈Hu,d〉0 =







vu,d
0

0






. (2.3)

As pointed out in [19], such a vacuum alignment, along a single direction in family space,

can be naturally accommodated in Z7 ⋊ Z3.

Each Standard Model Higgs field now has two family partners. We do not take up

the question of their role in this publication, and assume them to be heavier copies of

the normal Higgs.2 Instead, we analyze the question of whether Z7 ⋊ Z3 can provide a

2In an earlier publication [20], we investigated their role as messengers of supersymmetry breaking in a

toy model with only one Higgs family partner, assuming an S3 family symmetry group.
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natural framework for reconciling the extreme hierarchy of the charge (2/3) sector with

the mild hierarchy of the neutrinos, and also shed light on the seesaw Majorana neutrino

mass matrix.

3 Majorana physics

Since the right-handed neutrinos (N) have no electroweak quantum numbers, a question

that comes to mind is, “What sets the physics of the Majorana neutrinos?” A natural

answer is family symmetry. From this point of view, the Majorana mass matrix M is a

window to family symmetry, and it is a task of theory to “extract” its structure from the

measured masses and mixing patterns of the three light neutrinos.

The seesaw mechanism, with a GUT-scale ∆Iw = 0 Majorana matrix M, and the

neutral ∆Iw = 1/2 Dirac Yukawa matrix Y (0), generates small neutrino masses, as well as

mixing of the neutrino flavors through the relation,

Mν = Y (0)M−1Y (0)T . (3.1)

Masses and mixings are derived through the diagonalization of Mν ,

Mν = U seesaw Dν UT
seesaw, (3.2)

where Dν = diag(m1,m2,m3) is the diagonal neutrino mass matrix, and U seesaw is the

seesaw neutrino mixing matrix. Although in general two Majorana phases can appear in

Dν , we choose to put them aside in this paper and assume all m’s to be real. Absorbing

unphysical phases,

U seesaw =







1 0 0

0 c23 −s23
0 s23 c23













c13 0 −e−iδs13
0 1 0

eiδs13 0 c13













c12 −s12 0

s12 c12 0

0 0 1






, (3.3)

contains one Dirac CP-violating phase δ and three seesaw mixing angles, denoted by η12, η23
and η13 (sij = sin ηij , cij = cos ηij), to distinguish them from their measured counterparts

θij in the observable MNSP matrix,

UMNSP = U†
−1 Useesaw, (3.4)

with U−1 determined by the charged lepton Yukawa matrix Y (−1). In GUT theories,

where Yukawa Dirac matrices of quarks and charged leptons are related, we expect the

CKM parameters to appear in neutrino mixings as well, forming a “Cabibbo Haze”[16–18]

between the data and the Majorana matrix.

With the recent Daya Bay [21], RENO [22] and Double Chooz [23] measurements of

the reactor angle, all three mixing angles have now been measured, and a global fit [24],

with a one σ error, gives

θ12 = 33.6◦+1.2◦

−1.0◦ , θ23 = 38.4◦+1.4◦

−1.2◦ , θ13 = 8.9◦+0.5◦

−0.4◦ . (3.5)
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Although the light neutrino masses remain unknown, their mass differences are determined

by neutrino oscillation experiments,

∆m2
21 = 7.54+0.26

−0.22 × 10−5 eV 2, |∆m2
31| = 2.43+0.06

−0.10 × 10−3 eV 2. (3.6)

The sign of ∆m2
31, yet to be measured, distinguishes the normal (+) and inverted (−)

hierarchies. This, together with the cosmological bound from Planck [25],
∑

mi ≤ 0.23 eV,

show that the neutrinos do not display the same hierarchy of the quarks.

This discrepancy in hierarchies is quite puzzling from a grand unified point of view,

where quark and lepton matrices are related. A resolution within the framework of the

seesaw mechanism is that the Majorana matrix contains a squared correlated hierarchy.

Since in SO(10), the neutral Dirac Yukawa matrix is naturally related to that of the

up-quarks, we assume they both display the same hierarchy,

Y (2/3) ∼ Y (0) ∼







λ8 0 0

0 λ4 0

0 0 1






, (3.7)

compatible with the up quark masses, parametrized in terms of the Cabibbo angle at the

GUT scale [26], λ = sin θc = 0.227. To undo the hierarchy in Y (0), we must then have,

M ∼







a11λ
16 a12λ

12 a13λ
8

a12λ
12 a22λ

8 a23λ
4

a13λ
8 a23λ

4 a33






, (3.8)

where all aij are of order one.

The Majorana mass matrixM plays dual roles. On the one hand, it is very hierarchical,

with the same factor λ4 that appears in the up-quark Yukawa matrix. This allows it to undo

the hierarchy of the Dirac Yukawa matrix, resulting in a mild spectrum in the neutrino

sector. On the other hand, its pre-factors are directly related with the neutrino mass

matrix, and encode the measured neutrino masses and mixings.

A dictionary between the pre-factors and the parameters in the seesaw mixing matrix

can then be established in a series of steps.

• Step I

As remarked by many authors [27–29], a simple constraint among the pre-factors, (2−3

or µ− τ symmetry), determines two of the three seesaw mixing angles,

a12 = a13, a22 = a33, −→ η23 = 45◦, η13 = 0◦, (3.9)

close to their experimental values, with δ, η12 and the three masses undetermined. The

pre-factors can then be expressed in terms of neutrino masses and η12,

a11 =
c212
m1

+
s212
m2

, a12 =
1√
2

(

1

m1

− 1

m2

)

c12s12,

a22 =
1

2m3

+
c212
2m2

+
s212
2m1

, a23 = − 1

2m3
+

c212
2m2

+
s212
2m1

. (3.10)
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or alternatively,

1

m3

= a22 − a23,
1

2
√
2
tan 2η12 =

a12
a11 − a22 − a23

,

1

m1

+
1

m2

= a11 + a22 + a23,

(

1

m1

− 1

m2

)2

= (a11 − a22 − a23)
2 + 8a212.

Neutrino mass hierarchies can also be discussed in terms of pre-factors. They are distin-

guished by the inequalities,

|a22 − a23| < |a11 + a22 + a23|, normal,

|a22 − a23| > |a11 + a22 + a23|, inverted.

There is no one-to-one correspondence between the relative signs of a22 and a23 and the

mass hierarchies. Generically, normal (inverted) hierarchy yield the same (opposite) signs

of a22 and a23, but for the special case,

c212
2m2

+
s212
2m1

= 0, → tan2 η12 = −m1

m2

the normal hierarchy yields a22 = −a23.

• Step II

One more relation among the pre-factors yields three popular seesaw mixing matrices

Useesaw [30–35],

Tri− bimaximal(TBM) : a23 = a11 − a12 − a22, tan2 η12 =
1

2
,

Golden Ratio(GR) : a23 = a11 −
√
2a12 − a22, tan2 η12 =

2

1 +
√
5
,

Bi−maximal(BM) : a23 = a11 − a22, tan2 η12 = 1.

All three fix the remaining mixing angle, but leave the neutrino masses undetermined.

These seesaw mixing matrices have η13 = 0◦, so that the reactor angle in the MNSP

matrix, θ13, along with the necessary corrections needed to bring θ12 and θ23 in agreement

with their best fit values in eq. (3.5), must be generated by the lepton sector. We provide

an example of how this can be accomplished in appendix C. Also, leptonic CP-violation is

determined from that of the quark sector.

As it stands, the generic mass spectrum of the Majorana matrix displays a severe

three-fold hierarchy

∣

∣

∣

M1

M3

∣

∣

∣
∼ O(λ16),

∣

∣

∣

M2

M3

∣

∣

∣
∼ O(λ8),

which is in tension with bounds from leptogenesis (see [36] for a review). In models of

leptogenesis where the right-handed neutrino spectrum is very hierarchical, the lightest

mass must be larger than 108GeV [37]. This would correspond to a spectrum for M of

∼ (1019, 1014, 108)GeV, pushing the largest mass past the Planck scale.
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Figure 1. A plot of the ratios of eigenvalues of M as a function of the neutrino mass ratio m2/m1.

There exists a special case for which this hierarchy is mitigated, as can be seen by

studying the eigenvalue ratios of M; from eq. (3.10), this requires a knowledge of all three

neutrino masses. We plot in figure 1 the ratios of the eigenvalues as a function of m2/m1,

assuming TBM mixing, normal hierarchy, and from the data, ∆m2
31 = 32∆m2

21.

We observe, when m2/m1 = −2, a kink at which two eigenvalues are nearly degenerate,

and the hierarchy between the lightest and heaviest mass is less severe. No such kink exists

for the inverted hierarchy.

We now study this singular case, and how it can arise naturally in Z7 ⋊ Z3.

4 A special Majorana matrix

When m2/m1 = −2 and tan2 η12 = 1/2, a22 and a23 are related by

a22 = −a23 =
1

2m3
. (4.1)

This simple relation is the key to understanding the kink: it makes the sub-determinant of

M’s (23) block vanish, and yields near degeneracy of its two lightest eigenvalues.

More generally, the relation a22 = −a23 applied to a seesaw mixing matrix with η23 =

45◦ and η13 = 0◦ yields a Gatto-Sartori-Tonin type relation [39],

m1

m2
= − tan2 η12, (4.2)

where η12 = θ12 modulo Cabibbo effects.3 In particular, for GR mixing, a similar kink

appears at m2/m1 = −(1 +
√
5)/2 ≈ −1.6.

3Using the best fit value for θ12 = 33.6◦, the sizes of Cabibbo effects for TBM and GR mixings are

around λ2/2 and −2λ2/3 respectively.
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For TBM mixing, eq. (4.2) predicts

m1 ∼ 0.005 eV, m2 ∼ 0.01 eV, m3 ∼ 0.05 eV, (4.3)

while for GR mixing, we have

m1 ∼ 0.0068 eV, m2 ∼ 0.011 eV, m3 ∼ 0.05 eV. (4.4)

Note that BM mixing is not compatible with eq. (4.2), as it gives an exact degeneracy of

m1 and m2, and therefore no oscillation.

From now on we focus on TBM mixing, where the Majorana matrix assumes the

elegant form,

M =







rλ16 rλ12 rλ8

rλ12 λ8 −λ4

rλ8 −λ4 1






, r =

m3

m1
. (4.5)

The data requires r ≈ 10, which is not so large as to affect the hierarchy. Up to an overall

normalization, the spectrum of M is given by

|M3| = 1 + λ8 +O(λ16),

|M1|+ |M2| = 4rλ12 +O(λ16),

|M2| − |M1|
|M1|+ |M2|

=
1

4
(r + 1)λ4 +O(λ12), (4.6)

which shows a single large rλ12 hierarchy with two lighter and almost degenerate Majorana

neutrinos. When the largest eigenvalue of M corresponds to the GUT scale of ∼ 1016GeV,

this gives M1 ≈ M2 ≈ 109GeV. Such a degeneracy may be physically appealing from the

point of view of leptogenesis, placing such a model in the case of “resonant leptogenesis”[38].

This special matrix appears to be extremely fine-tuned, containing a vanishing sub-

determinant. However, this determinant can naturally arise in higher-dimensional invari-

ants.4 We therefore turn to the question of building this matrix from higher dimensional

operators. Indeed, we find that our matrix can arise naturally from the dimension-five and

dimension-six invariants of Z7 ⋊ Z3.

5 Building the special matrix in Z7 ⋊ Z3

We construct M by coupling the right-handed neutrinos, N to additional “familon” fields

ϕ and ϕ̄ which are gauge singlets, family triplets and anti-triplets. The hierarchy in the

special matrix is assumed to be generated by familon vacuum values, so that the (Z7 ⋊ Z3)-

invariant operators which generate M are of the same dimension.5

4We thank T. Kephart for pointing us in the right direction.
5This is in contrast to the Frogatt-Nielsen scheme [40], in which the hierarchy is generated by assembling

operators with different dimensions.
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The special matrix involves precise relations among its elements. They can be gener-

ated by linear combinations of (Z7 ⋊ Z3)-invariant operators, or better by a single opera-

tor. In the first case, additional symmetries are required to determine the linear combina-

tion; we give an example of such a construction with two dimension-five operators, and an

underlying theory which generates it. The single operator case arises at dimension-six.

Both cases are achieved with higher-dimension couplings, thought to arise from “in-

tegrating out” heavier field(s). Besides being invariant under the family symmetry, they

have a nesting structure, corresponding to a particular linear combination of invariants.

Nesting then suggests an underlying renormalizable structure which corresponds to

a particular way of building invariants by combining particular covariants. By “nesting”

we mean a particular choice of covariants. For dimension-five and -six interactions, we

consider all possible nestings,

((A⊗B)⊗ (C ⊗D)), (((A⊗B)⊗ (C ⊗D))⊗ E),

where the inner parentheses single out a given covariant, and A,B,C,D,E, are any permu-

tations of two N ’s and familons. Considering all posssible nestings gives an over-complete

list of the possible matrices for a given operator dimension. They are tabulated in ap-

pendix A up to dimension-five and dimension-six operators. The family symmetry deter-

mines all possible linearly independent invariants, and a nesting singles out a specific linear

combination. As any bird knows, nesting matters!

Nestings that produce the special matrix are found by careful inspection of their struc-

tures. The two examples mentioned above are indeed obtained in this way.

5.1 Two dimension-five (Z7 ⋊ Z3)-invariant operators

At dimension five, two Z7 ⋊ Z3-invariant operators are needed to produce the special

matrix. The following linear combination (see appendix A),

(Nϕ̄)1′(Nϕ̄′)1̄′ + (Nϕ̄)1̄′(Nϕ̄′)1′ , (5.1)

generates the Majorana matrix,







2ϕ̄1ϕ̄
′
1 −(ϕ̄1ϕ̄

′
2 + ϕ̄2ϕ̄

′
1) −(ϕ̄1ϕ̄

′
3 + ϕ̄3ϕ̄

′
1)

2ϕ̄2ϕ̄
′
2 −(ϕ̄2ϕ̄

′
3 + ϕ̄3ϕ̄

′
2)

2ϕ̄3ϕ̄
′
3






. (5.2)

Counting the number of independent parameters, we derive a constraint from the above

matrix among the prefactors of M which leaves r undetermined,

(a12a33 + a13a23)
2 = (a213 − a11a33)(a

2
23 − a22a33). (5.3)

If one imposes η23 = 45◦ and η13 = 0◦, that is a12 = a13 and a22 = a33, it reduces to

a212(a22 + a23)
2 = (a212 − a11a33)(a

2
23 − a233). (5.4)

– 9 –
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N Φ S S̄

Z7 ⋊ Z3 3 3̄ 1′ 1̄′

S3 1 2 2 2

Z2 − − + +

Table 1. Field quantum numbers under (Z7 ⋊ Z3)× S3 ×Z2.

with solutions along two branches:

{

a22 = −a23,

a22 6= −a23.

The first condition a22 = −a23 is precisely the extra relation that gives the special matrix.

The familon vacuum values are,

ϕ̄ = 〈ϕ̄1〉







ᾱλ8

λ4

1






, ϕ̄′ = 〈ϕ̄′

1〉







ᾱ′λ8

λ4

1






, (5.5)

along with the additional relation,

ᾱᾱ′ = −1

2
(ᾱ+ ᾱ′) = r. (5.6)

This particular linear combination of two dimension-five (Z7 ⋊ Z3)-invariant operators

can arise uniquely from an underlying theory. It involves heavier degrees of freedom S and

S̄, and additional symmetries S3 andZ2. The particle content and their charge assignments

are given in table 1, where the two S3 components of Φ are ϕ̄ and ϕ̄′.

The superpotential of this underlying theory is then given by

Wu = aNΦS + bNΦS̄ +MSSS̄ + λSS
3 + λS̄S̄

3 (5.7)

= aN(ϕ̄S2 + ϕ̄′S1) + bN(ϕ̄S̄2 + ϕ̄′S̄1) +MS(S1S̄2 + S2S̄1) + . . . ,

where a and b are dimensionless couplings, MS is a mass term for S and S̄, and the allowed

cubic terms for S and S̄ do not affect the Majorana sector. The S3 structures have been

written out explicitly on the second line. Assuming MS is very large and integrating out

the heavy fields S and S̄ yields the unique linear combination,

ab

MS

[

(Nϕ̄)1′(Nϕ̄′)1̄′ + (Nϕ̄)1̄′(Nϕ̄′)1′

]

. (5.8)

No other lower dimensional operators are generated.

In this underlying theory, N carries an additional parity (odd under Z2). In order not

to affect GUT-like relations, we simply assume all matter fields odd, and Higgs fields even

under this parity.
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5.2 Single dimension-six (Z7 ⋊ Z3)-invariant operator

A single operator that produce the special matrix first arises at dimension six. The

dimension-six (Z7 ⋊ Z3)-invariant couplings are of four types,

NN



























ϕϕ′ ϕ′′

ϕϕ′ ϕ

ϕϕϕ′

ϕϕ′ ϕ′′

.

One finds three linearly independent invariants of the first type, five of the second and

third types , and three of the fourth type. All nestings generate a long list (seven pages!)

of possible linear combinations of these invariants.

We find several nestings capable of reproducing the special matrix. With details to be

found in appendix B, they are grouped by structure into three classes:

• In the first class of invariants, each matrix element is a monomial in the familon fields,

and all satisfy a constraint amongst the prefactors aij . All are over -constrained, and

lead to r = ±(1/8), incompatible with the data.

• In the second class, the matrix elements are combinations of monomials. We can ob-

tain the special Majorana matrix in two ways. In the first, one vacuum value of the

familon components vanishes, and in the other none of the familon components van-

ish in the vacuum. Both cases are under -constrained and do not impose constraints

on the pre-factors.

• The third class contains only one nesting! It is neither over nor under constrained,

and singles out the special matrix. It arises from the unique nesting,

((Nϕ)3̄+
(Nϕ′)3̄+

)3−
ϕ̄, (5.9)

which generates the Majorana matrix,







2ϕ̄1B23 ϕ̄1B13 − ϕ̄2B23 −ϕ̄1B12 − ϕ̄3B23

−2ϕ̄2B13 −ϕ̄2B12 + ϕ̄3B13

2ϕ̄3B12






, (5.10)

where

Bij = ϕiϕ
′
j − ϕ′

iϕj .

Interestingly, one notices that the above matrix has the same form as that of eq. (5.2)

by letting

ϕ̄′
1 = B23, ϕ̄′

2 = B31, ϕ̄′
3 = B12, (5.11)

so that the constraint derived previously also holds here.
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The familon vacuum values are (ϕ 6= ϕ′),

ϕ̄ ∼







ᾱλ8

λ4

1






, ϕ ∼







1

αλ4

βλ8






, ϕ′ ∼







1

α′λ4

β′λ8






, (5.12)

along with the additional relations,

ᾱ2

1 + 2ᾱ
= ᾱ(α+ β) = ᾱ(α′ + β′) = −r. (5.13)

The form of this particular nesting, ((Nϕ)3̄+
(Nϕ′)3̄+

)3−
ϕ̄, suggests an underlying the-

ory with two family triplet familon fields F and F ′. The underlying superpotential follows

W ′
u = a(NΦ)3̄+

F + g(F̄ F̄ )3−
ϕ̄+MFFF̄ , (5.14)

where we have assigned an extra S3 symmetry, with Φ = (ϕ,ϕ′) and F as S3 doublets.

The coupling of the S3-invariant combination F̄ F̄ requires ϕ̄ to transform as a 1′ under

S3. With the same parity as in the dimension-five case, it yields the group structure

found in the dimension-five case, albeit with different symmetry assignments for the

underlying particles.

In this case, supersymmetry is always required to explain the absence of the (NΦ)3̄−
F

coupling. In addition, one finds that several dimension-four couplings are still allowed by

(Z7 ⋊ Z3)×S3×Z2. To explain their absence, one may have to appeal to supersymmetry,

or require additional symmetries. This can be done by assigning to the fields an addition

Z3 × Z
′

2 symmetry. Clearly, this singling out of the coupling we require to produce the

magic matrix is much more elaborate than in the dimension-five case.

Although these two cases are quite distinct, hierarchies arise from the familon vacuum

values, yet to be determined from the hitherto unknown potential. These same familons

may couple to the charge (2/3) quarks. We next show that the pattern of hierarchies of

eq. (5.12) obtained in producing the special matrix is compatible with the charge (2/3)

sector, and how this sector can provide partial information on the absolute hierarchy of

the familons.

6 Charge (2/3) sector

The Majorana sector contains some information on familon structures; we next want to

see if these same structures are compatible with model building in the charge (2/3) sector.

• When the Majorana matrix is generated from dimension-five invariants, two anti-

triplet familons ϕ̄ and ϕ̄′ are introduced. Beginning from the superpotential of

eq. (2.2), the dimension-four Yukawa coupling (χχ)Hu will generate the top quark

mass when Hu acquires the vacuum value of eq. (2.3), leaving the up and charm

quarks massless,

W = y10χ3χ3vu + . . .

As in the Majorana sector, we assume the remaining hierarchy is filled by higher-

dimensional (Z7 ⋊ Z3)-invariant interactions involving familon fields.
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– With only ϕ̄ and ϕ̄′, we find no dimension-five or dimension-six invariants ca-

pable of generating the remaining hierarchy. In this case we are led to assume

that it is carried by the Higgs particles with the vacuum value,

〈Hu〉 = vu







λ8

λ4

1






, (6.1)

so that the tree-level interaction (χχ)Hu will generate the full hierarchy of the

charge (2/3) sector.

– Alternatively, one can try adding additional familons while keeping the vaccum

value of Hu to be the same as that in eq. (2.3). The simplest possibility is to

enlarge the familon sector to include another triplet familon field ϕ. Besides

the tree-level interaction (χχ)Hu, which generates the top quark mass, one then

needs one of the following dimension-six invariants

[

(χχ)3 (Huϕ̄)3+

]

3̄±
ϕ −→ vu

2
√
3







±ϕ1ϕ̄2

ϕ1ϕ̄3

ϕ2ϕ̄2 ± ϕ3ϕ̄3






,

[

(χχ)3 (Huϕ̄)3−

]

3̄±

ϕ −→ vu
2
√
3







∓ϕ1ϕ̄2

ϕ1ϕ̄3

−ϕ2ϕ̄2 ± ϕ3ϕ̄3






,

to fulfill the remaining hierarchy.6

Taking the first symmetric combination as an example, the superpotential in

this case is,

W = y10χχHu +
y′10
M2

X

[

(χχ)3 (Huϕ̄)3+

]

3̄+
ϕ+ . . . (6.2)

→ y10χ3χ3vu +
y′10〈ϕ1〉〈ϕ̄3〉
2
√
3M2

X

(

λ4χ1χ1 + χ2χ2

)

vu + . . . ,

yielding
mu

mc

=
〈ϕ̄2〉
〈ϕ̄3〉

= λ4, (6.3)

the correct mass hierarchy between the first two families.

However, this nesting requires a tuning of couplings to explain mc/mt,

1

2
√
3

y′10
y10

〈ϕ1〉〈ϕ̄3〉
M2

X

= λ4. (6.4)

Note that such a relation constrains the absolute magnitude of the familon

vacuum values, a feature unavailable by simply considering the Majorana sector.

Although both nestings introduce non-zero contributions to the third family,

they are suppressed compared to the tree-level coupling.

6If ϕ̄ is a component of an S3 doublet, then ϕ is required to be part of an S3 doublet as well, Φ = (ϕ,ϕ′),

and there will be an additional term involving ϕ′. However, this additional term will give the same structure

and will not affect eq. (6.3).
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• IfM is instead produced by a single dimension-six invariant, we must have two triplet

familons ϕ and ϕ′, and one anti-triplet familon ϕ̄. If the vacuum value of Hu is still

assumed to be that of eq. (2.3), higher-dimensional (Z7 ⋊ Z3)-invariants are also

required to produce the remaining hierarchy. We find two ways to achieve this goal.

– Since the superpotential of eq. (6.2) involves ϕ and ϕ̄, and the possible vacuum

structures of the anti-triplets given by eq. (5.5) and eq. (5.12) are identical, we

may use the same superpotential to generate the correct mass hierarchy in this

case; the relations of eq. (6.3) and eq. (6.4) then follow identically.

– Instead one may use invariants with two triplet familons ϕ and ϕ′ in the follow-

ing nestings7

[(χχ)3 (Huϕ)3]3̄±
ϕ′ −→ vu√

6







ϕ2ϕ
′
3

±ϕ2ϕ
′
2

0






.

Taking the symmetric combination, the superpotential would then be,

W = y10χχHu +
y′10
M2

X

[(χχ)3 (Huϕ)3]3̄+
ϕ′ + . . . (6.5)

→ y10χ3χ3vu +
y′10〈ϕ2〉〈ϕ′

2〉√
6M2

X

(

β′

α′λ
4χ1χ1 + χ2χ2

)

vu + . . . ,

where y′10 is a dimensionless coupling constant and MX is an unknown heavy

scale. We see that the correct hierarchy between the first and second flavors can

be reproduced with the additional constraint α′ = β′.

The additional λ4 factor present between the third and the first two flavors

implies the further tuning,

1√
6

y′10
y10

〈ϕ2〉〈ϕ′
2〉

M2
X

= λ4, (6.6)

this time involving the absolute scale of ϕ and ϕ′.

Interestingly, utilizing the same familons of the Majorana sector in the charge (2/3)

sector can give complementary information on the unknown physics of the familon sector;

one gives constraints on the relative ratio of their components, the other on their absolute

scale. In addition, although the ratio mc/mt remains to be explained, this sharing of

familons between the up-quark Yukawa matrix and the Majorana matrix may partially

explain why the same hierarchical factor λ4 can appear in both sectors.

7 Summary and conclusions

In this paper, we have investigated the addition of a discrete family symmetry to the SSM.

The quark and charged lepton mass matrices display a hierarchical structure not seen in

7This nesting will also work for the previous dimension-five example if one takes ϕ = ϕ′.
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the neutrino sector. Within the context of grand unification, this is a bit of a mystery; the

neutral Dirac Yukawa matrix Y (0) is expected to have the same structure as the up-quark

Yukawa matrix Y (2/3). In this work we have addressed this issue within the context of a

Z7 ⋊ Z3 family symmetry.

Taking Y (2/3) strongly hierarchical and diagonal, and assuming Y (0) ∼ Y (2/3), we

exploit the seesaw mechanism to reproduce the observed neutrino mass pattern. However,

in order to compensate for the strong hierarchy in Y (0), the associated high-scale Majorana

mass matrix itself must show a strong, specific hierarchical structure, which may indicate

a deep relation between the Yukawa and Majorana matrices. Additionally, measurement

of the neutrino mass and mixing parameters leads to additional desired features of the

Majorana matrix.

We chose a special Majorana matrix which is strongly hierarchical and consistent with

Tri-bimaximal mixing. This special matrix predicts the normal hierarchy and yields a

testable relation between light neutrino masses and the solar mixing angle
m1

m2
= − tan2 η12. (7.1)

Furthermore, the special matrix gives the heavy right-handed neutrinos reasonable masses;

in future work, we intend to investigate whether these values are compatible with lepto-

genesis. In particular, although the approximate degeneracy of the right-handed neutrino

spectrum looks appealing from the point of view of “resonant leptogenesis”, careful at-

tention to the values of CP phases must be given in order to ensure that leptogenesis

is successful.

We take the hierarchy in the special matrix to be produced not by a hierarchy of

couplings, but instead by the structure of the vacuum values of familon fields. We thus

look for specific operators invariant under Z7 ⋊ Z3 which can produce the special matrix

for some familon vacuum values. Our search yields exactly two dimension-five operators

and one dimension-six operator, containing two and three familon fields, respectively, which

single out the special matrix and are compatible with the light neutrino masses.

The same familon fields can be used to construct the terms responsible for the up

and charm quark masses in Y (2/3), giving constraints on the magnitude of the familon

fields. Thus, with an appropriate familon sector, the Z7 ⋊ Z3 family symmetry can both

reproduce some of the hierarchy in the up-quark sector and generate the Majorana mass

terms needed to largely erase the hierarchy in the physical light neutrino masses.

Our aim in this publication has been to reduce the number of familon couplings to the

Standard Model, and from there infer the number of familons needed and their symmetries.

We leave the question of the familon scalar potential for a more complete model; at this

stage we believe such a question to be premature. Familons themselves may be effective

fields, coming perhaps from a more fundamental (extra dimensions, branes?) theory. How-

ever, we believe the vacuum structure of the familon sector will yield useful information,

pointing the way to a deeper theory.

A complete description of the neutrino data and the lepton sector requires specification

of the charged-lepton Dirac matrix Y (−1). Its diagonalization provides not only the charged-

lepton masses, but also corrections to the neutrino mixing angles away from their seesaw
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values. Such corrections are necessary for all three popular mixing schemes (TBM, GR, and

BM) discussed in the text, and implementing a suitable pattern of corrections is nontrivial

but not impossible. The interested reader may find a specific example of how this can be ac-

complished, using ideas from grand unification, in appendix C. In a forthcoming paper [41],

we plan to further study the question of producing Y (−1) compatible with the neutrino mass

and mixing parameters; from this, one can make predictions for leptonic CP violation.

In summary, we find that the Z7 ⋊ Z3 family symmetry appears very encouraging for

producing fermion mass parameters compatible with observation, and it shows promise for

additional related studies: on the familon physics implied by the higher dimension opera-

tors; on a possible consistency with resonant leptogenesis; and, finally, on the implications

of the assignment of family quantum numbers to the Higgs bosons.
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A Z7 ⋊ Z3

The Frobenius group of order 21 is the smallest finite non-Abelian subgroup of SU(3).

It contains elements of order three and seven, with the presentation 〈c , d | c7 = d3 =

1 , d−1cd = c4 〉.
Its irreducible representations are, a real singlet, one complex triplet 3, a complex

singlet, 1′, and their inequivalent conjugates, 3, and 1
′
. Their Kronecker products are

(± refers to symmetry/antisymmetry)

1′ ⊗ 1′ = 1
′
, 1′ ⊗ 1

′
= 1

3 ⊗ 1′ = 3, 3 ⊗ 1
′
= 3

3 ⊗ 3 = (3+ 3)+ + 3−, 3 ⊗ 3 = 1+ 1′ + 1
′
+ 3+ 3.

with Clebsch-Gordan decompositions,

(3⊗ 3)+ −→ 3 :















| 3〉| 3′〉
| 1〉| 1′〉 ;
| 2〉| 2′〉

−→ 3 :















1√
2
(| 3〉| 2′〉+ | 2〉| 3′〉)

1√
2
(| 1〉| 3′〉+ | 3〉| 1′〉)

1√
2
(| 2〉| 1′〉+ | 1〉| 2′〉)

(3⊗ 3)− −→ 3 :















1√
2
(| 3〉| 2′〉 − | 2〉| 3′〉)

1√
2
(| 1〉| 3′〉 − | 3〉| 1′〉)

1√
2
(| 2〉| 1′〉 − | 1〉| 2′〉) .
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3⊗ 3 −→ 3 :















| 2〉| 1〉
| 3〉| 2〉 ;
| 1〉| 3〉

−→ 3 :















| 1〉| 2〉
| 2〉| 3〉 ,
| 3〉| 1〉

3⊗ 3 −→ 1 :
1√
3

(

| 1〉| 1〉+ | 2〉| 2〉+ | 3〉| 3〉
)

,

3⊗ 3 −→ 1′ :
1√
3

(

| 1〉| 1〉+ ω2| 2〉| 2〉+ ω | 3〉| 3〉
)

,

3⊗ 3 −→ 1
′
:

1√
3

(

| 1〉| 1〉+ ω | 2〉| 2〉+ ω2| 3〉| 3〉
)

, ω = exp(2iπ/3)

1′ ⊗ 3 −→ 3 :















s′| 1〉
s′ω| 2〉
s′ω2| 3〉

1
′ ⊗ 3 −→ 3 :















s′| 1〉
s′ω2| 2〉
s′ω| 3〉

Z7 ⋊ Z3 invariants. In our model, invariants are constructed out of Z7 ⋊ Z3-triplet

matter fields, ψ, χ, and N , family antitriplets Higgs fields, Hu,d, and familons which can

be either family triplets, ϕ, or antitriplets, ϕ̄.

Since we consider in this paper only the Majorana and charge (2/3) sectors, both of

which produce symmetric matrices, we display here only the Majorana invariants. Invari-

ants for the charge (2/3) sector can then be easily obtained by replacing NN by χχ.

Dimension-four Majorana invariants. The tree-level couplings are all diagonal.

(NN)3Hu : −→ N







Hu2 0 0

0 Hu3 0

0 0 Hu1






N.

Dimension-five Majorana invariants.

NN















ϕϕ′

ϕϕ

ϕ ϕ′

,

with different nesting schemes.

As mentioned in the text, we have chosen to display all invariants with a particular

nesting scheme,

(( ⊗ )⊗ ( ⊗ ))⊗ ).

However, one may have also chosen a different nesting scheme, such as

( ⊗ ( ⊗ ( ⊗ ( ⊗ )))).
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Fortunately, for Z7 ⋊ Z3, we have found that considering all possible permutations of

the fields within both nesting schemes will give the same set of matrices, rendering them

equivalent. Since, the second generates a much longer list of possibilities, we have displayed

all invariants using the first nesting scheme.

We organize the list in terms of the familons, and choose to express a particular nesting

in terms of linear combinations of particular simple linearly independent invariants. In the

following, independent invariants involving different sets of familons are distinguished by

distinct letters, while the superscripts denote the nesting order of the familon fields.

• There are two types of linearly independent NNϕϕ′ invariants:

I(ϕ,ϕ′)
1 =

1

2

(

(NN)3 (ϕϕ′)3̄+
+ (NN)3 (ϕϕ′)3̄−

)

−→ 1√
6







ϕ1ϕ
′
3 0 0

ϕ2ϕ
′
1 0

ϕ3ϕ
′
2






,

I(ϕ,ϕ′)
2 = (NN)3̄ (ϕϕ′)3

−→ 1√
6







0 ϕ2ϕ
′
2 ϕ1ϕ

′
1

0 ϕ3ϕ
′
3

0






.

Possible nestings are given below each of the linearly independent invariants. Each

of them corresponds to a particular linear combination of the above invariants.

(NN)3 (ϕϕ′)3̄±
= I(ϕ,ϕ′)

1 ± (ϕ ↔ ϕ′)

(Nϕ)3 (Nϕ′)3̄±
= I(ϕ,ϕ′)

1 ± 1

2
I(ϕ,ϕ′)
2

• There are two types of linearly independent NNϕϕ̄ invariants:

J (ϕ,ϕ̄)
1 = (NN)3 (ϕϕ̄)3̄ −→ 1√

3







ϕ2ϕ̄3 0 0

ϕ3ϕ̄1 0

ϕ1ϕ̄2






,

J (ϕ,ϕ̄)
2 = (NN)3̄ (ϕϕ̄)3 −→ 1√

6







0 ϕ1ϕ̄3 ϕ3ϕ̄2

0 ϕ2ϕ̄1

0






.

(Nϕ)3 (Nϕ̄)3̄ =
1√
2
J (ϕ,ϕ̄)
2

(Nϕ̄)3 (Nϕ)3̄±
= ± 1√

2
J (ϕ,ϕ̄)
1 +

1

2
J (ϕ,ϕ̄)
2

• There are two types of linearly independent NNϕ̄ϕ̄′ invariants:

K(ϕ̄,ϕ̄′)
1 = (NN)3 (ϕ̄ϕ̄′)3̄ −→ 1√

3







ϕ̄1ϕ̄
′
1 0 0

ϕ̄2ϕ̄
′
2 0

ϕ̄3ϕ̄
′
3






,
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K(ϕ̄,ϕ̄′)
2 = (Nϕ̄)3 (Nϕ̄′)3̄ −→ 1

2
√
3







0 ϕ̄1ϕ̄
′
2 ϕ̄3ϕ̄

′
1

0 ϕ̄2ϕ̄
′
3

0






.

(NN)3̄ (ϕ̄ϕ̄′)3±
= K(ϕ̄′,ϕ̄)

2 ± (ϕ̄ ↔ ϕ̄′)

(Nϕ̄)1′ (Nϕ̄′)1̄′ =
1√
3

(

K(ϕ̄,ϕ̄′)
1 + ωK(ϕ̄,ϕ̄′)

2 + ω2K(ϕ̄′,ϕ̄)
2

)

(Nϕ̄)1 (Nϕ̄′)1 =
1√
3

(

K(ϕ̄,ϕ̄′)
1 +K(ϕ̄,ϕ̄′)

2 +K(ϕ̄′,ϕ̄)
2

)

Dimension-six Majorana invariants. We organize the possible nestings of dimension-

six Majorana invariants as in the previous section, with similar notation.

• There are three types of linearly independent NNϕϕ′ϕ′′ invariants:

I(ϕ,ϕ′,ϕ′′)
1 =

1

2

(

[

(NN)3 (ϕϕ′)3
]

3̄+
ϕ′′ +

[

(NN)3 (ϕϕ′)3
]

3̄−
ϕ′′

)

−→ 1√
6







ϕ3ϕ
′
3ϕ

′′
3 0 0

ϕ1ϕ
′
1ϕ

′′
1 0

ϕ2ϕ
′
2ϕ

′′
2






,

I(ϕ,ϕ′,ϕ′′)
2 =

1

2

(

[

(NN)3 (ϕϕ′)3
]

3̄+
ϕ′′ −

[

(NN)3 (ϕϕ′)3
]

3̄−
ϕ′′

)

−→ 1√
6







ϕ2ϕ
′
2ϕ

′′
1 0 0

ϕ3ϕ
′
3ϕ

′′
2 0

ϕ1ϕ
′
1ϕ

′′
3






,

I(ϕ,ϕ′,ϕ′′)
3 =

[

(NN)3̄ (ϕϕ′)3
]

3̄
ϕ′′

−→ 1√
6







0 ϕ1ϕ
′
1ϕ

′′
2 ϕ3ϕ

′
3ϕ

′′
1

0 ϕ2ϕ
′
2ϕ

′′
3

0






.

[

(NN)3 (ϕϕ
′)3

]

3̄±
ϕ′′= I(ϕ,ϕ′,ϕ′′)

1 ± I(ϕ,ϕ′,ϕ′′)
2

[

(NN)3 (ϕϕ
′)3̄±

]

3̄
ϕ′′= I(ϕ,ϕ′′,ϕ′)

2 ± I(ϕ′′,ϕ′,ϕ)
2

[

(NN)3̄ (ϕϕ
′)3̄±

]

3̄
ϕ′′=

1√
2

(

I(ϕ′′,ϕ′,ϕ)
3 ± I(ϕ,ϕ′′,ϕ′)

3

)

[

(Nϕ)3 (ϕ
′ϕ′′)3

]

3̄±
N= ±I(ϕ′′,ϕ′,ϕ)

2 +
1

2
I(ϕ′′,ϕ′,ϕ)
3

[

(Nϕ)3 (ϕ
′ϕ′′)3̄±

]

3̄
N=

1

2
I(ϕ,ϕ′′,ϕ′)
3 ± (ϕ′ ↔ ϕ′′)

[

(Nϕ)3̄±
(ϕ′ϕ′′)3

]

3̄
N= I(ϕ,ϕ′,ϕ′′)

1 ± 1

2
I(ϕ′′,ϕ′,ϕ)
3

[

(Nϕ)3̄±
(ϕ′ϕ′′)3̄+

]

3̄
N=

1√
2

(

±I(ϕ,ϕ′,ϕ′′)
2 +

1

2
I(ϕ,ϕ′′,ϕ′)
3

)

+ (ϕ′ ↔ ϕ′′)

[

(Nϕ)3̄±
(ϕ′ϕ′′)3̄−

]

3̄
N=

1√
2

(

±I(ϕ,ϕ′,ϕ′′)
2 +

1

2
I(ϕ,ϕ′′,ϕ′)
3

)

− (ϕ′ ↔ ϕ′′)

[

(Nϕ)3 (Nϕ′)3
]

3̄±
ϕ′′=

1

2

(

I(ϕ′′,ϕ′,ϕ)
3 ± I(ϕ,ϕ′′,ϕ′)

3

)
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[

(Nϕ)3 (Nϕ′)3̄±

]

3̄
ϕ′′= ±I(ϕ′′,ϕ′,ϕ)

2 +
1

2
I(ϕ,ϕ′,ϕ′′)
3

[

(Nϕ)3̄+
(Nϕ′)3̄±

]

3̄
ϕ′′=

1√
2

(

±I(ϕ,ϕ′,ϕ′′)
2 + I(ϕ,ϕ′,ϕ′′)

1

)

+
1

2
√
2

(

I(ϕ′′,ϕ′,ϕ)
3 ± I(ϕ,ϕ′′,ϕ′)

3

)

[

(Nϕ)3̄−
(Nϕ′)3̄±

]

3̄
ϕ′′=

1√
2

(

∓I(ϕ,ϕ′,ϕ′′)
2 +I(ϕ,ϕ′,ϕ′′)

1

)

+
1

2
√
2

(

−I(ϕ′′,ϕ′,ϕ)
3 ±I(ϕ,ϕ′′,ϕ′)

3

)

• There are five types of linearly independent NNϕϕ′ϕ̄ invariants:

J (ϕ,ϕ̄,ϕ′)
1 = [(NN)3 (ϕ̄ϕ)3̄]3̄ ϕ

′ −→ 1√
3







ϕ3ϕ̄1ϕ
′
2 0 0

ϕ1ϕ̄2ϕ
′
3 0

ϕ2ϕ̄3ϕ
′
1






,

J (ϕ,ϕ̄,ϕ′)
2 =

[

(NN)3 (ϕϕ′)3
]

3
ϕ̄ −→ 1√

3







ϕ1ϕ̄3ϕ
′
1 0 0

ϕ2ϕ̄1ϕ
′
2

ϕ3ϕ̄2ϕ
′
3






,

J (ϕ,ϕ̄,ϕ′)
3 = [(NN)3̄ (ϕ̄ϕ)3]3̄ ϕ

′ −→ 1√
6







0 ϕ3ϕ̄2ϕ
′
2 ϕ2ϕ̄1ϕ

′
1

0 ϕ1ϕ̄3ϕ
′
3

0






,

J (ϕ,ϕ̄,ϕ′)
4 = [(NN)3̄ (ϕ̄ϕ)3̄]3̄ ϕ

′ −→ 1√
6







0 ϕ3ϕ̄1ϕ
′
1 ϕ2ϕ̄3ϕ

′
3

0 ϕ1ϕ̄2ϕ
′
2

0






,

J (ϕ,ϕ̄,ϕ′)
5 =

[

(NN)3̄ (ϕϕ′)3
]

3
ϕ̄ −→ 1√

6







0 ϕ3ϕ̄3ϕ
′
3 ϕ2ϕ̄2ϕ

′
2

0 ϕ1ϕ̄1ϕ
′
1

0






.

[(NN)3 (ϕ̄ϕ)3]3̄±
ϕ′ =

1√
2

(

±J (ϕ,ϕ̄,ϕ′)
2 + J (ϕ′,ϕ̄,ϕ)

1

)

[

(NN)3 (ϕϕ′)3̄±

]

3
ϕ̄ =

1√
2
J (ϕ,ϕ̄,ϕ′)
1 ± (ϕ ↔ ϕ′)

[

(NN)3̄ (ϕϕ′)3̄+

]

3±

ϕ̄ =
1

2

(

J (ϕ,ϕ̄,ϕ′)
4 ± J (ϕ,ϕ̄,ϕ′)

3

)

+ (ϕ ↔ ϕ′)

[

(NN)3̄ (ϕϕ′)3̄−

]

3±

ϕ̄ =
1

2

(

−J (ϕ,ϕ̄,ϕ′)
4 ± J (ϕ,ϕ̄,ϕ′)

3

)

− (ϕ ↔ ϕ′)

[(Nϕ̄)3 (Nϕ)3]3̄±
ϕ′ =

1√
2
J (ϕ,ϕ̄,ϕ′)
2 ± 1

2
J (ϕ′,ϕ̄,ϕ)
4

[

(Nϕ̄)3 (Nϕ)3̄±

]

3̄
ϕ′ =

1

2

(

J (ϕ,ϕ̄,ϕ′)
4 ± J (ϕ,ϕ̄,ϕ′)

5

)

[(Nϕ̄)3̄ (Nϕ)3]3̄ ϕ
′ =

1√
2
J (ϕ′,ϕ̄,ϕ)
3

[

(Nϕ̄)3̄ (Nϕ)3̄±

]

3̄
ϕ′ =

1

2

(

±J (ϕ,ϕ̄,ϕ′)
3 + J (ϕ,ϕ̄,ϕ′)

5

)

[

(Nϕ̄)3 (ϕϕ′)3
]

3̄±
N =

1√
2
J (ϕ,ϕ̄,ϕ′)
2 ± 1

2
J (ϕ,ϕ̄,ϕ′)
5

[

(Nϕ̄)3 (ϕϕ′)3̄±

]

3̄
N =

1

2
J (ϕ′,ϕ̄,ϕ)
4 ± (ϕ ↔ ϕ′)

[

(Nϕ̄)3̄ (ϕϕ′)3
]

3̄
N =

1√
2
J (ϕ,ϕ̄,ϕ′)
5
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[

(Nϕ̄)3̄ (ϕϕ′)3̄±

]

3̄
N =

1

2
J (ϕ,ϕ̄,ϕ′)
3 ± (ϕ ↔ ϕ′)

[

(Nϕ)3 (ϕ̄ϕ′)3
]

3̄±
N = ± 1√

2
J (ϕ,ϕ̄,ϕ′)
2 +

1

2
J (ϕ′,ϕ̄,ϕ)
3

[

(Nϕ)3 (ϕ̄ϕ′)3̄
]

3̄
N =

1√
2
J (ϕ′,ϕ̄,ϕ)
4

[

(Nϕ)3̄±
(ϕ̄ϕ′)3

]

3̄
N =

1√
2
J (ϕ,ϕ̄,ϕ′)
1 ± 1

2
J (ϕ′,ϕ̄,ϕ)
3

[

(Nϕ)3̄±
(ϕ̄ϕ′)3̄

]

3̄
N = ± 1√

2
J (ϕ′,ϕ̄,ϕ)
1 +

1

2
J (ϕ′,ϕ̄,ϕ)
4

[

(Nϕ)3(Nϕ′)3
]

3
ϕ̄ = J (ϕ,ϕ̄,ϕ′)

2

[

(Nϕ)3 (Nϕ′)3̄±

]

3
ϕ̄ =

1

2

(

±J (ϕ′,ϕ̄,ϕ)
4 + J (ϕ′,ϕ̄,ϕ)

3

)

[

(Nϕ)3̄+
(Nϕ′)3̄+

]

3+
ϕ̄ =

1

2
√
2

(

J (ϕ,ϕ̄,ϕ′)
1 + J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 +J (ϕ′,ϕ̄,ϕ)

3 +J (ϕ,ϕ̄,ϕ′)
4 + J (ϕ,ϕ̄,ϕ′)

3 +2J (ϕ,ϕ̄,ϕ′)
5

)

[

(Nϕ)3̄+
(Nϕ′)3̄−

]

3+
ϕ̄ =

1

2
√
2

(

−J (ϕ,ϕ̄,ϕ′)
1 + J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 − J (ϕ′,ϕ̄,ϕ)

3 + J (ϕ,ϕ̄,ϕ′)
4 − J (ϕ,ϕ̄,ϕ′)

3

)

[

(Nϕ)3̄−
(Nϕ′)3̄+

]

3+
ϕ̄ =

1

2
√
2

(

J (ϕ,ϕ̄,ϕ′)
1 − J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 − J (ϕ′,ϕ̄,ϕ)

3 + J (ϕ,ϕ̄,ϕ′)
4 − J (ϕ,ϕ̄,ϕ′)

3

)

[

(Nϕ)3̄−
(Nϕ′)3̄−

]

3+
ϕ̄ =

1

2
√
2

(

−J (ϕ,ϕ̄,ϕ′)
1 − J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 +J (ϕ′,ϕ̄,ϕ)

3 +J (ϕ,ϕ̄,ϕ′)
4 +J (ϕ,ϕ̄,ϕ′)

3 −2J (ϕ,ϕ̄,ϕ′)
5

)

[

(Nϕ)3̄+
(Nϕ′)3̄+

]

3−

ϕ̄ =
1

2
√
2

(

−J (ϕ,ϕ̄,ϕ′)
1 + J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 −J (ϕ′,ϕ̄,ϕ)

3 − J (ϕ,ϕ̄,ϕ′)
4 + J (ϕ,ϕ̄,ϕ′)

3

)

[

(Nϕ)3̄+
(Nϕ′)3̄−

]

3−

ϕ̄ =
1

2
√
2

(

J (ϕ,ϕ̄,ϕ′)
1 + J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 +J (ϕ′,ϕ̄,ϕ)

3 −J (ϕ,ϕ̄,ϕ′)
4 −J (ϕ,ϕ̄,ϕ′)

3 −2J (ϕ,ϕ̄,ϕ′)
5

)

[

(Nϕ)3̄−
(Nϕ′)3̄+

]

3−

ϕ̄ =
1

2
√
2

(

−J (ϕ,ϕ̄,ϕ′)
1 − J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 +J (ϕ′,ϕ̄,ϕ)

3 −J (ϕ,ϕ̄,ϕ′)
4 −J (ϕ,ϕ̄,ϕ′)

3 +2J (ϕ,ϕ̄,ϕ′)
5

)

[

(Nϕ)3̄−
(Nϕ′)3̄−

]

3−

ϕ̄ =
1

2
√
2

(

J (ϕ,ϕ̄,ϕ′)
1 − J (ϕ′,ϕ̄,ϕ)

1

)

+

1

4

(

J (ϕ′,ϕ̄,ϕ)
4 − J (ϕ′,ϕ̄,ϕ)

3 − J (ϕ,ϕ̄,ϕ′)
4 + J (ϕ,ϕ̄,ϕ′)

3

)
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• There are five types of linearly independent NNϕ̄ϕ̄′ϕ invariants:

K(ϕ,ϕ̄,ϕ̄′)
1 = [(NN)3(ϕ̄ϕ)3]3 ϕ̄

′ −→ 1√
3







ϕ3ϕ̄2ϕ̄
′
3 0 0

ϕ1ϕ̄3ϕ̄
′
1 0

ϕ2ϕ̄1ϕ̄
′
2






,

K(ϕ,ϕ̄,ϕ̄′)
2 = [(NN)3(ϕ̄ϕ)3̄]3 ϕ̄

′ −→ 1√
3







ϕ1ϕ̄2ϕ̄
′
1 0 0

ϕ2ϕ̄3ϕ̄
′
2 0

ϕ3ϕ̄1ϕ̄
′
3






,

K(ϕ,ϕ̄,ϕ̄′)
3 =

[

(NN)3(ϕ̄ϕ̄
′)3̄

]

3̄
ϕ −→ 1√

3







ϕ2ϕ̄2ϕ̄
′
2 0 0

ϕ3ϕ̄3ϕ̄
′
3 0

ϕ1ϕ̄1ϕ̄
′
1






,

K(ϕ,ϕ̄,ϕ̄′)
4 = [(NN)3̄(ϕ̄ϕ)3]3 ϕ̄

′ −→ 1√
6







0 ϕ2ϕ̄1ϕ̄
′
3 ϕ1ϕ̄3ϕ̄

′
2

0 ϕ3ϕ̄2ϕ̄
′
1

0






,

K(ϕ,ϕ̄,ϕ̄′)
5 =

[

(NN)3̄(ϕ̄ϕ̄
′)3̄

]

3̄
ϕ −→ 1√

6







0 ϕ1ϕ̄2ϕ̄
′
2 ϕ3ϕ̄1ϕ̄

′
1

0 ϕ2ϕ̄3ϕ̄
′
3

0






.

[(NN)3̄(ϕ̄ϕ)3̄]3±
ϕ̄′ =

1√
2

(

K(ϕ,ϕ̄′,ϕ̄)
4 ±K(ϕ,ϕ̄,ϕ̄′)

5

)

[

(NN)3(ϕ̄ϕ̄
′)3+

]

3̄±
ϕ =

1

2

(

±K(ϕ,ϕ̄,ϕ̄′)
2 +K(ϕ,ϕ̄′,ϕ̄)

1

)

+ (ϕ̄ ↔ ϕ̄′)

[

(NN)3(ϕ̄ϕ̄
′)3−

]

3̄±
ϕ =

1

2

(

±K(ϕ,ϕ̄,ϕ̄′)
2 +K(ϕ,ϕ̄′,ϕ̄)

1

)

− (ϕ̄ ↔ ϕ̄′)

[

(NN)3̄(ϕ̄ϕ̄
′)3±

]

3̄
ϕ =

1√
2
K(ϕ,ϕ̄,ϕ̄′)

4 ± (ϕ̄ ↔ ϕ̄′)

[

(Nϕ̄)3(Nϕ̄′)3
]

3̄±
ϕ =

1

2
K(ϕ,ϕ̄,ϕ̄′)

4 ± (ϕ̄ ↔ ϕ̄′)

[

(Nϕ̄)3(Nϕ̄′)3̄
]

3̄
ϕ = K(ϕ,ϕ̄′,ϕ̄)

1
[

(Nϕ̄)3̄(Nϕ̄′)3̄
]

3̄
ϕ = K(ϕ,ϕ̄,ϕ̄′)

3

[(Nϕ̄)3(Nϕ)3]3 ϕ̄
′ =

1√
2
K(ϕ,ϕ̄′,ϕ̄)

4

[

(Nϕ̄)3(Nϕ)3̄±

]

3
ϕ̄′ =

1√
2
K(ϕ,ϕ̄′,ϕ̄)

1 ± 1

2
K(ϕ,ϕ̄,ϕ̄′)

4

[(Nϕ̄)3̄(Nϕ)3]3 ϕ̄
′ = K(ϕ,ϕ̄,ϕ̄′)

2
[

(Nϕ̄)3̄(Nϕ)3̄+

]

3+
ϕ̄′ =

1

2

(

K(ϕ,ϕ̄,ϕ̄′)
3 +K(ϕ,ϕ̄,ϕ̄′)

1

)

+
1

2
√
2

(

K(ϕ,ϕ̄′,ϕ̄)
4 +K(ϕ,ϕ̄,ϕ̄′)

5

)

[

(Nϕ̄)3̄(Nϕ)3̄+

]

3−

ϕ̄′ =
1

2

(

K(ϕ,ϕ̄,ϕ̄′)
3 −K(ϕ,ϕ̄,ϕ̄′)

1

)

+
1

2
√
2

(

−K(ϕ,ϕ̄′,ϕ̄)
4 +K(ϕ,ϕ̄,ϕ̄′)

5

)

[

(Nϕ̄)3̄(Nϕ)3̄−

]

3+
ϕ̄′ =

1

2

(

−K(ϕ,ϕ̄,ϕ̄′)
3 +K(ϕ,ϕ̄,ϕ̄′)

1

)

+
1

2
√
2

(

−K(ϕ,ϕ̄′,ϕ̄)
4 +K(ϕ,ϕ̄,ϕ̄′)

5

)

[

(Nϕ̄)3̄(Nϕ)3̄−

]

3−

ϕ̄′ =
1

2

(

−K(ϕ,ϕ̄,ϕ̄′)
3 −K(ϕ,ϕ̄,ϕ̄′)

1

)

+
1

2
√
2

(

K(ϕ,ϕ̄′,ϕ̄)
4 +K(ϕ,ϕ̄,ϕ̄′)

5

)
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[

(Nϕ̄)3(ϕϕ̄
′)3

]

3̄±
N =

1√
2
K(ϕ,ϕ̄′,ϕ̄)

1 ± 1

2
K(ϕ,ϕ̄′,ϕ̄)

4

[

(Nϕ̄)3(ϕϕ̄
′)3̄

]

3̄
N =

1√
2
K(ϕ,ϕ̄,ϕ̄′)

4

[

(Nϕ̄)3̄(ϕϕ̄
′)3

]

3̄
N =

1√
2
K(ϕ,ϕ̄′,ϕ̄)

4

[

(Nϕ̄)3̄(ϕϕ̄
′)3̄

]

3̄
N =

1√
2
K(ϕ,ϕ̄,ϕ̄′)

5

[

(Nϕ)3(ϕ̄ϕ̄
′)3+

]

3̄±
N =

1

2

(

±K(ϕ,ϕ̄,ϕ̄′)
2 +

1√
2
K(ϕ,ϕ̄,ϕ̄′)

4

)

+ (ϕ̄ ↔ ϕ̄′)

[

(Nϕ)3(ϕ̄ϕ̄
′)3−

]

3̄±
N =

1

2

(

±K(ϕ,ϕ̄,ϕ̄′)
2 +

1√
2
K(ϕ,ϕ̄,ϕ̄′)

4

)

− (ϕ̄ ↔ ϕ̄′)

[

(Nϕ)3(ϕ̄ϕ̄
′)3̄

]

3̄
N =

1√
2
K

(ϕ,ϕ̄,ϕ̄′)
5

[

(Nϕ)3̄±
(ϕ̄ϕ̄′)3+

]

3̄
N =

1

2

(

K(ϕ,ϕ̄′,ϕ̄)
1 +

1√
2
K(ϕ,ϕ̄,ϕ̄′)

4

)

± (ϕ̄ ↔ ϕ̄′)

[

(Nϕ)3̄±
(ϕ̄ϕ̄′)3−

]

3̄
N =

1

2

(

K(ϕ,ϕ̄′,ϕ̄)
1 − 1√

2
K(ϕ,ϕ̄,ϕ̄′)

4

)

± (ϕ̄ ↔ ϕ̄′)

[

(Nϕ)3̄±
(ϕ̄ϕ̄′)3̄

]

3̄
N = ± 1√

2
K(ϕ,ϕ̄,ϕ̄′)

3 +
1

2
K(ϕ,ϕ̄,ϕ̄′)

5

• There are three types of linearly independent NNϕ̄ϕ̄′ϕ̄′′ invariants:

L(ϕ̄,ϕ̄′,ϕ̄′′)
1 =

[

(NN)3(ϕ̄ϕ̄
′)3̄

]

3
ϕ̄′′ −→ 1√

3







ϕ̄3ϕ̄
′
3ϕ̄

′′
1 0 0

ϕ̄1ϕ̄
′
1ϕ̄

′′
2 0

ϕ̄2ϕ̄
′
2ϕ̄

′′
3






,

L(ϕ̄,ϕ̄′,ϕ̄′′)
2 =

[

(Nϕ̄)3(ϕ̄
′ϕ̄′′)3̄

]

3̄
N −→ 1

2
√
3







0 ϕ̄1ϕ̄
′
1ϕ̄

′′
1 ϕ̄3ϕ̄

′
3ϕ̄

′′
3

0 ϕ̄2ϕ̄
′
2ϕ̄

′′
2

0






,

L(ϕ̄,ϕ̄′,ϕ̄′′)
3 =

[

(Nϕ̄)3̄(ϕ̄
′ϕ̄′′)3̄

]

3̄
N −→ 1

2
√
3







0 ϕ̄2ϕ̄
′
3ϕ̄

′′
3 ϕ̄1ϕ̄

′
2ϕ̄

′′
2

0 ϕ̄3ϕ̄
′
1ϕ̄

′′
1

0






.

[

(NN)3(ϕ̄ϕ̄
′)3±

]

3
ϕ̄′′ =

1√
2

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
1 ± L(ϕ̄,ϕ̄′′,ϕ̄′)

1

)

[

(NN)3̄(ϕ̄ϕ̄
′)3±

]

3
ϕ̄′′ = L(ϕ̄′,ϕ̄,ϕ̄′′)

3 ± (ϕ̄ ↔ ϕ̄′)
[

(NN)3̄(ϕ̄ϕ̄
′)3̄

]

3±
ϕ̄′′ = L(ϕ̄,ϕ̄′,ϕ̄′′)

2 ± L(ϕ̄′′,ϕ̄′,ϕ̄)
3

[

(Nϕ̄)3(ϕ̄
′ϕ̄′′)3+

]

3̄±
N =

1

2

(

L(ϕ̄,ϕ̄′,ϕ̄′′)
1 + L(ϕ̄,ϕ̄′′,ϕ̄′)

1

)

± 1

4

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
3 + L(ϕ̄′,ϕ̄,ϕ̄′′)

3

)

[

(Nϕ̄)3(ϕ̄
′ϕ̄′′)3−

]

3̄±
N =

1

2

(

−L(ϕ̄,ϕ̄′,ϕ̄′′)
1 + L(ϕ̄,ϕ̄′′,ϕ̄′)

1

)

± 1

4

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
3 − L(ϕ̄′,ϕ̄,ϕ̄′′)

3

)

[

(Nϕ̄)3̄(ϕ̄
′ϕ̄′′)3±

]

3̄
N =

1√
2

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
3 ± L(ϕ̄′,ϕ̄,ϕ̄′′)

3

)
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[

(Nϕ̄)3(Nϕ̄′)3
]

3
ϕ̄′′ = L(ϕ̄,ϕ̄′,ϕ̄′′)

1
[

(Nϕ̄)3(Nϕ̄′)3̄
]

3
ϕ̄′′ = L(ϕ̄′′,ϕ̄′,ϕ̄)

3

[

(Nϕ̄)3̄(Nϕ̄′)3̄
]

3±
ϕ̄′′ =

1√
2
L(ϕ̄′,ϕ̄,ϕ̄′′)
3 ± (ϕ̄ ↔ ϕ̄′)

• Invariants that contain intermediate 1, 1′ and 1̄′ representations are given by:

[(NN)3̄(ϕ̄ϕ)1′ ]3̄ ϕ
′ −→ (ϕ̄ϕ)1′√

6







0 ω2ϕ′
3 ωϕ′

2

0 ϕ′
1

0







[(NN)3̄(ϕ̄ϕ)1̄′ ]3̄ ϕ
′ −→ (ϕ̄ϕ)1̄′√

6







0 ωϕ′
3 ω2ϕ′

2

0 ϕ′
1

0







[

(Nϕ̄)1(Nϕ)3̄±

]

3̄
ϕ′ =

[

(Nϕ̄)1(ϕϕ
′)3̄±

]

3̄
N

=
1√
6

(

J (ϕ,ϕ̄,ϕ′)
1 +

1√
2
J (ϕ′,ϕ̄,ϕ)
4 +

1√
2
J (ϕ,ϕ̄,ϕ′)
3

)

± (ϕ↔ϕ′)

[

(Nϕ̄)1′(Nϕ)3̄±

]

3̄
ϕ′ = ω

[

(Nϕ̄)1′(ϕϕ′)3̄±

]

3̄
N

=
1√
6

(

ωJ (ϕ,ϕ̄,ϕ′)
1 +

ω2

√
2
J (ϕ′,ϕ̄,ϕ)
4 +

1√
2
J (ϕ,ϕ̄,ϕ′)
3

)

± ω(ϕ↔ϕ′)

[

(Nϕ̄)1̄′(Nϕ)3̄±

]

3̄
ϕ′ = ω2

[

(Nϕ̄)1̄′(ϕϕ′)3̄±

]

3̄
N

=
1√
6

(

ω2J (ϕ,ϕ̄,ϕ′)
1 +

ω√
2
J (ϕ′,ϕ̄,ϕ)
4 +

1√
2
J (ϕ,ϕ̄,ϕ′)
3

)

± ω2(ϕ↔ϕ′)

[

(Nϕ)3̄±
(ϕ̄ϕ′)1′

]

3̄
N −→ (ϕ̄ϕ′)1′(ω ± 1)

2
√
6







0 ϕ3 ω2ϕ2

0 ωϕ1

0







[

(Nϕ)3̄±
(ϕ̄ϕ′)1̄′

]

3̄
N −→ (ϕ̄ϕ′)1̄′(ω2 ± 1)

2
√
6







0 ϕ3 ωϕ2

0 ω2ϕ1

0







[(NN)3(ϕ̄ϕ)1′ ]3 ϕ̄
′ −→ (ϕ̄ϕ)1′√

3







ωϕ̄′
2 0 0

ω2ϕ̄′
3 0

ϕ̄′
1







[(NN)3(ϕ̄ϕ)1̄′ ]3 ϕ̄
′ −→ (ϕ̄ϕ)1̄′√

3







ω2ϕ̄′
2 0 0

ωϕ̄′
3 0

ϕ̄′
1







[

(Nϕ̄)1(Nϕ̄′)3̄
]

3̄
ϕ = [(Nϕ̄)1(Nϕ)3]3 ϕ̄

′ =
[

(Nϕ̄)1(ϕϕ̄
′)3̄

]

3̄
N

=
1√
3
K(ϕ,ϕ̄′,ϕ̄)

2 +
1√
6

(

K(ϕ,ϕ̄,ϕ̄′)
5 +K(ϕ,ϕ̄,ϕ̄′)

4

)

[

(Nϕ̄)1′(Nϕ̄′)3̄
]

3̄
ϕ = [(Nϕ̄)1′(Nϕ)3]3 ϕ̄

′ =
[

(Nϕ̄)1′(ϕϕ̄′)3̄
]

3̄
N

=
1√
3
K(ϕ,ϕ̄′,ϕ̄)

2 +
1√
6

(

ω2K(ϕ,ϕ̄,ϕ̄′)
5 + ωK(ϕ,ϕ̄,ϕ̄′)

4

)
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[

(Nϕ̄)1̄′(Nϕ̄′)3̄
]

3̄
ϕ = [(Nϕ̄)1̄′(Nϕ)3]3 ϕ̄

′ =
[

(Nϕ̄)1̄′(ϕϕ̄′)3̄
]

3̄
N

=
1√
3
K(ϕ,ϕ̄′,ϕ̄)

2 +
1√
6

(

ωK(ϕ,ϕ̄,ϕ̄′)
5 + ω2K(ϕ,ϕ̄,ϕ̄′)

4

)

[

(Nϕ̄)3̄(ϕϕ̄
′)1′

]

3̄
N −→ (ϕϕ̄′)1′√

3







ϕ̄2 0 0

ωϕ̄3 0

ω2ϕ̄1







[

(Nϕ̄)3̄(ϕϕ̄
′)1̄′

]

3̄
N −→ (ϕϕ̄′)1̄′√

3







ϕ̄2 0 0

ω2ϕ̄3 0

ωϕ̄1







[

(Nϕ̄)1(ϕ̄
′ϕ̄′′)3̄

]

3̄
N =

[

(Nϕ̄)1(Nϕ̄′)3
]

3
ϕ̄′′

=
1√
3

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
1 + L(ϕ̄,ϕ̄′,ϕ̄′′)

2 + L(ϕ̄,ϕ̄′,ϕ̄′′)
3

)

[

(Nϕ̄)1′(ϕ̄′ϕ̄′′)3̄
]

3̄
N =

[

(Nϕ̄)1′(Nϕ̄′)3
]

3
ϕ̄′′

=
1√
3

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
1 + ωL(ϕ̄,ϕ̄′,ϕ̄′′)

2 + ω2L(ϕ̄,ϕ̄′,ϕ̄′′)
3

)

[

(Nϕ̄)1̄′(ϕ̄′ϕ̄′′)3̄
]

3̄
N =

[

(Nϕ̄)1̄′(Nϕ̄′)3
]

3
ϕ̄′′

=
1√
3

(

L(ϕ̄′′,ϕ̄′,ϕ̄)
1 + ω2L(ϕ̄,ϕ̄′,ϕ̄′′)

2 + ωL(ϕ̄,ϕ̄′,ϕ̄′′)
3

)

B The special matrix and dimension-six invariants

As mentioned in the main text, aside from the singular coupling, there exist other

dimension-six invariants capable of producing the special matrix. These fall into two dis-

tinct classes, which we detail below.

(I) The first class is characterized by the fact that it gives constraints which are inde-

pendent of the vacuum values of the familon fields, giving a prediction for the value

of r. For example, we find the monomial arrangement






2ϕ3ϕ
′
3ϕ

′′
3 ±ϕ2ϕ

′
1ϕ

′′
1 ±ϕ1ϕ

′
3ϕ

′′
3

2ϕ1ϕ
′
1ϕ

′′
1 ±ϕ3ϕ

′
2ϕ

′′
2

2ϕ2ϕ
′
2ϕ

′′
2






,

produced by the invariant
[

(Nϕ)3̄±
(ϕ′ϕ′′)3

]

3̄
N . It is capable of producing the spe-

cial matrix, but subject to the constraint

a11a22a33 = ±8a12a13a23.

Unfortunately, with the additional TBM constraints, all such couplings yield (r =

±1/8), which is incompatible with the data.

(II) This class is characterized by their complicated structure, and leads to under-

constrained systems. An example is
[

(Nϕ)3̄+
(Nϕ′)3+

]

3+
ϕ̄, which gives the matrix







2ϕ̄1A23 ϕ̄1A13 + ϕ̄2A23 + 2ϕ3ϕ
′
3ϕ̄3 ϕ̄1A12 + ϕ̄3A23 + 2ϕ2ϕ

′
2ϕ̄2

2ϕ̄2A13 ϕ̄2A12 + ϕ̄3A13 + 2ϕ1ϕ
′
1ϕ̄1

2ϕ̄3A12






,
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written in terms of

Aij = ϕiϕ
′
j + ϕ′

iϕj .

We find two types of particular solutions that can reproduce the special matrix. The

first one is obtained by setting 〈ϕ1〉 = 0, and the familon vacuum structure is then

given by







ϕ1

ϕ2

ϕ3






=







0

1

−λ4






ϕ2,







ϕ′
1

ϕ′
2

ϕ′
3






=







1

−
√
2r
4 (1 + 2

√
2r)λ4

√
2r
4 (1 + 2

√
2r)λ8






ϕ′
1,







ϕ1

ϕ2

ϕ3






=







−
√
2rλ8

−λ4

1






ϕ3.

The second set of solutions have no familon components of zero vacuum value, which

mimics the solution for the singular invariant in the main text. The familon vacuum

structure of this solution is given by







ϕ1

ϕ2

ϕ3






=







1

αλ4

αλ8






ϕ1,







ϕ′
1

ϕ′
2

ϕ′
3






=







1

α′λ4

α′λ8






ϕ′
1,







ϕ1

ϕ2

ϕ3






=







ᾱλ8

λ4

1






ϕ3,

subject to the conditions

1

α
+

1

α′ = 4

(

1− 1

ᾱ

)

, r =
ᾱ2

2(ᾱ− 1)
.

C An exemplar Y
(−1)

A complete description of the neutrino mixing angles in UMNSP,

UMNSP = U†
−1 Useesaw,

requires knowledge of the matrix which diagonalizes Y (−1). Depending on the particular

seesaw mixing scheme, Useesaw, these corrections can be as large as O(λ).
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A particularly intriguing possibility for generating such corrections arises from extend-

ing the program of simultaneously considering family symmetries and ideas from grand uni-

fication. In the main text we have explored taking Y (0) proportional to Y (2/3) and the con-

sequences this form of Y (0) has for the neutrino Majorana matrix. However, GUTs based

on SU(5) also predict that, up to the insertion of Georgi-Jarlskog factors [42], the charged-

lepton and down-quark Dirac matrices are related by a transpose, Y (−1) ∼ Y (−1/3)T .

As a specific example of how such a scheme may work in principle, suppose, as in our

model, that Y (2/3) is diagonal. In this case,

Ud = UCKM =







1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1






. (C.1)

This implies that the down-quark Dirac matrix Y (−1/3) is known up to a unitary right-

handed rotation matrix, V ,
Y (−1/3) = UCKMDd V†. (C.2)

Surprisingly, one may check that for

Dd = mb







−λ4

3

+λ2

3

1






, (C.3)

with GUT scale values [26], λ = 0.227, ρ = 0.22, and η = 0.33, and

V =







cosβ13 0 sinβ13
0 1 0

− sinβ13 0 cosβ13






, β13 = 3◦ ≈ λ2, (C.4)

a suitable Y (−1) can be found. For this form of V , one finds that Y (−1/3) is given by,

Y (2/3) ∼







−1
3λ

4 +Aλ5(ρ− iη) λ3/3 Aλ3(ρ− iη)

Aλ4 + λ5/3 1
3λ

2(1− λ2/2) Aλ2

λ2 −Aλ4/3 1






+O(λ6). (C.5)

Assuming the SU(5) relation Y (−1) ∼ Y (−1/3)T holds, and that the (22) and (23) elements

of Y (−1/3) are generated by a 45 Higgs which gives additional Georgi-Jarlskog factors of

−3 to the (22) and (32) elements of Y (−1), we have,

Y (−1) ∼







−1
3λ

4 +Aλ5(ρ− iη) Aλ4 + λ5/3 λ2

λ3/3 −λ2(1− λ2/2) −Aλ4/3

Aλ3(ρ− iη) −3Aλ2 1






+O(λ6). (C.6)

For 0.72 < A < 0.74, and assuming TBM mixing in Useesaw, one finds that diagonalization

of Y (−1) yields,

30.9◦ < θ12 < 31◦, θ23 = 44.7◦, 8.34◦ < θ13 < 8.50◦, (C.7)

0.00462 <
me

mµ
< 0.00495,

mµ

mτ
= 0.0504, (C.8)
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giving charged-lepton mass ratios in close agreement with their GUT scale values [26], and

reasonable neutrino mixing angles with respect to their global fits [24].

At this stage this is a numerical proof-of-principle. In a future work [41], we hope to

realize such matrices using Z7 ⋊ Z3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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