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Abstract

Background: Although serum cystatin C (sCysC), urinary N-acetyl-β-D-glucosaminidase (uNAG), and urinary
albumin/creatinine ratio (uACR) are clinically available, their optimal combination for acute kidney injury (AKI)
detection and prognosis prediction remains unclear. We aimed to assess the discriminative abilities of these
biomarkers and their possible combinations for AKI detection and intensive care unit (ICU) mortality prediction in
critically ill adults.

Methods: A multicenter, prospective observational study was conducted in mixed medical-surgical ICUs at three
tertiary care hospitals. One thousand eighty-four adult critically ill patients admitted to the ICUs were studied. We
assessed the use of individual biomarkers (sCysC, uNAG, and uACR) measured at ICU admission and their
combinations with regard to AKI detection and prognosis prediction.

Results: AUC-ROCs for sCysC, uNAG, and uACR were calculated for total AKI (0.738, 0.650, and 0.683, respectively),
severe AKI (0.839, 0.706, and 0.771, respectively), and ICU mortality (0.727, 0.793, and 0.777, respectively). The panel
of sCysC plus uNAG detected total and severe AKI with significantly higher accuracy than either individual
biomarkers or the other two panels (uNAG plus uACR or sCysC plus uACR). For detecting total AKI, severe AKI, and
ICU mortality at ICU admission, this panel yielded AUC-ROCs of 0.756, 0.863, and 0.811, respectively; positive
predictive values of 0.71, 0.31, and 0.17, respectively; and negative predictive values of 0.81, 0.97, and 0.98,
respectively. Moreover, this panel significantly contributed to the accuracy of the clinical models for AKI detection
and ICU mortality prediction, as measured by the AUC-ROC, continuous net reclassification index, and incremental
discrimination improvement index. The comparable performance of this panel was further confirmed with
bootstrap internal validation.

Conclusions: The combination of a functional marker (sCysC) and a tubular damage marker (uNAG) revealed
significantly superior discriminative performance for AKI detection and yielded additional prognostic information on
ICU mortality.

Keywords: Acute kidney injury, Renal biomarker, Serum cystatin C, N-acetyl-β-D-glucosaminidase, Urinary albumin/
creatinine ratio, Intensive care unit

* Correspondence: gghccm@163.com
†Equal contributors
1Department of Critical Care Medicine, Guangdong General Hospital,
Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road,
Guangzhou 510080, Guangdong Province, People’s Republic of China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Deng et al. Critical Care  (2017) 21:46 
DOI 10.1186/s13054-017-1626-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81604501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-017-1626-0&domain=pdf
mailto:gghccm@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Acute kidney injury (AKI) is increasingly prevalent [1,
2], and it is associated with adverse outcomes [3–5]. De-
layed diagnosis of AKI impedes timely intervention [6],
and thus early identification of AKI is critical. However,
AKI is a heterogeneous syndrome that represents a com-
plex multifactorial clinical condition. It is speculated that
a single biomarker will be insufficiently sensitive and
specific across the full spectrum of AKI, and combina-
tions of biomarkers with different characteristics (e.g.,
combination of a functional biomarker and a tubular
damage biomarker) may prove more accurate in a com-
plex clinical setting [7–9]. However, the optimal combin-
ation of biomarkers for clinical use remains a challenge,
especially in a heterogeneous population.
Serum cystatin C (sCysC) and urinary albumin/creatinine

ratio (uACR) are glomerular filtration biomarkers for AKI,
whereas urinary N-acetyl-β-D-glucosaminidase (uNAG) is a
tubular damage biomarker [8, 10]. These biomarkers are
clinically available in European, North American, and Asian
centers. CysC, which is produced in all nucleated cells, is
freely filtered in glomeruli and completely absorbed, catab-
olized by proximal tubular cells, and not secreted into the
urine by the tubule [8]. Hence, CysC is considered a better
marker of glomerular filtration rate than serum creatinine
(sCr) [8] and can predict AKI and adverse outcomes [10,
11]. N-acetyl-β-D-glucosaminidase (NAG), which originates
from proximal and distal tubular cells and nonrenal cells, is
released into urine following tubular damage [8, 10]. Be-
cause its large size precludes its glomerular filtration,
uNAG is a quite sensitive marker that reflects renal tubule
damage [12, 13]. It manifested well as an early damage bio-
marker of AKI and could predict poor outcomes [12, 14].
Albumin, a small amount of which can pass through the fil-
tration barrier, is reabsorbed by the proximal tubule nor-
mally [10]. Because increased urinary albumin reflects the
increased permeability of the basal membrane of glomeru-
lar injury [15] and indicates glomerular structure and func-
tion change, it is considered a useful diagnostic tool for
renal disease [10, 16], including AKI [17, 18]. Nevertheless,
the availability of high-quality evidence validating the per-
formance of these biomarkers and their combinations for
AKI detection and prognosis prediction in heterogeneous
cohorts is insufficient. Therefore, we conducted a large,
prospective, multicenter observational study in adult gen-
eral intensive care units (ICUs) to assess the performance
of these individual biomarkers and their possible combina-
tions at ICU admission with respect to AKI detection and
prognosis prediction.

Methods
Study design and participants
The present prospective observational study was con-
ducted in the general ICUs of three tertiary care

hospitals in China. All consecutive patients between Oc-
tober 2014 and February 2016 were eligible for enroll-
ment. The exclusion criteria included age under 18
years, refusal of consent, nephrectomy, end-stage renal
disease (ESRD), renal transplant, preexisting dialysis be-
fore ICU admission, or missing admission data. The out-
come variables were the detection of AKI within 1 week
of ICU enrollment and ICU mortality. The study proto-
col met Strengthening the Reporting of Observational
Studies in Epidemiology [19] and Standards for Report-
ing Diagnostic Accuracy [20] criteria. The study protocol
was approved by the local institutional review board.

Sample and data collection
Blood and urine samples were collected simultaneously
within 1 h after ICU admission. All samples collected
from the participating hospitals were shipped by com-
mercial cold chain transportation and analyzed batched
after collection and storage. All samples were measured
at the central laboratory of the Guangdong General Hos-
pital using a standard protocol within 24 h after collec-
tion. Baseline clinical characteristics were prospectively
collected. sCysC, uNAG, and uACR were measured once
at ICU admission. sCr was measured at ICU admission
and thereafter at least once daily as a part of routine
clinical care during ICU hospitalization. The hourly
urine output from enrollment to ICU discharge was also
recorded. The following clinical variables were evaluated:
age, sex, body mass index (BMI), preexisting clinical
conditions, sepsis, admission type, baseline sCr, baseline
estimated glomerular filtration rate (eGFR), sCr at ICU
admission, Acute Physiology and Chronic Health Evalu-
ation (APACHE) II score, length of ICU stay, length of
hospital stay, renal replacement therapy (RRT) during
ICU stay, ICU mortality, and in-hospital mortality. The
baseline eGFR was estimated by the simplified Modifica-
tion of Diet in Renal Disease formula [21].

Definitions
AKI was diagnosed according to the Kidney Disease: Im-
proving Global Outcomes (KDIGO) criteria for AKI
within 1 week after ICU admission [22] as any of the fol-
lowing: increase in sCr by ≥0.3 mg/dl (≥26.5 μmol/L)
within 48 h, or increase in sCr to ≥1.5 times baseline
within 1 week, or urine output <0.5 ml/kg/h for 6 h.
AKI is staged according to the following KDIGO criteria.
Stage 1 is an increase of sCr to 1.5–1.9 times baseline,
or ≥0.3 mg/dl (≥26.5 μmol/L) increase of sCr, or urine
output <0.5 ml/kg/h for 6–12 h. Stage 2 is an increase of
sCr to 2.0–2.9 times from baseline or urine output <0.5
ml/kg/h for ≥12 h. Stage 3 is a an increase of sCr to
three times baseline, or ≥4.0 mg/dl (≥353.6 μmol/L) in-
crease of sCr, or initiation of RRT, or urine output <0.3
ml/kg/h for ≥24 h or anuria for ≥12 h.
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A baseline creatinine was determined using the follow-
ing rules ranked in descending order of preference as
previously described [23]: (1) the most recent pre-ICU value
between 30 and 365 days before ICU admission (n = 141);
(2) a stable pre-ICU value >365 days for patients aged <40
years (stable defined as within 15% of the lowest ICU meas-
urement) before ICU admission (n= 3); (3) pre-ICU value
>365 days before ICU admission and less than the initial
sCr at ICU admission (n = 35); (4) a pre-ICU value (between
3 and 39 days before ICU admission) less than or equal to
the initial sCr on admission to ICU and not distinctly in
AKI (n= 515); or (5) the lowest sCr upon initial admission
to ICU (n = 113), the last ICU value (n = 156), or the mini-
mum value at follow-up up to 365 days (n = 121). Severe
AKI was defined as KDIGO stage 2 or stage 3 within 1 week
after ICU admission. Established AKI indicated the diagnosis
of AKI at ICU admission. Later-onset AKI was defined as
no AKI diagnosis at ICU admission but reaching the
KDIGO criteria within 1 week after admission. Progressive
AKI was defined as worsening of AKI stage in patients with
established AKI (from stage 1 to either stage 2 or stage 3, or
from stage 2 to stage 3). The diagnosis of sepsis was defined
according to the American College of Chest Physicians/So-
ciety of Critical Care Medicine Consensus Conference Com-
mittee guidelines [24].

Biomarker assays
sCysC and sCr, urinary creatinine, uNAG, and albumin
levels were measured using the UniCel DxC 800 Syn-
chron system (Beckman Coulter, Brea, CA, USA) ac-
cording to the manufacturer’s instructions. The
coefficients of interassay and intraassay variation in
sCysC were <5% and ≤10%, respectively. The coefficients
of interassay and intraassay variation for uNAG were
both ≤10%. The interassay and intraassay coefficients of
variation for urinary albumin were both <10%. Both the
values of uNAG and albumin were normalized to urin-
ary creatinine concentration. The personnel measuring
all the biomarkers were blinded to each patient’s clinical
characteristics. Because the stability of sCysC and uNAG
has already been demonstrated [25–27], urinary albumin
will not degrade significantly with short-term storage
[28, 29]. Preanalysis about the influence of cooling or
freezing of samples was not executed.

Statistical analysis
The SPSS version 13.0 (SPSS, Chicago, IL, USA), R ver-
sion 3.3.1 (R Foundation for Statistical Computing,
Vienna, Austria), and MedCalc version 12.5.0 (MedCalc
Software, Ostend, Belgium) software programs were
used for statistical analysis. Continuous variables were
presented as median (IQR). Categorical variables were
expressed as number (percent). The nonnormally distrib-
uted continuous variables were compared by Wilcoxon

rank-sum test or Kruskal-Wallis test for one-way analysis
of variance. If the Kruskal-Wallis test showed statistical
significance, a post hoc Steel-Dwass test was subsequently
conducted. To compare the categorical variables, the
chi-square test or Fisher’s exact test was used. If the
three biomarkers displayed nonnormal distributions, a
nonparametric Spearman’s test was then used to assess
the correlation.
The ROC curves with their AUCs were calculated.

The comparison of AUCs between the groups was con-
ducted with the method developed by DeLong et al.
[30], and the optimal combination (with highest AUCs)
was included in the subsequent analyses. The sensitivity,
specificity, positive and negative predictive values (PPV
and NPV, respectively), and positive and negative likeli-
hood ratios ([−] LR and [+] LR, respectively) of the bio-
markers were also calculated. The optimal cutoff values
for AKI detection and ICU mortality were defined for
individual biomarkers and their combinations using
Youden’s index [31].
The performance of the optimal panel combined with

the reference clinical model was assessed by AUC, inte-
grated discrimination improvement (IDI) index, and con-
tinuous net reclassification improvement (cNRI) index, as
described previously [32, 33]. We conducted univariate
and multivariate logistic regression to construct the clin-
ical models. The clinical variables with P < 0.10 in univari-
ate analysis were included in multivariate analysis. A
stepwise method was used for variable selection.
The performance of the optimal panel for AKI detec-

tion and ICU mortality prediction was internally vali-
dated by a bootstrap method with 1000 replications [34].
All the tests were two-tailed, and P < 0.05 was consid-
ered statistically significant.

Results
Patient characteristics
Of the 1162 consecutive adult patients screened for in-
clusion in the study, 78 (6.7%) were excluded for the fol-
lowing reasons: refusal to consent (n = 15), nephrectomy
(n = 3), kidney transplant (n = 3), missing admission data
(n = 34), ESRD, or undergoing RRT before ICU admis-
sion (n = 23). Thus, 1084 (93.3%) patients were enrolled
in the analysis. AKI occurred in 326 patients (30.1%).
Patient characteristics are shown in Table 1. Compared

with the non-AKI patients, the patients with AKI were
older and had a higher rate of preexisting clinical condi-
tions, such as diabetes mellitus (DM), hypertension,
chronic kidney disease (CKD), chronic liver disease,
stroke, chronic obstructive pulmonary disease (COPD),
coronary artery disease (CAD), heart failure (HF), and
cancer. Worse renal function was observed in patients
with AKI. Patients with AKI had a higher concentration
of sCr and higher APACHE II scores at ICU admission,
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and they had adverse outcomes. Three hundred twenty-
eight cases (30.3%) were complicated with sepsis at ICU
admission. The incidence of AKI (54.6%) was more fre-
quent in patients with sepsis.

AKI detection by biomarkers measured at ICU admission
Of 326 patients with AKI, 102 had severe AKI. The
ROC curve analysis revealed that the three studied bio-
markers detected AKI with statistical significance
(Table 2). The AUC-ROC values of sCysC for detecting
total and severe AKI were higher than those of uNAG

or uACR. The three biomarkers appeared to be in-
creased along with the severity of AKI (Fig. 1). Interest-
ingly, the biomarker concentrations were significantly
correlated with one another (Additional file 1: Table S1),
with the strongest correlation being between the two
urinary biomarkers.
To improve the performance of these biomarkers in

AKI detection, we developed three possible panels con-
sisting of these biomarkers (sCysC plus uNAG, uNAG
plus uACR, and sCysC plus uACR) (Table 3). sCysC
identified total AKI and severe AKI with high specificity

Table 1 Baseline characteristics and outcomes

Characteristics Non-AKI (n = 758) AKI (n = 326) P value

Demographic variables

Age, years 52.0 (41.0–62.0) 62.1 (47.4–73.0) <0.001

Male sex, n (%) 393 (51.8) 197 (60.4) 0.009

BMI, kg/m2 22.2 (21.6–23.1) 22.4 (21.8–23.3) 0.324

Preexisting clinical conditions

Hypertension, n (%) 117 (15.4) 115 (35.3) <0.001

DM, n (%) 42 (5.5) 51 (15.6) <0.001

CKD, n (%) 16 (2.1) 44 (13.5) <0.001

Chronic liver disease, n (%) 10 (1.3) 19 (5.8) <0.001

Stroke, n (%) 80 (10.6) 73 (22.4) <0.001

COPD, n (%) 16 (2.1) 14 (4.3) 0.044

CAD, n (%) 20 (2.6) 32 (9.8) <0.001

HF, n (%) 13 (1.7) 30 (9.2) <0.001

Cancer, n (%) 79 (10.4) 52 (16.0) 0.01

Thyroid disease, n (%) 23 (3.0) 14 (4.3) 0.295

Sepsis, n (%) 149 (19.7) 179 (54.9) <0.001

Admission type, n (%) <0.001

Elective surgical, n (%) 555 (73.2) 110 (33.7)

Emergency surgical, n (%) 88 (11.6) 68 (20.9)

Medical, n (%) 115 (15.2) 148 (45.4)

Baseline serum creatinine, mg/dl 0.69 (0.58–0.83) 0.74 (0.57–0.95) 0.018

Baseline eGFR, ml/minute/1.73 m2 110.20 (94.40–133.60) 105.60 (77.15–141.70) 0.033

Serum creatinine at admission, mg/dl 0.77 (0.64–0.92) 1.07 (0.82–1.45) <0.001

APACHE II score 10 (8–14) 17 (11–26) <0.001

UP, ml/kg/h 1.99 (1.48–2.62) 1.76 (1.08–2.46) <0.001

Outcomes

Length of ICU stay, days 3 (2–4) 5 (3–10) <0.001

Length of hospital stay, days 12 (8–16) 14 (9–23) <0.001

RRT during ICU stay, n (%) 4 (0.5) 20 (6.1) <0.001

ICU mortality, n (%) 20 (2.6) 46 (14.1) <0.001

In-hospital mortality, n (%) 28 (3.7) 51 (15.6) <0.001

Abbreviations: AKI Acute kidney injury; BMI Body mass index; DM Diabetes mellitus; CAD, Coronary artery disease; COPD, Chronic obstructive pulmonary disease;
HF, Heart failure; CKD, Chronic kidney disease, defined as baseline estimated glomerular filtration rate <60 ml/minute/1.73 m2; eGFR, Estimated glomerular
filtration rate; APACHE, Acute Physiology and Chronic Health Evaluation; UP, Urine production first 24 h after admission; ICU, Intensive care unit; RRT, Renal
replacement therapy
The nonnormally distributed continuous variables are expressed as median (25th percentile to 75th percentile IQR). Categorical variables are expressed as n (%)
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but limited sensitivity. uNAG detected total AKI and se-
vere AKI with relatively high sensitivity but low specifi-
city. uACR detected total AKI and severe AKI with a
sensitivity of 54% and 72% and a specificity of 76% and
74%, respectively. The AUC-ROCs for total AKI and se-
vere AKI demonstrated better performance by the panel
of sCysC plus uNAG than by either the individual bio-
markers or the other two panels (Table 3 and Fig. 2).
Thus, the panel of sCysC plus uNAG was selected for
the subsequent analyses. Of 326 patients with AKI, 120
patients were diagnosed with later-onset AKI, whereas
the other 206 patients were diagnosed with established
AKI (Additional file 2: Table S2). Among the 206 pa-
tients with established AKI, 29 had progressive AKI.
The three biomarkers demonstrated poor to moderate
AUC-ROC values for predicting later-onset AKI and

progressive AKI. The panel of sCysC plus uNAG had
the highest AUC-ROC value for the prediction of later-
onset AKI (Additional file 3: Table S3). The AUC-ROC
values of this panel for later-onset AKI and severe later-
onset AKI were 0.667 and 0.837, respectively. However,
this panel’s AUC-ROC value for progressive AKI was
0.756, which was not superior to that of sCysC alone
(Additional file 4: Table S4).

Biomarkers in septic AKI
We further evaluated the performance of the three bio-
markers in patients with sepsis (Additional file 5: Table
S5). sCysC, uNAG, and uACR were able to discriminate
AKI in patients with sepsis. Moreover, sCysC had signifi-
cant diagnostic superiority over the other biomarkers for
detecting septic AKI and severe septic AKI. The AUC-ROC

Table 2 Three biomarkers for total AKI and severe AKI detection

Biomarkers Non-AKIa (n = 758) Total AKIa (n = 326) AUC-ROCb (95% CI)

Severe AKIa (n = 102)

sCysC (mg/L) 0.79 (0.62–0.98) 1.13 (0.80–1.57) 0.738 (0.703–0.772)c,d

1.49 (1.10–2.16) 0.839 (0.798–0.880)c,d

uNAG (U/g Cre) 22.63 (13.21–37.93) 35.28 (20.36–66.53) 0.650 (0.614–0.686)e

46.73 (25.64–75.07) 0.706 (0.651–0.761)d,e

uACR (mg/g Cre) 23.90 (11.54–60.30) 73.65 (22.41–264.90) 0.683 (0.648–0.718)e

187.82 (54.75–428.71) 0.771 (0.726–0.817)c,e

Abbreviations: AKI Acute kidney injury, sCysC, Serum cystatin C, uNAG Urinary N-acetyl-β-D-glucosaminidase, Cre Creatinine concentration, uACR Urinary
albumin/creatinine ratio
a The nonnormally distributed continuous variables are expressed as median (25th percentile to 75th percentile [interquartile range])
b Values are presented as AUC-ROC (95% confidence interval)
c P < 0.05 vs. uNAG
d P < 0.05 vs. uACR
e P < 0.05 vs. sCysC

Fig. 1 Admission concentrations of the three biomarkers, stratified by AKI severity. a sCysC. b uNAG. c uACR. Concentrations of the three biomarkers
are shown in each AKI severity category (non-AKI [n = 758], mild AKI [stage 1; n = 224], severe AKI [stage 2 and stage 3; n = 102]). * P < 0.05. AKI Acute
kidney injury, Cre Creatinine, sCysC Serum cystatin C, uNAG Urinary N-acetyl-β-D-glucosaminidase, uACR Urinary albumin/creatinine ratio
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Table 3 Detective characteristics of the three biomarkers and their combinations for total acute kidney injury and severe acute
kidney injury

Logistic regression model AUC-ROCa Cutoffb Sensitivity Specificity (+) LR (−) LR PPV NPV

Total AKI (n = 326)

Univariate models

sCysC 0.738 (0.703–0.772) 1.26 mg/L 0.44 0.95 7.92 0.59 0.77 0.80

uNAG 0.650 (0.614–0.686) 27.14 U/g Cre 0.64 0.60 1.59 0.60 0.41 0.80

uACR 0.683 (0.648–0.718) 61.14 mg/g Cre 0.54 0.76 2.20 0.61 0.49 0.79

Multivariate models

sCysC + uNAG 0.756 (0.723–0.789)c 0.43d 0.49 0.91 5.69 0.56 0.71 0.81

uNAG + uACR 0.661 (0.626–0.697)e 0.27d 0.64 0.62 1.68 0.58 0.42 0.80

sCysC + uACR 0.740 (0.706–0.774)f 0.45d 0.45 0.94 7.66 0.59 0.77 0.80

Severe AKI (n = 102)

Univariate models

sCysC 0.839 (0.798–0.880) 1.25 mg/L 0.67 0.87 5.28 0.38 0.35 0.96

uNAG 0.706 (0.651–0.761) 32.80 U/g Cre 0.72 0.65 2.03 0.44 0.17 0.96

uACR 0.771 (0.726–0.817) 71.97 mg/g Cre 0.72 0.74 2.77 0.38 0.22 0.96

Multivariate models

sCysC + uNAG 0.863 (0.827–0.900)c 0.09d 0.76 0.83 4.39 0.28 0.31 0.97

uNAG + uACR 0.715 (0.661–0.768)g 0.08d 0.74 0.64 2.06 0.41 0.18 0.96

sCysC + uACR 0.838 (0.797–0.879)f 0.08d 0.78 0.75 3.16 0.29 0.25 0.97

Abbreviations: (+) LR Positive likelihood ratio, (−) LR negative likelihood ratio, PPV Positive predictive value, NPV Negative predictive value, sCysC Serum cystatin C,
uNAG Urinary N-acetyl-β-D-glucosaminidase, Cre Creatinine concentration, uACR Urinary albumin/creatinine ratio
a Values are presented as AUC-ROC (95% CI)
b Ideal cutoff value according to Youden’s index
c P < 0.05 vs. sCysC, uNAG, uACR, uNAG + uACR, and sCysC + uACR
d Cutoff points of the biomarker panels were the predicted probabilities generated from the multiple logistic regression model
e P < 0.05 vs. sCysC, uNAG, sCysC + uACR, and sCysC + uNAG
f P < 0.05 vs. uNAG, uACR, uNAG + uACR, and sCysC + uNAG
g P < 0.05 vs. sCysC, uNAG, uACR, sCysC + uACR, and sCysC + uNAG

Fig. 2 ROC analysis of three biomarkers and their combinations for AKI detection. Among 1084 adult critically ill patients, 326 (30.07%) were
diagnosed with AKI (a total AKI). Of 326 patients with AKI, 102 patients were diagnosed with severe AKI (b severe AKI). AKI Acute kidney injury,
ICU Intensive care unit, sCysC Serum cystatin C, uNAG Urinary N-acetyl-β-D-glucosaminidase, uACR Urinary albumin/creatinine ratio
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values of sCysC for detecting septic AKI and severe septic
AKI were 0.784 and 0.812, respectively. In contrast, uNAG
showed poor AUC-ROC values for detecting septic AKI and
severe septic AKI. However, none of the biomarker combi-
nations demonstrated adequate predictive characteristics
when compared with sCysC alone for detecting septic AKI
(Additional file 6: Table S6). It is noteworthy that the median
value of uNAG in patients with sepsis who did not develop
AKI was higher than that in patients with AKI of entire co-
hort (Table 2 and Additional file 5: Table S5). Among these
patients with sepsis without AKI, 1 exhibited a positive urine
culture with Staphylococcus aureus, 1 patient had a positive
result for renal abscess with S. aureus, 1 had a positive result
for urine culture with Enterococcus faecium, 1 had a positive
urine culture with Candida tropicalis, 1 had a positive urine
culture with Candida glabrata, and 15 showed significantly
high white blood cell counts in the urine sediment without
a positive culture under antibiotic treatment. These 20 pa-
tients’median uNAG value on admission was 37.93 U/g Cre
(24.52–51.62), with the highest value being 110.70 U/g Cre
and the lowest value being 10.79 U/g Cre.

Mortality and RRT prediction by biomarkers measured at
ICU admission
In the entire cohort, no significant differences be-
tween sCysC, uNAG, uACR for predicting RRT dur-
ing ICU stay, ICU mortality, or in-hospital mortality
were detected (Additional file 7: Table S7). The pre-
dictive abilities of biomarker combinations with re-
spect to ICU mortality were assessed (Table 4 and
Fig. 3). The panel of sCysC plus uNAG had the high-
est AUC of those of the individual biomarkers or the
other two panels. The AUC-ROC of sCysC improved
to 0.811 with the addition of uNAG. Thus, the panel
of sCysC plus uNAG for ICU mortality prediction
was selected for the subsequent analyses.

The performance of sCysC plus uNAG was further con-
firmed by bootstrap internal validation, in which the aver-
age AUC-ROC values for detecting total AKI, severe AKI,
and ICU mortality were 0.757 (95% CI 0.724–0.789), 0.863
(95% CI 0.827–0.899), and 0.812 (95% CI 0.758–0.865),
respectively.

Relative contribution of the panel of sCysC plus uNAG to
the clinical model for AKI detection and ICU mortality
prediction
To determine the added contribution of this panel to the
clinical models for AKI detection and ICU mortality, lo-
gistic regression analysis was performed. Potential avail-
able variables at ICU admission for AKI detection
included sex; age; BMI; sCr at admission; baseline eGFR;
sepsis; admission type; and preexisting clinical condi-
tions, including DM, hypertension, chronic liver disease,
stroke, COPD, CAD, HF, cancer, and thyroid disease.
The potential predictors for ICU mortality prediction in-
cluded the above-mentioned variables and APACHE II
score. The model for total AKI detection included sex,
sCr at admission, sepsis, admission type, and chronic
liver disease. The model for severe AKI detection con-
tained sCr at admission, sepsis, and admission type. The
model for ICU mortality prediction was composed of
APACHE II score and admission type. After the models
were constructed (Additional file 8: Table S8), the panel
of sCysC plus uNAG was added to the above-described
models to assess the improvement in the discriminative
ability. Adding this panel increased the total AKI and
ICU mortality model’s AUC-ROC values significantly.
However, the ROC curve analysis demonstrated that the
addition of this panel did not yield statistically significant
improvement from the model for detecting severe AKI.
Moreover, adding this panel to the clinical models for

Table 4 Predictive characteristics of admission biomarkers and their combinations for intensive care unit mortality

Logistic regression model AUC-ROCa Cutoffb Sensitivity Specificity (+) LR (−) LR PPV NPV

Univariate models

sCysC 0.727 (0.660–0.793) 1.12 mg/L 0.62 0.77 2.67 0.49 0.15 0.97

uNAG 0.793 (0.743–0.842) 37.75 U/g Cre 0.82 0.71 2.83 0.26 0.16 0.98

uACR 0.777 (0.721–0.832) 63.66 mg/g Cre 0.77 0.70 2.61 0.32 0.15 0.98

Multivariate models

sCysC+ uNAG 0.811 (0.760–0.863)c,d 0.05e 0.80 0.75 3.17 0.26 0.17 0.98

uNAG + uACR 0.809 (0.763–0.856)f 0.05e 0.88 0.70 2.97 0.17 0.16 0.99

sCysC + uACR 0.756 (0.696–0.816) 0.06e 0.59 0.82 3.27 0.50 0.18 0.97

Abbreviations: (+) LR Positive likelihood ratio, (−) LR Negative likelihood ratio, PPV Positive predictive value, NPV Negative predictive value, sCysC Serum cystatin C,
uNAG Urinary N-acetyl-β-D-glucosaminidase, Cre Creatinine concentration, uACR Urinary albumin/creatinine ratio
a Values are presented as AUC-ROC (95% CI). Among 1084 adult critically ill patients, 66 patients died in the intensive care unit
b Ideal cutoff value according to Youden’s index
c P < 0.05 vs. sCysC
d P < 0.05 vs. sCysC + uACR
e Cutoff points of the biomarker panels were the predicted probabilities generated from the multiple logistic regression model

Deng et al. Critical Care  (2017) 21:46 Page 7 of 11



detecting AKI or ICU mortality improved their predict-
ive abilities, as measured by the cNRI and IDI indices.

Discussion
The main finding of the present multicenter study was
that the panel of sCysC plus uNAG showed superior dis-
criminative performance in AKI detection when com-
pared with either the individual biomarkers or the other
two panels, and it also provided critical prognostic infor-
mation. To our knowledge, the present study demon-
strates for the first time that a panel of sCysC plus
uNAG yields greater predictive abilities for AKI in an
adult general ICU cohort.
Several potential serum and urine biomarkers of kid-

ney injury have been identified, such as neutrophil
gelatinase-associated lipocalin (NGAL) [35, 36], kidney
injury molecule 1 [37], interleukin 18 [38], NAG [14],
CysC [39], urinary albumin [40], tissue inhibitor of me-
talloproteinase 2, and insulin-like growth factor-binding
protein 7 [41]. Among them, sCysC, uNAG, and uACR
are clinically available in China and other countries.
However, most studies so far have been focused on their
individual abilities to detect AKI in ICU patients and
have yielded inconsistent performance [42–44], and the
predictive abilities of their combinations in adult general
ICU patients have not yet been determined.
Because AKI is a heterogeneous syndrome, a single

biomarker is not sensitive or specific enough to reflect
the multiple pathophysiologies of AKI [12]. Promisingly,
the Acute Dialysis Quality Initiative (ADQI) working

group recommended that a reformulation of the diag-
nostic approach for AKI include not only the markers of
function but also markers of kidney damage, without the
need for changes in kidney function [9]. It is reasonable
that a combination of functional and tubular damage
biomarkers for AKI, which reflects different underlying
pathological processes in the generation of AKI, may be
superior to individual biomarkers alone. Researchers in
several studies have investigated different combinations
of biomarkers for predicting AKI, and they reported im-
proved predictive performance for the various combina-
tions they used [42, 45–47]. Our findings are consistent
with those studies. In the present cohort, the combin-
ation of sCysC and uNAG at ICU admission was an ad-
equate predictor of AKI compared with either the
individual biomarkers or the other two panels.
CysC is a glomerular function marker and can predict

AKI and adverse outcomes [10, 11]. However, a wide
range of its predictive accuracy for AKI and severe out-
comes has been found [26, 43, 48]. In our study, sCysC
demonstrated significantly higher AUC-ROC values for
detecting AKI than those of uNAG or uACR. Moreover,
the specificity of sCysC for AKI detection or ICU mor-
tality prediction was much greater than that of uNAG or
uACR, whereas its sensitivity was limited. Urinary albu-
min is another functional biomarker for renal function
[10]. The use of uACR as a biomarker for AKI was
shown in recent studies [15, 40]. However, the ability of
uACR in predicting AKI also varied across investigations
[15, 40, 43, 44]. In our cohort, uACR demonstrated poor
to moderate AUC-ROC values for AKI detection. uNAG
manifested well as an early damage biomarker of AKI
and also could predict poor outcomes [12, 14]. Although
NAG is sensitive in reflecting renal tubule damage, its
specificity for AKI is limited [12, 43]. Furthermore, its
predictive abilities for AKI and outcomes also differed
across various published studies [10, 43]. In the present
study, uNAG showed poor to moderate AUC-ROC
values for AKI detection. Moreover, its sensitivity for
AKI detection and ICU mortality prediction was higher
than its specificity.
In this study, sCysC served as a functional biomarker

with high specificity for AKI detection and prognosis
prediction, and uNAG served as a tubular damage bio-
marker with relatively higher sensitivity than its specifi-
city. The combination of sCysC and uNAG yielded
greater diagnostic performance in detecting AKI and
predicting adverse outcome. This combination’s super-
iority may be attributed to the fact that the combination,
consisting of a functional biomarker with high specificity
and a tubular damage biomarker with high sensitivity,
reflects different damaging mechanisms of the nephron.
Furthermore, the specimens for this panel included
serum and urine samples. The urinary biomarkers may

Fig. 3 ROC analysis of the three biomarkers and their combinations
for ICU mortality. Among 1084 adult critically ill patients, 66 patients
died in the ICU. ICU Intensive care unit, sCysC Serum cystatin C,
uNAG Urinary N-acetyl-β-D-glucosaminidase, uACR Urinary
albumin/creatinine ratio
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potentially be more sensitive to intrinsic histological dam-
age, and serum levels of biomarkers may be more sensitive
to changes in clearance [43]. The present study indicated
that a combination of different characteristics and various
sources of specimens (serum and urine) may be a reason-
able strategy to provide a better biomarker panel for AKI
diagnosis and prognosis in complicated clinical settings.
These findings are consistent with those of a previous study
in which investigators reported that a panel consisting of a
functional biomarker (plasma CysC) plus tubular damage
biomarker (urinary NGAL) improved the predictive ability
for discrete characteristics of AKI in cardiac surgery pa-
tients [47]. On one hand, our findings add to the evidence
that a combination of biomarkers with different sensitivity
and specificity improves diagnostic performance [45]. On
the other hand, the panel of uNAG plus uACR and the
panel of sCysC plus uACR in this cohort failed to improve
diagnostic performance substantially. One potential explan-
ation is that the former panel included the same source of
specimens, and the latter panel included two functional
biomarkers that are clustered together, indicating glomeru-
lar function, and share the same mechanism [49]. The con-
sequence of our investigation may be another proof and
appending of more evidence to such a study domain. How-
ever, we found poor performance of uNAG and lack of su-
periority of the combination (sCysC plus uNAG) versus
sCysC for detecting septic AKI. One possible explanation is
that uNAG level increased in patients with urinary tract in-
fection, regardless of AKI complication. In addition, signifi-
cantly elevated concentration of uNAG may be associated
with sepsis because uNAG in the patients with sepsis com-
plicated with AKI showed the highest values.
Our study has limitations. First, we measured these

three biomarkers only once at ICU admission. As ADQI
cannot recommend a serial testing schedule [9], it is not
practical and cost-effective for collecting and measuring
a series of samples at frequent time points. We speculate
that our conclusions are not debilitated by this limita-
tion. Second, only 58 patients with CKD were enrolled,
and thus we could not stratify our cohort according
to the baseline eGFR. Therefore, future studies should
be conducted in this subgroup. Last, the internal and
external validity of this study should be noted because
the timing, etiology, and amount of renal impact can-
not be exactly known, and patients with established
AKI or undergoing surgery dominated in the present
heterogeneous cohort, which may blur the accuracy
for AKI detection.

Conclusions
The present study shows that the combination of a func-
tional marker (sCysC) and a tubular damage marker
(uNAG) at ICU admission had significantly better discrim-
inative performance for AKI detection than either the

individual biomarkers or the other two panels, and that
combining this panel with a clinical model added significant
value for AKI detection. Moreover, this panel also signifi-
cantly contributed to the accuracy of the clinical model for
ICU mortality prediction. This study was conducted in gen-
eral adult ICUs with a heterogeneous cohort. Thus, our
findings could have significant clinical implications for ac-
tual heterogeneous ICU patients at risk for AKI.

Key messages

� The clinically available renal biomarkers (sCysC,
uNAG, and uACR) can detect AKI and ICU
mortality in critically ill patients.

� The panel of sCysC plus uNAG at ICU admission
showed superior discriminative performance in AKI
detection when compared with either the individual
biomarkers or the other two panels, and also provided
additional prognostic information on ICU mortality.
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