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Abstract: We consider SUSY-like missing energy events at hadron colliders and criti-

cally examine the common assumption that the missing energy is the result of two iden-

tical missing particles. In order to experimentally test this hypothesis, we generalize the

subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY

decay chains terminate in different “children” particles. In this more general approach,

the endpoint MT2(max) of the MT2 distribution now gives the mass M̃p(M̃
(a)
c , M̃

(b)
c ) of the

parent particles as a function of two input children masses M̃
(a)
c and M̃

(b)
c . We propose

two methods for an independent determination of the individual children masses M
(a)
c and

M
(b)
c . First, in the presence of upstream transverse momentum PUTM the corresponding

function M̃p(M̃
(a)
c , M̃

(b)
c , PUTM) is independent of PUTM at precisely the right values of

the children masses. Second, the previously discussed MT2 “kink” is now generalized to

a “ridge” on the 2-dimensional surface M̃p(M̃
(a)
c , M̃

(b)
c ). As we show in several examples,

quite often there is a special point along that ridge which marks the true values of the

children masses. Our results allow collider experiments to probe a multi-component dark

matter sector directly and without any theoretical prejudice.
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1 Introduction

A general expectation in high energy physics today is that physics beyond the standard

model (BSM) should emerge at the TeV scale in order to stabilize the hierarchy between

the Planck and electroweak scales. Further evidence in support of this belief is provided

by the dark matter problem of astro-particle physics, which can be quite naturally solved

by postulating the existence of a new, weakly-interacting dark matter particle with a mass

in the TeV range. Such dark matter particles are naturally present in the most popular

BSM scenarios such as supersymmetry [1], extra dimensions [2–4], little Higgs theory [5, 6]

etc. They will be produced in the upcoming high-energy collisions at the Large Hadron

Collider (LHC) at CERN, which offers an exciting opportunity to study dark matter in

a high-energy lab. Since the dark matter particles are weakly interacting, they do not

leave any deposits inside the detector and can only manifest themselves in the form of

missing energy. Recently, there has been a lot of theoretical effort directed at testing the

dark matter hypothesis at the LHC [7–16] and the future International Linear Collider

(ILC) [7, 9–11, 17–20]. Unfortunately, most of these studies have been performed in some

very model-dependent as well as very complex setup.1 In the literature, a typical collider

study of dark matter most often starts with the assumption of a specific model with a

dark matter candidate (usually supersymmetry with its myriad of parameters) and then

investigates the model’s predictions for the expected rates at the LHC in one or several

missing energy channels. Rarely, if ever, has the question been posed in reverse: what

does the observation of a missing energy signal at the LHC tell us about the dark matter

particle and its properties in a generic and model-independent way [21].

1.1 Probing the dark matter sector at colliders

Naturally, the most pertinent question after the discovery of any BSM missing energy sig-

nal at the LHC is simply whether the new signal is indeed due to the production of new

massive particles, or whether it is just an enhancement in the production of SM neutri-

nos [21]. In principle, there are two handles that can be used in addressing this question.

In order to prove dark matter production, one can measure the mass of the missing particle

and show that it is different (heavier) from the SM neutrino masses. Alternatively, one

can try to measure the spin of the missing particle and show that it is different from 1/2

(the spin of the neutrino). While there is a large body of recent work on spin measure-

ments in missing energy events [22–48], once again very few of those methods are model-

independent2 [45, 47]. Furthermore, in all considered examples in the literature the spin

measurement appears to be very difficult. Therefore, in this paper we shall concentrate on

the question of measuring the mass(es) of the particles responsible for the missing energy.

In doing so, we are motivated by two reasons. First, previous experience indicates that the

mass question will be answered long before any spin measurements, and second, many of

the spin determination methods require prior knowledge of the mass spectrum anyway.

1Some notable exceptions are the studies in refs. [7, 8].
2In the sense that the method does not rely on an experimentally unverified hypothesis about the chirality

of the fermion couplings and the size of the mixing angles of the new particles.
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The difficulty in measuring the mass of the dark matter particle at a hadron collider

like the Tevatron or the LHC is widely appreciated and has generated a lot of recent

activity [49–103]. The main problem can be understood as follows. In a typical BSM

dark matter scenario, the cosmological longevity of the dark matter particle is ensured by

some new symmetry3 under which the SM particles are singlets. At the same time, there

are additional particles in the spectrum which are charged under the new symmetry. If

the lightest one among those is electrically and color neutral, it is a potential dark matter

candidate, whose lifetime is protected by the new symmetry. With any such setup, it is clear

that single production of dark matter particles at colliders is forbidden by the symmetry.

Therefore, each event has at least two missing particles, whose energies and momenta are

unknown. As a rule, it is typically impossible to fully reconstruct the kinematics of such

events and observe the mass of the missing particle directly as an invariant mass peak.4

Consequently, one has to resort to various indirect methods of extracting the mass of the

dark matter particle.

Unfortunately, most5 existing studies in the literature have explicitly or implicitly

made the following two assumptions:

• Single dark matter component. A common assumption throughout the collider phe-

nomenology literature is that colliders are probing only one dark matter species at

a time, i.e. that the missing energy signal at colliders is due to the production of

one and only one type of dark matter particles. Of course, there is no astrophysical

evidence that the dark matter is made up of a single particle species: it may very well

be that the dark matter world has a rich structure, just like ours [104]. Consequently,

if there exist several types of dark matter particles, each contributing some fraction

to the total relic density, a priori there is no reason why they cannot all be produced

in high energy collisions. Theoretical models with multiple dark matter candidates

have also been proposed [105–113].

• Identical missing particles in each event. A separate assumption, common to most

previous studies, is that the two missing particles in each event are identical. This

assumption could in principle be violated as well, even if the single dark matter

component hypothesis is true. The point is that one of the missing particles in the

event may not be a dark matter particle, but simply some heavier cousin which decays

invisibly. An invisibly decaying heavy neutralino (χ̃0
i → νν̄χ̃0

1 with i > 1) and an

invisibly decaying sneutrino (ν̃ → νχ̃0
1) are two such examples from supersymmetry.

As far as the event kinematics is concerned, the mass of the heavier cousin is a relevant

parameter and approximating it with the mass of the dark matter particle will simply

give nonsensical results. Another relevant example is provided by models in which

the SUSY cascade may terminate in any one of several light neutral particles [114].

3Some popular examples are: R-parity in supersymmetry, KK parity in Universal Extra Dimensions, T -

parity in Little Higgs models, Z-parity in warped extra dimensions, U -parity in extended gauge theories, etc.
4For studies attempting full event reconstruction in long cascade chains, see refs. [63, 75, 89, 93, 102].
5To our knowledge, the only exception is the discussion in ref. [97] and the previous unpublished work

in [78, 96].
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Given our utter ignorance about the structure of the dark matter sector, in this pa-

per we set out to develop the necessary formalism for carrying out missing energy studies

at hadron colliders in a very general and model-independent way, without relying on any

assumptions about the nature of the missing particles. In particular, we shall not assume

that the two missing particles in each event are the same. We shall also allow for the simul-

taneous production of several dark matter species, or alternatively, for the production of

a dark matter candidate in association with a heavier, invisibly decaying particle. Under

these very general circumstances, we shall try to develop a method for measuring the indi-

vidual masses of all relevant particles - the various missing particles which are responsible

for the missing energy, as well as their parents which were originally produced in the event.

1.2 Generalizing MT2 to asymmetric event topologies

In general, by now there is a wide variety of techniques available for mass measurements

in SUSY-like missing energy events. Such events are characterized by the pair production

of two new particles, each of which undergoes a sequence of cascade decays ending up in

a particle which is invisible in the detector. Each technique has its own advantages and

disadvantages.6 For our purposes, we chose to revamp the method of the Cambridge MT2

variable [50] and adapt it to the more general case of an asymmetric event topology shown

in figure 1. Consider the inclusive production of two identical7 parents of mass Mp as

shown in figure 1. The parent particles may be accompanied by any number of “upstream”

objects, such as jets from initial state radiation [66, 67, 80], or visible decay products of

even heavier (grandparent) particles [86]. The exact origin and nature of the upstream

objects will be of no particular importance to us, and the only information about them

that we shall use will be their total transverse momentum ~PUTM. In turn, each parent

particle initiates a decay chain (shown in red) which produces a certain number n(λ) of

Standard Model (SM) particles (shown in gray) and an intermediate “child” particle of

mass M
(λ)
c . Throughout this paper we shall use the index λ to classify various objects as

belonging to the upper (λ = a) or lower (λ = b) branch in figure 1. The child particle

may or may not be a dark matter candidate: in general, it may decay further as shown

by the dashed lines in figure 1. We shall apply the “subsystem” MT2 concept [77, 86]

to the subsystem within the blue rectangular frame. The SM particles from each branch

within the subsystem form a composite particle of known8 transverse momentum ~p
(λ)

T and

invariant mass m(λ). Since the children masses M
(a)
c and M

(b)
c are a priori unknown, the

subsystem MT2 will be defined in terms of two “test” masses M̃
(a)
c and M̃

(b)
c . In figure 1,

~q
(λ)

T are the trial transverse momenta of the two children. The individual momenta ~q
(λ)

T

are also a priori unknown, but they are constrained by transverse momentum conservation:

~q
(a)

T + ~q
(b)

T ≡ ~Qtot = −(~p
(a)

T + ~p
(b)

T + ~PUTM). (1.1)

6For a comparative review of the three main techniques, see [86].
7In principle, the assumption of identical parents can also be relaxed, by a suitable generalization of the

MT2 variable, in which the mass ratio of the two parents is treated as an additional input parameter [97].
8We assume that there are no neutrinos among the SM decay products in each branch.
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Figure 1. The generic event topology under consideration in this paper. We consider the inclusive

pair-production of two “parent” particles with identical masses Mp. The parents may be accom-

panied by “upstream” objects, e.g. jets from initial state radiation, visible decay products of even

heavier particles, etc. The transverse momentum of all upstream objects is measured and denoted

by ~PUTM. In turn, each parent particle initiates a decay chain (shown in red) which produces a

certain number n(λ) of SM particles (shown in gray) and an intermediate “child” particle of mass

M
(λ)
c , where λ = a (λ = b) for the branch above (below). In general, the child particle does

not have to be the dark matter candidate, and may decay further as shown by the dashed lines.

The MT2 variable is defined for the subsystem inside the blue box and is defined in terms of two

arbitrary children “test” masses M̃
(a)
c and M̃

(b)
c . The n(λ) SM particles from each branch form a

composite particle of transverse momentum ~p
(λ)

T and invariant mass m(λ), correspondingly. The

trial transverse momenta ~q
(λ)

T of the children obey the transverse momentum conservation relation

shown inside the green box. In general, the number n(λ), as well as the type of SM decay products

in each branch do not have to be the same.

Given this very general setup, in section 3 we shall consider a generalization9 of the

usual MT2 variable which can apply to the asymmetric event topology of figure 1. There

will be two different aspects of the asymmetry:

• First and foremost, we shall avoid the common assumption that the two children

have the same mass. This will be important for two reasons. On the one hand, it

will allow us to study events in which there are indeed two different types of missing

particles. We shall give several such examples in the subsequent sections. More

importantly, the endpoint of the asymmetric MT2 variable will allow us to measure

9The possibility of applying the MT2 variable to an event topology with different children was previously

mentioned in refs. [96, 97].
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the two children masses separately. Therefore, even when the events contain identical

missing particles, as is usually assumed throughout the literature, one would be able

to establish this fact experimentally from the data, instead of relying on an ad hoc

theoretical assumption.

• As can be seen from figure 1, in general, the number as well as the types of SM decay

products in each branch may be different as well. Once we allow for the children to

be different, and given the fact that we start from identical parents, the two branches

of the subsystem will naturally involve different sets of SM particles.

In what follows, when referring to the more general MT2 variable defined in section 3, we

shall interchangeably use the terms “asymmetric” or “generalized” MT2. In contrast, we

shall use the term “symmetric” when referring to the more conventional MT2 definition

with identical children.

The traditional MT2 approach assumes that the children have a common test mass

M̃c ≡ M̃
(a)
c = M̃

(b)
c and then proceeds to find one functional relation between the true

child mass Mc and the true parent mass Mp as follows [50]. Construct several MT2 distri-

butions for different input values of the test children mass M̃c and then read off their upper

kinematic endpoints MT2(max)(M̃c). These endpoint measurements are then interpreted as

an output parent mass M̃p, which is a function of the input test mass M̃c:

M̃p(M̃c) ≡ MT2(max)(M̃c) . (1.2)

The importance of this functional relation is that it is automatically satisfied for the true

values Mp and Mc of the parent and child masses:

Mp = MT2(max)(Mc). (1.3)

In other words, if we could somehow guess the correct value Mc of the child mass, the

function (1.2) will provide the correct value Mp of the parent mass. However, since the

true child mass Mc is a priori unknown, the individual masses Mp and Mc still remain

undetermined and must be extracted by some other means.

At this point, it may seem that by considering the asymmetric MT2 variable with non-

identical children particles, we have regressed to some extent. Indeed, we are introducing

an additional degree of freedom in eq. (1.2), which now reads

M̃p(M̃
(a)
c , M̃ (b)

c ) ≡ MT2(max)(M̃
(a)
c , M̃ (b)

c ) . (1.4)

The standard MT2 endpoint method will still allow us to find the parent mass M̃p, but now

it is a function of two input parameters M̃
(a)
c and M̃

(b)
c which are completely unknown. Of

course, if one knew the correct values of the two children masses M
(a)
c and M

(b)
c entering

eq. (1.4), the true parent mass Mp will be given in a manner analogous to eq. (1.3):

Mp = MT2(max)(M
(a)
c ,M (b)

c ). (1.5)

Our main result in this paper is that in spite of the apparent remaining arbitrariness

in eq. (1.4), one can nevertheless uniquely determine all three masses Mp, M
(a)
c and M

(b)
c ,
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just by studying the behavior of the measured function M̃p(M̃
(a)
c , M̃

(b)
c ). More importantly,

this determination can actually be done in two different ways! Our first method is simply a

generalization of the observation made in refs. [65–68, 86] that under certain circumstances

(varying m(λ) or nonvanishing upstream momentum PUTM), the function (1.2) develops a

“kink” precisely at the correct value Mc of the child mass:
(

∂M̃p(M̃c)

∂M̃c

)

M̃c+ǫ

−
(

∂M̃p(M̃c)

∂M̃c

)

M̃c−ǫ

{

= 0, if M̃c 6= Mc,

6= 0, if M̃c = Mc.
(1.6)

In other words, the function (1.2) is continuous, but not differentiable at the point

M̃c = Mc. In the asymmetric MT2 case, we find that the function (1.4) is similarly non-

differentiable at a set of points {(M̃ (a)
c , M̃

(b)
c )}, so that the kink of eq. (1.6) is generalized

to a “ridge” on the 2-dimensional hypersurface defined by (1.4) in the three-dimensional

parameter space of {M̃ (a)
c , M̃

(b)
c , M̃p}. 10 Interestingly enough, the ridge often (albeit

not always) exhibits a special point which marks the exact location of the true values

(M
(a)
c ,M

(b)
c ).

Our second method for determining the two children masses M̃
(a)
c and M̃

(b)
c is even

more general and is applicable under any circumstances. The main starting point is that

just like the endpoint of the symmetric MT2, the endpoint of the asymmetric MT2 also

depends on the value of the upstream transverse momentum PUTM, so that eq. (1.4) is

more properly written as

M̃p(M̃
(a)
c , M̃ (b)

c , PUTM) = MT2(max)(M̃
(a)
c , M̃ (b)

c , PUTM) . (1.7)

Now we can explore the PUTM dependence in (1.7) and note that it is absent for precisely

the right values of M̃
(a)
c and M̃

(b)
c :

∂MT2(max)(M̃
(a)
c , M̃

(b)
c , PUTM)

∂PUTM

∣

∣

∣

M̃
(a)
c =M

(a)
c ,M̃

(b)
c =M

(b)
c

= 0 . (1.8)

While this property has been known, it was rarely used in the case of the symmetric MT2,

since it offers redundant information: once the correct child mass Mc is found through

the MT2 kink (1.6), the parent mass Mp is given by (1.2) and there are no remaining

unknowns, thus there is no need to further investigate the PUTM dependence. In the case

of the asymmetric MT2, however, we start with one additional unknown parameter, which

cannot always be determined from the “ridge” information alone. Therefore, in order to

pin down the complete spectrum, we are forced to make use of (1.8). The nice feature of

the PUTM method is that it always allows us to determine both children masses M
(a)
c and

M
(b)
c , without relying on the “ridge” information at all. In this sense, our two methods are

complementary and each can be used to cross-check the results obtained by the other.

The paper is organized as follows.11 In section 2 we begin with a review of the con-

ventional symmetric MT2 variable and its properties. Then in section 3 we introduce

10Ref. [97] studied the orthogonal scenario of different parents (M
(a)
p 6= M

(b)
p ) and identical children

(M
(a)
c = M

(b)
c ) and found a similar non-differentiable feature, called a “crease”, on the corresponding

two-dimensional hypersurface within the three-dimensional parameter space {M̃c, M̃
(a)
p , M̃

(b)
p }.

11Readers who are unfamiliar with the MT2 concept may benefit from consulting refs. [54, 68, 86, 97]

first.
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the asymmetric MT2 variable and highlight its properties which are relevant for our mass

measurements. We also discuss some experimental subtleties in the construction of the

asymmetric MT2 distribution, which are not present in the case of the symmetric MT2.

Sections 4, 5.1 and 5.2 present some simple examples of asymmetric event topologies. Fi-

nally, section 6 summarizes our main results and outlines some possible directions for future

work. Appendix A revisits the examples of section 4 in the case of PUTM → ∞, which can

be handled by purely analytical means [97].

2 The conventional symmetric MT2

2.1 Definition

We begin our discussion by revisiting the conventional definition of the symmetric MT2

variable with identical daughters, following the general notation introduced in figure 1.

Let us consider the inclusive production of two parent particles with common mass Mp.

Each parent initiates a decay chain producing a certain number n(λ) of SM particles. In

this section we assume that the two chains terminate in children particles of the same

mass: M
(a)
c = M

(b)
c = Mc. (From section 3 on we shall remove this assumption.) In most

applications of MT2 in the literature, the children particles are identified with the very

last particles in the decay chains, i.e. the dark matter candidates. However, the symmetric

MT2 can also be usefully applied to a subsystem of the original event topology, where

the children are some other pair of (identical) particles appearing further up the decay

chain [77, 86]. The MT2 variable is defined in terms of the measured invariant mass m(λ)

and transverse momentum ~p
(λ)

T of the visible particles on each side (see figure 1). With

the assumption of identical children, the transverse mass of each parent is

M
(λ)
T

(

~p
(λ)

T ; ~q
(λ)

T ; m(λ); M̃c

)

=

√

m2
(λ) + M̃2

c + 2
(

e(λ)ẽ(λ) − ~p
(λ)

T · ~q (λ)
T

)

, (2.1)

where M̃c is the common test mass for the children, which is an input to the MT2 calcu-

lation, while ~q
(λ)

T is the unknown transverse momentum of the child particle in the λ-th

chain. In eq. (2.1) we have also introduced shorthand notation for the transverse energy

of the composite particle made from the visible SM particles in the λ-th chain

e(λ) =

√

m2
(λ) + ~p

(λ)
T · ~p (λ)

T (2.2)

and for the transverse energy of the corresponding child particle in the λ-th chain

ẽ(λ) =

√

M̃2
c + ~q

(λ)
T · ~q (λ)

T . (2.3)

Then the event-by-event symmetric MT2 variable is defined through a minimization

procedure over all possible partitions of the two children momenta ~q
(λ)

T [50]

MT2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃c, PUTM

)

=

min
~q

(a)
T

+~q
(b)

T
= ~Qtot

[

max
{

M
(a)
T

(

~p
(a)

T
; ~q

(a)
T

; m(a); M̃c

)

, M
(b)
T

(

~p
(b)

T
; ~q

(b)
T

; m(b); M̃c

)

}

]

, (2.4)

consistent with the momentum conservation constraint (1.1) in the transverse plane.

– 8 –



J
H
E
P
0
4
(
2
0
1
0
)
0
8
6

2.2 Computation

The standard definition (2.4) of the MT2 variable is sufficient to compute the value of

MT2 numerically, given a set of input values for its arguments. The right-hand side of

eq. (2.4) represents a simple minimization problem in two variables, which can be easily

handled by a computer. In fact, there are publicly available computer codes for computing

MT2 [115, 116]. The public codes have even been optimized for speed [85] and give results

consistent with each other (as well as with our own code).12 Nevertheless, it is useful to

have an analytical formula for calculating the event-by-event MT2 for several reasons. First,

an analytical formula is extremely valuable when it comes to understanding the properties

and behavior of complex mathematical functions like (2.4). Second, computing MT2 from

a formula will be faster than any numerical scanning algorithm. The computing speed

becomes an issue especially when one considers variations of MT2 like MT2gen, where in

addition one needs to scan over all possible partitions of the visible objects into two decay

chains [64]. Therefore, in this paper we shall pay special attention to the availability of

analytical formulas and we shall quote such formulas whenever they are available.

In the symmetric case with identical children, an analytical formula for the event-by-

event MT2 exists only in the special cases of Qtot = 0 [54] or PUTM = 0 [64]. We review the

latter result here for completeness. (In the next section we shall present its generalization

for the asymmetric case of different children.) The symmetric MT2 is known to have two

types of solutions: “balanced” and “unbalanced” [54, 64]. The balanced solution is achieved

when the minimization procedure in eq. (2.4) selects a momentum configuration for ~q
(λ)

T

in which the transverse masses of the two parents are the same: M
(a)
T = M

(b)
T . In that

case, typically neither M
(a)
T nor M

(b)
T is at its global (unconstrained) minimum. In what

follows, we shall use a superscript B to refer to such balanced-type solutions. The formula

for the balanced solution MB
T2 of the symmetric MT2 variable is given by [64, 68]

[

MB
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃c

)

]2
= M̃2

c + AT +

√

√

√

√

(

1+
4M̃2

c

2AT −m2
(a)−m2

(b)

)

(

A2
T −m2

(a) m2
(b)

)

,

(2.5)

where AT is a convenient shorthand notation introduced in [68]

AT = e(a)e(b) + ~p
(a)

T · ~p (b)
T (2.6)

and e(λ) was already defined in eq. (2.2).

On the other hand, unbalanced solutions arise when one of the two parent transverse

masses (M
(a)
T or M

(b)
T , as the case may be) is at its global (unconstrained) minimum.

Denoting the two unbalanced solutions with a superscript Uλ, we have [54]

MUa
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃c

)

= m(a) + M̃c , (2.7)

MUb
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃c

)

= m(b) + M̃c . (2.8)

12Unfortunately, the assumption of identical children is hardwired in the public codes and they cannot

be used to calculate the asymmetric MT2 introduced below in section 3 without additional hacking. We

shall return to this point in section 3.
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Given the three possible options for MT2, eqs. (2.5), (2.7) and (2.8), it remains to

specify which one actually takes place for a given set of values for ~p
(a)

T , ~p
(b)

T , m(a), m(b),

M̃c and PUTM = 0 in the event.13 The balanced solution (2.5) applies when the following

two conditions are simultaneously satisfied:

M
(b)
T

(

~p
(b)

T
; ~q

(b)
T

=−~q
(a)

T (0)
+ ~Qtot; m(b); M̃c

)

≥ M
(a)
T

(

~p
(a)

T
; ~q

(a)
T

=~q
(a)

T (0)
; m(a), M̃c

)

= m(a)+M̃c, (2.9)

M
(a)
T

(

~p
(a)

T
; ~q

(a)
T

=−~q
(b)

T (0)
+ ~Qtot; m(a); M̃c

)

≥ M
(b)
T

(

~p
(b)

T
; ~q

(b)
T

=~q
(b)

T (0)
; m(b); M̃c

)

= m(b)+M̃c, (2.10)

where

~q
(λ)

T (0) =
M̃c

m(λ)
~p

(λ)
T , (λ = a, b), (2.11)

gives the global (unconstrained) minimum of the corresponding parent transverse mass

M
(λ)
T . The unbalanced solution MUa

T2 applies when the condition (2.9) is false and condi-

tion (2.10) is true, while the unbalanced solution MUb
T2 applies when the condition (2.9) is

true and condition (2.10) is false. It is easy to see that conditions (2.9) and (2.10) cannot

be simultaneously violated, so these three cases exhaust all possibilities.

2.3 Properties

Given its definition (2.4), one can readily form and study the differential MT2 distribution.

Although its shape in general does carry some information about the underlying process,

it has become customary to focus on the upper endpoint MT2(max), which is simply the

maximum value of MT2 found in the event sample:

MT2(max)(M̃c, PUTM) = max
all events

[

MT2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃c

)

]

. (2.12)

Notice that in the process of maximizing over all events, the dependence on ~p
(a)

T , ~p
(b)

T ,

m(a) and m(b) disappears, and MT2(max) depends only on two input parameters: M̃c and

PUTM, the latter entering through ~Qtot in the momentum conservation constraint (1.1).

The measured function (2.12) is the starting point of any MT2-based mass determination

analysis. We shall now review its three basic properties which make it suitable for such

studies [101].

2.3.1 Property I: knowledge of Mp as a function of Mc

This property was already identified in the original papers and served as the main motiva-

tion for introducing the MT2 variable in the first place [50, 54]. Mathematically it can be

expressed as

M̃p(M̃c, PUTM) ≡ MT2(max)(M̃c, PUTM). (2.13)

This is the same as eq. (1.2), but now we have been careful to include the explicit de-

pendence on PUTM, which will be important in our subsequent discussion. As indicated

in eq. (2.13), the function M̃p(M̃c, PUTM) can be experimentally measured from the MT2

13Recall that (2.5) only applies for PUTM = 0.
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Figure 2. Plots of (a) the MT2 endpoint MT2(max)(M̃c, PUTM) defined in eq. (2.12), and (b)

the function ∆MT2(max)(M̃c, PUTM) defined in (2.16) as a function of the test child mass M̃c, for

several fixed values of PUTM: PUTM = 0 GeV (solid, green), PUTM = 500GeV (dot-dashed, black),

PUTM = 1 TeV (dashed, red), and PUTM = 2 TeV (dotted, blue). The process under consideration

is pair production of sleptons of mass Mp = 300GeV, which decay directly to the lightest neutralino

χ̃0
1 of mass Mc = 100GeV.

endpoint (2.12). The crucial point now is that the relation (2.13) is satisfied by the true

values Mp and Mc of the parent and child mass, correspondingly:

Mp = MT2(max)(Mc, PUTM) . (2.14)

Notice that eq. (2.14) holds for any value of PUTM, so in practical applications of this

method one could choose the most populated PUTM bin to reduce the statistical error. On

the other hand, since a priori we do not know the true mass Mc of the missing particle,

eq. (2.14) gives only one relation between the masses of the mother and the child. This

is illustrated in figure 2(a), where we consider the simple example of direct slepton pair

production,14 where each slepton (ℓ̃) decays to the lightest neutralino (χ̃0
1) by emitting

a single lepton ℓ: ℓ̃ → ℓ + χ̃0
1. Here the slepton is the parent and the neutralino is the

child. Their masses were chosen to be Mp = 300 GeV and Mc = 100 GeV, correspondingly,

as indicated with the black dotted lines in figure 2(a). In this example, the upstream

transverse momentum PUTM is provided by jets from initial state radiation. In figure 2(a)

we plot the function (2.13) versus M̃c, for several fixed values of PUTM. The green solid line

represents the case of no upstream momentum PUTM = 0. In agreement with eq. (2.14),

this line passes through the point (Mc,Mp) corresponding to the true values of the mass

parameters. Notice that the property (2.14) continues to hold for other values of PUTM.

Figure 2(a) shows three more cases: PUTM = 500 GeV (dotdashed black line), PUTM =

1 TeV (dashed red line) and PUTM = 2 TeV (dotted blue line). All those curves still pass

through the point (Mc,Mp) with the correct values of the masses, illustrating the robustness

of the property (2.14) with respect to variations in PUTM.

14The corresponding event topology is shown in figure 3(a) below with M
(a)
c = M

(b)
c = Mc.
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2.3.2 Property II: Kink in MT2(max) at the true Mc

The second important property of the MT2 variable was identified rather recently [65–

68, 86]. Interestingly, the MT2 endpoint MT2(max), when considered as a function of the

unknown input test mass M̃c, often develops a kink (1.6) at precisely the correct value

M̃c = Mc of the child mass. The appearance of the kink is a rather general phenomenon

and occurs under various circumstances. It was originally noticed in event topologies with

composite visible particles, whose invariant mass m(λ) is a variable parameter [65, 68]. Later

it was realised that a kink also occurs in the presence of non-zero upstream momentum

PUTM [66, 67, 86], as in the example of figure 2(a), where PUTM arises due to initial state

radiation. As can be seen in the figure, the kink is absent for PUTM = 0, but as soon as

there is some non-vanishing PUTM, the kink becomes readily apparent. As expected, the

kink location (marked by the vertical dotted line) is at the true child mass (Mc = 100 GeV),

where the corresponding value of MT2(max) (marked by the horizontal dotted line) is at the

true parent mass (Mp = 300 GeV). Figure 2(a) also demonstrates that with the increase

in PUTM, the kink becomes more pronounced, thus the most favorable situations for the

observation of the kink are cases with large PUTM, e.g. when the upstream momentum is

due to the decays of heavier (grandparent) particles [86].

In section 3.3 we shall see how the kink feature (1.6) of the symmetric MT2 endpoint

M̃p(M̃c) defined by eq. (1.2) is generalized to a “ridge” feature on the asymmetric MT2

endpoint M̃p(M̃
(a)
c , M̃

(b)
c ) defined in (1.4).

2.3.3 Property III: PUTM invariance of MT2(max) at the true Mc

This property is the one which has been least emphasized in the literature. Notice that

the MT2 endpoint function (2.13) in general depends on the value of PUTM. However, the

first property (2.14) implies that the PUTM dependence disappears at the correct value Mc

of the child mass:
∂MT2(max)(M̃c, PUTM)

∂PUTM

∣

∣

∣

M̃c=Mc

= 0 . (2.15)

In order to quantify this feature, let us define the function

∆MT2(max)(M̃c, PUTM) ≡ MT2(max)(M̃c, PUTM) − MT2(max)(M̃c, 0), (2.16)

which measures the shift of the MT2 endpoint due to variations in PUTM. The function

∆MT2(max)(M̃c, PUTM) can be measured experimentally: the first term on the right-hand

side of (2.16) is simply the MT2 endpoint observed in a subsample of events with a given

(preferably the most common) value of PUTM, while the second term on the right-hand

side of (2.16) contains the endpoint M
(max)
T2⊥

of the 1-dimensional MT2⊥ variable introduced

in [101]:

MT2(max)(M̃c, 0) = M
(max)
T2⊥

(M̃c). (2.17)

Given the definition (2.16), the third property (2.15) can be rewritten as

∆MT2(max)(M̃c, PUTM) ≥ 0, (2.18)
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where the equality holds only for M̃c = Mc:

∆MT2(max)(Mc, PUTM) = 0, ∀PUTM. (2.19)

Eqs. (2.18) and (2.19) provide an alternative way to determine the true child mass Mc:

simply find the value of M̃c which minimizes the function ∆MT2(max)(M̃c, PUTM). This

procedure is illustrated in figure 2(b), where we revisit the slepton pair production example

of figure 2(a) and plot the function ∆MT2(max)(M̃c, PUTM) defined in (2.16) versus the test

mass M̃c, for the same set of (fixed) values of PUTM. Clearly, the zero of the function (2.16)

occurs at the true child mass M̃c = Mc = 100 GeV, in agreement with eq. (2.19). In our

studies of the asymmetric MT2 case in the next sections, we shall find that the third prop-

erty (2.19) is extremely important, since it will always allow us the complete determination

of the mass spectrum, including both children masses M
(a)
c and M

(b)
c .

3 The generalized asymmetric MT2

After this short review of the basic properties of the conventional symmetric MT2 vari-

able (2.4), we now turn our attention to the less trivial case of M̃
(a)
c 6= M̃

(b)
c . Following

the logic of section 2, in section 3.1 we first introduce the asymmetric MT2 variable and

then in sections 3.2 and 3.3 we discuss its computation and mathematical properties, cor-

respondingly.

3.1 Definition

The generalization of the usual definition (2.4) to the asymmetric case of M̃
(a)
c 6= M̃

(b)
c is

straightforward [97]. We continue to follow the conventions and notation of figure 1, but

now we simply avoid the assumption that the children masses are equal, and we let each

one be an independent input parameter M̃
(λ)
c . Without loss of generality, in what follows

we assume M
(b)
c ≥ M

(a)
c . The transverse mass of each parent (2.1) is now a function of the

corresponding child mass M̃
(λ)
c :

M
(λ)
T

(

~p
(λ)

T ; ~q
(λ)

T ; m(λ); M̃ (λ)
c

)

=

√

m2
(λ) +

(

M̃
(λ)
c

)2
+ 2

(

e(λ)ẽ(λ) − ~p
(λ)

T · ~q (λ)
T

)

, (3.1)

where the transverse energy e(λ) of the composite SM particle on the λ-th side of the event

was already defined in (2.2), while the transverse energy ẽ(λ) of the child is now generalized

from (2.3) to

ẽ(λ) =

√

(

M̃
(λ)
c

)2
+ ~q

(λ)
T · ~q (λ)

T . (3.2)

The event-by-event asymmetric MT2 variable is defined in analogy to (2.4) and is given

by [97]

MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(a)
c ,M̃

(b)
c ,PUTM

)

=

min
~q

(a)
T

+~q
(b)

T
=~Qtot

[

max
{

M
(a)
T

(

~p
(a)

T
; ~q

(a)
T

; m(a); M̃
(a)
c

)

,M
(b)
T

(

~p
(b)

T
; ~q

(b)
T

; m(b); M̃
(b)
c

)

}

]

, (3.3)
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which is now a function of two input test children masses M̃
(a)
c and M̃

(b)
c . In the special

case of M̃
(a)
c = M̃

(b)
c ≡ M̃c, the asymmetric MT2 variable defined in (3.3) reduces to the

conventional symmetric MT2 variable (2.4).

3.2 Computation

In this subsection we generalize the discussion in section 2.2 and present an analytical

formula for computing the event-by-event asymmetric MT2 variable (3.3). Just like the

formula (2.5) for the symmetric case, our formula will hold only in the special case of

PUTM = 0. As before, the asymmetric MT2 variable has two types of solutions — balanced

and unbalanced. The balanced solution occurs when the following two conditions are

simultaneously satisfied (compare to the analogous conditions (2.9) and (2.10) for the

symmetric case)

M
(b)
T

(

~p
(b)

T
;~q

(b)
T

=−~q
(a)

T (0)
+ ~Qtot;m(b);M̃

(b)
c

)

≥ M
(a)
T

(

~p
(a)

T
;~q

(a)
T

=~q
(a)

T (0)
;m(a),M̃

(a)
c

)

= m(a)+M̃ (a)
c , (3.4)

M
(a)
T

(

~p
(a)

T
;~q

(a)
T

=−~q
(b)

T (0)
+ ~Qtot;m(a);M̃

(a)
c

)

≥ M
(b)
T

(

~p
(b)

T
;~q

(b)
T

=~q
(b)

T (0)
;m(b);M̃

(b)
c

)

= m(b)+M̃ (b)
c , (3.5)

where, in analogy to (2.11),

~q
(λ)

T (0) =
M̃

(λ)
c

m(λ)
~p

(λ)
T , (λ = a, b), (3.6)

is the test child momentum at the global unconstrained minimum of M
(λ)
T . The balanced

solution for MT2 is now given by

[

MB
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃
(a)
c ,M̃

(b)
c

)

]2
= M̃2

+ + AT +

(

m2
(b) − m2

(a)

2AT − m2
(a) − m2

(b)

)

M̃2
−

±

√

√

√

√1 +
4M̃2

+

2AT − m2
(a) − m2

(b)

+

(

2M̃2
−

2AT − m2
(a) − m2

(b)

)2

×
√

A2
T − m2

(a)m
2
(b) ,

(3.7)

where AT was defined in (2.6). For convenience, in (3.7) we have introduced two alternative

mass parameters

M̃2
+ ≡ 1

2

{

(

M̃ (b)
c

)2
+
(

M̃ (a)
c

)2
}

, (3.8)

M̃2
− ≡ 1

2

{

(

M̃ (b)
c

)2 −
(

M̃ (a)
c

)2
}

, (3.9)

in place of the original trial masses M̃
(a)
c and M̃

(b)
c . The new parameters M̃+ and M̃−

are simply a different parametrization of the two degrees of freedom corresponding to the

unknown child masses M̃
(a)
c and M̃

(b)
c entering the definition of the asymmetric MT2. The

parameters M̃+ and M̃− allow us to write formula (3.7) in a more compact form. More

importantly, they also allow to make easy contact with the known results from section 2

by taking the symmetric limit M̃
(a)
c = M̃

(b)
c ≡ M̃c as

M̃+ → M̃c, M̃− → 0. (3.10)
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It is easy to see that in the symmetric limit (3.10) our balanced solution (3.7) for the

asymmetric MT2 reduces to the known result (2.5) for the symmetric MT2.

An interesting feature of the asymmetric balanced solution is the appearance of a ±
sign on the second line of (3.7). In principle, this sign ambiguity is present in the symmetric

case as well, but there the minus sign always turns out to be unphysical and the sign issue

does not arise [64]. However, in the asymmetric case, both signs can be physical sometimes

and one must make the proper sign choice in eq. (3.7) as follows. For the given set of test

masses (M̃
(a)
c , M̃

(b)
c ), calculate the transverse center-of-mass energy

√
ŝ
±

T = e(a) + e(b)+
2(e(b) − e(a))M̃2

−

2AT − m2
(a) − m2

(b)

±
(e(b) + e(a))AT − (e(b)m2

(a) + e(a)m2
(b))

√

A2
T − m2

(a)
m2

(b)

×

√

√

√

√1 +
4M̃2

+

2AT − m2
(a) − m2

(b)

+

(

2M̃2
−

2AT − m2
(a) − m2

(b)

)2

, (3.11)

corresponding to each sign choice in eq. (3.7), and compare the result to the minimum

allowed value of
√

ŝT

√
ŝT (min) = e(a) + e(b) +

√

Q2
tot +

(

M̃
(a)
c + M̃

(b)
c

)2
. (3.12)

The minus sign in eq. (3.7) takes precedence and applies whenever it is physical, i.e. when-

ever
√

ŝ
−

T
>

√
ŝT(min). In the remaining cases when

√
ŝ
−

T
<

√
ŝT (min) and the minus sign

is unphysical, the plus sign in eq. (3.7) applies.

If one of the conditions (3.4), (3.5) is not satisfied, the asymmetric MT2 is given by an

unbalanced solution, in analogy to (2.7) and (2.8):

MUa
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃
(a)
c ,M̃

(b)
c

)

= m(a) + M̃ (a)
c , (3.13)

MUb
T2

(

~p
(a)

T
,~p

(b)
T

; m(a),m(b); M̃
(a)
c ,M̃

(b)
c

)

= m(b) + M̃ (b)
c . (3.14)

The unbalanced solution MUa
T2 of eq. (3.13) applies when the condition (3.4) is false and

condition (3.5) is true, while the unbalanced solution MUb
T2 of eq. (3.14) applies when the

condition (3.4) is true and condition (3.5) is false.

Eqs. (3.7), (3.13) and (3.14) represent one of our main results. They generalize the

analytical results of refs. [64, 68] and allow the direct computation of the asymmetric MT2

variable without the need for scanning and numerical minimizations. This is an important

benefit, since the existing public codes for MT2 [115, 116] only apply in the symmetric case

M
(a)
c = M

(b)
c .

3.3 Properties

All three properties of the symmetric MT2 discussed in section 2.3 readily generalize to the

asymmetric case.
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3.3.1 Property I: knowledge of Mp as a function of M
(a)
c and M

(b)
c

In the asymmetric case, the endpoint MT2(max) of the MT2 distribution still gives the mass

of the parent, only this time it is a function of two input test masses for the children:

M̃p(M̃
(a)
c , M̃ (b)

c , PUTM) = MT2(max)(M̃
(a)
c , M̃ (b)

c , PUTM) . (3.15)

The important property is that this relation is satisfied by the true values of the children

and parent masses:

Mp = MT2(max)(M
(a)
c ,M (b)

c , PUTM) . (3.16)

Thus the true parent mass Mp will be known once we determine the two children masses

M
(a)
c and M

(b)
c .

3.3.2 Property II: ridge in MT2(max) through the true M
(a)
c and M

(b)
c

In the symmetric MT2 case, the endpoint function (2.13) is not continuously differentiable

and has a “kink” at the true child mass M̃c = Mc. In the asymmetric MT2 case, the

endpoint function (3.15) is similarly non-differentiable at a set of points

{(

M̃ (a)
c (θ), M̃ (b)

c (θ)
)}

(3.17)

parametrized by a single15 continuous parameter θ. The gradient of the endpoint func-

tion (3.15) suffers a discontinuity as we cross the curve defined by (3.17). Since (3.15) rep-

resents a hypersurface in the three-dimensional parameter space of {M̃ (a)
c , M̃

(b)
c , M̃p}, the

gradient discontinuity will appear as a “ridge” (sometimes also referred to as a “crease” [97])

on our three-dimensional plots below. The important property of the ridge is that it passes

through the correct values for the children masses, even when they are different:

M (a)
c = M̃ (a)

c (θ0), (3.18)

M (b)
c = M̃ (b)

c (θ0), (3.19)

for some θ0. Thus the ridge information provides a relation among the two children masses

and leaves us with just a single unknown degree of freedom — the parameter θ in eq. (3.17).

Interestingly, the shape of the ridge provides a quick test whether the two missing

particles are identical or not.16 If the shape of the ridge in the (M̃
(a)
c , M̃

(b)
c ) plane is

symmetric with respect to the interchange M̃
(a)
c ↔ M̃

(b)
c , i.e. under a mirror reflection

with respect to the 45◦ line M̃
(a)
c = M̃

(b)
c , then the two missing particles are the same.

Conversely, when the shape of the ridge is not symmetric under M̃
(a)
c ↔ M̃

(b)
c , the missing

particles are in general expected to have different masses.

15In general, the set of points (3.17) may consist of several lines, each individually parameterized (see

e.g. figures 12, 14, 18(b) and 19(b) below).
16To be more precise, the ridge shape tests whether the two missing particles have the same mass or not.
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3.3.3 Property III: PUTM invariance of MT2(max) at the true M
(a)
c and M

(b)
c

The third MT2 property, which was discussed in section 2.3.3, is readily generalized to the

asymmetric case as well. Note that eq. (3.16) implies that the PUTM dependence of the

asymmetric MT2 endpoint (3.15) disappears at the true values of the children masses:

∂MT2(max)(M̃
(a)
c , M̃

(b)
c , PUTM)

∂PUTM

∣

∣

∣

M̃
(a)
c =M

(a)
c ,M̃

(b)
c =M

(b)
c

= 0 . (3.20)

This equation is the asymmetric analogue of eq. (2.15). Proceeding as in section 2.3.3, let

us define the function

∆MT2(max)(M̃
(a)
c , M̃ (b)

c , PUTM) ≡ MT2(max)(M̃
(a)
c , M̃ (b)

c , PUTM) − MT2(max)(M̃
(a)
c , M̃ (b)

c , 0),

(3.21)

which quantifies the shift of the asymmetric MT2 endpoint (3.15) in the presence of PUTM.

By definition,

∆MT2(max)(M̃
(a)
c , M̃ (b)

c , PUTM) ≥ 0, (3.22)

with equality being achieved only for the correct values of the children masses:

∆MT2(max)(M
(a)
c ,M (b)

c , PUTM) = 0, ∀PUTM. (3.23)

The last equation reveals the power of the PUTM invariance method. Unlike the kink

method discussed in section 3.3.2, which was only able to find a relation between the two

children masses M
(a)
c and M

(b)
c , the PUTM invariance implied by eq. (3.23) allows us to

determine each individual children mass, without any theoretical assumptions, and even

in the case when the two children masses happen to be different (M
(a)
c 6= M

(b)
c ).

3.4 Examples

In the next two sections we shall illustrate the three properties discussed so far in section 3.3

with some concrete examples. Instead of the most general event topology depicted figure 1,

here we limit ourselves to the three simple examples shown in figure 3.

The simplest possible case is when n(λ) = 1, i.e. when each cascade decay contains

a single SM particle, as in figure 3(a). In this example, m(λ) is constant. For simplicity,

we shall take m(λ) ≈ 0, which is the case for a lepton or a light flavor jet. If the SM

particle is a Z-boson or a top quark, its mass cannot be neglected, and one must keep the

proper value of m(λ). This, however, is only a technical detail, which does not affect our

main conclusions below. In spite of its simplicity, the topology of figure 3(a) is actually

the most challenging case, due to the limited number of available measurements [86]. In

order to be able to determine all individual masses in that case, one must consider events

with upstream momentum ~PUTM, as illustrated in figure 3(a). This is not a particularly

restrictive assumption, since there is always a certain amount of PUTM in the event (at

the very least, from initial state radiation). In section 4 the topology of figure 3(a) will be

extensively studied - first for the asymmetric case of M
(a)
c 6= M

(b)
c in section 4.1, and then

for the symmetric case of M
(a)
c = M

(b)
c in section 4.2.

– 17 –



J
H
E
P
0
4
(
2
0
1
0
)
0
8
6

Mp

Mp

M
(a)
c

M
(b)
c

m(a) = 0

m(b) = 0

~PUTM

(a)

Mp

Mp

M
(a)
c

M
(b)
c

m(a)

m(b)(b)

Mp

Mp

M
(a)
i

M
(b)
i

M
(a)
c

M
(b)
c

m(a)

m(b)(c)

Figure 3. The three different event-topologies under consideration in this paper. In each case, two

parents with mass Mp are produced onshell and decay into two daughters of (generally different)

masses M
(a)
c and M

(b)
c . Case (a), which is the subject of section 4, has a single massless visible SM

particle in each leg and some arbitrary upstream transverse momentum ~PUTM. In the remaining two

cases (b) and (c), which are discussed in section 5, there are two massless visible particles in each

leg, which form a composite visible particle with varying invariant mass m(λ). The intermediate

particle of mass M
(λ)
i is (b) heavy and off-shell (M

(λ)
i > Mp), or (c) on-shell (Mp > M

(λ)
i > M

(λ)
c ).

For simplicity, we do not consider any upstream momentum in cases (b) and (c).

Another simple situation arises when there are two massless visible SM particles in each

leg, as illustrated in figures 3(b) and 3(c). In either case, the invariant mass m(λ) is not

constant any more, but varies within a certain range mmin
(λ) ≤ m(λ) ≤ mmax

(λ) , where mmin
(λ) = 0,

while the value of mmax
(λ) depends on the mass M

(λ)
i of the corresponding intermediate

particle. In figure 3(b) we assume M
(λ)
i > Mp, so that the intermediate particle is off-

shell and

mmax
(λ) = Mp − M (λ)

c . (3.24)

The “off-shell” case of figure 3(b) will be discussed in section 5.1.

In contrast, in figure 3(c) we take Mp > M
(λ)
i > M

(λ)
c , in which case the intermediate

particle is on-shell and the range for m(λ) is now limited from above by

mmax
(λ) = Mp

√

√

√

√

√



1 −
(

M
(λ)
i

Mp

)2






1 −
(

M
(λ)
c

M
(λ)
i

)2


 . (3.25)

We shall discuss the “on-shell” case of figure 3(c) in section 5.2.

In the event topologies of figures 3(b) and 3(c), the mass m(λ) is varying and the ridge

of eq. (3.17) will appear even if there were no upstream transverse momentum in the event.

Therefore, in our discussion of figures 3(b) and 3(c) in section 5 below we shall assume

PUTM = 0 for simplicity. The presence of non-zero PUTM will only additionally enhance

the ridge feature.

3.5 Combinatorial issues

Before going on to the actual examples in the next two sections, we need to discuss one

minor complication, which is unique to the asymmetric MT2 variable and was not present
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in the case of the symmetric MT2 variable. The question is, how does one associate the

visible decay products observed in the detector with a particular decay chain λ = a or

λ = b. This is the usual combinatorics problem, which now has two different aspects:

• The first issue is also present in the symmetric case, where one has to decide how

to partition the SM particles observed in the detector into two disjoint sets, one for

each cascade. In the traditional approach, where the children particles are assumed

to be identical, the two sets are indistinguishable and it does not matter which one

is first and which one is second. This particular aspect of the combinatorial problem

will also be present in the asymmetric case.

• In the asymmetric case, however, there is an additional aspect to the combinato-

rial problem: now the two cascades are distinguishable (by the masses of the child

particles), so even if we correctly divide the visible objects into the proper subsets,

we still do not know which subset goes together with M
(a)
c and thus gets a label

λ = a, and which goes together with M
(b)
c and gets labelled by λ = b. This leads to

an additional combinatorial factor of 2 which is absent in the symmetric case with

identical children.

The severity of these two combinatorial problems depends on the event topology, as well

as the type of signature objects. For example, there are cases where the first combinatorial

problem is easily resolved, or even absent altogether. Consider the event topology of

figure 3(a) with a lepton as the SM particle on each side. In this case, the partition is

unique, and the upstream objects are jets, which can be easily identified [98]. Now consider

the event topologies of figures 3(b) and 3(c), with two opposite sign, same flavor leptons

on each side. Such events result from inclusive pair production of heavier neutralinos

in supersymmetry. By selecting events with different lepton flavors: e+e−µ+µ−, we can

overcome the first combinatorial problem above and uniquely associate the e+e− pair with

one cascade and the µ+µ− pair with the other. However, the second combinatorial problem

remains, as we still have to decide which of the two lepton pairs to associate with λ = a

and which to associate with λ = b. Recall that the labels λ = a and λ = b are already

attached to the child particles, which are distinguishable in the asymmetric case. In this

paper we use the convention that λ = a is attached to the lighter child particle:

M̃ (a)
c ≤ M̃ (b)

c , (3.26)

which also ensures that the M̃− parameter defined in (3.9) is real.

We can put this discussion in more formal terms as follows. The correct association of

the visible particles with the corresponding children will yield

MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(a)
c ,M̃

(b)
c

)

, (3.27)

while the other, wrong association will give simply

MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(b)
c ,M̃

(a)
c

)

. (3.28)
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Figure 4. Unit-normalized MT2 distributions for the event topology of figure 3(b). The mass

spectrum is chosen as M
(a)
c = 100GeV, M

(b)
c = 200GeV and Mp = 600GeV. The test children

masses are taken to be the true masses: M̃
(a)
c = M

(a)
c and M̃

(b)
c = M

(b)
c . The dotted black

distribution is the true MT2 distribution, ignoring the combinatorial problem. The red histogram

shows the distribution of the M
(<)
T2 variable defined in (3.29) while the blue histogram shows the

distribution of the M
(>)
T2 variable defined in (3.31).

Both of these two MT2 values can be computed from the data, but a priori we do not know

which one corresponds to the correct association. The solution to this problem is however

already known [64, 86]: one can conservatively use the smaller of the two

M
(<)
T2 ≡ min

{

MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(a)
c ,M̃

(b)
c

)

,MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(b)
c ,M̃

(a)
c

)}

(3.29)

in order to preserve the location of the upper MT2 endpoint. This is illustrated in figure 4,

where we show results for the event topology of figure 3(b) with a mass spectrum as follows:

M
(a)
c = 100 GeV, M

(b)
c = 200 GeV and Mp = 600 GeV. The test children masses are taken

to be the true masses: M̃
(a)
c = M

(a)
c and M̃

(b)
c = M

(b)
c . The dotted black distribution is

the unit-normalized true MT2 distribution, where one ignores the combinatorial problem

and uses the Monte Carlo information to make the correct association. The red histogram

shows the unit-normalized distribution of the M
(<)
T2 variable defined in (3.29). We see that

the definition (3.29) preserves the corresponding endpoint:

M
(<)
T2(max) = MT2(max). (3.30)

Of course, we can also consider the alternative combination

M
(>)
T2 ≡ max

{

MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(a)
c ,M̃

(b)
c

)

,MT2

(

~p
(a)

T
,~p

(b)
T

;m(a),m(b);M̃
(b)
c ,M̃

(a)
c

)}

, (3.31)

whose unit-normalized distribution is shown in figure 4 with the blue histogram. One can

see that some of the wrong combination entries in the M
(>)
T2 histogram violate the original
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Spectrum Case M
(a)
c M

(b)
c Mp

I Different children 250 500 600

II Identical children 100 100 300

Table 1. Mass spectra for the two examples studied in sections 4.1 and 4.2. All masses are given

in GeV.

endpoint MT2(max), yet there is still a well defined M
(>)
T2 endpoint

M
(>)
T2(max) ≥ MT2(max). (3.32)

Strictly speaking, in our analysis in the next sections, we only need to study the

M
(<)
T2 endpoint (3.30), which contains the relevant information about the physical MT2

endpoint. At the same time, with our convention (3.26) for the children masses, we only

need to concentrate on the upper half M̃
(b)
c ≥ M̃

(a)
c of the (M̃

(a)
c , M̃

(b)
c ) plane. However,

for completeness we shall also present results for the M
(>)
T2 endpoint (3.32), and we shall

use the lower (M̃
(b)
c < M̃

(a)
c ) half of the (M̃

(a)
c , M̃

(b)
c ) plane to show those. Thus the MT2

endpoint shown in our plots below should be interpreted as follows

MT2(max) =

{

M
(<)
T2(max), if M̃

(a)
c ≤ M̃

(b)
c ,

M
(>)
T2(max), if M̃

(a)
c > M̃

(b)
c .

(3.33)

4 The simplest event topology: one SM particle on each side

In this section, we consider the simplest topology with a single visible particle on each

side of the event. We already introduced this example in section 3.4, along with its event

topology in figure 3(a). In section 4.1 below we first discuss an asymmetric case with

different children. Later in section 4.2 we consider a symmetric situation with identical

children masses. The mass spectra for these two study points are listed in table 1.

4.1 Asymmetric case

Before we present our numerical results, it will be useful to derive an analytical expression

for the asymmetric MT2 endpoint (3.15) in terms of the corresponding physical spectrum

of table 1 and the two test children masses M̃
(a)
c and M̃

(b)
c . Our result will generalize the

corresponding formula derived in [68] for the symmetric case of M̃
(a)
c = M̃

(b)
c ≡ M̃c and no

upstream momentum (PUTM = 0). For the event topology of figure 3(a) the MT2 endpoint

is always obtained from the balanced solution and is given by [68]

MT2(max)(M̃c, PUTM = 0) = µppc +
√

µ2
ppc + M̃2

c . (4.1)

Here we made use of the convenient shorthand notation introduced in [86] for the relevant

combination of physical masses

µnpc ≡
Mn

2

{

1 −
(

Mc

Mp

)2
}

. (4.2)
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Figure 5. MT2(max) as a function of the two test children masses, M̃
(a)
c and M̃

(b)
c , for the event

topology of figure 3(a) with no upstream momentum (PUTM = 0), and the asymmetric mass spec-

trum I from table 1: (M
(a)
c , M

(b)
c , Mp) = (250, 500, 600)GeV. We show (a) a three dimensional

view and (b) contour plot projection on the (M̃
(a)
c , M̃

(b)
c ) plane (red contour lines). The green dot

marks the true values of the children masses. Panel (b) also shows a gradient plot, where longer

(shorter) arrows imply steeper (gentler) slope. A kink structure is absent in this case. The sym-

metric endpoint MT2(max)(M̃c) of eq. (4.1) can be obtained by going along the diagonal orange line

M̃
(b)
c = M̃

(a)
c .

The µ parameter defined in (4.2) is simply the transverse momentum of the (massless)

visible particle in those events which give the maximum value of MT2 [98]. Squaring (4.1),

we can equivalently rewrite it as

M2
T2(max)(M̃c, PUTM = 0) = 2µ2

ppc + M̃2
c +

√

4µ2
ppc(µ

2
ppc + M̃2

c ) . (4.3)

Now let us derive the analogous expressions for the asymmetric case M
(a)
c 6= M

(b)
c . Just

like the symmetric case, the asymmetric endpoint MT2(max) also comes from a balanced

solution and is given by

M2
T2(max)(M̃

(a)
c , M̃ (b)

c , PUTM = 0) = 2µ̄2
ppc + M̃2

+ +
√

4 µ̄2
ppc(µ̄

2
ppc + M̃2

+) + M̃4
− , (4.4)

where the parameters M̃2
+ and M̃2

− were already defined in (3.8) and (3.9), while µ̄ppc is

now the geometric average of the corresponding individual µppc parameters

µ̄2
ppc ≡ µppca µppcb

≡
(M2

p −
(

M
(a)
c

)2
)(M2

p −
(

M
(b)
c

)2
)

4M2
p

. (4.5)

It is easy to check that in the symmetric limit

M̃ (b)
c → M̃ (a)

c =⇒ µ̄ppc → µppc, M̃+ → M̃c, M̃− → 0, (4.6)

eq. (4.4) reduces to its symmetric counterpart (4.3), as it should.
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We are now ready to present our numerical results for the event topology of figure 3(a).

We first take the asymmetric mass spectrum I from table 1 and consider the case with

no upstream momentum, when formula (4.4) applies. Figure 5 shows the corresponding

MT2 endpoint as a function of the two test children masses M̃
(a)
c and M̃

(b)
c . In panel (a)

we present a three dimensional view, while in panel (b) we show a contour plot projec-

tion on the (M̃
(a)
c , M̃

(b)
c ) plane (red contour lines). On either panel, the green dot marks

the true values of the children masses, M
(a)
c and M

(b)
c . Panel (b) also shows a gradient

plot, where longer (shorter) arrows imply steeper (gentler) slope. The symmetric endpoint

MT2(max)(M̃c, PUTM = 0) of eq. (4.1) can be obtained by going along the diagonal orange

line M̃
(b)
c = M̃

(a)
c in figure 5(b). We remind the reader that the endpoint MT2(max) plotted

in figure 5 should be interpreted as in eq. (3.33).

Figure 5 illustrates the first basic property of the asymmetric MT2 variable, which was

discussed in section 3.3.1. The MT2 endpoint allows us to find one relation between the

two children masses M̃
(a)
c and M̃

(b)
c and the parent mass M̃p = MT2(max), and in order

to do so, we do not have to assume equality of the children masses, as is always done in

the literature. The crucial advantage of our approach, in which we allow the two children

masses to be arbitrary, is its generality and model-independence. It allows us to extract the

basic information contained in the MT2 endpoint, without muddling it up with additional

theoretical (and unproven) assumptions.

Unfortunately, to go any further and determine each individual mass, we must make

use of the additional properties discussed in sections 3.3.2 and 3.3.3. In the case of the

simplest event topology of figure 3(a) considered here, they both require the presence of

some upstream momentum [67, 86]. As a proof of concept, we now reconsider the same

type of events, but with a fixed upstream momentum of PUTM = 1TeV. (The upstream

momentum may be due to initial state radiation, or decays of heavier particles upstream.)

The corresponding results are shown in figure 6.

Figure 6 demonstrates the second basic property of the asymmetric MT2 variable

discussed in section 3.3.2. Unlike the result shown in figure 5(a), which was perfectly

smooth, this time the MT2(max) function in figure 6(a) shows a ridge, corresponding to the

slope discontinuity marked with the black solid line in figure 6(b). The most important

feature of the ridge is the fact that it passes through the green dot marking the true values

of the children masses. Notice that applying the traditional symmetric MT2 approach in

this case will give a completely wrong result. If we were to assume equal children masses

from the very beginning, we will be constrained to the diagonal orange line in figure 6(b).

The MT2 endpoint will then still exhibit a kink, but the kink will be in the wrong location.

In the example shown in figure 6(b), we will underestimate the parent mass, while for the

child mass we will find a value which is somewhere in between the two true masses M
(a)
c

and M
(b)
c .

Using the ridge information, we now know an additional relation among the children

masses, which allows us to express all three masses in terms of a single unknown parameter

θ, as illustrated in figure 7(a). Let us choose to parametrize the ridge by the polar angle
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Figure 6. The same as in figure 5 but with fixed upstream momentum of PUTM = 1 TeV. The ridge

structure (shown as the black solid line) is revealed by the sudden increase in the slope (gradient)

in panel (b). Notice that the ridge goes through the true values of the children masses marked by

the green dot.

Figure 7. (a) Particle masses obtained along the MT2(max) ridge seen in figure 6. The ridge is

parametrized by the angle θ defined in (4.7). The two children masses M̃
(a)
c (θ) (in red) and M̃

(b)
c (θ)

(in blue) as well as the parent mass M̃p (in black) are then plotted as a function of θ. In our

convention (3.26) only values of θ ≥ 45◦ are physical, and the corresponding masses are shown

with solid lines. Dotted lines show the extrapolation for θ < 45◦. (b) Contour plot of the quantity

∆MT2(max)(M̃
(a)
c , M̃

(b)
c , PUTM = 1 TeV) defined in eq. (3.21), in the (M̃

(a)
c , M̃

(b)
c ) plane. This plot

is obtained simply by taking the difference between figure 6(a) and figure 5(a). The solid black curve

indicates the location of the MT2(max) ridge. Only the point corresponding to the true children

masses (the green dot) satisfies the PUTM invariance condition ∆MT2(max) = 0 from eq. (3.23).

in the (M̃
(a)
c , M̃

(b)
c ) plane:

θ = tan−1

(

M̃
(b)
c

M̃
(a)
c

)

. (4.7)
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Using the ridge information from figure 6, we can then find all three masses as a function

of θ. The result is shown in figure 7(a). The mass M̃
(a)
c of the lighter child is plotted in red,

the mass M̃
(b)
c of the heavier child is plotted in blue, while the parent mass M̃p is plotted

in black. With our convention (3.26) for the children masses, only values of θ ≥ 45◦ are

physical, and the corresponding masses are shown with solid lines. The dotted lines in

figure 7(a) show the extrapolation into the unphysical region θ < 45◦.

Figure 7(a) has some important and far reaching implications. For example, one may

now start asking the question: Are there really any massive invisible particles in those

events, or is the missing energy simply due to neutrino production [21]? The ridge results

shown in figure 7(a) begin to provide the answer to that quite fundamental question.

According to figure 7(a), for any value of the (still unknown) parameter θ, the two children

particles cannot be simultaneously massless. This means that the missing energy cannot be

simply due to neutrinos, i.e. there is at least one new, massive invisible particle produced

in the missing energy events. At this point, we cannot be certain that this is a dark matter

particle, but establishing the production of a WIMP candidate at a collider is by itself a

tremendously important result. Notice that while we cannot be sure about the masses of

the children, the parent mass Mp is determined with a very good precision from figure 7(a):

the function M̃p(θ) is almost flat and rather insensitive to the particular value of θ.17

Once we have proved that some kind of WIMP production is going on, the next im-

mediate question is: how many such WIMP particles are present in the data — one or

two? Unfortunately, the ridge analysis of figure 7(a) alone cannot provide the answer to

this question, since the value of θ is still undetermined. If θ = 90◦, one of the missing

particles is massless, which is consistent with a SM neutrino. Therefore, if θ were indeed

90◦, the most plausible explanation of this scenario would be that only one of the miss-

ing particles is a genuine WIMP, while the other is a SM neutrino. On the other hand,

almost any other value of θ < 90◦ would guarantee that there are two WIMP candidates

in each event. In that case, the next immediate question is: are they the same or are

they different? Fortunately, our asymmetric approach will allow answering this question

in a model-independent way. If θ is determined to be 45◦, the two WIMP particles are

the same, i.e. we are producing a single species of dark matter. On the other hand, if

45◦ < θ < 90◦, then we can be certain that there are not one, but two different WIMP

particles being produced.

We see that in order to completely understand the physics behind the missing energy

signal, we must determine the value of θ, i.e. we must find the exact location of the true

children masses along the ridge. One of our main results in this paper is that this can be

done by using the third MT2 property discussed in section 3.3.3. The idea is illustrated

in figure 7(b), where we show a contour plot in the (M̃
(a)
c , M̃

(b)
c ) plane of the quantity

∆MT2(max)(M̃
(a)
c , M̃

(b)
c , PUTM) defined in eq. (3.21), for a fixed PUTM = 1TeV. This plot

is obtained simply by taking the difference between figure 6(a) and figure 5(a). (A more

practical method for obtaining this information was proposed in [101].) Recall that the

17 Interestingly, for the example in figure 7(a), the maximum value of M̃p(θ) happens to give the true

parent mass Mp, but we have checked that this is a coincidence and does not hold in general for other

examples which we have studied.
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Figure 8. The same as figure 5, but for the symmetric mass spectrum II from table 1, i.e.

(M
(a)
c , M

(b)
c , Mp) = (100, 100, 300)GeV.

function ∆MT2(max) was introduced in order to quantify the PUTM invariance of the MT2

endpoint, and it is expected that ∆MT2(max) vanishes at the correct values of the children

masses (see eq. (3.23)). This expectation is confirmed in figure 7(b), where we find the

minimum (zero) of the ∆MT2(max) function exactly at the right spot (marked with the green

dot) along the MT2(max) ridge. Thus the ∆MT2(max) function in figure 7(b) completely

pins down the spectrum, and in this case would reveal the presence of two different WIMP

particles, with unequal masses M
(a)
c 6= M

(b)
c . Our analysis thus shows that colliders can

not only produce a WIMP dark matter candidate and measure its mass, as discussed

in the existing literature, but they can do a much more elaborate dark matter particle

spectroscopy, as advertized in the title. In particular, they can probe the number and type

of missing particles, including particles from subdominant dark matter species, which are

otherwise unlikely to be discovered experimentally in the usual dark matter searches.

4.2 Symmetric case

While in our approach the two children masses M̃
(a)
c and M̃

(b)
c are treated as independent

inputs, this, of course, does not mean that the approach is only valid in cases when the

children masses are different to begin with. The techniques discussed in the previous

subsection remain applicable also in the more conventional case when the children are

identical, i.e. when colliders produce a single dark matter component. In order to illustrate

how our method works in that case, we shall now work out an example with equal children

masses. We still consider the simplest event topology of figure 3(a), but with the symmetric

mass spectrum II from table 1. We then repeat the analysis done in figures 5, 6, and 7

and show the corresponding results in figures 8, 9 and 10.

The conclusions from this exercise are very similar to what we found earlier in sec-

tion 4.1 for the asymmetric case. The MT2 endpoint still provides one relation among the

two children masses M̃
(a)
c and M̃

(b)
c and the parent mass M̃p = MT2(max). This relation is

shown in figure 8 (figure 9) for the case without (with) upstream momentum PUTM. As
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Figure 9. The same as figure 6 but for the symmetric mass spectrum II from table 1, i.e.

(M
(a)
c , M

(b)
c , Mp) = (100, 100, 300)GeV.

seen in figure 8, in the absence of any upstream PUTM, the function M̃p(M̃
(a)
c , M̃

(b)
c ) is

smooth and reveals nothing about the children masses. However, the presence of upstream

momentum significantly changes the picture and the function M̃p(M̃
(a)
c , M̃

(b)
c ) again devel-

ops a ridge, which is clearly visible18 in both the three-dimensional view of figure 9(a), as

well as the gradient plot in figure 9(b). The ridge information now further constrains the

children masses to the black solid line in figure 9(b), leaving only one unknown degree of

freedom. Parametrizing it with the polar angle θ as in (4.7), we obtain the spectrum as a

function of θ, as shown in figure 10(a). Once again we find the fortuitous result that in spite

of the remaining arbitrariness in the value of θ, the parent mass Mp is very well determined,

since M̃p(θ) is a very weakly varying function of θ. Furthermore, both figure 9(a) and fig-

ure 9(b) exhibit a high degree of symmetry under M̃
(a)
c ↔ M̃

(b)
c , which is a good hint that

the children are in fact identical. This suspicion is confirmed in figure 10(b), where we find

that the PUTM dependence disappears at the symmetric point M̃
(a)
c = M̃

(b)
c = 100 GeV,

revealing the true masses of the two children.

In the two examples considered so far in sections 4.1 and 4.2, we used a fixed finite

value of the upstream transverse momentum PUTM = 1 TeV, which is probably rather

extreme — in realistic models, one might expect typical values of PUTM on the order of

several hundred GeV. However, things begin to get much more interesting if one were to

consider even larger values of PUTM. On the one hand, the ridge feature becomes sharper

and easier to observe [86]. More importantly, the ridge structure itself is modified, and

18We caution the reader that here we are presenting only a proof of concept. In the actual analysis

the ridge may be rather difficult to see, for a variety of reasons - detector resolution, finite statistics,

combinatorial and SM backgrounds, etc. Nevertheless, we expect that the ridge will be just as easily

observable as the traditional kink in the symmetric MT2 endpoint. If the kink can be seen in the data, the

ridge can be seen too, and there is no reason to make the assumption of equal children masses. Conversely,

if the kink is too difficult to see, the ridge will remain hidden as well.
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Figure 10. The same as in figure 7 but for the symmetric mass spectrum II from table 1, i.e.

(M
(a)
c , M

(b)
c , Mp) = (100, 100, 300)GeV. Notice that, in contrast to figure 7, the minimum of the

∆MT2(max) function is now obtained at M̃
(a)
c = M̃

(b)
c , implying that the two missing particles are

the same.

a second set of ridgelines appears19 at sufficiently large PUTM. All ridgelines intersect

precisely at the point marking the true values of the children masses, thus allowing the

complete determination of the mass spectrum by the ridge method alone. This procedure

was demonstrated explicitly in ref. [97], which investigated the extreme case of PUTM = ∞
for a study point with different parents and identical children. The assumption of PUTM =

∞ justified the use of a “decoupling argument”, in which the two branches λ = a and

λ = b are treated independently, allowing the derivation of simple analytical expressions

for the MT2 endpoint [97]. In appendix A we reproduce the analogous analytical results

at PUTM → ∞ for the case of interest here (identical parents and different children) and

study in detail the PUTM dependence of the ridgelines. Unfortunately, we find that the

values of PUTM necessary to reveal the additional ridge structure, are too large to be of

any interest experimentally. On the positive side, the PUTM invariance method discussed

in section 2.3.3 does not require such extremely large values of PUTM and can in principle

be tested in more realistic experimental conditions.

4.3 Mixed case

For simplicity, so far in our discussion we have been studying only one type of missing

energy events at a time. In reality, the missing energy sample may contain several different

types of events, and the corresponding MT2 measurements will first need to be disentangled

from each other.

For concreteness, consider the inclusive pair production of some parent particle χp,

which can decay either to a child particle χa of mass M
(a)
c , or a different child particle χb of

mass M
(b)
c . Let the corresponding branching fractions be Ba and Bb, i.e. Ba ≡ B(χp → χa)

19A keen observer may have already noticed a hint of those in figures 7(b) and 10(b).
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Figure 11. Unit-normalized, zero-bin subtracted MT2 distribution (black histogram) for the full

mixed event sample, as well as the individual components χaχa (red), χaχb (blue) and χbχb (green).

We took zero test masses for the children M̃
(a)
c = M̃

(b)
c = 0 and equal branching fraction for the

parents Ba = Bb = 50%. The mass spectrum is taken from the asymmetric study point I in table 1

with M
(a)
c = 250GeV, M

(b)
c = 500GeV and Mp = 600GeV. The three arrows indicate the expected

endpoints for each individual component in the sample.

and Bb ≡ B(χp → χb). Furthermore, let χb decay invisibly20 to χa. Such a situation can be

easily realized in supersymmetry, for example, with the parent being a squark, a slepton,

or a gluino, the heavier child χb being a Wino-like neutralino χ̃0
2 and the lighter child χa

being a Bino-like neutralino χ̃0
1. The heavier neutralino has a large invisible decay mode

χ̃0
2 → χ̃0

1νν̄, if its mass happens to fall between the sneutrino mass and the left-handed

slepton mass: Mν̃ < Mχ̃0
2

< M
ℓ̃L

.

Let us start with a certain total number of events Npp in which two parent particles χp

have been produced. Then the missing energy sample will contain Nbb = NppB
2
b symmetric

events where the two children are χb and χb, Naa = NppB
2
a symmetric events where the two

children are χa and χa, and Nab = 2NppBaBb asymmetric events where the two children

are χa and χb. How can one analyze such a mixed event sample with a single MT2 variable?

The black histogram in figure 11 shows the unit-normalized MT2 distribution for the

whole (mixed) event sample (for convenience, we do not show the zero bin [101]). For this

plot, we used the asymmetric mass spectrum I from table 1: M
(a)
c = 250 GeV, M

(b)
c =

500 GeV and Mp = 600 GeV, and chose zero test masses for the children M̃
(a)
c = M̃

(b)
c = 0.

For definiteness, we fixed equal branching fractions Ba = Bb = 50%, so that the relative

normalization of the three individual samples is Naa : Nbb : Nab = 1 : 1 : 2. Figure 11 shows

that the observable MT2 distribution is simply a superposition of the MT2 distributions of

the three individual samples χaχa, χaχb and χbχb, which are shown with the red, blue and

20If χb decays visibly, then the respective types of events can in principle be sorted by their signature.
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green histograms, correspondingly. Each individual sample exhibits its own MT2 endpoint,

marked with a vertical arrow, which can also be seen in the combined MT2 distribution.

Using eq. (4.4), the three endpoints are found to be

χaχa → M
(aa)
T2(max)(0, 0, 0) = Mp



1 −
(

M
(a)
c

Mp

)2


 = 496 GeV, (4.8)

χaχb → M
(ab)
T2(max)(0, 0, 0) = Mp

√

√

√

√

√



1 −
(

M
(a)
c

Mp

)2






1 −
(

M
(b)
c

Mp

)2


 = 301 GeV, (4.9)

χbχb → M
(bb)
T2(max)(0, 0, 0) = Mp



1 −
(

M
(b)
c

Mp

)2


 = 183 GeV. (4.10)

Now suppose that all three endpoints (4.8)–(4.10) are seen in the data. Their inter-

pretation is far from obvious, and in fact, there will be different competing explanations.

If one insists on the single missing particle hypothesis, there can be only one type of child

particle, and the only way to get three different endpoints in figure 11 is to have production

of three different pairs of parent particles, each of which decays in exactly the same way.

Since the three parent masses are a priori unrelated, one does not expect any particular

correlation among the three observed endpoints (4.8)–(4.10). Now consider an alternative

explanation where we produce a single type of parents, but have two different children

types. This situation also gives rise to three different event topologies, with three different

MT2 endpoints, as we just discussed. However, now there is a predicted relation among

the three MT2 endpoints, which follows simply from eqs. (4.8)–(4.10):

M
(ab)
T2(max)(0, 0, 0) =

√

M
(aa)
T2(max)(0, 0, 0)M

(bb)
T2(max)(0, 0, 0) . (4.11)

If the parents are the same and the children are different, this relation must be satisfied.

If the parents are different and the children are the same, a priori there is no reason why

eq. (4.11) should hold, and if it does, it must be by pure coincidence. The prediction (4.11)

therefore is a direct test of the number of children particles. Another test can be performed

if we could estimate the individual event counts Naa, Nab and Nbb, although this appears

rather difficult, due to the unknown shape of the MT2 distributions in figure 11. In the

asymmetric example discussed here, we have another prediction, namely

Nab = 2
√

NaaNbb , (4.12)

which is another test of the different children hypothesis. Notice that eq. (4.12) holds

regardless of the branching fractions Ba and Bb, although if one of them dominates, the

two endpoints which require the other (rare) decay may be too difficult to observe.

Of course, the ultimate test of the single missing particle hypothesis is the behavior

of the intermediate MT2 endpoint in figure 11 corresponding to the asymmetric events of
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type χaχb. Applying either one of the two mass determination methods discussed earlier in

figures 7 and 10, we should find that M
(ab)
T2(max) is a result of asymmetric events, indicating

the simultaneous presence of two different invisible particles in the data.

5 A more complex event topology: two SM particles on each side

In this section, we consider two more examples: the off-shell event topology of figure 3(b)

is discussed in section 5.1, while the on-shell event topology of figure 3(c) is discussed in

section 5.2. (For simplicity, we do not consider any PUTM in this section.) Now there

are two visible particles in each leg, which form a composite visible particle of varying

mass m(λ). In general, by studying the invariant mass distribution of m(λ), one should

be able to observe two different invariant mass endpoints, suggesting some type of an

asymmetric scenario.

5.1 Off-shell intermediate particle

Here we concentrate on the example of figure 3(b). Since the intermediate particle is

offshell, the maximum kinematically allowed value for m(λ) is given by eq. (3.24).

Recall that for the simple topology of figure 3(a) discussed in the previous section,

the MT2 endpoint (4.4) always corresponded to a balanced solution. More precisely, the

MT2 variable was maximized for a momentum configuration ~p
(λ)

T in which MT2 was given

by the balanced solution (3.7). However, in this section we shall find that for the more

complex topologies of figures 3(b) and 3(c), the MT2 endpoint may result from one of

four different cases altogether: two different balanced solutions, which we shall label as

B and B′, or the unbalanced solutions Ua and Ub discussed in section 3.2. Depending

on the type of solution giving the endpoint MT2(max), the (M̃
(a)
c , M̃

(b)
c ) parameter plane

divides into the three regions21 shown in figure 12. The green dot in figure 12 denotes the

true children masses in this parameter space. Within each region, we show the relevant

momentum configuration for the visible particles (red arrows) and the children particles

(blue arrows) in each leg (a or b). The momenta are quoted in the “back-to-back boosted”

(BB) frame [68], in which the two parents are at rest. The length of an arrow is indicative

of the magnitude of the momentum. A blue dot implies that the corresponding daughter is

at rest and therefore the two visible particles are emitted back-to-back. The two balanced

solutions are denoted as B and B′, while the two unbalanced solutions are Ua and Ub.

The black solid lines represent phase changes between different solution types and delineate

the expected locations of the ridges in the MT2(max) function shown in figure 13 below.

Perhaps the most striking feature of figure 12 is that the three (in fact, all four) regions

come together precisely at the green dot marking the true values of the two children masses.

The boundaries of the regions shown in figure 12 will manifest themselves as the locations

of the ridges (i.e. gradient discontinuities) in the MT2(max) function. Therefore, we expect

that by studying the ridge structure and finding its “triple” point, one will be able to

completely determine the mass spectrum.

21The fourth case of the B′ balanced solution happens to coincide with the two unbalanced solutions

along the boundary between Ua and Ub.
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Figure 12. The four regions in the (M̃
(a)
c , M̃

(b)
c ) parameter plane leading to the four different types

of solutions for the MT2 endpoint, for the off-shell event topology of figure 3(b). The green dot marks

the true location of the two children masses. Within each region, we indicate the relevant momentum

configuration for the visible particles (red arrows) and the children particles (blue arrows) in each

leg (a or b). The momenta are quoted in the “back-to-back boosted” (BB) frame [68], in which the

two parents are at rest. A blue dot implies that the corresponding daughter is at rest and therefore

the two visible particles are emitted back-to-back. The two balanced solutions are denoted as B

and B′, while the two unbalanced solutions are Ua and Ub. The black solid lines represent phase

changes between different solution types and delineate the expected locations of the ridges in the

MT2(max) function shown in figure 13.

We shall now give analytical formulas for the MT2 endpoint in each of the four regions

of figure 12. We begin with the two balanced solutions B and B′, for which the event-by-

event balanced solution for MT2 is given by eq. (3.7). In the parameter space region of

figure 12 which is adjacent to the origin, we find the balanced configuration B, in which

all visible particles have the same direction in the BB frame. As a result, we have

m(a) = m(b) = 0 (5.1)

and

AT =
(M2

p −
(

M
(a)
c

)2
)(M2

p −
(

M
(b)
c

)2
)

2M2
p

. (5.2)

Substituting eqs. (5.1) and (5.2) in the balanced MT2 solution (3.7), where we should take

the plus sign, we obtain

[

MB
T2(max)(M̃

(a)
c , M̃ (b)

c )
]2

= 2µ̄2
ppc + M̃2

+ +
√

4 µ̄2
ppc(µ̄

2
ppc + M̃2

+) + M̃4
− , (5.3)

which we recognize as the balanced solution (4.4) found for the decay topology of figure 3(a).

Moving away from the origin in figure 12, we find a second balanced solution B′ along

the boundary of the unbalanced regions Ua and Ub. In this case the visible particles are
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back-to-back, and their invariant mass is maximized:

m(λ) = Mp − M (λ)
c , (5.4)

and correspondingly

AT =
(

Mp − M (a)
c

)(

Mp − M (b)
c

)

. (5.5)

Substituting eqs. (5.4) and (5.5) in the balanced MT2 solution (3.7), we obtain the B′-type

MT2 endpoint as

[

MB′

T2(max)(M̃
(a)
c , M̃ (b)

c )
]2

=
(

Mp−M (a)
c

)(

Mp−M (b)
c

)

+M̃2
+ +

2Mp − M
(a)
c − M

(b)
c

M
(b)
c − M

(a)
c

M̃2
−.

(5.6)

The corresponding formulas for the unbalanced cases Ua and Ub are obtained by taking

the maximum value for the invariant mass of the visible particles in the corresponding

decay chain:

m(a) = mmax
(a) = Mp − M (a)

c for region (Ua) , (5.7)

m(b) = mmax
(b) = Mp − M (b)

c for region (Ub) . (5.8)

The corresponding formula for MT2(max) is then given by

MUa
T2(max)(M̃

(a)
c ) = Mp − M (a)

c + M̃ (a)
c , (5.9)

MUb
T2(max)(M̃

(b)
c ) = Mp − M (b)

c + M̃ (b)
c . (5.10)

One can now use the analytical results (5.3), (5.6), (5.9) and (5.10) to understand the

ridge structure shown in figure 12. For example, the boundary between the B and Ua

regions is parametrically given by the condition

MB
T2(max)(M̃

(a)
c , M̃ (b)

c ) = MUa
T2(max)(M̃

(a)
c ) , (5.11)

while the boundary between the B and Ub regions is parametrically given by

MB
T2(max)(M̃

(a)
c , M̃ (b)

c ) = MUb
T2(max)(M̃

(b)
c ) . (5.12)

On the other hand, the boundary

MUa
T2(max)(M̃

(a)
c ) = MUb

T2(max)(M̃
(b)
c ) (5.13)

between the two unbalanced regions Ua and Ub is quite interesting. The parametric equa-

tion (5.13) is nothing but a straight line in the (M̃
(a)
c , M̃

(b)
c ) plane:

M̃ (b)
c = M (b)

c − M (a)
c + M̃ (a)

c , (5.14)

as seen in figure 12.

It is now easy to understand the triple point structure in figure 12. The triple point is

obtained by the merging of all three boundaries (5.11), (5.12) and (5.13), i.e. when

MB
T2(max)(M̃

(a)
c , M̃ (b)

c ) = MB′

T2(max)(M̃
(a)
c , M̃ (b)

c ) = MUa
T2(max)(M̃

(a)
c ) = MUb

T2(max)(M̃
(b)
c ) .

(5.15)
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Figure 13. The same as figure 5, but for the off-shell event topology of figure 3(b). We use the

mass spectrum from the example in figure 4: M
(a)
c = 100GeV, M

(b)
c = 200GeV and Mp = 600GeV

and for simplicity consider only events with PUTM = 0.

It is easy to check that M̃
(a)
c = M

(a)
c and M̃

(b)
c = M

(b)
c identically satisfy these equations,

thereby proving that the triple intersection of the boundaries seen in figure 12 indeed takes

place at the true values of the children masses.

These results are confirmed in our numerical simulations. In figure 13 we present (a)

a three dimensional view and (b) a gradient plot of the ridge structure found in events

with the off-shell topology of figure 3(b). The mass spectrum for this study point was

fixed as in figure 4, namely M
(a)
c = 100 GeV, M

(b)
c = 200 GeV and Mp = 600 GeV. Since

the ridge structure for this topology does not require the presence of upstream momen-

tum, for simplicity we consider only events with PUTM = 0. The ridge pattern is clearly

evident in figure 13(a), which shows a three-dimensional view of the MT2 endpoint func-

tion MT2(max)(M̃
(a)
c , M̃

(b)
c ). It is even more apparent in figure 13(b), where one can see

a sharp gradient change along the ridge lines: in regions Ua and Ub, the corresponding

gradient vectors point in trivial directions (either horizontally or vertically), in accord with

eqs. (5.9)–(5.10). On the other hand, the gradient in region B is very small, and the MT2

endpoint function is rather flat. The green dot marks the location of the true children

masses (M
(a)
c = 100 GeV, M

(b)
c = 200 GeV) and is indeed the intersection point of the

three ridgelines. As expected, the corresponding MT2(max) at that point is the true parent

particle mass Mp = 600 GeV.

At this point, it is interesting to ask the question, what would be the outcome of

this exercise if one were to make the usual assumption of identical children, and apply the

traditional symmetric MT2 to this situation. The answer can be deduced from figure 13(b),

where the diagonal orange dotdashed line corresponds to the usual assumption of M̃
(a)
c =

M̃
(b)
c . In that case, one still finds a kink, but at the wrong location: in figure 13(b) the

intersection of the diagonal orange line and the solid black ridgeline occurs at M̃
(a)
c =

M̃
(b)
c = 65.3 GeV and the corresponding parent mass is M̃p = 565.3 GeV. Therefore, the

traditional kink method can easily lead to a wrong mass measurement. Then the only way

to know that there was something wrong with the measurement would be to study the effect

of the upstream momentum and see that the observed kink is not invariant under PUTM.

– 34 –



J
H
E
P
0
4
(
2
0
1
0
)
0
8
6

Figure 14. The same as figure 12 but for the onshell scenario illustrated in figure 3(c).

We should note that, depending on the actual mass spectrum, the two-dimensional

ridge pattern seen in figures 12 and 13(b) may look very differently. For example, the

balanced region B may or may not include the origin. One can show that if

Mp <
M

(b)
c

4M
(a)
c

(

M (b)
c +

√

8
(

M
(a)
c

)2
+
(

M
(b)
c

)2
)

, (5.16)

the boundary between B and Ua does not cross the M̃
(a)
c axis. In this case the diagonal

line in figure 13(b) does not cross any ridgelines and the traditional MT2 approach will not

produce any kink structure, in contradiction with one’s expectations. This exercise teaches

us that the failsafe approach to measuring the masses in missing energy events is to apply

from the very beginning the asymmetric MT2 concept advertized in this paper.

5.2 On-shell intermediate particle

Our final example is the on-shell event topology illustrated in figure 3(c). Now there is an

additional parameter which enters the game — the mass M
(λ)
i of the intermediate particle

in the λ-th decay chain. As a result, the allowed range of invariant masses for the visible

particle pair on each side is limited from above by eq. (3.25).

In this case we find that the MT2 endpoint exhibits a similar phase structure as the

one shown in figure 12. One particular pattern is illustrated in figure 14, which exhibits

the same four regions B, B′, Ua and Ub seen in figure 12. The difference now is that region

B′ is considerably expanded, and as a result, region B does not have a common border

with regions Ua and Ub any more. The triple point of figure 12 has now disappeared and

the correct values of the children masses now lie somewhere on the border between regions

B and B′, but their exact location along this ridgeline is at this point unknown.

Just like we did for the off-shell case in section 5.1, we shall now present analytical

formulas for the MT2 endpoint in each region of figure 14. In the balanced region B, we find
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Figure 15. The same as in figure 13 but for the onshell scenario of figure 3(c), with a mass

spectrum M
(a)
c = 100GeV, M

(b)
c = 200GeV, M

(a)
i = M

(b)
i = 550GeV and Mp = 1 TeV.

the same results (5.1)–(5.3) as in the off-shell case considered in the previous section 5.1.

The other balanced region B′ is characterized by

m(λ) = mmax
(λ) , (5.17)

where mmax
(λ) is given by eq. (3.25), and

AT =
M2

p
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(
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(
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∣

∣

∣

∣

∣

∣

. (5.18)

The formula for the endpoint MB′

T2(max) in region B′ is then simply obtained by substitut-

ing (5.17) and (5.18) into the balanced solution (3.7).

Finally, the MT2 endpoint in the unbalanced regions Ua and Ub is given by

MUa
T2(max)(M̃

(a)
c ) = mmax

(a) + M̃ (a)
c , (5.19)

MUb
T2(max)(M̃

(b)
c ) = mmax

(b) + M̃ (b)
c , (5.20)

where mmax
(a) and mmax

(b) are given by eq. (3.25).

In figure 15 we present our numerical results in this on-shell scenario. The mass

spectrum is fixed as: M
(a)
c = 100 GeV, M

(b)
c = 200 GeV, M

(a)
i = M

(b)
i = 550 GeV and Mp =

1 TeV, and we still do not include the effects of any upstream momentum. Figure 15(a)

shows the three-dimensional view of the MT2 endpoint function MT2(max)(M̃
(a)
c , M̃

(b)
c ),

which exhibits three different sets of ridges, which are more easily seen in the gradient

plot of figure 15(b). As usual, the green dot marks the true children masses. Figure 15(b)
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shows that the ridgeline separating the two balanced regions B and B′ does go through

the green dot and thus reveals a relationship between the two children masses, leaving the

ridgeline parameter θ as the only remaining unknown degree of freedom. However, unlike

the off-shell case of section 5.1, now there is no special point on this ridgeline, and we

cannot completely pin down the masses by the ridge method. Thus, in order to determine

all masses in the problem, one must use an additional piece of information, for example

the visible invariant mass endpoint (3.25) or the PUTM invariance method suggested in

section 3.3.3.

6 Summary and conclusions

Cosmological observations hint towards the existence of one or more hypothetical dark

matter particles. The start of the Large Hadron Collider may offer an unique opportunity

to produce and study dark matter in a high-energy experimental laboratory. Unfortunately,

the dark matter signatures at colliders always involve missing transverse energy. Such

events will be quite challenging to fully reconstruct and/or interpret. Most previous studies

have made (either explicitly or implicitly) the assumption that each event has two identical

missing particles. Our main point in this paper is that this assumption is unnecessary, and

by suitable modifications of the existing analysis techniques one can in principle test both

the number and the type of missing particles in the data. Our proposal here was to modify

the Cambridge MT2 variable [50] by treating each children mass as an independent input

parameter. In this approach, one obtains the MT2 endpoint MT2(max) as a function of the

two children masses M̃
(a)
c and M̃

(b)
c , and proceeds to study its properties. The two most

important features of the thus obtained function MT2(max)(M̃
(a)
c , M̃

(b)
c ), identified in this

paper, were the following:

• The function MT2(max)(M̃
(a)
c , M̃

(b)
c ) exhibits a ridge structure (i.e. a gradient dis-

continuity), as illustrated with specific examples in figures 6, 9, 13 and 15. The

point corresponding to the correct children masses always lies on a ridgeline, thus the

ridgelines provide a model-independent constraint among the children masses, just

like the MT2 endpoint provides a model-independent constraint on the masses of the

child(ren) and the parent.

• In general, the MT2 endpoint function also depends on the value of the upstream

transverse momentum in the event: MT2(max)(M̃
(a)
c , M̃

(b)
c , PUTM). However, the

PUTM dependence disappears completely for precisely the right values of the chil-

dren masses, as seen in the examples of figures 7(b) and 10(b). This provides a

second, quite general and model-independent, method for measuring the individual

particle masses in such missing energy events.

Before we conclude, we shall discuss a few other possible applications of the asymmetric

MT2 idea, besides the examples already considered in the paper.

1. Invisible decays of the next-to-lightest particle. Most new physics models introduce

some new massive and neutral particle which plays the role of a dark matter can-

didate. Often the very same models also contain other, heavier particles, which for
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p(p̄)

p(p̄)

ISR

ISR

q̃ χ̃0
2 ℓ̃± χ̃0

1

q̃ χ̃±
1 ν̃ℓ χ̃0

1

q ℓ∓ ℓ±

q ℓ± ν̃ℓ

p(p̄)

p(p̄)

ISR

ISR

t W+ νℓ

t̄ W−

b ℓ+

b̄

(a) (b)

Figure 16. Event topology for the two examples discussed in section 6. The black solid lines

represent SM particles which are visible in the detector while red solid lines represent particles at

intermediate sages. The missing particles are denoted by dotted lines. (a) Squark pair production

with decay chains terminating in two different invisible particles (χ̃0
1 and ν̃ℓ, correspondingly). In

this case ν̃ℓ decays invisibly. (b) The subsystem MT2 variable applied to tt̄ events. The W -boson

in the lower leg is treated as a child particle and can decay either hadronically or leptonically.

collider purposes behave just like a dark matter candidate: they decay invisibly and

result in missing energy in the detector. For example, in supersymmetry one may find

an invisibly decaying sneutrino ν̃ℓ → νℓχ̃
0
1, in UED one finds an invisibly decaying

KK neutrino ν1 → νγ1, etc. These scenarios can easily generate an asymmetric event

topology. For example, consider the strong production of a squark (q̃) pair, as illus-

trated in figure 16(a). One of the squarks subsequently decays to the second lightest

neutralino χ̃0
2, which in turn decays to the lightest neutralino χ̃0

1 by emitting two SM

fermions χ̃0
2 → ℓ+ℓ−χ̃0

1 (or χ̃0
2 → jjχ̃0

1). The other squark decays to a chargino χ̃±
1 ,

which then decays to a sneutrino as χ̃±
1 → ℓ±ν̃ℓ. Since ν̃ℓ can only decay invisibly,

we obtain the asymmetric event topology outlined with the blue box in figure 16(a).

The two squarks are the parents, the lightest neutralino χ̃0
1 is the first child, and the

sneutrino ν̃ℓ is the second child.

2. Applying MT2 to an asymmetric subsystem. One can also apply the MT2 idea even to

events in which there is only one (or even no) missing particles to begin with. Such

an example is shown in figure 16(b), where we consider tt̄ production in the dilepton

or semi-leptonic channel. In the first leg we can take bℓ as our visible system and

the neutrino νℓ as the invisible particle, while in the other leg we can treat the b-jet

as the visible system and the W -boson as the child particle. In this case, there still

should be a ridge structure revealing the true t, W and ν masses.

3. Multi-component dark matter. Of course, the model may contain two (or more)

different genuine dark matter particles [105–113], whose production in various com-

binations will inevitably lead at times to asymmetric event topologies.

In conclusion, our work shows that the MT2 concept can be easily generalized to

decay chains terminating in two different daughter particles. Nevertheless, the methods

discussed in this paper allow to extract all masses involved in the decays, at least as a
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matter of principle. We believe that such methods will prove extremely useful, if a missing

energy signal of new physics is seen at the Tevatron or the LHC.
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A The asymmetric MT2 in the limit of infinite PUTM

In this appendix we revisit our previous two examples from sections 4.1 and 4.2, this time

considering the infinitely large PUTM limit [97]. While this situation is impossible to achieve

in a real experiment, its advantage is that it can be treated by analytical means. In the

PUTM → ∞ limit, the “decoupling argument” of ref. [97] holds, and one finds the following

analytical expression for the MT2 endpoint as a function of the two test children masses

M̃
(a)
c and M̃

(b)
c :

MT2(max)(M̃
(a)
c , M̃ (b)

c ,∞) =



















































√

M2
p − (M

(a)
c )2 + (M̃

(a)
c )2, if (M̃

(a)
c , M̃

(b)
c ) ∈ R1,

√

M2
p − (M

(b)
c )2 + (M̃

(b)
c )2, if (M̃

(a)
c , M̃

(b)
c ) ∈ R2,

M̃
(b)
c

M
(b)
c

Mp, if (M̃
(a)
c , M̃

(b)
c ) ∈ R3,

M̃
(a)
c

M
(a)
c

Mp, if (M̃
(a)
c , M̃

(b)
c ) ∈ R4,

(A.1)

where the four defining regions Ri, (i = 1, . . . , 4) are shown in figure 17 and are defined

as follows:

R1 : M̃ (b)
c <

√

(M
(b)
c )2 − (M

(a)
c )2 + (M̃

(a)
c )2 ∧ M̃ (a)

c < M (a)
c , (A.2)

R2 :

√

(M
(b)
c )2 − (M

(a)
c )2 + (M̃

(a)
c )2 < M̃ (b)

c < M (b)
c , (A.3)

R3 : M (b)
c < M̃ (b)

c ∧ M̃ (a)
c <

(

M
(a)
c

M
(b)
c

)

M̃ (b)
c , (A.4)

R4 : M (a)
c < M̃ (a)

c ∧ M̃ (b)
c <

(

M
(b)
c

M
(a)
c

)

M̃ (a)
c . (A.5)

Since the functional expression for MT2(max) within each region Ri is different, there is in

general a gradient discontinuity when crossing from one region into the next. Therefore, the

ridges on the MT2(max) hypersurface will appear along the common boundaries of the four

regions Ri. Let us denote by Lij the boundary between regions Ri and Rj. As indicated
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Figure 17. The parameter plane of test children masses squared, divided into the four different

regions Ri used to define the MT2 endpoint function (A.1). Their common boundaries Lij are

parametrically defined in eqs. (A.6)–(A.9). The black dot corresponds to the true values of the

children masses.

in figure 17, each Lij is a straight line in the parameter space of the children test masses

squared and is given by

L12 : (M̃ (b)
c )2 = (M (b)

c )2 − (M (a)
c )2 + (M̃ (a)

c )2 , M̃ (a)
c ≤ M (a)

c ; (A.6)

L23 : M̃ (b)
c = M (b)

c , M̃ (a)
c ≤ M (a)

c ; (A.7)

L34 : M̃ (b)
c =

M
(b)
c

M
(a)
c

M̃ (a)
c , M̃ (a)

c ≥ M (a)
c ; (A.8)

L14 : M̃ (a)
c = M (a)

c , M̃ (b)
c ≤ M (b)

c . (A.9)

As seen in figure 17, all four lines Lij meet at the true children mass point M̃
(a)
c = M

(a)
c ,

M̃
(b)
c = M

(b)
c , where in turn the MT2 endpoint MT2(max) gives the true parent mass Mp, in

accordance with eq. (3.16).

With those preliminaries, we are now in a position to revisit our two examples from

sections 4.1 and 4.2. Figures 18 and 19 are the corresponding analogues of figures 6 and 9 in

the case of infinite PUTM. Comparing with our earlier results, we notice both quantitative

and qualitative changes in the ridge structure. First, the smooth ridge in figure 6(b)

(figure 9(b)) has now been deformed into two straight line segments, one horizontal (L23)

and the other vertical (L14), which meet at an angle of 90◦ precisely at the true values

of the children masses. More importantly, figures 18 and 19 now exhibit another pair of

ridges L12 and L34 (plotted in red in figures 18(b) and 19(b)), which were absent from the

earlier figures in section 4. The system of four ridges seen in figures 18(a) and 19(a) is very

similar to the crease structure observed in ref. [97]. We thus confirm the result of ref. [97]
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Figure 18. The same as figure 6 but for PUTM → ∞.

Figure 19. The same as figure 9 but for PUTM → ∞.

that in the infinite PUTM limit there exist four different ridges, whose common intersection

point reveals the true masses of the parent and children particles.

At this point it is instructive to contrast the two sets of ridgelines: L23 and L14 (shown

in figures 18(b) and 19(b) in black) versus L12 and L34 (shown in figures 18(b) and 19(b) in

red). The boundaries L23 and L14 separate the union of regions R1 and R2 from the union

of regions R3 and R4. Along those boundaries, we observe a transition in the configuration

of visible momenta which yields the maximum possible value of MT2. More precisely, in

regions R1 and R2 we find that the visible momenta ~p
(λ)

T for MT2(max) are parallel to the

direction of the upstream momentum ~PUTM, while in regions R3 and R4 we find that ~p
(λ)

T

are anti-parallel to ~PUTM. This fact remains true even at finite values of PUTM, which is

why the ridgelines L23 and L14 could also be seen in the earlier plots from section 4 at

finite PUTM = 1 TeV.
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Figure 20. A study of the sharpness of the MT2 ridge for the example considered in section 4.1. The

event topology is that of figure 3(a) and the mass spectrum is M
(a)
c = 250GeV, M

(b)
c = 500GeV and

Mp = 600GeV. We plot the asymmetric MT2 endpoint MT2(max)(M̃
(a)
c (φ), M̃

(b)
c (φ), PUTM), as a

function of the angular variable φ parameterizing the circle of radius R defined in eqs. (A.10), (A.11).

The radius R of the circle is taken to be R = 50GeV in panel (a) and R = 5 GeV in panel (b). We

present results for four different choices of the upstream momentum PUTM as labelled in the plot.

Figure 21. The same as figure 20, but for the example considered in section 4.2, where the input

mass spectrum is fixed as M
(a)
c = 100GeV, M

(b)
c = 100GeV and Mp = 300GeV.

On the other hand, the ridgelines L12 and L34 shown in red in figures 18(b) and 19(b)

are due to the “decoupling argument” [97], which is strictly valid only in the infinite PUTM

limit. This is why these ridges become apparent only at very large values of PUTM, and

are gradually smeared out at smaller PUTM.

The evolution of the ridge structure as a function of PUTM is shown in figures 20

and 21. In order to compare the sharpness of the four ridges, we choose to vary the test

children masses M̃
(a)
c and M̃

(b)
c along a circle centered on their true values and with a fixed

radius R. Such a circle is guaranteed to cross all four ridges, and can be parameterized in
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terms of an angular coordinate φ as follows

M̃ (a)
c (φ) = M (a)

c + R cos φ, (A.10)

M̃ (b)
c (φ) = M (b)

c + R sin φ. (A.11)

Then in figure 20 (figure 21) we plot the asymmetric MT2 endpoint

MT2(max)(M̃
(a)
c (φ), M̃

(b)
c (φ), PUTM), as a function of the angular variable φ, for the

case of mass spectrum I studied in section 4.1 (mass spectrum II studied in section 4.2).

The radius R is taken to be R = 50 GeV in panels (a) and R = 5 GeV in panels (b). We

present results for four different choices of the upstream momentum: PUTM = 100 GeV

(black lines), PUTM = 1TeV (blue lines), PUTM = 4TeV (magenta lines), and PUTM = ∞
(red lines). Notice that the red lines at PUTM = ∞ in figures 20 and 21 are directly

correlated to the three-dimensional plots of figures 18 and 19, while the blue lines at

PUTM = 1 TeV in figures 20 and 21 are directly correlated to the three-dimensional plots

of figures 6 and 9.

Each one of the previously discussed ridges manifests itself as a kink in figures 20

and 21. Indeed, the red lines for PUTM = ∞ reveal four clear kinks, which (from

left to right) correspond to the ridgelines L34, L23, L12, and L14. Using eqs. (A.6)–

(A.9), it is easy to find the expected location of each kink in the PUTM → ∞ limit:

φ = {63.4◦, 180◦, 204.9◦, 270◦} for figure 20(a), φ = {63.4◦, 180◦, 206.4◦, 270◦} for fig-

ure 20(b), and φ = {45◦, 180◦, 225◦, 270◦} for figures 21(a) and 21(b). However, as the

upstream momentum is lowered to more realistic values, the kinks gradually wash out,

albeit to a different degree. As anticipated from our earlier results, the smearing effect is

quite severe for L34 and L12, and by the time we reach PUTM = 1TeV, those two kinks have

completely disappeared. On the other hand, L23 and L14 are affected to a lesser degree

by the smearing effect and are still visible at PUTM = 1 TeV, but by PUTM = 100 GeV

they are essentially gone as well. Notice that the variation in PUTM affects not only the

sharpness of the kinks, but also their location. This was to be expected, since we already

saw that the shape of the ridge is different at PUTM = 1 TeV and PUTM = ∞: compare

the black ridge lines in figures 6(b) and 9(b) to those in figures 18(b) and 19(b). Finally,

as a curious fact we notice that the results shown in panels (a) and panels (b) of figures 20

and 21 are approximately related by a simple scaling with a constant factor.
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