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CC
ut the skin of an orange along a thin spiral of
constant width (Fig. 1) and place it flat on a table
(Fig. 2). A natural breakfast question, for a mathe-

matician, is what shape the spiral peel will have when
flattened out. We derive a formula that, for a given cut
width, describes the corresponding spiral’s shape.

For the analysis, we parametrize the spiral curve by a
constant speed trajectory, and express the curvature of the
flattened-out spiral as a function of time.

This is achieved by comparing a revolution of the spiral
on the orange with a corresponding spiral on a cone tan-
gent to the surface of the orange (Fig. 3, left). Once we
know the curvature, we derive a differential equation for
our spiral, which we solve analytically (Fig. 4, left).

We then consider what happens to our spirals when we
vary the strip width. Two properties are affected: the
overall size, and the shape. Taking finer and finer widths of
strip, we obtain a sequence of increasingly long spirals;
rescale these spirals to make them all of the same size. We
show that, after rescaling, the shape of these spirals tends
to a well-defined limit. The limit shape is a classical
mathematical curve, known as the Euler spiral or the Cornu
spiral (Fig. 4, right). This spiral is the solution of the Fresnel
integrals.

The Euler spiral has many applications. In optics, it
occurs in the study of light diffracting through a slit [1,
§10.3.8]. Let light shine through a long and thin horizontal
slit and hit a vertical wall just behind it; assume that the slit’s
width and the distance to the wall are comparable to the
wavelength. What is the illumination intensity on the wall,
as a function of height? Imagine two ants running after each
other on the Euler spiral at constant speed. It turns out that
the square of the distance between the ants, at time t, is
proportional to the illumination intensity on the wall at
height t.

The same spiral is also used in civil engineering: it
provides optimal curvature for train tracks between a
straight run and an upcoming bend [4, §14.1.2]. A train that
travels at constant speed and increases the curvature of its
trajectory at a constant rate will naturally follow an arc of
the Euler spiral.

The review [2] describes the history of the Euler spiral
and its three independent discoveries.

For the purpose of our mathematical treatment, we shall
replace the orange by a sphere of radius one. The spiral on
the sphere is taken to be of width 1/N, as in Fig. 5. The area
of the sphere is 4p, so the spiral has a length of roughly 4p
N. We describe the flattened-out orange-peel spiral by a
curve (x(t), y(t)) in the plane, parametrized at unit speed
from time t = -2pN to t = 2pN.

On a sphere of radius 1, the area between two hori-
zontal planes at heights h1 and h2 is 2p(h2 - h1) (see
Fig. 5). It follows that, at time t, the point on the sphere has
height s :¼ t=2pN :

Our first goal is to find a differential equation for
(x(t), y(t)). For that, we compute the radius of curvature
R(t) of the flattened-out spiral at time t: this is the radius of
the circle with best contact to the curve at time t. For
example, R(-2pN) = R(2pN) = 0 at the poles, and Rð0Þ ¼
1 at the equator.

For N large, the spiral at time t follows roughly a parallel
at height s on the orange. The surface of the sphere can be
approximated by a tangent cone whose development on
the plane is a disk sector (Fig. 3, left). The radius

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

=s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pN Þ2 � t2
q

=t

of that disk equals the radius of curvature of the spiral at
time t (Fig. 3, right). The radius R(t) is in fact only deter-
mined up to sign; the construction on one hemisphere
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produces a spiral curling one way, and curling the opposite
way on the other.

Now, the condition that we move at unit speed on the
sphere — and on the plane — is ð _xÞ2 þ ð _yÞ2 ¼ 1, and the
condition that the spiral has a curvature of R(t) is
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Figure 1. An orange, assumed to be a sphere of radius 1, and

spiral of width 1/N, with N = 3.

Figure 3. (left) Spiral on the sphere, transferred to the tangent

cone and developed on the plane, for computing its radius of

curvature. (right) The computation of the radius of curvature R

of the flattened spiral.

Figure 2. The orange peel in Figure 1 now flattened out.
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Figure 4. (left) Maple plot of the orange peel spiral (N = 3).

(right) The Euler spiral: lim N ? ?
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_x€y � €x _y ¼ 1=R. Here, _x and _y are the derivatives of x and y,
respectively, and €x and €y are their second derivatives. In
fact, introducing the complex path z(t) = x(t) + iy(t), the
conditions can be expressed as j _zj2 ¼ 1 and €z _�z ¼ i=R.

The solution has the general form

zðtÞ ¼
Z t

0

expði/ðuÞÞdu;

for a real function /; indeed, its derivative is computed as

_z ¼ expði/ðtÞÞ and has norm 1. As €z _�z ¼ i _/ðtÞ, we have,

substituting the expression for 1/R, _/ðtÞ ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

,

which has as elementary solution /ðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pN Þ2 � t2
q

.

We have deduced that the flattened-out spiral has param-
etrization

xðtÞ ¼
Z t

0

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pN Þ2 � u2

q

du;

yðtÞ ¼ �
Z t

0

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pN Þ2 � u2

q

du:

8

>

>

<

>

>

:

The flattened-out peel of an orange is shown in Fig. 2, and
the corresponding analytic solution, computed by MAPLE [3],
is shown in Fig. 4, left. The orange’s radius was 3 cm, and
the peel was 1 cm wide, yielding N = 3.

What happens if N tends to infinity, that is, if we peel the
orange with an ever thinner spiral? For that, we recall the
power series approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

¼ a� u2

2a
þO u4

a3

� �

;

which we substitute with a = 2pN in the above expression:

zðtÞ ¼
Z t

0

exp
�

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pN Þ2 � u2

q

�

du

�
Z t

0

exp
�

� i
�

2pN � u2

2 � 2pN

��

du:

Taking only values of N that are integers, this simplifies to
R t

0 expðiu2=4pN Þdu. We then set v ¼ u=
ffiffiffiffiffiffiffiffiffi

4pN
p

to obtain

zðtÞ �
ffiffiffiffiffiffiffiffiffi

4pN
p Z t=

ffiffiffiffiffiffiffi

4pN
p

0

expðiv2Þdv:

The approximation error is
R t

0 O u4

a3

� �

du ¼ Oðt5=N 3Þ, which
becomes negligible compared to the size Oð

ffiffiffiffi

N
p
Þ of the

spiral for |t| � N 0.7.

The above curve is, up to scaling and parametrization
speed, the solution of the classical Fresnel integral

ðXðtÞ;Y ðtÞÞ ¼
Z t

0

cos u2du;

Z t

0

sin u2du

� �

;

defined by the condition that the radius of curvature at time
t is 1/2t; here the parametrization is over t from �1 to þ1.
The corresponding curve is called the Euler spiral and
winds infinitely often around the points �ð

ffiffi

p
8

p

;
ffiffi

p
8

p

Þ. Setting
T :¼ t=

ffiffiffiffiffiffiffiffiffi

4pN
p

, the condition |t| � N 0.7 becomes |T| �
N 0.2. We have thus proven

THEOREM If T � N 0.2, then the part of the orange peel of

width 1/N parametrized between �
ffiffiffiffiffiffiffiffiffi

4pN
p

T and
ffiffiffiffiffiffiffiffiffi

4pN
p

T is

a good approximation for the part of the Euler spiral

parametrized between -T and T (which corresponds to

T 2/2p revolutions on each side of the spiral).

Note that for large N, the piece of the orange peel param-
etrized between �

ffiffiffiffiffiffiffiffiffi

4pN
p

T and
ffiffiffiffiffiffiffiffiffi

4pN
p

T forms a rather thin
band (of width� N -0.3) around the orange’s equator. The
aforementioned approximations we made do not apply to
the rest of the orange. When the part of the peel contained
in that thin band is unrolled, it covers up to N0.4 revolutions
of the Euler spiral.

As a consequence, the Euler spiral is the limit shape of a
wide class of flattened peels: if you take any (convex) fruit
that looks like a sphere in a neighborhood of its equator,
then the flattened peel of that fruit will tend to the Euler
spiral as the peel becomes thinner. More generally, we
conjecture that any smooth convex body with positive
curvature will share that same property.

The Euler spiral is a well-known mathematical curve. In
this article, we explained how to construct it with an orange
and a kitchen knife. Flattened fruit peels have already been
considered, for example, those of apples [5], but they were
never studied analytically. The Euler spiral has had many
discoveries across history [2]; ours occurred over breakfast.
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Figure 5. Area of a thin circular strip on the sphere.
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