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Given the dense multipath propagation in typical ultra-wideband channels, traditional coherent receivers may become
computationally complex and impractical. Recently, noncoherent UWB architectures have been motivated with simple
implementations. Nevertheless, the rudimentary statistical assumption and practical information uncertainty inevitably results
in a hardly optimistic receiving performance. Inspired by the nature processes, in this paper we suggest a noncoherent UWB
demodulator based on the particle swarm intelligence which can be realized in two steps. Firstly, a characteristic spectrum is
developed from the received samples. From a novel pattern recognition perspective, four distinguishing features are extracted
from this characteristic waveform to thoroughly reveal the discriminant properties of UWB multipath signals and channel noise.
Subsequently, this established multidimensional feature space is compressed to a two-dimension plane by the optimal features
combination technique, and UWB signal detection is consequently formulated to assign these pattern points into two classes at the
minimum errors criterion. The optimal combination coefficients and the decision bound are then numerically derived by using
the particle swarm optimization. Our biological noncoherent UWB receiver is independent of any explicit channel parameters,
and hence is essentially robust to noise uncertainty. Numerical simulations further validate the advantages of our algorithm over

the other noncoherent techniques.

1. Introduction

The fast growing interest in ultra-wideband (UWB) has
been stimulated by the attractive features including low
probability of detection (LPD), low power consumption
and low-scomplexity baseband operations [1, 2]. Due to its
potential that provides an extremely high data rates even
surpassing 1 Gbps, UWB has long been considered as a
promising candidate for high-speed transmissions in wireless
personal area networks (WPANSs) [3, 4], mainly for the
online broadband multimedia stream services in short range
applications (10-15m). Meanwhile, with its outstanding
capability of positioning and material penetrating (e.g., the
foliage and walls), UWB has intensive military applications,
such as the high-resolution ground penetrating radars
(GPRs), through-wall imaging, and precise navigation [5, 6].
Most recently, the emerging body area networks (BANs)
also consider UWB radios as an appealing resolution for

health monitoring [7], due to its simple implementations
and extremely low radiation.

Impulse radio (IR) is one of physical proposal for
UWB communications, in which the information bit is
directly coded into a set of short-duration baseband pulses
[1, 8]. If the principle of UWB-IR is taken into account,
without the complicated radio frequency (RF) front-end, the
low-complexity transmitter seems to be feasible generally.
Nevertheless, owing to the enormous bandwidth of emission
pulses which even may be up to several gigahertz (GHz),
signal processing for UWB receivers has been remained as
formidable challenges in the presence of the highly dis-
persive propagations [9-11]. So, those traditionally derived
optimal coherent receivers may be not applicable for UWB
systems in three considerations [12]. First, synchronization
in coherent receivers must be accomplished at the scale
of subnanosecond duration, which requires sophisticated
algorithm and low clock jitter hardware [9]. Second, in order



to accurately extract the amplitude and position of each
resolvable multipath component, the highly computational
complexity of channel estimation is usually unaffordable
[13, 14]. Third, the coherent RAKE architecture integrating
a great population of fingers (correlator) leads to the
impractical hardware structure [15, 16].

To deal with these challenges, the transmitted-reference
(TR) structure is introduced in [17] to simplify UWB
receives, in which a pair of pulses are simultaneously emitted,
with the first pulse serving as the multipath channel template
for the second information-bearing one. It is obvious that
the transmission efficiency in TR is reduced by 50% due to
the reference signaling. Although special TR schemes have
been developed to compensate the transmission efficiency
[18, 19], the analog delay lines in TR are still difficult to
realize with the requisite accuracy. Recently, energy detection
(ED) based noncoherent receivers have been motivated with
the simple implementations [12, 20, 21]. Not depending
on the channel impulse response (CIS), channel estimation
as well as RAKE structure can be avoided [12]. Moreover,
the noncoherent architectures are virtually immune to the
clock timing estimation errors, compared to the precise
timing requirement in coherent receivers typically of =10 ps
[22], which further make the low complexity UWB devices
possible. Given that no channel characteristic has been
exploited, nevertheless, the performance of this suboptimal
alternative is still far from being satisfactory. Besides, ED
is significantly vulnerable to the noise uncertainty caused
by the fluctuated in-band noises [23]. Considering it is
practically impossible to know the accurate noise power, so
inevitably its performance may degrade noticeably.

In the last two decades, many advances on computer
science and engineers have been based on the observa-
tions and the emulations of the natural world processes.
Biological inspired algorithms are problem-solving tech-
niques that attempt to simulate the occurrence of natural
processes, such as the evolution of species [24], organiza-
tion of insect colonies [25] and the working of immune
systems [26]. Particle swarm optimization (PSO) is one
evolutionary computation technique combining the social
psychology principles in sociocognition human agents and
evolutionary computation [27, 28], which is motivated by
the social behavior of organisms such as fish schooling
and bird flocking. PSO comprises a simple concept and
can be conveniently implemented by using some primitive
mathematical operators, which is computationally efficient
in terms of memory and speed [27]. PSO benefits from
the past experience of the particle population. Interaction
within the group gives a tug toward the good solution
[27]. Tt has been reported that PSO has advantages over
genetic algorithm (GA) for efficiently finding the optimal
or near-optimal solutions [29]. One of the most exten-
sively investigated application of PSO in communication
engineering is the multiuser detection (MUD) in code
division multiple access (CDMA) systems. The PSO-MUD
algorithm initialized by the conventional LMMSE detector
was proposed in [30]. Recent researches also applied PSO
techniques to the minimum bit error rate (MBER) multiuser
transmitter designing and the MUD receiver-diversity in
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space-time block-coding (STBC) systems [31, 32]. In [33],
Zhao employed PSO to optimize the resources allocation in
orthogonal frequency division multiplexing (OFDM) system
in the context of cognitive radios (CRs). Currently, it seems
that PSO-based signal processing schemes mainly focus on
certain limited areas mentioned above, for example, the
MUD and the multiobjectives optimization in resources
allocation, in which PSO essentially serves as an optimal
tool for these classical formulated modeling. From this
perspective, therefore, extensive PSO applications in signal
detection may still remain to go deep into.

Our main contribution is that, in this paper, we design
a novel noncoherent UWB detector based on PSO from an
attractive pattern classification aspect, which provides an
insight to more general biological inspired signal processing.
Firstly, we establish a novel characteristic spectrum from
the received samples blindly through a sequence of signal
conversions. Enlightened by the discriminant shaping of
the derived characteristic spectrums, four distinguished
features are then extracted to comprehensively reflect the
intrinsic differences between the UWB multipath signals
and the additive channel noise. After the partial feature
combinations, for the first time, UWB signal detection is
transformed to a two-class pattern recognition problem in a
two-dimensional feature plane. Furthermore, we show from
simulation derivations that excess detection gain can be
achieved if PSO is adopted to fuse these correlated features
in a constructive fashion by optimal feature combination
scheme (OFC). The optimal division bound in the formed
2D plane is also obtained finally by resorting to PSO.
Our nonparametric algorithm significantly enhances the
detection performances, compared with the noncoherent ED
receiver which is served as the benchmark in consideration
of exploiting no prior channel information. Not relying
on explicit channel parameters, this suggested scheme is
also practically immune to noise uncertainty. Generally, our
suggested bioinspired algorithm for UWB receivers may
extend PSO to a much wide application prospect, which
largely benefits the future related researches.

The remainder of this paper is outlined as follows. In
Section 2, we depict the indoor UWB channel characteristic
and formulate the noncoherent detection problem in UWB
systems. We then develop a novel algorithm in Section 3
to analyze the received multipath signals. Based on the
derived characteristic spectrum, we employ two patterns in
a 2-D plane to represent two channel states. Section 4 is
then dedicated to numerical simulations. The performance
evaluation of our suggested UWB receivers is also presented
in this part. Finally, we conclude the whole paper in
Section 5.

2. Indoor UWB Channel

UWB radio technique generally characterizes signals whose
fractional bandwidth (i.e., its 3 dB bandwidth divided its
center frequency) is large, typically over 0.25, or its instanta-
neous spectral occupancy exceeds 500 MHz [2, 34]. Avoiding
the adoption of local oscillators or frequency mixers, UWB
emission signals can be usually generated by driving an
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antenna with the extremely short pulses whose duration is
on the order of a few nanoseconds (ns) to fractions of a
nanosecond. So, such a UWB technique is often referred to
as short pulse or impulse radio systems [1].

2.1. Short-Range UWB Channel. Owing to the large band-
width of emission waveforms, the ability of UWB receivers
to resolve the different reflections in the channel has been
greatly enhanced, which is in striking contrast to traditional
narrowband systems. Accordingly, the realistic UWB chan-
nels exhibit two following distinctive characteristics [9-11].
First, the number of reflections arriving within the period
of a very short impulse (e.g., nanosecond) becomes much
smaller as the duration of the impulse gets shorter. According
to the centre limit theory [35], therefore, the distribution
of the received signal envelope caused by the channel
trajectories may not be described by the Rayleigh fading
model as in most narrowband channels [36]. Second, since
the multipath components may be resolved at a very fine time
scale, the time of arrival (TOA) of multipath components
may not be continuous. As multipath trajectories may result
from reflections off walls, ceilings, furniture, and other large
objects, consequently, different objects could contribute to
different “clusters” of multipath components, which has
also been confirmed by measurements. This phenomenon
is firstly reported by the well known Saleh-Valenzuela (S-V)
channel model [11].

In this paper, we adopt UWB channel modeling regulated
in [37] by IEEE 802.15.3a Task Group, which is based on
the modified S-V model [11]. Four standard channel models
are defined for UWB indoor applications in different dense
multipath propagations; those are CM1, CM2, CM3, and
CM4. The expression of the channel impulse response can
be given by:

L-1M—1

h(t) :XZ Z“m,l8(t_ Tl_Tm,l)) (1)

=0 m=0

where L denotes the number of clusters, M is the number of
rays of each cluster, a,,; is the fading coefficient of the mth
path of the Ith cluster, X is the channel fading factor, T; is
the arrival time of the Ith cluster, and 7,, is the delay of the
mth path of the Ith cluster relative to Tj. T; and 7,,; have a
Poisson distribution, and a,; and X are log-normal random
variables [10, 37]:

p(Ty | Ti-y) = Aexp[-A(T; — Ti-1)], >0,

2

p(Tig | 1) = Aexp[—Mrs — te-10) ], k> 0. =

We also assume UWB multipath channel to be quasistatic

in our analysis, which means the amplitude coefficients a;,,;

and delays T; + 7,,; remain invariant over one transmission

burst, but are allowed to change across bursts. For the pur-

pose of elaborations simplicity, we may equal the multipath
channel to be a tapped-delay line with L4 taps and delays

L

h(t) := > wd(t — 7). (3)
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FiGURE 1: UWB channel impulse response of the light of sight
(LOS), 1-4 m.s.

Figure 1 illustrates one typical realization of the UWB
indoor channel generated by using the 802.15.3a modeling
in the CM1 case.

2.2. UWB Transmitter. Considering that we mainly deal
with noncoherent detection in this work, UWB transmitter
should also take the limitations of the receiver infrastructure
into consideration, in which the phase information may be
totally lost since no attempt of recovering multipath channel
responses is made [12]. As a result, phase modulation
schemes become invalid for a noncoherent receiver.

We employ the time-hopping pulse position modulation
(TH-PPM) in our analysis. The corresponding signal format
is described by [1, 8]

R .
x(t) = ﬁb zw<t —iTf —¢Ty — d[i/MJ(S), (4)
S i=0

where | x| gives the biggest integer smaller than x. E is the bit
energy, N; is the number of pulses used to represent one bit,
Ty is the bit period of a single bit, d(i) (i = 0,1,2...,P —1)
are the transmitted data of length P taking values of {0,1},
T is the time period of a frame, ¢; is the time-hopping code
and § is the bit separation time interval for one PPM symbol.
w(t) represents the generally adopted spectrum shaper for
UWB communications, for example, the Gaussian pulse and
the high-order derivation of Gaussian pulse [2].

2.3. Coherent Receiver. Within the current RAKE frame-
work, based on the accurately estimated multipath channel
response, the resolvable trajectories could be coherently
combined to provide the appealing multipath diversity,
further making UWB immune to channel fading [38].
However, as is indicated by most investigations, the number
of resolvable multipath may even approach 70-80 in order to
accumulate 85% dispersed channel energy, which can be also
clearly seen from Figure 1. As a result, the widely adopted
coherent architectures face a couple of technical challenges.



The efforts to compute both the position and amplitude
of so many multipath components become computationally
unaffordable in terms of the algorithm complexity and
speed [39]. Moreover, the required number of correlator is
huge, and hence, the integration implementation tends to be
impractical [40].

As one suboptimal alternative, on the other hand, TR
structure has recently excited great interest. In TR, the
first pulse carries no information and is only used as
the multipath template/reference for demodulation of the
second pulse. It is clearly seen that considerable transmission
power should be relocated to the first reference pulse. More
importantly, the analog delay lines in TR may prevent them
from precise realization, resulting in remarkable perfor-
mance degradation. Considering no effort to recover the
multipath components is made, the author in [12] groups
TR into noncoherent receivers. In this paper, nevertheless, we
still view it as a partial coherent technique based on two con-
siderations. First, the reference pulse in traditional TR aims
at providing channel template to the second information-
bearing pulse. So, channel estimation is accomplished in a
relatively vague manner. Second, PSK modulation is always
adopted in the second pulse, which keeps in collision with
the principle of noncoherent techniques [41].

2.4. Noncoherent Receiver. Based on the implementation
motivations, it is easy to recognize that those well-established
receiving algorithms derived for narrowband systems are not
feasible for UWB anymore. Perusing for the low complexity
and low power UWB architectures, alternatively, current
studies have been slowly shifted to the suboptimal and
noncoherent structures such as ED [12, 21].

The decision variable in ED is only related with the
received signal power and the channel noise power; therefore,
channel estimations and RAKE fingers are not necessary,
which is of significance to the concise UWB structures.
Supposing the received signal is denoted by y(n),n =
0,1,...,N — 1, then for OOK scheme, we have,

N-1
> (h(n) +w(n))’ Hi,
N-1 =
Yip £ Z}’Z(Vl) = (5)
o N-1
Z w2(n) H,.
n=0

Here, w(m) is the additive white Gaussian noise (AWGN)
with zero mean and variance ¢2. The test statistics Ygp
follows a central chis-quare distribution with 2N degrees of
freedom under Hy, and a noncentral chisquare distribution
with 2N degrees under H; [21, 35].

So, when it comes to noncoherent detectors, signal
demodulation is to identify whether there is sufficient signal
power available in current time window. Even for TH-PPM
scheme in (4), we may still divide the symbol duration into
multiple time bins according to the bit separation interval,
and correspondingly, PPM signal detection is to in parallel
determine which subbin contains sufficient signal energy.

Since little prior channel information can be exploited
in ED except for signal power, its detection performance
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is generally uncompetitive. Moreover, due to the noise
uncertainty caused by the variations of both thermal and
environment noises, practically it is very difficult to obtain
the accurate noise power o2. Induced by this information
imperfection, as a result, ED usually experiences serious
performance decline. Recently, a novel UWB structure is
proposed in [42, 43], in which the received samples y(n) are
firstly weighted by the average power decay profile (APDP)
of UWB multipath channels and then form the decision
variable Yappp. By constructively exploring this partial
channel information state (CSI), the APDP performance can
be improved by 1-3 dB compared with ED [42]. However, for
the geographically widespread and distributed UWB sensor
networks, as is in most realistic applications, this partial CSI
is hardly to get without a great mass of information exchange
between the network cluster head (CH) and local UWB
nodes [41]. From this aspect, APDP belongs to a semicoherent
method essentially. Therefore in our following analysis, we
mainly adopt ED as the benchmark of noncoherent UWB
receiver for performance evaluations.

Notice that we denote the received UWB multipath signal
by the discrete channel response h(#) for elaborations sim-
plicity, in which we assumes the precise synchronization has
been achieved and the sampling frequency is equivalent to
the Nyquist rate. Nevertheless, it is noteworthy that sampling
requirements on ADC is relatively loose in noncoherent
receivers, so down-Nyquist rate is also practicable [12].

3. Noncoherent UWB Receiver Design

Generally, according to the classical Bayesian decision theory,
the statistics assumptions and formulations may lead to
the optimal solution in most engineering applications,
if the complete and accurate probability information is
available [36]. For some specific applications especially the
noncoherent UWB demodulators considered above, how-
ever, the assumed information (e.g., the probability density
function of the summed energy Ygp) is rather rudimentary.
Additionally, the performance is relatively immune to the
practical information imperfection, for example, the noise
uncertainty.

On the other hand, careful observations on nature
processes indicate that the biological activities can solve the
problems encountered in daily life in a much effective way.
For example, human can exactly differentiate/recognize one
thing from others through certain elegant characteristics
which are evolutionarily learned by self-training. Usually, the
achieved decisions are far superior to what we can achieve
with our current engineering knowledge and methods,
especially for the nonideal situations in the presence of
information limitations and uncertainties. Inspired by the
nature mechanics, we deal with UWB noncoherent receiving
as a state recognition problem in this work. We firstly develop
a novel characteristic spectrum from the received signals
to comprehensively represent the intrinsic properties of the
two channel states H; and Hy. Then, a set of distinguished
quantifiable features is constructed from this characteristic
waveform. By utilizing PSO algorithm, the high-dimensional
features space is advantageously mapped to a 2-D plane
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in which the optimal division bound is determined from
numerical optimization. Based on this presented biological
algorithm, we can accurately isolate UWB multipath signals
from the channel noise even if no prior probability is
assumed and the information imperfection is taken into
account.

Starting from the noisy received waveform y(n), our
scheme includes four steps in order to establish the features
space. (1) Construct the autocorrelation matrix and derive
characteristic spectrum, (2) extract the multiple features, (3)
combine the correlated features and form a 2-D decision
plane; and (4) derive the optimal combination coefficients
and the decision bound using PSO.

3.1. Construct the Characteristic Spectrum. Given the
observed signals consisting of N samples which is denoted
by a vector y(n) (n = 0,1,2,...,N — 1), we may firstly
construct an autorelation matrix A according to

A=yly. (6)

In order to fully exploit the more profound statistic
information of multipath channels, we perform the matrix
transformation on A

B =ATA. (7)

We denote the principal diagonal elements of B by S,
while the elements immediately below this diagonal by p.
Alternatively, p can be regarded as the diagonal elements
of a dimension-decreased matrix which corresponds to the
cofactor of B(N, N) [44]

By = diag(B) = B(i,i), i=0,1,2,...,N -1, (8)
Py = diag(B) = B(i+ 1,i), i=0,1,2,...,N - 2.
9)

The characteristic spectrum of the received signals can
be now defined as the correlation function between f and
p?. Here, the nonlinear process on p is necessary to obtain
multiple features from this characteristic waveform

Bop’ (10)

where © represents the linear correlating process [36]. We
denote the received multipath UWB signals disrupted by the
channel noise by yi(n) (n = 0,1,2,...,N — 1) when the
channel state is H;. Then, according to (6)—(10), we may
easily derive the expression of the characteristic spectrum
under H,

Cix(2N-2) =

(k-1
B} y3i)y (N = 1= k+i)y}(N — k+1),
i=0
k=1,2,...,N -1,
C(k) = 2N-1-k (11)
Sk = N+1+0)yi6)yi(1+1),
i=0
k=N,N+1,...,2N — 1.

Here, E, is the total received energy. According to the
property of UWB multipath channels, the power decay
profile can be reasonably approximated by the exponential
function [21, 41], which contains two parts, that is, the noise
item and the determined item

3N - la
(12)

(k) = exp(—é) FNwi (k) + B, k=0,1,2,...

where 7 is related with the specific channel configurations,
that is, the root mean square (RMS) delay. B; and N; denote
the noise mean and variance of y%(k), respectively, which
are both connected with the channel noise power o2.w; (k)
denotes a white exponential random process. Accordingly, we
may further approach yi (k) by

N -1
(13)

y;l(k) :exp(—%) +N2W2(k)+Bz, k=0,1,2,...

Notice that for a good channel condition with low noise

power, we may further have:

yii)y?(1+i) = Coyi(i), i=12,...,N, (14)
where Cy is a constant also related with channel configura-
tion, which approaches 1 in practice.

We note that the noise components in (13) and (14)
are both originated from w(k) in (5), so they are obviously
correlated with each other. (1) The correlation coefficient
pw between w; (k) and w, (k) is relatively high, which may
approach 1 in practice. (2) On the other hand, as the
variables derived from independent random variables w(k)
also keep independent of each other, the correlation between
wi(k) and the shifted w(k), denoted by w»(k), basically
approaches zero. Based on these two points above, with little
manipulation efforts and by removing the constant item, we
further obtain the expression of ¢(k)

i+2><(N—k+i)>
T

k-1
c(k) = z exp(—
i=0

+vi + Ci,

(15)

k=1,2,...,N,

where % represents the modulus operator. v represents the

Gaussian random variable. The variable Cy in (15) is given in

(16). Notice that for the remaining values of k (e.g., k = N +
.»2N — 1), the expression of c¢(k) is much similar to (15),

only with the summation range replaced by [k — N + 1, N],
and the variable k in (16) by 2N — 1 — k

rBZexp( )—i—BlZexp( )

+kBle, k #1,
Cr = A (16)

BZexp( )—i—BlZexp( )

+kBle +pwkN1N2, k=1.




Here, p,, denotes the correlations coefficient between w (k)
and w,(k), and x; is equivalent to N — k + i. From (15)
and (16), it is clearly found that c(k) is also a Gaussian
random process with its mean and variance related with
k. For the complete channel noise Hj, we can also obtain
the corresponding characteristic spectrum in a similar
manner. Based on numerical computations, the waveforms
of c(k) are illustrated in Figures 2(a) and 2(b), respectively
corresponding to the UWB multipath signals (H;) and the
complete channel noise (Hp).

We note that c¢(k) are clearly distinctive under the
two channel states H; and Hy. In order to highlight this
characteristics waveform, we employ a moving average (MA)
filter to further smooth c¢(k). Empirically, an appropriate
length for this average process is about N/5. The final
obtained characteristic waveform, denoted by d(k), is also
depicted in Figures 2(a) and 2(b). After this smoothing
process, the distinguishing characteristics have become much
more conspicuous, based on which certain quantifiable
features can be conveniently developed to effectively separate
UWB signals from the channel noise. From this point of view,
we may have every reason to refer to d(k) (or c(k)) as the
characteristic spectrum.

3.2. Establish the Feature Space. It is apparently found
many discriminant aspects in the character waveforms from
Figures 2(a) and 2(b). In order to establish the quantifiable
characteristics space that can identify two channel hypothe-
ses in (5), we may choose the following prominent features.

(1) If we define the area below d(k) as the equivalent
energy, then we may note this energy item is quite
concentrated at the centre range of the characteristic
waveform when the UWB multipath signals have
been assumed (i.e., H;). While this equivalent energy
is relatively dispersed with only channel noise (i.e.,
Hy). As a result, we define the first feature as

_ St d)
i d(k)
The range of interest in (17) is limited by the key parameter
K. Practically, K can be determined by the imbalance
property of d(k). That is, K can be immediately obtained
once the right value d(N — 1+ K) has surpassed the left value

d(N —1—-K) by d. A simple and practical strategy is directly
setdto 0

K = min arg{d(N —1+k) —d(N —1-k) > §}. (18)
k

(17)

(2) It is noticeable that, in Figure 2(a), the change rate of
characteristic waveform in the middle range is much
faster than that of in Figure 2(b). Consequently, the
variance in this range is also supposed to be much

distinctive
N—ZHK ( ] N_ZHK )2
F, = d(k) — dk) | . (19)
k=N—-1-K 2K+1 35k
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(3) From Figure 2, the equivalent energy also exhibits
remarkable imbalance during the outside range.
Specifically, the right range energy is much larger
than the left in the presence of UWB multipath
signals, while these two parts are basically equivalent
under the channel state H,. Therefore, we can
reasonably adopt this imbalance property as the third

feature
2N-1 N-1-K
F; = Z d(k) — Z d(k). (20)
k=N-1+K k=1

(4) Up to now, we have focused on the properties of
characteristic waveform d(k), in which the received
signal power has been removed by the average
smoothing processing. However, this energy item can
be also utilized to differentiate the two channel states,
as is in ED. Therefore, we still add it into our feature
set.

N-1
Fy= > y*(k). (21)
k=0

By taking full advantage of the developed characteristic
spectrum, we have constituted a feature set which is dedi-
cated to separating the two channel states. It is noteworthy
that although we have assumed some numerous properties
and also introduced certain representation parameters in
our elaborations (e.g., By and Nj), no explicit channel-
related parameter is employed in the derivation process of
our characteristic space. Therefore, our algorithm is only
related with the channel state (H; and Hy), other than the
specific quantifiable channel parameters, such as channel
noise power.

3.3. Optimal Feature Combination. Based on the already
established characteristic space, an intuitive strategy is to
represent each received signal with a single pattern point
in this multidimensional feature space. Accordingly, UWB
demodulation can be formulated to determine a hyperplane
dividing two group data points at the minimum classification
errors. This optimization problem can be solved by the
support vector machines (SVM) technique according to the
supervised training technique [45]. With the aid of pilot
synchronization sequences during each frame, we can further
derive the optimal decision bound through numerical train-
ing process. However, this highly dimensional classification
problem is computationally complex generally [46], which
may be not applicable to the high-speed UWB transmissions.

As a feasible alternative, we may firstly reduce the
corresponding problem dimension by resorting to the feature
combination technique following (22). Then, this pattern
classification can be efficiently settled on this compressed
2-D F,-F, plane. For the popular SVM strategy, in the
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FIGURE 2: Waveforms of the derived characteristic spectrum. Notice that the E,/N, in simulation is set to 14 dB. (a) With the UWB multipath

signals plus channel noise. (b) With only channel noise.

simplest way, we may employ the equal ratio feature combi-
nation (ERFC) technique as in (22), in which #; is basically
equivalent to 1/mean(F;)

Fx = F4)
(22)
Fy = }’]1F1 + ?]ze + 113F3.

On the other hand, nevertheless, the derived multiple
features may inevitably keep correlated with each other.
Hence, the combination coefficients, #; (i = 1,2,3), could
play a leadership role in the final classification or recognition
performance. It is apparent that in practice, a nonoptimal
feature combination may considerably undermine the dis-
criminant property of two formed patterns in originally
multidimensional space, resulting in a rather deteriorated
detection performance in this dimension-reduced space.
Instead, for the optimal noncoherent receiver, a group
of well-designed feature combination coefficients should
be used to increase the discriminant distance in F,-F,
plane to the maximum, and hence significantly enhance
the final demodulation performance. This process can be
therefore referred to as the optimal feature combination
(OFC), in which each combination coefficient #; will be
thoroughly optimized with the objective of minimizing the
total classification errors. It is noted that these optimal
combination coefficients can be practically determined by
using the numerical search, as the analytic derivations may
always include intractable mathematical expressions.

Other than the modification of combination coeffi-
cients #; during OFC process, the decision bound function
f(F,F,) also needs optimization in order to achieve the
minimum recognition errors. To simplify algorithm com-
plexity and simultaneously ensure the generalization ability,

we may further specify the decision bound on 2-D feature
plane to be either a linear function

f(FoFy) == aiFc = Fy + a, (23)
or a quadratic function
f(FoFy) = aiF? + asF, + asFeFy + aiFy. (24)

Hence, the parameters g; of decision bound functions can
also be refined. Then, our objective of the whole optimal
process is to minimize the detection errors P, in (25),
given the pilot data set with a length of M, by cautiously
optimizing the combination coefficients together with the
decision bound.

1 0= o
P, = i [num (f (Fx,i_zlmFi) > O)
+num(f(F}c,imF}) < 0)]>

where F) € RM*! represents the ith feature vector con-
structed from the received pilot sequences under Hy, while
! € RM*! is under H;. num(g) denotes the total number
satisfying the specified condition g. Given the mathematic
formulations in (25), this numerical optimization may be
generally beyond capability of those traditional algorithms,
such as the SVM technique in which the critical combination
coefficients #; (e.g., OFC process) may not be further
adjusted. Additionally, as the length of the training sequences
(i.e., M) increases, the computational complexity of this
second-order programming (SOP) based technique may also
become unbearable for realistic applications [31, 45].



3.4. PSO-Based Demodulation

3.4.1. Elements of PSO. Similar to the most other evolu-
tionary algorithms, PSO conducts its solution searching by
employing a population of particle swarms, and each particle
represents a potential solution. The single particle will keep
track of the position of its individual best solution (pbest)
and the global best solution (gbest) among the achieved
pbests of all swarms. By combining the cognition model
and social model [47], the particles are accelerated toward
pbest and gbest over the iterations. The cognition model
emphasizes private thinking from its own previous experi-
ence of the particle itself. While the social model represents
collaborations of all the particles toward gbest, according to
the belief of the best experience of the population.

The basic elements of PSO algorithm for the UWB
noncoherent detector can be defined as follows.

(1) Population size Np: it gives the number of the particle
swarms employed in PSO.

(2) Particle xf,,: it represents a candidate solution denoted
by a Q x 1 dimensional vector. The dth particle
position at the ith iteration is defined as x;, =
(1> Xlpp» - » Xy, where xi,q gives the position of
the gth parameter of the dth particle. For the linear
decision bound case, Q is 5 in this work, whereas for
the quadratic bound Q is 8.

(3) Particle velocity vi: the velocity of the moving
swarms represented by a Q X 1 dimensional vector.
The particle velocity of the dth particle at the ith
iteration is defined as vfi = [vfﬁ, vfiz,. . vfiQ], where
vfiq is the velocity of the gth parameter of the dth
particle.

(4) Inertia weight w;: it can be used to reflect the
influence of the velocity of previous iterations on
the current velocity. Practically, it tries to balance the
global and local exploration abilities of the particles
[48].

(5) Maximum velocity v?™*: the velocity of each swarm
is limited by the maximum velocity v™* =
(v v, .., v ™ ], where v® refers to the max-
imum velocity of the gth parameter. It is noted that
v can determine the resolution or fineness of PSO.

(6) Objective function F: we utilize the detection/reco-
gnition error rate in (25) as the PSO fitness

F(x) = arg min(P,). (26)

(7) Individual particle best pbest;. The individual best
solution of the dth particle at the ith iteration is
denoted as pbesty, which should fulfill F(pbest;) <
F(xé) forall j < i

(8) Global best gbest'.gbest' is the global best particle
position among all the individual best particle posi-
tions pbest); at the ith iteration such that F(gbest') <
F(pbest)) ford = 1,2,...,Np.
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3.4.2. PSO-Based UWB Detector. Based on the ingredient
knowledge of PSO algorithm, the steps of PSO-based UWB
noncoherent receiver can be described as follows.

Step 1 (characteristic space construction). Conduct signal
transforms on the received signal y according to (6)—(10).
Then, extract the feature vectors based on (17)—(21).

Step 2 (swarm initialization and evaluation). With the
iteration counter i = 0, the initial position xgq(d =
1,2,...,Np) is randomly generated from the range [—30, 30].
Set pbest] = x3 and evaluate F(pbests°). pbestd,., is denoted
as the individual best position such that F(pbest’, ) <
E(pbest)) for d = 1,2,...,Np. Set gbest” = pbest?, . The
initial velocity v§ , is randomly chosen from [—v®, vie].
Step 3 (swarm update). Firstly, we update the inertia weight
w. The decrement function for decreasing the inertia weight
is given as

w = aw' ™!, (27)

where « is the decrement constant, which is usually smaller
than 1 [48]. In [49], various combinations of « and w has
been studied. It is shown that the promising performance can
be achieved when w and & are both close to 1. As is suggested
by (27), at the initial search stage, a large inertia weight is
used to enhance the global exploration, whereas for the late
iterations, the inertia weight should be gradually reduced for
the better local exploration.

The velocity of the gth parameter of the dth particle at
the ith iteration is then changed by

N i1 _ i1
Vig = W X Vg, +ar XX (pbestdq — Xy )
(28)
i1 _ i1
+ ¢y X 1y X (gbest; — Xy )

In order to avoid excessive roaming of particles beyond
the search space, the velocity v, should be bounded by the

maximum velocity v

q
szq If V(qu € [_Vmaxa Vmax])
Vﬁ,q = 1 Vmax If v;q > Viaxs (29)

~Vmax 1 v(’jq < —Vmax-

In (28), the first term accounts for the influence of the
previous velocity to the current velocity. The second term
corresponds to the cognition part, and the third term is
the social part. Thus, (28) calculates the particle’s current
velocity according to its previous velocity, the distance of
its current particle position from its own individual best
particle position pbest, and the global best particle position
gbest. r; and r; are both random numbers that are uniformly
distributed between 0 and 1, that is, r; ~ U[0,1] (i = 1,2).

c1 and ¢, are the acceleration coefficients, respectively,
corresponding to the weighting of the stochastic acceleration
terms to pull the particle to pbest and gbest [48]. Specifically,
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low values of ¢; and ¢, allow particles to roam far from
target regions before being tugged back, whereas high values
lead to abrupt movement toward or past the target region.
A commonly adopted strategy is set both ¢; and ¢, to a
constant. In our case, both ¢; and ¢, can be appropriately
set to 2. Nevertheless, it was reported in [50] that using a
time varying acceleration coefficient (TVAC) enhances the
performance of PSO. So, we may also adopt this mechanism
according to

1

¢ =(05-25)x + 2.5,

max
. (30)
6 = (2.5-0.5) x —

+0.5.

Imax

Based on v;q, each particle updates its position according
to

Xgg = x&;l + Vi (31)

Step 4 (fitness update). If F(x;) < F(pbest;!), then set
pbest’; = x;. Else, if F(x};) = F(pbest; "), then set pbest,; =
pbesti!. Set gbest' = pbest. . if F(pbest., ) < F(gbest'™!).
Else, if F(pbest' ;) > F(gbest''), then set gbest' = gbest'™!.
Notice that the numerical objective of PSO, that is, P, can
be evaluated based on the appointed sequences, such as
the preamble (e.g., synchronization pilots) of each frame.
Assuming that UWB multipath channels are quasistatic,
which means the channel response usually keeps unchanged
between several successive frames, and hence, the pilots
among the adjacent frames can be also employed to enhance
the numerical accuracy.

Step 5 (termination condition check). If the maximum
number of iteration, ., 15 reached, terminate the search
algorithm with the gbest!m=); otherwise, set i = i+ 1 and
go to Step (3).

As is indicated by the PSO algorithm elaborations
above, the optimal decision bound f(Fy,F)) as well as
the coefficients #; is basically independent of any channel
parameters. Meanwhile, the derivation process suggests that
our characteristic space is not immediately related to specific
quantifiable information. Hence, essentially the practical
information imperfection or uncertainty has no effect on our
final demodulation performance.

4. Numerical Simulations and Evaluation

In this part, we evaluate our PSO-based UWB detection
method in a realistic UWB channel through numerical
simulations. In our experimental platform, a Gaussian
monocycle with duration of T, = 0.5ns is used as the
pulse shaper. The UWB multipath channels are generated by
using the channel model in [37] with the real channel tapers
and parameters (1/A, 1/A, T, y) = (43, 0.4, 7.1, 4.3) ns.
Without loss of generality, we also let the number of pulses
per symbol Ny = 1, that is no repeating coding is used.
The timing synchronization has been accurately acquired by

the pilot PN sequences with the length of 64. The interested
window is determined according to the 95% energy captured
criterion, so we focus on the front 150 multipath for example,
N = 150.

4.1. Features Combinations. As is discussed, the combination
coefficients #; could significantly affect the signal recognition
performance, so we firstly investigate the influence of #; on
the PSO-based UWB receiver. In this numerical simulation,
the PSO parameters are set as follows: (1) the particle
population N, is set to 40, (2) the inertia weight w = 0.8,
(3) the acceleration coefficients are constant, ¢; = ¢, = 2,
(4) the maximum velocity is Vmax = 30, (5) the maximum
iterations I,y is 160, (6) the decision bound function is the
quadratic function as given by (24).

Figure 3 plots the representative signals/patterns distri-
butions in the 2-D feature plane under the two different
features combination strategies. From the illustrations, we
firstly observe that our PSO-based noncoherent algorithm
is much superior to ED whose performance can be conve-
niently evaluated with the decision bound keeping orthogonal
to F, axis. Notice that F, exactly denotes the received power.
It is calculated that there are about 300 errors out of the total
6 x 10* transmitted bits in ED. In comparison, the total error
of the suggested PSO algorithm is only about 45 when the
ERFC method is adopted. Additionally, this error number for
the OFC scheme can be further decreased by 50% basically.
Without the features combination coefficients optimization,
we note that Fy and F, are highly correlated under the
channel state Hy from the pattern points in Figure 3(a).
As is implied by Figure 3(b) (see the pattern distribution
under Hy); however, this correlation can be greatly reduced
by optimizing the combination coefficients, which in turn
considerably reinforces the final recognition performance.
Furthermore, Figure 4 compares the PSO fitness (e.g., bit
error rate) under the different feature combination schemes.
Based on averaging over 60 independent algorithm realiza-
tions, we find that although ERFC scheme has the advantage
of the smaller particle dimension (e.g., the parameters
number) in which the combination coefficients #; have
been predetermined, its convergence is still approximately
equivalent to OFC method. Moreover, the converged BER in
ERFC is about 7.5 X 104, while OFC is about 3.5x 107*. As a
consequence, the OFC scheme obviously outperforms ERFC
in practice. Besides, both our PSO methods are far superior
to ED whose BER is about 5 X 107, as indicated by Figure 3.

To comprehensively evaluate the noncoherent detection
performance, we also show BER curves for different detec-
tion techniques in Figure 5, which are numerically derived
through the Monte Carlo method. From this illustration, it
is evidently observed that our PSO algorithm can surpass ED
by 1.5dB when the ERFC scheme is adopted. By resorting
to the OFC scheme, the achieved gain in SNR can even
approach 2.3 dB. As expected, OFC may outperform ERFC
by 0.8 dB. Moreover, it is noteworthy that the BER curve
slop of PSO algorithm is much steeper than ED at high
SNR, so we may reasonably expect that the advantage of our
proposed scheme may become much more noticeable with
the increasing of SNR. Furthermore, if the noise uncertainty
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FIGURE 3: Representative signal distribution in 2-D features plane for (a) ERFC scheme, and (b) OFC scheme. The channel E;/N, is 12.5 dB.
Notice that the data points labeled by “x” denote the channel state H;, while the cycles represent Hy.
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FiGURE 4: The PSO Fitness versus iterations. (a) ERFC scheme; (b) OFC scheme. Notice the E,/N, is 12.5 dB.

is taken into consideration, the performance of ED will
be declined remarkably, owing to the nonoptimal decision
threshold caused by the practical information imperfection
[23]. Given that no explicit parametric information is
assumed, however, our proposed UWB receiver can operate
robustly without any performance degradation. In such a
case, the PSO-based UWB demodulator may surpass ED by
5dB or even better.

The performance of APDP method is also presented in
Figure 5 for profound discussions. It is apparent that our
presented OFC scheme may surpass APDP by 1dB in high
SNR. Observations on BER curve slopes also suggest that this

achieved gain may be further improved with the increasing of
SNR. Meanwhile, it should be noted that APDP is intrinsic a
centralized and semicoherent algorithm, which needs a prior
partial CSI, and requires the network CH continually updat-
ing the local channel parameters and further reporting it to
each mobile node [41]. Considering the accurate estimation
of PDP always consumes considerable network resources,
therefore, from the practical aspect, it is in no condition to
be applied to the distributed UWB transmissions. Hence, our
presented biological algorithm is much superior to the APDP
scheme either in transmission performance or in application
potential.
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4.2. Decision Bound. In (23) and (24), we assumed two types
decision bounds for PSO-based detection algorithm. This
numerical evaluation gives the demodulation performances
under the two different bound assumptions. The OFC
scheme is adopted in this simulation, and other parameters
are set the same as in Section 4.1. BER curves corresponding
to these two different schemes have been shown in Figure 6,
respectively based on the linear function and the quadratic
function. We may note that the choice of the decision bounds
in PSO-based noncoherent receiver slightly affects the final
demodulation performance. In low SNR, this optimization
effort is basically rewarded with no SNR gain. Nevertheless,
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FiGgure 7: PSO fitness for different number of particle population.
The channel SNR is 12.5dB.

the quadratic function may achieve about 0.4dB gain
compared to the linear function at a high channel SNR.

4.3. Particles Population. In this simulation, we investigate
the effect of particles population on the final receiving
performance. We plot the derived PSO fitness in Figure 7 for
the particle size of 15 and 40, respectively. It can be found that
the particle population may have little influence on the final
demodulation. Specifically, the fitness under the population
of 15 is about 3.26 x 107%, while the fitness is 2.59 x 107*
with the population of 40. Hence, in the context of UWB
signal detection, the achieved gain seems to be rather limited
through the increase of particles population. Considering
a large particle population also results in an extraordinary
algorithm complexity, therefore, a small particle size can be
recommended for the practical UWB detectors.

4.4. Time-Varying Acceleration Coefficients. We compare two
different strategies employed for the acceleration coefficients
c1 and ¢, in this experiment. In the first scheme, the
acceleration coefficients are set to a constant 2. While in the
second TVAC scheme, ¢; and ¢, are both linearly changed
according to (30). As is suggested, TVAC comprehensively
embodies the PSO philosophy that the particles rely heavily
on the private thinking at the beginning and slowly shift
to the social cooperation with the increasing of iterations.
From the simulation results shown in Figure 8, it is observed
that both these two acceleration coefficients schemes can
discover the optimal solutions eventually. Nevertheless, the
convergence of the mean pbest in TVAC is only 12 iterations,
while the convergence of the constant method is about 70.
So, TVAC is somewhat more computationally efficient from
the mean value of pbest, and hence is much suitable for some
real-time UWB transmissions.



12

10°

B0

1071 E

Fitness (BER)

0 10 20 30 40 50 60 70 80 90 100

Iterations

= Mean pbest: constant
gbest: constantd

—o— Mean pbest: TVAC
—o— gbest: TVAC

FiGuURE 8: Different strategies of the acceleration coefficients.

Fitness (BER)

~o-o. °
~O- o
W@@ooaooqqo-oqo-wo-mqo@m &6

10-4 L L L L L L L L
0 5 10 15 20 25 30 35 40 45
Generation
—o— Best fitness: GA —— gbest: PSO

—— Mean fitness: GA —o— Mean pbest: PSO

F1GURE 9: Performance of PSO versus GA.

4.5. Genetic Algorithm. As anther evolutionary algorithm,
GA may also find vital applications in various numerical
optimizations. In the last numerical experiment, we evaluate
these two popular nature inspired optimization techniques
in our suggested noncoherent UWB receiver. From Figure 9,
we firstly noted that the PSO-based algorithm is much
more competitive in convergence. Specifically, the optimal
solution can be found by PSO after only 15 iterations. By
contrast, the desired generations in GA may even approach
50. This slow convergence characteristic of GA may prevent
it from most applications that puts great emphasis on real-
time processing, especially for the high-speed online video
stream services. Meanwhile, we observed that the optimal
fitness of PSO is basically equivalent to GA after algorithm

EURASIP Journal on Advances in Signal Processing

convergence. Therefore, as is reported in most literatures
[29], PSO is much superior to GA in our noncoherent UWB
detector.

5. Conclusions and Discussions

UWRB has intensive military and commercial applications;
however, the practical receiver designing still remains a chal-
lenging task due to the intensive multipath propagation of
UWB channels, which greatly hindered its large-scale appli-
cation progress. The existing noncoherent UWB receivers
can alleviate the impractical requirements on algorithms and
hardware structures to some extent, but there is a need
to reinforce the detection performance and also overcome
the destructive effects from information uncertainty. In this
paper, we suggest a noncoherent UWB demodulator inspired
by the nature intelligence. Firstly, a characteristic spectrum
is developed and certain quantifiable distinguished features
are extracted from it. Then, UWB signal detection is trans-
formed to a pattern recognition problem. PSO is adopted
to optimize the features combination coefficients and the
division bound function. Our biological and nonparametric
algorithm is independent of any explicit channel parameters,
and hence is much superior to the other noncoherent
techniques especially when there is channel noise uncer-
tainty. Based on the characteristic construction, features
extraction, and evolutional computation, our proposed PSO-
based UWB detector presents a new infrastructure for
the nature inspired signal processing, which also benefits
the more profound biological applications in engineering
problems. In fact, the established characteristic spectrum is
somewhat elementary as an early work, and the collected
feature is also simple and even intuitive. If the more elegant
characteristic spectrum is developed, accompanying the
well-established features selection procedure, the achieved
gain of this biological technique can be further enhanced,
which also remains as an attractive area in future researches.
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