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Abstract In this paper we are concerned with the analysis of convergent sequential
and parallel overlapping domain decomposition methods for the minimization of func-
tionals formed by a discrepancy term with respect to the data and a total variation
constraint. To our knowledge, this is the first successful attempt of addressing such a
strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation
minimization. We provide several numerical experiments, showing the successful
application of the algorithm for the restoration of 1D signals and 2D images in
interpolation/inpainting problems, respectively, and in a compressed sensing prob-
lem, for recovering piecewise constant medical-type images from partial Fourier
ensembles.
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646 M. Fornasier et al.

1 Introduction

In concrete applications, e.g., for image processing, one might be interested in recov-
ering at best a digital image provided only partial linear or nonlinear measurements,
possibly corrupted by noise. Given the observation that natural and man-made images
can be characterized by a relatively small number of edges and extensive relatively
uniform parts, one may want to help the reconstruction by imposing that the interesting
solution is the one which matches the given data and has also a few discontinuities
localized on sets of lower dimension.

In the context of compressed sensing [6–8,21], it has been clarified that the minimi-
zation of �1-norms occupies a fundamental role for the promotion of sparse solutions.
This understanding furnishes an important interpretation of total variation minimi-
zation, i.e., the minimization of the L1-norm of derivatives [33], as a regularization
technique for image restoration. The problem can be modelled as follows; let � ⊂ R

d ,
for d = 1, 2 be a bounded open set with Lipschitz boundary, and H = L2(�). For
u ∈ L1

loc(�)

V (u,�) := sup

⎧
⎨

⎩

∫

�

u div ϕdx : ϕ ∈
[
C1

c (�)
]d

, ‖ϕ‖∞ ≤ 1

⎫
⎬

⎭

is the variation of u. Further, u ∈ BV (�), the space of bounded variation functions
[1,24], if and only if V (u,�) < ∞. In this case, we denote |D(u)|(�) = V (u,�). If
u ∈ W 1,1(�) (the Sobolev space of L1-functions with L1-distributional derivatives),
then |D(u)|(�) = ∫

�
|∇u|dx . We consider as in [12,37] the minimization in BV (�)

of the functional

J (u) := ‖T u − g‖2
L2(�)

+ 2α|D(u)|(�), (1)

where T : L2(�) → L2(�) is a bounded linear operator, g ∈ L2(�) is a datum,
and α > 0 is a fixed regularization parameter [23]. Several numerical strategies to
efficiently perform total variation minimization have been proposed in the literature.
Without claiming of being exhaustive, we list a few of the relevant methods, ordered
by their chronological appearance:
(1) the linearization approach of Dobson and Vogel [20] and of Chambolle and Lions

[12] by iteratively re-weighted least squares, see also [18] for generalizations and
refinements in the context of compressed sensing;

(2) the primal-dual approach of Chan et al. [13];
(3) variational approximation via locally quadratic functionals as in the work of Vese

et al. [2,37];
(4) iterative thresholding algorithms based on projections onto convex sets as in the

work of Chambolle [10] as well as in the work of Combettes and Wajs [15] and
Daubechies et al. [19];

(5) iterative minimization of the Bregman distance as in the work of Osher et al. [32]
(also notice the very recent Bregman split approach [27]);

(6) graph cuts [11,16] for the minimization of (1) with T = I (the identity operator)
and an anisotropic total variation;
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A convergent overlapping domain decomposition method 647

(7) the approach proposed by Nesterov [31] and its modifications by Weiss et al.
[39].

These approaches differ significantly, and they provide a convincing view of the
interest this problem has been able to generate and of its applicative impact. However,
because of their iterative-sequential formulation, none of the mentioned methods is
able to address extremely large problems, such as 4D imaging (spatial plus temporal
dimensions) from functional magnetic-resonance in nuclear medical imaging, astro-
nomical imaging or global terrestrial seismic tomography, in real-time, or at least in
an acceptable computational time. For such large scale simulations we need to address
methods which allow us to reduce the problem to a finite sequence of sub-problems
of a more manageable size, perhaps computable by one of the methods listed above.
With this aim we introduced subspace correction and domain decomposition meth-
ods both for �1-norm and total variation minimizations [25,26,34]. We address the
interested reader to the broad literature included in [26] for an introduction to domain
decomposition methods both for PDEs and convex minimization.

1.1 Difficulty of the problem

Due to the nonsmoothness and nonadditivity of the total variation with respect to a
nonoverlapping domain decomposition (note that the total variation of a function on
the whole domain equals the sum of the total variations on the subdomains plus the size
of the jumps at the interfaces [26, formula (3.4)]), one encounters additional difficul-
ties in showing convergence of such decomposition strategies to global minimizers.
In particular, we stress very clearly that well-known approaches as in [9,14,35,36] are
not directly applicable to this problem, because either they address additive problems
or smooth convex minimizations, which is not the case of total variation minimiza-
tion. We emphasize that the successful convergence of such alternating algorithms
is far from being obvious for nonsmooth and nonadditive problems, as many coun-
terexamples can be constructed, see for instance [38]. Moreover, for total variation
minimization, the interesting solutions may be discontinuous, e.g., along curves in 2D.
These discontinuities may cross the interfaces of the domain decomposition patches.
Hence, the crucial difficulty is the correct numerical treatment of interfaces, with the
preservation of crossing discontinuities and the correct matching where the solution
is continuous instead, see [26, Section 7.1.1].

The work [26] was particularly addressed to nonoverlapping domain decomposi-
tions �1 ∪ �2 ⊂ � ⊂ �̄1 ∪ �̄2 and �1 ∩ �2 = ∅. Associated to the decompo-
sition define Vi = {u ∈ L2(�) : supp(u) ⊂ �i }, for i = 1, 2 which constitute
an orthogonal splitting L2(�) = V1 ⊕ V2. With this splitting we wanted to mini-
mize J by suitable instances of the following alternating algorithm: Pick an initial
V1 ⊕ V2  u(0)

1 + u(0)
2 := u(0), for example u(0) = 0, and iterate

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n+1)
1 ≈ arg minv1∈V1 J

(
v1 + u(n)

2

)

u(n+1)
2 ≈ arg minv2∈V2 J

(
u(n+1)

1 + v2

)

u(n+1) := u(n+1)
1 + u(n+1)

2 .
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648 M. Fornasier et al.

In [26] we proposed an implementation of this algorithm which is guaranteed to
converge and to decrease the objective energy J monotonically. We could prove its
convergence to minimizers of J only under technical conditions on the interfaces
of the subdomains. However, in our numerical experiments, the algorithm seems to
always converge robustly to the expected minimizer.

This discrepancy between theoretical analysis and numerical evidences motivated
our investigation of overlapping domain decompositions. The hope was that the redun-
dancy given by overlapping patches and the avoidance of boundary interfaces could
allow for a technically easier theoretical analysis.

1.2 Our approach, results, and technical issues

In this paper we show how to adapt our previous algorithm [26] to the case of an over-
lapping domain decomposition. The setting of an overlapping domain decomposition
eventually provides us with a framework in which we successfully prove in Theo-
rem 5.7 and Theorem 6.2 its convergence to minimizers of J , both in its sequential
and parallel form, and these constitute the main results of this paper. Let us stress
that to our knowledge this is the first method which addresses a domain decomposi-
tion strategy for total variation minimization with a formal, theoretical justification of
convergence. We reiterate the relevance of our result, especially in light of the classi-
cal counterexamples mentioned above, which may hold for alternating algorithms on
orthogonal decompositions of the space. Nevertheless, it is important to mention that
there are also other very recent attempts of addressing domain decomposition methods
for total variation minimization with successful numerical results [30,40], although
lacking of a rigorous theoretical analysis.

Our analysis is performed for a discrete approximation of the continuous functional
(1), for ease again denoted J in (3). Essentially we approximate functions u by their
sampling on a regular grid and their gradient Du by finite differences ∇u. It is well-
known that such a discrete approximation �-converges to the continuous functional
(see [4]). In particular, discrete minimizers of (3), interpolated by piecewise linear
functions, converge in weak-*-topology of BV to minimizers of the functional (1)
in the continuous setting. Of course, when dealing with numerical solutions, only the
discrete approach matters together with its approximation properties to the continuous
problem. However, the need of working in the discrete setting is not only practical, it
is also topological. In fact bounded sets in BV are (only) weakly-*-compact, and this
property is fundamental for showing that certain sequences have converging subse-
quences. Unfortunately, the weak-*-topology of BV is “too weak” for our purpose of
proving convergence of the domain decomposition algorithm; for instance, the trace
on boundary sets is not a continuous operator with respect to this topology. This diffi-
culty can be avoided, for example, by �-approximating the functional (1) by means of
quadratic functionals (as in [2,12,37]) and working with the topology of W 1,2(�), the
Sobolev space of L2-functions with L2-distributional first derivatives. However, this
strategy changes the singular nature of the problem which makes it both interesting and
difficult. Hence, the discrete approach has the virtues of being practical for numerical
implementations, of correctly approximating the continuous setting, and of retaining
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A convergent overlapping domain decomposition method 649

the main features which make the problem interesting. Note further that in the discrete
setting where topological issues are not a concern anymore, also the dimension d can
be arbitrary, contrary to the continuous setting where the dimension d has to be linked
to boundedness properties of the operator T , see [37, property H2, pag. 134]. For ease
of presentation, and in order to avoid unnecessary technicalities, we limit our analy-
sis to splitting the problem into two subdomains �1 and �2. This is by no means a
restriction. The generalization to multiple domains comes quite natural in our specific
setting, see also [26, Remark 5.3]. When dealing with discrete subdomains �i , for
technical reasons, we will require a certain splitting property for the total variation, i.e.,

|∇u|(�) = |∇u|�1 |(�1) + c1
(
u|(�2\�1)∪�1

)
,

|∇u|(�) = |∇u|�2 |(�2) + c2
(
u|(�1\�2)∪�2

)
, (2)

where c1 and c2 are suitable functions which depend only on the restrictions
u|(�2\�1)∪�1 and u|(�1\�2)∪�2 , respectively, see (9) (symbols and notations are clari-
fied once for all in the following section). Note that this formula is the discrete analogue
of [26, formula (3.4)] in the continuous setting. The simplest examples of discrete
domains with such a property are discrete d-dimensional rectangles (d-orthotopes).
For instance, with our notations, it is easy to check that for d = 1 and for � being
a discrete interval, one computes c1(u|(�2\�1)∪�1) = |∇u|(�2\�1)∪�1 |((�2 \ �1) ∪
�1), c2(u|(�1\�2)∪�2) = |∇u|(�1\�2)∪�2 |((�1 \ �2) ∪ �2); it is straightforward to
generalize the computation to d > 1. Hence, for ease of presentation, we will assume
to work with d-orthotope domains, also noting that such decompositions are already
sufficient for any practical use in image processing, and stressing that the results can
be generalized also to subdomains with different shapes as long as (2) is satisfied.

1.3 Organization of the work

The paper is organized as follows. In Sect. 2 we collect the relevant notations and
symbols for the paper. Section 3 introduces the problem and the overlapping domain
decomposition algorithm which we want to analyze. In Sect. 4 we address the approx-
imate solution of the local problems defined on the subdomains �i , and we show how
we interface them, by means of a suitable Lagrange multiplier. Sections 5 and 6 are
concerned with the convergence of the sequential and parallel forms of the algorithm.
In particular, in Sect. 5 we provide a characterization of minimizers by a discrete repre-
sentation of the subdifferential of J . This characterization is used in the convergence
proofs in order to check the reached optimality. The final Sect. 7 provides a collection
of applications and numerical examples.

2 Notations

Let us fix the main notations. Since we are interested in a discrete setting we define the
discrete d-orthotope � = {x1

1 < · · · < x1
N1

} × · · · × {xd
1 < · · · < xd

Nd
} ⊂ R

d , d ∈ N

and the considered function spaces are H = R
N1×N2×···×Nd , where Ni ∈ N for

i = 1, . . . , d. For u ∈ H we write u = u(xi)i∈I with
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650 M. Fornasier et al.

I :=
d∏

k=1

{1, . . . , Nk}

and

u(xi) = u
(

x1
i1
, . . . , xd

id

)

where ik ∈ {1, . . . , Nk} and (xi)i∈I ∈ �. Then we endow H with the norm

‖u‖H = ‖u‖2 =
(
∑

i∈I
|u(xi)|2

)1/2

=
(
∑

x∈�

|u(x)|2
)1/2

.

We define the scalar product of u, v ∈ H as

〈u, v〉H =
∑

i∈I
u(xi)v(xi),

and the scalar product of p, q ∈ Hd as

〈p, q〉Hd =
∑

i∈I
〈p(xi), q(xi)〉Rd ,

with 〈y, z〉Rd = ∑d
j=1 y j z j for every y = (y1, . . . , yd) ∈ R

d and z = (z1, . . . , zd) ∈
R

d . We will consider also other norms, in particular

‖u‖p =
(
∑

i∈I
|u(xi)|p

)1/p

, 1 ≤ p < ∞,

and

‖u‖∞ = sup
i∈I

|u(xi)|.

We denote the discrete gradient ∇u by

(∇u)(xi) =
(
(∇u)1(xi), . . . , (∇u)d(xi)

)
,

with

(∇u) j (xi) =
{

u
(

x1
i1
, . . . , x j

i j +1, . . . , xd
id

)
− u

(
x1

i1
, . . . , x j

i j
, . . . , xd

id

)
if i j < N j ,

0 if i j = N j ,

for all j = 1, . . . , d and for all i = (i1, . . . , id) ∈ I.
Let ϕ : R → R, we define for ω ∈ Hd

ϕ(|ω|)(�) =
∑

i∈I
ϕ(|ω(xi)|) =

∑

x∈�

ϕ(|ω(x)|),
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A convergent overlapping domain decomposition method 651

where |y| =
√

y2
1 + · · · + y2

d . In particular we define the total variation of u by setting
ϕ(s) = s and ω = ∇u, i.e.,

|∇u|(�) :=
∑

i∈I
|∇u(xi)| =

∑

x∈�

|∇u(x)|.

For an operator T we denote by T ∗ its adjoint. Further we introduce the discrete diver-
gence div : Hd → H defined, in analogy with the continuous setting, by div = −∇∗
(∇∗ is the adjoint of the gradient ∇). The discrete divergence operator is explicitly
given by

(div p)(xi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1
(

x1
i1
, . . . , xd

id

)
− p1(x1

i1−1, . . . , xd
id

) if 1 < i1 < N1

p1
(

x1
i1
, . . . , xd

id

)
if i1 = 1

−p1
(

x1
i1−1, . . . , xd

id

)
if i1 = N1

+ · · · +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pd
(

x1
i1
, . . . , xd

id

)
− pd

(
x1

i1
, . . . , xd

id−1

)
if 1 < id < Nd

pd
(

x1
i1
, . . . , xd

id

)
if id = 1

−pd
(

x1
i1
, . . . , xd

id−1

)
if id = Nd ,

for every p = (p1, . . . , pd) ∈ Hd and for all i = (i1, . . . , id) ∈ I. (Note that if we
considered discrete domains � which are not discrete d-orthotopes, then the defini-
tions of gradient and divergence operators should be adjusted accordingly.) With these
notations, we define the closed convex set

K :=
{

div p : p ∈ Hd , |p(x)|∞ ≤ 1 for all x ∈ �
}

,

where |p(x)|∞ = max{|p1(x)|, . . . , |pd(x)|}, and denote PK (u) = arg minv∈K
‖u −v‖2 the orthogonal projection onto K . We will often use the symbol 1 to indicate
the constant vector with entry values 1, and 1D to indicate the characteristic function
of the domain D ⊂ �.

3 The overlapping domain decomposition algorithm

We are interested in the minimization of the functional

J (u) := ‖T u − g‖2
2 + 2α|∇(u)|(�), (3)

where T ∈ L(H) is a linear operator, g ∈ H is a datum, and α > 0 is a fixed constant.
In order to guarantee the existence of minimizers for (3) we assume that:

123



652 M. Fornasier et al.

(C) J is coercive in H, i.e., there exists a constant C > 0 such that {J ≤ C} :=
{u ∈ H : J (u) ≤ C} is nonempty and bounded in H.

It is well known that if 1 /∈ ker(T ) then condition (C) is satisfied, see [37, Proposition
3.1].

Now, instead of minimizing (3) on the whole domain we decompose � into two
overlapping subdomains �1 and �2 such that � = �1 ∪ �2, �1 ∩ �2 �= ∅, and (2)
is fulfilled. For consistency of the definitions of gradient and divergence, we assume
that also the subdomains �i are discrete d-orthotopes as well as �, stressing that this
is by no means a restriction, but only for ease of presentation. Due to this domain
decomposition, H is split into two closed subspaces Vj = {u ∈ H : supp(u) ⊂ � j },
for j = 1, 2. Note that H = V1 + V2 is not a direct sum of V1 and V2, but just a linear
sum of subspaces. Thus any u ∈ H has a nonunique representation

u(x) =

⎧
⎪⎨

⎪⎩

u1(x) x ∈ �1 \ �2

u1(x) + u2(x) x ∈ �1 ∩ �2

u2(x) x ∈ �2 \ �1

, ui ∈ Vi , i = 1, 2. (4)

We denote by �1 the interface between �1 and �2\�1 and by �2 the interface between
�2 and �1 \ �2 (the interfaces are naturally defined in the discrete setting).

We introduce the trace operator of the restriction to a boundary �i

Tr |�i : Vi → R
�i , i = 1, 2,

with Tr |�i vi = vi |�i , the restriction of vi on �i . Note that R
�i is as usual the set of

maps from �i to R. The trace operator is clearly a linear and continuous operator. We
additionally fix a bounded uniform partition of unity (BUPU) {χ1, χ2} ⊂ H such that

(a) Tr |�i χi = 0 for i = 1, 2,
(b) χ1 + χ2 = 1,
(c) supp χi ⊂ �i for i = 1, 2,
(d) max{‖χ1‖∞, ‖χ2‖∞} = κ < ∞.

We would like to solve

arg minu∈H J (u),

by picking an initial V1 + V2  ũ(0)
1 + ũ(0)

2 := u(0) ∈ H, e.g., ũ(0)
i = 0, i = 1, 2, and

iterating

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n+1)
1 ≈ arg min v1∈V1

Tr|�1v1=0
J
(
v1 + ũ(n)

2

)

u(n+1)
2 ≈ arg min v2∈V2

Tr|�2 v2=0
J
(

u(n+1)
1 + v2

)

u(n+1) := u(n+1)
1 + u(n+1)

2

ũ(n+1)
1 := χ1 · u(n+1)

ũ(n+1)
2 := χ2 · u(n+1).

(5)
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A convergent overlapping domain decomposition method 653

Note that we are minimizing over functions vi ∈ Vi for i = 1, 2 which vanish on
the interior boundaries, i.e., Tr |�i vi = 0. Moreover u(n) is the sum of the local

minimizers u(n)
1 and u(n)

2 , which are not uniquely determined on the overlapping part.
Therefore we introduced a suitable correction by χ1 and χ2 in order to force the sub-
minimizing sequences (u(n)

1 )n∈N and (u(n)
2 )n∈N to keep uniformly bounded. This issue

will be explained in detail below, see Lemma 5.5. From the definition of χi , i = 1, 2,
it is clear that

u(n+1)
1 + u(n+1)

2 = u(n+1) = (χ1 + χ2)u
(n+1) = ũ(n+1)

1 + ũ(n+1)
2 .

Note that in general u(n)
1 �= ũ(n)

1 and u(n)
2 �= ũ(n)

2 . In (5) we use “≈” (the approximation
symbol) because in practice we never perform the exact minimization. In the follow-
ing section we discuss how to realize the approximation to the individual subspace
minimizations.

4 Local minimization by Lagrange multipliers

Let us consider, for example, the subspace minimization on �1

arg min v1∈V1
Tr|�1v1=0

J (v1 + u2) = arg min v1∈V1
Tr|�1v1=0

‖T v1 − (g − T u2)‖2
2

+2α|∇(v1 + u2)|(�). (6)

First of all, observe that {u ∈ H : Tr |�1 u = Tr |�1 u2,J (u) ≤ C} ⊂ {J ≤ C},
hence the former set is also bounded by assumption (C) and the minimization problem
(6) has solutions.

It is useful to us to introduce an auxiliary functional J s
1 , called the surrogate func-

tional of J (cf. [26]): Assume a, u1 ∈ V1, u2 ∈ V2, and define

J s
1 (u1 + u2, a) := J (u1 + u2) + ‖u1 − a‖2

2 − ‖T (u1 − a)‖2
2. (7)

A straightforward computation shows that

J s
1 (u1 + u2, a) = ∥

∥u1 − (
a + (

T ∗(g − T u2 − T a)
) |�1

)∥
∥2

2 + 2α |∇(u1 + u2)| (�)

+
(a, g, u2),

where 
 is a function of a, g, u2 only. Note that now the variable u1 is not anymore
affected by the action of T . Consequently, we want to realize an approximate solution
to (6) by using the following algorithm: For u(0)

1 = ũ(0)
1 ∈ V1,

u(�+1)
1 = arg min u1∈V1

Tr|�1 u1=0
J s

1

(
u1 + u2, u(�)

1

)
, � ≥ 0. (8)
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654 M. Fornasier et al.

Additionally in (8) we can restrict the total variation on �1 only, since we have

|∇(u1 + u2)| (�) = ∣
∣∇(u1 + u2) |�1

∣
∣ (�1) + c1

(
u2|(�2\�1)∪�1

)
. (9)

where we used (2) and the assumption that u1 vanishes on the interior boundary �1.
Hence (8) is equivalent to

arg min u1∈V1
Tr|�1 u1=0

J s
1

(
u1 + u2, u(�)

1

)
= arg min u1∈V1

Tr|�1 u1=0
‖u1 − z1‖2

2

+2α|∇(u1 + u2) |�1 |(�1),

where z1 = u(�)
1 + (T ∗(g − T u2 − T u(�)

1 )) |�1 .
Before proving the convergence of this algorithm, we first need to clarify how to

practically compute u(�+1)
1 for u(�)

1 given. To this end we need to introduce further
notions and to recall some useful results.

4.1 Generalized Lagrange multipliers for nonsmooth objective functions

Let us begin this section with the notion of a subdifferential in finite dimensions.

Definition 4.1 For a finite dimensional and locally convex space V and for a convex
function F : V → R ∪ {−∞,+∞}, we define the subdifferential of F at x ∈ V , as
the set valued function

∂ F(x) :=
{

∅ if F(x) = ∞
{x∗ ∈ V : 〈x∗, y − x〉 + F(x) ≤ F(y) ∀y ∈ V } otherwise.

It is obvious from this definition that 0 ∈ ∂ F(x) if and only if x is a minimizer of
F . Since we deal with several spaces, namely, H, Vi , it will turn out to be useful to
sometimes distinguish in which space the subdifferential is defined by imposing a
subscript ∂V F for the subdifferential considered on the space V .

We consider the following problem

arg minx∈V {F(x) : Gx = b}, (10)

where G : V → V is a linear operator on V . We have the following useful result.

Theorem 4.2 [28, Theorem 2.1.4, p. 305] Let N = {G∗λ : λ ∈ V } = Range(G∗).
Then, x0 ∈ {x ∈ V : Gx = b} solves the constrained minimization problem (10) if
and only if

0 ∈ ∂ F(x0) + N .
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4.2 Oblique thresholding

We want to exploit Theorem 4.2 in order to produce an algorithmic solution to each
iteration step (8), which practically stems from the solution of a problem of this type

arg min u1∈V1
Tr|�1 u1=0

‖u1 − z1‖2
2 + 2α

∣
∣∇(u1 + u2 |�1)

∣
∣ (�1).

It is well-known how to solve this problem if u2 ≡ 0 in �1 and the trace condition is
not imposed. For the general case we propose the following solution strategy. In what
follows all the involved quantities are restricted to �1, e.g., u2 = u2 |�1 .

Theorem 4.3 (Oblique thresholding) For u2 ∈ V2 and for z1 ∈ V1 the following
statements are equivalent:

(i) u∗
1 = arg min u1∈V1

Tr|�1 u1=0
‖u1 − z1‖2

2 + 2α|∇(u1 + u2)|(�1);

(ii) there exists η ∈ Range(Tr |�1)
∗ = {η ∈ V1 with supp(η) = �1} such that

0 ∈ u∗
1 − (z1 − η) + α∂V1 |∇(· + u2)|(�1)(u∗

1);
(iii) there exists η ∈ V1 with supp(η) = �1 such that u∗

1 = (I − PαK )(z1 + u2 −
η) − u2 ∈ V1 and Tr |�1 u∗

1 = 0;
(iv) there exists η ∈ V1 with supp(η) = �1 such that Tr |�1 η = Tr |�1 z1 + Tr |�1

PαK (η − (z1 + u2)) or equivalently η = (Tr |�1)
∗ Tr |�1 (z1 + PαK (η − (z1 +

u2))).

We call the solution operation provided by this theorem an oblique thresholding, in
analogy to the terminology in [17], because it performs a thresholding of the deriva-
tives, i.e., it sets to zero most of the derivatives of u = u1 + u2 ≈ z1 on �1, provided
u2, which is a fixed vector in V2.

Proof Let us show the equivalence between (i) and (ii). The problem in (i) can be
reformulated as

u∗
1 = arg minu1∈V1

{F(u1) := ‖u1 − z1‖2
2 + 2α|∇(u1 + u2)|(�1), Tr |�1 u1 = 0}.

(11)

Recall that Tr |�1 : V1 → R
�1 is a surjective map with closed range. This means

that (Tr |�1)
∗ is injective and that Range(Tr |�1)

∗ = {η ∈ V1 with supp(η) = �1}
is closed. Using Theorem 4.2 the optimality of u∗

1 is equivalent to the existence of
η ∈ Range(Tr |�1)

∗ such that

0 ∈ ∂V1 F
(
u∗

1

)+ 2η. (12)

Due to the continuity of ‖u1 − z1‖2
2 in V1, we have, by [22, Proposition 5.6], that

∂V1 F
(
u∗

1

) = 2
(
u∗

1 − z1
)+ 2α∂V1 |∇(· + u2)|(�1)

(
u∗

1

)
. (13)
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Thus, the optimality of u∗
1 is equivalent to

0 ∈ u∗
1 − z1 + η + α∂V1 |∇(· + u2)|(�1)

(
u∗

1

)
. (14)

This concludes the equivalence of (i) and (ii). Let us show now that (iii) is equivalent
to (ii). The condition in (iii) can be rewritten as

ξ∗ = (I − PαK )(z1 + u2 − η), ξ∗ = u∗
1 + u2.

Since |∇(·)|(�1) ≥ 0 is 1-homogeneous and lower-semicontinuous, by [26, Example
4.2.2], the latter is equivalent to

0 ∈ ξ∗ − (z1 + u2 − η) + α∂V1 |∇(·)|(�1)(ξ
∗),

and equivalent to (ii). Note that in particular we have ∂V1 |∇(·)|(�1)(ξ
∗) = ∂V1 |∇(· +

u2)|(�1)(u∗
1), which is easily shown by a direct computation from the definition of

subdifferential. We prove now the equivalence between (iii) and (iv). We have, for
some η ∈ V1 with supp(η) = �1, and Tr |�1 u∗

1 = 0,

u∗
1 = (I − PαK )(z1 + u2 − η) − u2 ∈ V1,

= z1 − η − PαK (z1 + u2 − η).

By applying Tr |�1 to both sides of the latter equality we get

0 = Tr |�1 z1 − Tr |�1 η − Tr |�1 PαK (z1 + u2 − η).

By observing that − Tr |�1 PαK (ξ) = Tr |�1 PαK (−ξ), we obtain the fixed point
equation

Tr |�1 η = Tr |�1 z1 + Tr |�1 PαK (η − (z1 + u2)). (15)

Conversely, since all the considered quantities in

(I − PαK )(z1 + u2 − η) − u2

are in V1, the whole expression is an element in V1 and hence u∗
1 as defined in (iii) is

an element in V1 and Tr |�1 u∗
1 = 0. This shows the equivalence between (iii) and (iv)

and therewith finishes the proof. ��
We wonder now whether any of the conditions in Theorem 4.3 is indeed practically

satisfied. In particular, we want to show that η ∈ V1 as in (iii) or (iv) of the previous
theorem is provided as the limit of the following iterative algorithm:

η(0) ∈ V1, supp η(0) = �1,

η(m+1) = (Tr |�1)
∗ Tr |�1

(
z1 + PαK

(
η(m) − (z1 + u2)

))
, m ≥ 0. (16)
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Proposition 4.4 The following statements are equivalent:

(i) there exists η ∈ V1 such that η = (Tr |�1)
∗ Tr |�1 (z1 + PαK (η − (z1 + u2)))

(which is in turn condition (iv) of Theorem 4.3);
(ii) the iteration (16) converges to some η ∈ V1 which satisfies (15).

For the proof of this proposition we need to recall some well-known notions and
results.

Definition 4.5 A nonexpansive map T : H → H is strongly nonexpansive if for
(un − vn)n∈N bounded and ‖T (un) − T (vn)‖2 − ‖un − vn‖2 → 0 we have

un − vn − (T (un) − T (vn)) → 0, n → ∞.

Proposition 4.6 (Corollaries 1.3, 1.4, and 1.5 [5]) Let T : H → H be a strongly
nonexpansive map. Then fix T = {u ∈ H : T (u) = u} �= ∅ if and only if (T nu)n∈N

converges to a fixed point u0 ∈ fix T for any choice of u ∈ H.

Proof (Proposition 4.4) Projections onto convex sets are strongly nonexpansive [3,
Corollary 4.2.3]. Moreover, the composition of strongly nonexpansive maps is strongly
nonexpansive [5, Lemma 2.1]. By an application of Proposition 4.6 we immediately
have the result, since any map of the type T (ξ) = Q(ξ) + ξ0 is strongly nonexpan-
sive whenever Q is such a map (this is a simple observation from the definition of
strongly nonexpansive maps). Indeed, we are looking for fixed points of η = (Tr |�1)

∗
Tr |�1 (z1 + PαK (η − (z1 + u2))) or, equivalently, of ξ = (Tr |�1)

∗ Tr |�1 PαK
︸ ︷︷ ︸

:=Q

(ξ) −

((Tr |�1)
∗ Tr |�1 u2)

︸ ︷︷ ︸
:=ξ0

, where ξ = (Tr |�1)
∗ Tr |�1 (η − (z1 + u2)). ��

4.3 Convergence of the subspace minimization

From the results of the previous section it follows that the iteration (8) can be explicitly
computed by

u(�+1)
1 = Sα

(
u(�)

1 + T ∗ (g − T u2 − T u(�)
1

)
+ u2 − η(�)

)
− u2, (17)

where Sα := I − PαK and η(�) ∈ V1 is any solution of the fixed point equation

η = (Tr |�1)
∗ Tr |�1

((
u(�)

1 + T ∗ (g − T u2 − T u(�)
1

))
− PαK

(
u(�)

1

+ T ∗ (g − T u2 − T u(�)
1

)
+ u2 − η

))
.

The computation of η(�) can be implemented by the algorithm (16).

Proposition 4.7 Assume u2 ∈ V2 and ‖T ‖ < 1. Then the iteration (17) converges to
a solution u∗

1 ∈ V1 of (6) for any initial choice of u(0)
1 ∈ V1.
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The proof of this proposition is standard, see [15,17,26].

Remark 4.8 Note that the condition ‖T ‖ < 1 in Proposition 4.7, and assumed also
later, is not automatically satisfied in general. However, in case the norm of the given
operator T exceeds 1, a proper rescaling of the problem re-establishes the desired
setting. The rescaling can be easily obtained by multiplying the functional J by a
positive constant γ < 1

‖T ‖2 , and minimizing the resulting functional

Jγ (u) = ‖√γ T u − √
γ g‖2

2 + 2γα|D(u)|(�).

Note that the minimizers of the rescaled problem coincide with minimizers of J .

Let us conclude this section by mentioning that all the results presented here hold
symmetrically for the minimization on V2, and that the notations should be just adjusted
accordingly.

5 Convergence of the sequential alternating subspace minimization

In this section we want to prove the convergence of the algorithm (5) to minimizers
of J . In order to do that, we need a characterization of solutions of the minimization
problem (3) as the one provided in [37, Proposition 4.1] for the continuous setting. We
specify the arguments in [37, Proposition 4.1] for our discrete setting and we highlight
the significant differences with respect to the continuous one.

5.1 Characterization of solutions

We make the following assumptions:

(Aϕ) ϕ : R → R is a convex function, nondecreasing in R
+ such that

(i) ϕ(0) = 0.
(ii) There exist c > 0 and b ≥ 0 such that cz − b ≤ ϕ(z) ≤ cz + b, for all

z ∈ R
+.

The particular example we have in mind is simply ϕ(s) = s, but we keep a more gen-
eral notation for uniformity with respect to the continuous version in [37, Proposition
4.1]. In this section we are concerned with the following more general minimization
problem

arg minu∈H{Jϕ(u) := ‖T u − g‖2
2 + 2αϕ(|∇u|)(�)}, (18)

where g ∈ H is a datum, α > 0 is a fixed constant (in particular for ϕ(s) = s).
To characterize the solution of the minimization problem (18) we use duality results

from [22]. Therefore we recall the definition of the conjugate (or Legendre transform)
of a function (see [22, Def. 4.1, p. 17]):
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Definition 5.1 Let V and V ∗ be two vector spaces placed in duality by a bilinear
pairing denoted by 〈·, ·〉 and φ : V → R a convex function. The conjugate function
(or Legendre transform) φ∗ : V ∗ → R is defined by

φ∗(u∗) = sup
u∈V

{〈u, u∗〉 − φ(u)}.

Proposition 5.2 Let ζ, u ∈ H. If the assumption (Aϕ) is fulfilled, then ζ ∈ ∂Jϕ(u)

if and only if there exists M = (M0, M̄) ∈ H × Hd , |M̄(x)|
2α

≤ c1 ∈ [0,+∞) for all
x ∈ � such that

〈M̄(x), (∇u)(x)〉Rd + 2αϕ(|(∇u)(x)|) + 2αϕ∗
1

( |M̄(x)|
2α

)

= 0 for all x ∈ �,

(19)

T ∗M0 − div M̄ + ζ = 0, (20)

−M0 = 2(T u − g), (21)

where ϕ∗
1 is the conjugate function of ϕ1 defined by ϕ1(s) = ϕ(|s|), for s ∈ R.

If additionally ϕ is differentiable and |(∇u)(x)| �= 0 for x ∈ �, then we can
compute M̄ as

M̄(x) = −2α
ϕ′(|(∇u)(x)|)

|(∇u)(x)| (∇u)(x). (22)

The proof of this proposition specifies the one of [37, Proposition 4.1] to our discrete
setting, it is technical, and it is deferred to the Appendix.

Remark 5.3 (i) For ϕ(s) = s the function ϕ1 from Proposition 5.2 turns out to be
ϕ1(s) = |s|. Its conjugate function ϕ∗

1 is then given by

ϕ∗
1 (s∗) = sup

s∈R

{〈s∗, s〉 − |s|} =
{

0 for |s∗| ≤ 1

∞ else
.

Hence condition (19) specifies as follows

〈M̄(x), (∇u)(x)〉Rd + 2α|(∇u)(x)| = 0,

and, directly from the proof of Proposition 5.2 in the Appendix A, |M̄(x)| ≤ 2α

for all x ∈ �.
(ii) We want to highlight a few important differences with respect to the contin-

uous case. Due to our definition of the gradient and its relationship with the
divergence operator − div = ∇∗ no boundary conditions are needed. Therefore
condition (10) of [37, Proposition 4.1] has no discrete analogue in our setting.
The continuous total variation of a function can be decomposed into an abso-
lutely continuous part with respect to the Lebesgue measure and a singular part,
whereas no singular part appears in the discrete setting. Therefore conditions
(6) and (7) of [37, Proposition 4.1] have not a discrete analogue either.
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(iii) An interesting consequence of Proposition 5.2 is that the map Sα = (I − PαK )

is bounded, i.e., ‖Sα(zk)‖2 → ∞ if and only if ‖zk‖2 → ∞, for k → ∞. In
fact, since

Sα(z) = arg min
u∈H

‖u − z‖2
2 + 2α|∇u|(�),

from (20) and (21), we immediately obtain

Sα(z) = z − 1

2
div M̄,

and M̄ is uniformly bounded.

5.2 Convergence properties

We return to the sequential algorithm (5). Let us explicitly express the algorithm as fol-
lows: Pick an initial V1+V2  ũ(0)

1 +ũ(0)
2 := u(0) ∈ H, for example, ũ(0)

i = 0, i = 1, 2,
and iterate
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

u(n+1,0)
1 = ũ(n)

1

u(n+1,�+1)
1 = arg min u1∈V1

Tr|�1 u1=0
J s

1

(
u1 + ũ(n)

2 , u(n+1,�)
1

)
, � = 0, . . . , L − 1,

⎧
⎨

⎩

u(n+1,0)
2 = ũ(n)

2

u(n+1,m+1)
2 = arg min u2∈V2

Tr|�2 u2=0
J s

2

(
u(n+1,L)

1 + u2, u(n+1,m)
2

)
, m = 0, . . . , M − 1,

u(n+1) := u(n+1,L)
1 + u(n+1,M)

2

ũ(n+1)
1 := χ1 · u(n+1)

ũ(n+1)
2 := χ2 · u(n+1).

(23)

Algorithm (23) consists of two nested iterations. The inner iterations with indexes � and
m constitute the iterative solution for the sequence of surrogate functionals on each sub-
space. Hence, these iterations approximatively compute minimizers for the functional
J on the subspaces. The outer iteration with index n stems from our domain decompo-
sition approach and iteratively computes the minimizer of J on the whole space. Note
that we do prescribe a finite number L and M of inner iterations for each subspace,
respectively, and that u(n+1) = ũ(n+1)

1 + ũ(n+1)
2 , with u(n+1)

i �= ũ(n+1)
i , i = 1, 2, in

general. In this section we want to prove the convergence of the algorithm in (23) for
any choice of L and M .

Observe that, for a ∈ Vi and ‖T ‖ < 1,

‖ui − a‖2
2 − ‖T ui − T a‖2

2 ≥ C‖ui − a‖2
2, (24)

for C = (1 − ‖T ‖2) > 0. Hence

J (u) = J s
i (u, ui ) ≤ J s

i (u, a), (25)
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and

J s
i (u, a) − J s

i (u, ui ) ≥ C‖ui − a‖2
2. (26)

Proposition 5.4 (Convergence properties) Let us assume that ‖T ‖ < 1. The algo-
rithm in (23) produces a sequence (u(n))n∈N in H with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));
(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;

(iii) the sequence (u(n))n∈N has subsequences which converge in H.

Proof Let us first observe that

J (u(n)) = J s
1

(
ũ(n)

1 + ũ(n)
2 , ũ(n)

1

)
= J s

1

(
ũ(n)

1 + ũ(n)
2 , u(n+1,0)

1

)
.

By definition of u(n+1,1)
1 and the minimal properties of u(n+1,1)

1 in (23) we have

J s
1

(
ũ(n)

1 + ũ(n)
2 , u(n+1,0)

1

)
≥ J s

1

(
u(n+1,1)

1 + ũ(n)
2 , u(n+1,0)

1

)
.

From (25) we have

J s
1

(
u(n+1,1)

1 + ũ(n)
2 , u(n+1,0)

1

)
≥ J s

1

(
u(n+1,1)

1 + ũ(n)
2 , u(n+1,1)

1

)

= J
(

u(n+1,1)
1 + ũ(n)

2

)
.

Concatenating these inequalities we obtain

J (u(n)) ≥ J
(

u(n+1,1)
1 + ũ(n)

2

)
.

In particular, from (26) we have

J (u(n)) − J
(

u(n+1,1)
1 + ũ(n)

2

)
≥ C

∥
∥
∥u(n+1,1)

1 − u(n+1,0)
1

∥
∥
∥

2

2
.

After L steps we conclude the estimate

J (u(n)) ≥ J
(

u(n+1,L)
1 + ũ(n)

2

)
,

and

J (u(n)) − J
(

u(n+1,L)
1 + ũ(n)

2

)
≥ C

L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
.
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By definition of u(n+1,1)
2 and its minimal properties we have

J
(

u(n+1,L)
1 + ũ(n)

2

)
≥ J s

2

(
u(n+1,L)

1 + u(n+1,1)
2 , u(n+1,0)

2

)
.

By similar arguments as above we finally find the decreasing estimate

J (u(n)) ≥ J
(

u(n+1,L)
1 + u(n+1,M)

2

)
= J (u(n+1)) = J

(
ũ(n+1)

1 + ũ(n+1)
2

)
, (27)

and

J (u(n)) − J (u(n+1))

≥ C

(
L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
+

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2

)

, (28)

which verifies (i).
From (27) we have J (u(0)) ≥ J (u(n)). By the coerciveness condition (C) (u(n))n∈N

is uniformly bounded in H, hence there exists a convergent subsequence (u(nk))k∈N

and hence (i i i) holds. For simplicity, we rename such a subsequence by (u(n))n∈N.
Moreover, since the sequence (J (u(n)))n∈N is monotonically decreasing and bounded
from below by 0, it is also convergent. From (28) and the latter convergence we deduce

(
L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 −u(n+1,�)
1

∥
∥
∥

2

2
+

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2

)

→0, n →∞.

(29)

In particular, by the standard inequality (a2 + b2) ≥ 1
2 (a + b)2 for a, b > 0 and the

triangle inequality, we have also

‖u(n) − u(n+1)‖2 → 0, n → ∞. (30)

This gives (i i) and completes the proof. ��
The use of the partition of unity {χ1, χ2} allows us not only to guarantee the bound-

edness of (u(n))n∈N, but also of the sequences (ũ(n)
1 )n∈N and (ũ(n)

2 )n∈N.

Lemma 5.5 The sequences (ũ(n)
1 )n∈N and (ũ(n)

2 )n∈N produced by the algorithm (23)

are bounded, i.e., there exists a constant C̃ > 0 such that ‖ũ(n)
i ‖2 ≤ C̃, for all n ∈ N,

and for i = 1, 2.

Proof From the boundedness of (u(n))n∈N we have

∥
∥
∥ũ(n)

i

∥
∥
∥

2
=
∥
∥
∥χi u

(n)
∥
∥
∥

2
≤ κ‖u(n)‖2 ≤ C̃ for i = 1, 2.

��
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From Remark 5.3 (iii) we can also show the following auxiliary lemma.

Lemma 5.6 The sequences (η
(n,L)
1 )n∈N and (η

(n,M)
2 )n∈N are bounded.

Proof From previous considerations we know that

u(n,L)
1 = Sα

(
z(n,L−1)

1 + ũ(n−1)
2 − η

(n,L)
1

)
− ũ(n−1)

2 ,

u(n,M)
2 = Sα

(
z(n,M−1)

2 + u(n,L)
1 − η

(n,M)
2

)
− u(n,L)

1 .

Assume (η
(n,L)
1 )n∈N were unbounded, then by Remark 5.3 (iii), also Sα(z(n,L−1)

1 +
ũ(n−1)

2 − η
(n,L)
1 ) would be unbounded. Since (ũ(n)

2 )n∈N and (u(n,L)
1 )n∈N are bounded

by Lemma 5.5 and formula (29), we have a contradiction. Thus (η
(n,L)
1 )n∈N has to be

bounded. With the same argument we can show that (η
(n,M)
2 )n∈N is bounded. ��

We can eventually show the convergence of the algorithm to minimizers of J .

Theorem 5.7 (Convergence to minimizers) Assume ‖T ‖ < 1. Then accumulation
points of the sequence (u(n))n∈N produced by algorithm (23) are minimizers of J . If
J has a unique minimizer then the sequence (u(n))n∈N converges to it.

Proof Let us denote u(∞) the limit of a subsequence. For simplicity, we rename such
a subsequence by (u(n))n∈N. From Lemma 5.5 we know that (ũ(n)

1 )n∈N, (ũ(n)
2 )n∈N and

consequently (u(n,L)
1 )n∈N, (u(n,M)

2 )n∈N are bounded. So the limit u(∞) can be written
as

u(∞) = u(∞)
1 + u(∞)

2 = ũ(∞)
1 + ũ(∞)

2 (31)

where u(∞)
1 is the limit of (u(n,L)

1 )n∈N, u(∞)
2 is the limit of (u(n,M)

2 )n∈N, and ũ(∞)
i is

the limit of (ũ(n)
i )n∈N for i = 1, 2. Now we show that ũ(∞)

2 = u(∞)
2 . By using the

triangle inequality, from (29) it directly follows that

∥
∥
∥u(n+1,M)

2 − ũ(n)
2

∥
∥
∥

2
→ 0, n → ∞. (32)

Moreover, since χ2 ∈ V2 is a fixed vector which is independent of n, we obtain from
Proposition 5.4 (ii) that

∥
∥
∥χ2(u

(n) − u(n+1))

∥
∥
∥

2
→ 0, n → ∞,

and hence

∥
∥
∥ũ(n)

2 − ũ(n+1)
2

∥
∥
∥

2
→ 0, n → ∞. (33)
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Putting (32) and (33) together and noting that

∥
∥
∥u(n+1,M)

2 − ũ(n)
2

∥
∥
∥

2
+
∥
∥
∥ũ(n)

2 − ũ(n+1)
2

∥
∥
∥

2
≥
∥
∥
∥u(n+1,M)

2 − ũ(n+1)
2

∥
∥
∥

2
,

we have
∥
∥
∥u(n+1,M)

2 − ũ(n+1)
2

∥
∥
∥

2
→ 0, n → ∞, (34)

which means that the sequences (u(n,M)
2 )n∈N and (ũ(n)

2 )n∈N have the same limit, i.e.,

ũ(∞)
2 = u(∞)

2 , which we denote by u(∞)
2 . Then from (34) and (31) it directly follows

that ũ(∞)
1 = u(∞)

1 .
As in the proof of the oblique thresholding theorem we set

F1

(
u(n+1,L)

1

)
:=
∥
∥
∥u(n+1,L)

1 − z(n+1,L)
1

∥
∥
∥

2

2
+ 2α

∣
∣
∣
∣∇
(

u(n+1,L)
1 + ũ(n)

2

∣
∣
∣
�1

)∣
∣
∣
∣ (�1),

where

z(n+1,L)
1 := u(n+1,L−1)

1 + T ∗ (g − T ũ(n)
2 − T u(n+1,L−1)

1

) ∣
∣
∣
�1

.

The optimality condition for u(n+1,L)
1 is

0 ∈ ∂V1 F1

(
u(n+1,L)

1

)
+ 2η

(n+1,L)
1 ,

where

η
(n+1,L)
1 = (Tr |�1)

∗ Tr |�1

(
z(n+1,L)

1 + PαK

(
η

(n+1,L)
1 − z(n+1,L)

1 − ũ(n)
2

))
.

In order to use the characterization of elements in the subdifferential of |∇u|(�),
i.e., Proposition 5.2, we have to rewrite the minimization problem for F1. More pre-
cisely, we define

F̂1

(
ξ

(n+1,L)
1

)
:=
∥
∥
∥
∥ξ

(n+1,L)
1 − ũ(n)

2

∣
∣
∣
�1

− z(n+1,L)
1

∥
∥
∥
∥

2

2
+ 2α

∣
∣
∣∇
(
ξ

(n+1,L)
1

)∣
∣
∣ (�1),

for ξ
(n+1,L)
1 ∈ V1 with Tr |�1 ξ

(n+1,L)
1 = ũ(n)

2 . Then the optimality condition for

ξ
(n+1,L)
1 is

0 ∈ ∂ F̂1

(
ξ

(n+1,L)
1

)
+ 2η

(n+1,L)
1 . (35)

Note that indeed ξ
(n+1,L)
1 is optimal if and only if u(n+1,L)

1 = ξ
(n+1,L)
1 − ũ(n)

2

∣
∣
∣
�1

is

optimal.

123



A convergent overlapping domain decomposition method 665

Analogously we define

F̂2

(
ξ

(n+1,M)
2

)
:=
∥
∥
∥
∥ξ

(n+1,M)
2 − u(n+1,L)

1

∣
∣
∣
�2

− z(n+1,M)
2

∥
∥
∥
∥

2

2
+2α

∣
∣
∣∇
(
ξ

(n+1,M)
2

)∣
∣
∣ (�2),

for ξ
(n+1,M)
2 ∈ V2 with Tr |�2 ξ

(n+1,M)
2 = u(n+1,L)

1 , and the optimality condition for

ξ
(n+1,M)
2 is

0 ∈ ∂ F̂2

(
ξ

(n+1,M)
2

)
+ 2η

(n+1,M)
2 , (36)

where

η
(n+1,M)
2 = (Tr |�2)

∗ Tr |�2

(
z(n+1,M)

2 + PαK

(
η

(n+1,M)
2 − z(n+1,M)

2 − u(n+1,L)
1

))
.

Let us recall that now we are considering functionals as in Proposition 5.2 with
ϕ(s) = s, T = I , and � = �i , i = 1, 2. From Proposition 5.2 and Remark 5.3 we get
that ξ (n+1,L)

1 , and consequently u(n+1,L)
1 is optimal, i.e., −2η

(n+1,L)
1 ∈ ∂ F̂1(ξ

(n+1,L)
1 ),

if and only if there exists an M (n+1)
1 = (M (n+1)

0,1 , M̄ (n+1)
1 ) ∈ V1 × V d

1 with

|M̄ (n+1)
1 (x)| ≤ 2α for all x ∈ �1 such that

〈
M̄ (n+1)

1 (x),
(
∇
(

u(n+1,L)
1 + ũ(n)

2

))
(x)
〉

Rd

+2α

∣
∣
∣

(
∇
(

u(n+1,L)
1 + ũ(n)

2

))
(x)

∣
∣
∣ = 0, (37)

−2
(

u(n+1,L)
1 (x) − z(n+1,L)

1 (x)
)

− div M̄ (n+1)
1 (x) − 2η

(n+1,L)
1 (x) = 0, (38)

for all x ∈ �1. Analogously we get that ξ
(n+1,M)
2 , and consequently u(n+1,M)

2 is

optimal, i.e., −2η
(n+1,M)
2 ∈ ∂ F̂2(ξ

(n+1,M)
2 ), if and only if there exists an M (n+1)

2 =
(M (n+1)

0,2 , M̄ (n+1)
2 ) ∈ V2 × V d

2 with |M̄ (n+1)
2 (x)| ≤ 2α for all x ∈ �2 such that

〈
M̄ (n+1)

2 (x),
(
∇
(

u(n+1,L)
1 + u(n+1,M)

2

))
(x)
〉

Rd

+2α

∣
∣
∣

(
∇
(

u(n+1,L)
1 + ũ(n+1,M)

2

))
(x)

∣
∣
∣ = 0, (39)

−2
(

u(n+1,M)
2 (x) − z(n+1,M)

2 (x)
)

− div M̄ (n+1)
2 (x) − 2η

(n+1,M)
2 (x) = 0, (40)

for all x ∈ �2. Since (M̄ (n)
1 (x))n∈N is bounded for all x ∈ �1 and (M̄ (n)

2 (x))n∈N

is bounded for all x ∈ �2, there exist convergent subsequences (M̄ (nk)
1 (x))k∈N and

(M̄ (nk)
2 (x))k∈N. Let us denote M̄ (∞)

1 (x) and M̄ (∞)
2 (x) the respective limits of the

sequences. For simplicity we rename such sequences by (M̄ (n)
1 (x))n∈N and

(M̄ (n)
2 (x))n∈N.
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Note that, by Lemma 5.6 (or simply from (38) and (40)) the sequences (η
(n,L)
1 )n∈N

and (η
(n,M)
2 )n∈N are also bounded. Hence there exist convergent subsequences which

we denote, for simplicity, again by (η
(n,L)
1 )n∈N and (η

(n,M)
2 )n∈N with limits η

(∞)
i , i =

1, 2. By taking the limits for n → ∞ in (37)–(40) we obtain

〈
M̄ (∞)

1 (x),
(
∇
(

u(∞)
1 + u(∞)

2

))
(x)
〉

Rd
+ 2α

∣
∣
∣

(
∇
(

u(∞)
1 + u(∞)

2

))
(x)

∣
∣
∣ = 0,

for all x ∈ �1,

−2
(

u(∞)
1 (x) − z(∞)

1 (x)
)

− div M̄ (∞)
1 (x) − 2η

(∞)
1 (x) = 0, for all x ∈ �1,

〈
M̄ (∞)

2 (x),
(
∇
(

u(∞)
1 + u(∞)

2

))
(x)
〉

Rd
+ 2α

∣
∣
∣

(
∇
(

u(∞)
1 + u(∞)

2

))
(x)

∣
∣
∣ = 0,

for all x ∈ �2,

−2
(

u(∞)
2 (x) − z(∞)

2 (x)
)

− div M̄ (∞)
2 (x) − 2η

(∞)
2 (x) = 0, for all x ∈ �2,

Since supp η
(∞)
1 = �1 and supp η

(∞)
2 = �2 we have

〈
M̄ (∞)

1 (x),∇(u(∞))(x)
〉

Rd
+ 2α|∇u(∞))(x)| = 0, for all x ∈ �1,

− 2T ∗((T u(∞))(x) − g(x)) − div M̄ (∞)
1 (x) = 0, for all x ∈ �1 \ �1,

(41)

〈
M̄ (∞)

2 (x),∇(u(∞))(x)
〉

Rd
+ 2α|∇u(∞))(x)| = 0, for all x ∈ �2,

− 2T ∗((T u(∞))(x) − g(x)) − div M̄ (∞)
2 (x) = 0, for all x ∈ �2 \ �2.

(42)

Observe now that from Proposition 5.2 we also have that 0 ∈ J (u(∞)) if and only
if there exists M (∞) = (M (∞)

0 , M̄ (∞)) with |M̄ (∞)(x)| ≤ 2α for all x ∈ � such that

〈M̄ (∞)(x),∇(u(∞))(x)〉Rd + 2α|∇u(∞))(x)| = 0, for all x ∈ �,

− 2T ∗((T u(∞))(x) − g(x)) − div M̄ (∞)(x) = 0, for all x ∈ �.
(43)

Note that M̄ (∞)
j (x), j = 1, 2, for x ∈ �1 ∩ �2 satisfies both (41) and (42). Hence

let us choose

M (∞)(x) =
{

M (∞)
1 (x) if x ∈ �1 \ �1,

M (∞)
2 (x) if x ∈ (�2 \ �1) ∪ �1

.

With this choice of M (∞) equations (41)–(43) are valid and hence u(∞) is optimal in
�. ��
Remark 5.8 (i) If ∇u(∞)(x) �= 0 for x ∈ � j , j = 1, 2, then M̄ (∞)

j is given as in
equation (22) by

M̄ (∞)
j (x) = −2α

(∇u(∞) |� j

)
(x)

∣
∣
(∇u(∞) |� j

)
(x)
∣
∣
.
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A convergent overlapping domain decomposition method 667

(ii) The boundedness of the sequences (ũ(n)
1 )n∈N and (ũ(n)

2 )n∈N has been technically

used for showing the existence of an optimal decomposition u(∞) = u(∞)
1 +u(∞)

2
in the proof of Theorem 5.7. Their boundedness is guaranteed as in Lemma 5.5
by the use of the partition of the unity {χ1, χ2}. Let us emphasize that there is
no way of obtaining the boundedness of the local sequences (u(n,L)

1 )n∈N and

(u(n,M)
2 )n∈N otherwise. In Fig. 6 we show that the local sequences can become

unbounded in case we do not modify them by means of the partition of the
unity.

(iii) Note that for deriving the optimality condition (43) for u(∞) we combined
the respective conditions (41) and (42) for u(∞)

1 and u(∞)
2 . In doing that, we

strongly took advantage of the overlapping property of the subdomains, hence
avoiding a fine analysis of η

(∞)
1 and η

(∞)
2 on the interfaces �1 and �2. This is

the major advantage of this analysis with respect to the one provided in [26] for
nonoverlapping domain decompositions.

6 A parallel algorithm and its convergence

The parallel version of the previous algorithm (23) reads as follows: Pick an initial
V1 + V2  ũ(0)

1 + ũ(0)
2 := u(0) ∈ H, for example ũ(0)

i = 0, i = 1, 2, and iterate

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

u(n+1,0)
1 = ũ(n)

1

u(n+1,�+1)
1 = arg min u1∈V1

Tr|�1 u1=0
J s

1

(
u1 + ũ(n)

2 , u(n+1,�)
1

)
, � = 0, . . . , L − 1,

⎧
⎨

⎩

u(n+1,0)
2 = ũ(n)

2

u(n+1,m+1)
2 = arg min u2∈V2

Tr|�2 u2=0
J s

2

(
ũ(n)

1 + u2, u(n+1,m)
2

)
, m = 0, . . . , M − 1,

u(n+1) := u(n+1,L)
1 +u(n+1,M)

2 +u(n)

2
ũ(n+1)

1 := χ1 · u(n+1)

ũ(n+1)
2 := χ2 · u(n+1)

(44)

We are going to propose similar convergence results as for the sequential algorithm.

Proposition 6.1 (Convergence properties) Let us assume that ‖T ‖ < 1. The parallel
algorithm (44) produces a sequence (u(n))n∈N in H with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));
(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;

(iii) the sequence (u(n))n∈N has subsequences which converge in H.

Proof With the same argument as in the proof of Theorem 5.4, we obtain

J (u(n)) − J
(

u(n+1,L)
1 + ũ(n)

2

)
≥ C

L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
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and

J (u(n)) − J
(

ũ(n)
1 + u(n+1,M)

2

)
≥ C

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2
.

Hence, by summing and halving

J (u(n)) − 1

2

(
J
(

u(n+1,L)
1 + ũ(n)

2

)
+ J

(
ũ(n)

1 + u(n+1,M)
2

))

≥ C

2

(
L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
+

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2

)

.

We recall that J (u(n)) = ‖T u(n) − g‖2
2 + 2α|∇u(n)|(�) (and T is linear). Then, by

the standard inequality (a2 + b2) ≥ 1
2 (a + b)2 for a, b > 0, we have

∥
∥
∥T u(n+1) − g

∥
∥
∥

2

2
=
∥
∥
∥
∥
∥
∥

T

⎛

⎝

(
u(n+1,L)

1 + u(n+1,M)
2

)
+ u(n)

2

⎞

⎠− g

∥
∥
∥
∥
∥
∥

2

2

≤ 1

2

∥
∥
∥T

(
u(n+1,L)

1 +ũ(n)
2

)
−g

∥
∥
∥

2

2
+ 1

2

∥
∥
∥T

(
ũ(n)

1 +u(n+1,M)
2

)
−g

∥
∥
∥

2

2
.

Moreover we have

|∇(u(n+1))|(�) ≤ 1

2

(∣
∣
∣∇
(

u(n+1,L)
1 + ũ(n)

2

)∣
∣
∣ (�) +

∣
∣
∣∇
(

ũ(n)
1 + u(n+1,M)

2

)∣
∣
∣ (�)

)
.

By the last two inequalities we immediately show that

J (u(n+1)) ≤ 1

2

(
J
(

u(n+1,L)
1 + ũ(n)

2

)
+ J

(
ũ(n)

1 + u(n+1,M)
2

))
,

hence

J (u(n)) − J (u(n+1))

≥ C

2

(
L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
+

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2

)

≥ 0. (45)

Since the sequence (J (u(n)))n∈N is monotonically decreasing and bounded from
below by 0, it is also convergent. From (45) and the latter convergence we deduce

(
L−1∑

�=0

∥
∥
∥u(n+1,�+1)

1 − u(n+1,�)
1

∥
∥
∥

2

2
+

M−1∑

m=0

∥
∥
∥u(n+1,m+1)

2 − u(n+1,m)
2

∥
∥
∥

2

2

)

→ 0,

n → ∞. (46)
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In particular, by again using (a2 + b2) ≥ 1
2 (a + b)2 for a, b > 0 and the triangle

inequality, we also have

‖u(n) − u(n+1)‖2 → 0, n → ∞. (47)

The rest of the proof follows analogous arguments as in that of Proposition 5.4. ��
Analogous results as the one stated in Lemma 5.5 and Lemma 5.6 also hold in the

parallel case. With these preliminary results the following theorem follows:

Theorem 6.2 (Convergence to minimizers) Assume ‖T ‖ < 1. Then accumulation
points of the sequence (u(n))n∈N produced by algorithm (44) are minimizers of J . If
J has a unique minimizer then the sequence (u(n))n∈N converges to it.

Proof Note that u(n+1) is the average of the current iteration and the previous, i.e.,

u(n+1) = u(n+1,L)
1 + u(n+1,M)

2 + u(n)

2
.

Observe that the sequences (u(n+1,L)
1 )n∈N, (u(n+1,M)

2 )n∈N and (u(n))n∈N are bounded.
Hence there exist convergent subsequences. By taking the limit for n → ∞ we obtain

u(∞) = u(∞)
1 + u(∞)

2 + u(∞)

2

which is equivalent to

u(∞) = u(∞)
1 + u(∞)

2 .

With this observation the rest of the proof follows analogous arguments as in that of
Theorem 5.7. ��

7 Applications and numerics for the sequential implementation

In this section we shall present the application of the sequential and parallel algorithms
(23) and (44) for the minimization of J in one and two dimensions. In particular, we
show how to implement the dual method of Chambolle [10] in order to compute the
orthogonal projection PαK (g) in the oblique thresholding, and we give a detailed
explanation of the domain decompositions used in the numerics. Furthermore, we
present numerical examples for image inpainting, i.e., the recovery of missing parts
of images by minimal total variation interpolation, and compressed sensing [6–8,21],
the nonadaptive compressed acquisition of images for a classical toy problem inspired
by magnetic resonance imaging (MRI) [7,29]. The numerical examples of this section
and respective Matlab codes can be found at [41].
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7.1 Computation of PαK (g)

To solve the subiterations in (5) we compute the minimizer by means of oblique
thresholding. More precisely, let us denote u2 = ũ(n)

2 , u1 = u(n+1,�+1)
1 , and z1 =

u(n+1,�)
1 + T ∗(g − T u2 − T u(n+1,�)

1 ). We shall compute the minimizer u1 of the first
subminimization problem by

u1 = (I − PαK )(z1 + u2 − η) − u2 ∈ V1,

for some η ∈ V1 with supp η = �1 which fulfills

Tr |�1 (η) = Tr |�1 (z1 + PαK (η − z1 − u2)) .

Hence the element η ∈ V1 is a limit of the corresponding fixed point iteration

η(0) ∈ V1, supp η(0) = �1,

η(m+1) = (Tr |�1)
∗ Tr |�1

(
z1 + PαK

(
η(m) − z1 − u2

))
, m ≥ 0. (48)

Here K is defined as in Section 2, i.e.,

K =
{

div p : p ∈ Hd , |p(x)|∞ ≤ 1, ∀x ∈ �1

}
.

To compute the projection onto αK in the oblique thresholding we use an algorithm
proposed by Chambolle in [10]. His algorithm is based on considerations of the con-
vex conjugate of the total variation and on exploiting the corresponding optimality
condition. It amounts to compute PαK (g) approximately by α div p(n), where p(n) is
the nth iterate of the following semi-implicit gradient descent algorithm:

Choose τ > 0, let p(0) = 0 and, for any n ≥ 0, iterate

p(n+1)(x) = p(n)(x) + τ(∇(div p(n) − g/α))(x)

1 + τ
∣
∣(∇(div p(n) − g/α))(x)

∣
∣

.

For τ > 0 sufficiently small, i.e., τ < 1/8, the iteration α div p(n) was shown to
converge to PαK (g) as n → ∞ (compare [10, Theorem 3.1]). Let us stress that we
propose this algorithm here, just for the ease of its presentation and its implemen-
tation; its choice for the approximation of projections is of course by no means a
restriction and one may want to implement other recent, and perhaps faster strategies,
e.g., [11,16,27,32,39].

7.2 Domain decompositions

In one dimension the domain � is a set of N equidistant points on an interval [a, b],
i.e., � = {a = x1, . . . , xN = b} and is split into two overlapping intervals �1 and
�2. Let |�1 ∩ �2| =: G be the size of the overlap of �1 and �2. Then we set
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Fig. 1 Overlapping domain
decomposition in 1D

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

chi1
chi2

Fig. 2 Auxiliary functions χ1 and χ2 for an overlapping domain decomposition with two subdomains

�1 = {a = x1, . . . , xn1} and �2 = {xn1−G+1, . . . , xN = b} with |�1| := n1 =
� N+G

2 �. The interfaces �1 and �2 are located at the indexes i = n1 and n1 − G + 1,

respectively (cf. Fig. 1). The auxiliary functions χ1 and χ2 can be chosen in the fol-
lowing way (cf. Fig. 2):

χ1(xi ) =
{

1 xi ∈ �1 \ �2,

1 − 1
G (i − (n1 − G)) xi ∈ �1 ∩ �2

,

χ2(xi ) =
{

1 xi ∈ �2 \ �1,
1
G (i − (n1 − G + 1)) xi ∈ �1 ∩ �2

.

Note that χ1(xi ) + χ2(xi ) = 1 for all xi ∈ � (i.e for all i = 1, . . . , N ).
In two dimensions the domain �, i.e., the set of N1 × N2 equidistant points on

the 2-dimensional rectangle [a, b] × [c, d], is split in an analogous way with respect
to its rows. In particular we have that �1 and �2 consist of equidistant points on
[a, xn1 ]× [c, d] and [xn1−G+1, b]× [c, d], respectively, compare Fig. 3. The splitting
in more than two domains is done similarly:

Set � = �1 ∪ . . . ∪ �N , the domain � decomposed into N domains �i ,
i = 1, . . . ,N , where �i and �i+1 are overlapping for i = 1, . . . ,N − 1. Let
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Fig. 3 Decomposition of the
image into two domains �1 and
�2

|�i ∩ �i+1| =: G for every i = 1, . . . ,N − 1. Set s = �N1/N �. Then

�1 =
{

a = x1, . . . , xs+ G
2

}
× {c = y1, . . . , yN2 = d}

for i = 2 : N − 1

�i =
{

x
(i−1)s− G

2 +1, . . . , xis+ G
2

}
× {c = y1, . . . , yN2 = d}

end

�N = [x
(N−1)s− G

2 +1, xN1 ] × {c = y1, . . . , yN2 = d}.

The auxiliary functions χi can be chosen in an analogous way as in the one dimensional
case:

χi (xi1 , yi2) =

⎧
⎪⎨

⎪⎩

1
G (i1 − ((i − 1)s − G/2 + 1)) (xi1 , yi2) ∈ �i−1 ∩ �i

1 (xi1 , yi2) ∈ �i \ (�i−1 ∪ �i+1)

1 − 1
G (i1 − (is − G/2)) (xi1 , yi2) ∈ �i ∩ �i+1

for i = 1, . . . ,N with �0 = �N+1 = ∅.
To compute the fixed point η of (15) in an efficient way, we make the following

considerations, which allow to restrict the computation from �1 to a relatively small
stripe around the interface. The fixed point η is actually supported on �1 only, i.e.,
η(x) = 0 in �1 \ �1. Hence, we restrict the fixed point iteration for η to a relatively
small stripe �̂1 ⊂ �1. Analogously, one implements the minimization of η2 on �̂2.
A similar trick was also used in [26] to compute suitable Lagrange multipliers at
the interfaces of the nonoverlapping domains. However, there we needed to consider
larger “bilateral stripes” around the support of the multiplier, making the numerical
computation slightly more demanding for that algorithm.
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Fig. 4 We present a numerical experiment related to the interpolation of a 1D signal by total variation
minimization. The original signal is only provided outside of the green subinterval. The initial datum g is
shown in a. As expected, the minimizer u(∞) is the constant vector 1, as shown in b. In c and d we display
the rates of decay of the relative error and of the value of J , respectively, for applications of the algorithm
(23) with different sizes G = 1, 5, 10, 20, 30 of the overlapping region of two subintervals

7.3 Numerical experiments

7.3.1 Sequential implementation

In the following we present numerical examples for the sequential algorithm (23)
in two particular applications: signal interpolation/image inpainting, and compressed
sensing. The scope of the section is to illustrate by simple examples the main properties
of the algorithms, as proven in our theoretical analysis. In particular, we emphasize
the monotonicity properties of the algorithms with respect to the energy J , the bound-
edness of the iterations due to the implementation of BUPUs, and the robustness in
correctly computing minimizers independently of the size of overlapping regions.

In the numerical experiments the value for the parameter α has been chosen exper-
imentally, i.e., we chose the value which gave the best compromise between visual
quality of the minimizer and computational time of the algorithm. Note however, that
there exist more systematic ways to choose an optimal value for α, where the choice
depends both on the data noise level and the exact solution of the problem, cf., e.g.,
[23] for a general approach in regularized inverse problems, or [12] for a discussion
of the correspondence between the noise level and α in the case of total variation
minimization.

In Figs. 4 and 5 we show a partially corrupted 1D signal on an interval � of 100
sampling points, with a loss of information on an interval D ⊂ �. The domain D of
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Fig. 5 We show a second example of total variation interpolation in 1D. The initial datum g is shown in a.
As expected, a minimizer u(∞) is (nearly) a piecewise linear function, as shown in b. In c and d we display
the rates of decay of the relative error and of the value of J respectively, for applications of the algorithm
(23) with different sizes G = 1, 5, 10, 20, 30 of the overlapping region of two subintervals

the missing signal points is marked in green. These signal points are reconstructed
by total variation interpolation, i.e., minimizing the functional J in (3) with α = 0.4
and T u = 1�\D · u, where 1�\D is the indicator function of � \ D. A minimizer
u(∞) of J is precomputed with an algorithm working on the whole interval � without
any decomposition. We show also the decay of relative error and of the value of the
energy J for applications of algorithm (23) on two subdomains and with different
overlap sizes G = 1, 5, 10, 20, 30. The fixed points η are computed on a small interval
�̂i , i = 1, 2, of size 2. These results confirm the behavior of the algorithm (23) as
predicted by the theory; the algorithm monotonically decreases J and computes a
minimizer, independently of the size of the overlapping region. A larger overlapping
region does not necessarily imply a slower convergence. In these figures we compare
the speed in terms of CPU time. In Fig. 6 we also illustrate the effect of implementing
the BUPU within the domain decomposition algorithm. In this case, with datum g as
in Fig. 5, we chose α = 1 and an overlap of size G = 10. The fixed points η are
computed on a small interval �̂i , i = 1, 2, respectively, of size 6.

Figure 7 shows an example of the domain decomposition algorithm (23) for total
variation inpainting. As for the 1D example in Figs. 4, 5, and 6, the operator T is a mul-
tiplier, i.e., T u = 1�\D ·u, where � denotes the rectangular image domain and D ⊂ �

the missing domain in which the original image content got lost. The regularization
parameter α is fixed at the value 10−2. In Fig. 7 the missing domain D is the black writ-
ing which covers parts of the image. Here, the image domain of size 449 × 570 pixels
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Fig. 6 Here we present two numerical experiments related to the interpolation of a 1D signal by total
variation minimization. The original signal is only provided outside of the green subinterval. On the left
we show an application of algorithm (23) when no correction with the partition of unity is provided. In this

case, the sequence of the local iterations u(n)
1 , u(n)

2 is unbounded. On the right we show an application of
algorithm (23) with the use of the partition of unity which enforces the uniform boundedness of the local

iterations u(n)
1 , u(n)

2

Fig. 7 This figure shows an application of algorithm (23) for image inpainting. In this simulation the
problem was split into five subproblems on overlapping subdomains

is split into five overlapping subdomains with an overlap size G = 28 × 570. Further,
the fixed points η are computed on a small stripe �̂i , i = 1, . . . , 5, respectively, of
size 6 × 570 pixels.

Finally, in Fig. 8 we illustrate the successful application of our domain decom-
position algorithm (23) for a compressed sensing problem. Here, we consider a
medical-type image (the so-called Logan–Shepp phantom) and its reconstruction from
only partial Fourier data. In this case the linear operator T = S ◦ F , where F denotes
the 2D Fourier matrix and S is a downsampling operator which selects only a few
frequencies as output. We minimize J with α set at 0.4 × 10−2. In the application of
algorithm (23), the image domain of size 256×256 pixels is split into four overlapping
subdomains with an overlap size G = 20 × 256. The fixed points η’s are computed in
a small stripe �̂i , i = 1, . . . , 4, respectively, of size 6 × 256 pixels.
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Fig. 8 We show an application of algorithm (23) in a classical compressed sensing problem for recovering
piecewise constant medical-type images from given partial Fourier data. In this simulation the problem was
split via decomposition into four overlapping subdomains. On the top-left figure, we show the sampling
data of the image in the Fourier domain. On the top-right the back-projection provided by the sampled fre-
quency data together with the highlighted partition of the physical domain into four subdomains is shown.
The bottom figures present intermediate iterations of the algorithm, i.e., u(26) and u(125)

Remark 7.1 The optimization of the different parameters of the algorithm, namely, the
number of subdomains, the extent of the overlapping regions, the number of internal
iterations, and the relationship with the rate of convergence are a very challenging
problem, and a matter of current investigation.

7.3.2 Parallel implementation

In this section we show that already with relatively large images, classical methods
do not scale well and may converge slowly, whereas the parallel implementation of
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Fig. 9 Image size 5616 × 3744

Fig. 10 The computed approximate minimizers for the regularization parameter α = 0.1, 100 outer itera-
tions and 3 inner iterations, for 4 domains (left picture) and 16 domains (right picture)

the algorithm on a multiple processor computer allows for significant reductions of
the CPU time, which improves with the number of subdomains. For a fair comparison
we utilize Chambolle’s algorithm both for the solution on the whole domain and on
subdomains. We expect that the use of other algorithms [11,16,27,32,39] may change
quantitatively the results but not qualitatively. Of course, considering problems of even
larger size, for example in higher dimension, can only further promote and favour the
use of parallel strategies.

In Fig. 9 we depict an image of size 5616 × 3744, which has been vandalized by
superimposing a text. In Fig. 10 we show the results due to the application of the
parallel algorithm (44) for performing an inpainting procedure, acting on 4 and 16
subdomains.

We do not dispose of a minimizer in this case (except for considering as an approx-
imate minimizer one of the iterations u(n) for n very large) and the value of J is not a
good indicator of the quality of image restoration. Being the scope of the minimization
the approximate recovery of the original image, which we may denote Org, we use
as a stopping criterion ‖u(n) − Org ‖2

2 < ε, for a prescribed tolerance ε. While the
algorithm applied on the whole domain does not reach the prescribed accuracy after
more than 6 h of running time, the computation with multiple subdomains can reach
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Table 1 Regularization parameter α = 0.1, 3 inner iterations on the subdomains

1 domain 4 domains 16 domains

CPU time 23086.68 s 6531.94 s 1583.52 s

No. outer iterations 1,000 10 10

The stopping criterion for all three algorithms is when the squared L2-norm of the difference between the
current minimizer and the original image ‖u(n) − Org ‖2

2 gets below ε = 0.0048

the result in less than half an hour. We also emphasize that in these experiments the
computational time decreases linearly with the number of subdomains, showing that
the computation of the Lagrange multipliers, used in our algorithm in order to correctly
interface the patches, has a nearly negligible cost with respect to the minimizations
on the subdomains, see Table 1.
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Appendix A: Proof of Proposition 5.2

It is clear that ζ ∈ ∂Jϕ(u) if and only if u = arg minv∈H{Jϕ(v) − 〈ζ, v〉H}. Let us
consider the following variational problem:

inf
v∈H

{Jϕ(v) − 〈ζ, v〉H} = inf
v∈H

{
‖T v − g‖2

2 + 2αϕ(|∇v|)(�) − 〈ζ, v〉H
}

(P)

We denote such an infimum by inf(P). Now we compute (P∗) the dual of (P). Let
F : H → R,G : H × Hd → R,G1 : H → R,G2 : Hd → R, such that

F(v) = −〈ζ, v〉H,

G1(w0) = ‖w0 − g‖2
2,

G2(w̄) = 2αϕ(|w̄|)(�),

G(w) = G1(w0) + G2(w̄),

with w = (w0, w̄) ∈ H × Hd . Then the dual problem of (P) is given by (cf. [22, p
60])

sup
p∗∈H×Hd

{−F∗(�∗ p∗) − G∗(−p∗)}, (P∗)
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where � : H → H × Hd is defined by

�v = (T v, (∇v)1, . . . , (∇v)d),

and �∗ is its adjoint. We denote the supremum in (P∗) by sup(P∗). Using the definition
of the conjugate function we compute F∗ and G∗. In particular

F∗(�∗ p∗) = sup
v∈H

{〈�∗ p∗, v〉H − F(v)
} = sup

v∈H
〈�∗ p∗ + ζ, v〉H

=
{

0 �∗ p∗ + ζ = 0

∞ otherwise
,

where p∗ = (p∗
0, p̄∗) and

G∗(p∗) = sup
w∈H×Hd

{〈p∗, w〉H×Hd − G(w)
}

= sup
w=(w0,w̄)∈H×Hd

{〈p∗
0, w0〉H + 〈 p̄∗, w̄〉Hd − G1(w0) − G2(w̄)

}

= sup
w0∈H

{〈p∗
0, w0〉H − G1(w0)

}+ sup
w̄∈Hd

{〈 p̄∗, w̄〉Hd − G2(w̄)
}

= G∗
1

(
p∗

0

)+ G∗
2 ( p̄∗).

We have that

G∗
1 (p∗

0) =
〈

p∗
0

4
+ g, p∗

0

〉

H
,

and (see [22])

G∗
2 ( p̄∗) = 2αϕ∗

1

( | p̄∗|
2α

)

(�),

if | p̄∗(x)|
2α

∈ Dom ϕ∗
1 , where ϕ∗

1 is the conjugate function of ϕ1 defined by

ϕ1(s) := ϕ(|s|) s ∈ R.

For simplicity we include in Appendix B the explicit computation of these conjugate
functions. So we can write (P∗) in the following way

sup
p∗∈K

{

−
〈−p∗

0

4
+ g,−p∗

0

〉

H
− 2αϕ∗

1

( | p̄∗|
2α

)

(�)

}

, (49)

where

K =
{

p∗ ∈ H × Hd : | p̄∗(x)|
2α

∈ Dom ϕ∗
1 for all x ∈ �,�∗ p∗ + ζ = 0

}

.
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The function ϕ1 also fulfills assumption (Aϕ)(ii) (i.e., there exists c1 > 0, b ≥ 0 such
that c1z − b ≤ ϕ1(z) ≤ c1z + b, for all z ∈ R

+). The conjugate function of ϕ1 is
given by ϕ∗

1 (s) = supz∈R{〈s, z〉 − ϕ1(z)}. Using the previous inequalities and that ϕ1
is even (i.e., ϕ1(z) = ϕ1(−z) for all z ∈ R) we have

(sup
z∈R

{〈s, z〉 − c1|z| + b} ≥) sup
z∈R

{〈s, z〉 − ϕ1(z)} ≥ sup
z∈R

{〈s, z〉 − c1|z| − b}

=
{

−b if |s| ≤ c1

∞ else
. (50)

In particular, one can see that s ∈ Dom ϕ∗
1 if and only if |s| ≤ c1.

From �∗ p∗ + ζ = 0 we obtain

〈�∗ p∗, ω〉H + 〈ζ, ω〉H = 〈p∗,�ω〉Hd+1 + 〈ζ, ω〉H
= 〈p∗

0, T ω〉H + 〈 p̄∗,∇ω〉Hd + 〈ζ, ω〉H = 0 for all ω ∈ H.

Then, since 〈 p̄∗,∇ω〉Hd = 〈− div p̄∗, ω〉H (see Sect. 2), we have

T ∗ p∗
0 − div p̄∗ + ζ = 0.

Hence we can write K in the following way

K=
{

p∗ =(p∗
0, p̄∗)∈H×Hd : | p̄∗(x)|

2α
≤c1 for all x ∈�, T ∗ p∗

0 −div p̄∗+ζ =0

}

.

We now apply the duality results from [22, Theorem III.4.1], since the functional in
(P) is convex, continuous with respect to �v in H × Hd , and inf(P) is finite. Then
inf(P)= sup(P∗)∈ R and (P∗) has a solution M = (M0, M̄) ∈ K.

Let us assume that u is a solution of (P) and M is a solution of (P∗). From
inf(P)= sup(P∗) we get

‖T u − g‖2
2 + 2αϕ(|∇u|)(�) − 〈ζ, u〉H = −

〈−M0

4
+ g,−M0

〉

H

−2αϕ∗
1

( |M̄|
2α

)

(�), (51)

where M = (M0, M̄) ∈ H × Hd , |M̄(x)|
2α

≤ c1 and T ∗M0 − div M̄ + ζ = 0, which
verifies the direct implication of (20). In particular

−〈ζ, u〉H = 〈
T ∗M0, u

〉

H − 〈div M̄, u〉H = 〈M0, T u〉H + 〈M̄,∇u〉Hd ,
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and

‖T u − g‖2
2 + 〈M0, T u〉H + 〈M̄,∇u〉Hd + 2αϕ(|∇u|)(�) +

〈−M0

4
+ g,−M0

〉

H

+2αϕ∗
1

( |M̄|
2α

)

(�) = 0. (52)

Let us write (52) again in the following form

∑

x∈�

|(T u − g)(x)|2 +
∑

x∈�

M0(x)(T u)(x) +
∑

x∈�

d∑

j=1

M̄ j (x)(∇u) j (x)

+
∑

x∈�

2αϕ(|(∇u)(x)|)

+
∑

x∈�

(−M0(x)

4
+ g(x)

)

(−M0(x)) +
∑

x∈�

2αϕ∗
1

( |M̄(x)|
2α

)

= 0. (53)

Now we have

1. 2αϕ(|(∇u)(x)|) +∑d
j=1 M̄ j (x)(∇u) j (x) + 2αϕ∗

1 (
|M̄(x)|

2α
) ≥ 2αϕ(|(∇u)(x)|) −

∑d
j=1 |M̄ j (x)||(∇u) j (x)| + 2αϕ∗

1 (
|M̄(x)|

2α
) ≥ 0 by the definition of ϕ∗

1 , since

2αϕ∗
1 (

|M̄(x)|
2α

) = supS=(S1,...,Sd )∈Rd {
d∑

j=1
|M̄ j (x)||S j | − 2αϕ(|S|)}.

2. |(T u − g)(x)|2 + M0(x)(T u)(x) + ((
−M0(x)

4 + g(x))(−M0(x))) = ((T u)(x) −
g(x))2 + M0(x)((T u)(x)− g(x))+ (

M0(x)
2 )2 = ((T u)(x)− g(x)+ M0(x)

2 )2 ≥ 0.

Hence condition (52) reduces to

2αϕ(|(∇u)(x)|) +
d∑

j=1

M̄ j (x)(∇u) j (x) + 2αϕ∗
1

( |M̄(x)|
2α

)

= 0 for all x ∈ �,

(54)−M0(x) = 2((T u)(x) − g(x)) for all x ∈ �. (55)

Conversely, if such an M = (M0, M̄) ∈ H × Hd with |M̄(x)|
2α

≤ c1 exists, which
fulfills conditions (19)–(21), it is clear from previous considerations that Eq. (51)
holds. Let us denote the functional on the left side of (51) by

P(u) := ‖T u − g‖2
2 + 2αϕ(|∇u|)(�) − 〈ζ, u〉H,

and the functional on the right side of (51) by

P∗(M) := −
〈−M0

4
+ g,−M0

〉

H
− 2αϕ∗

1

( |M̄|
2α

)

(�).
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We know that the functional P is the functional of (P) and P∗ is the functional of
(P∗). Hence inf P = inf(P) and sup P∗ = sup(P∗). Since P is convex, continuous
with respect to �u in H × Hd , and inf(P) is finite we know from duality results [22,
Theorem III.4.1] that inf(P)= sup(P∗)∈ R. We assume that M is no solution of (P∗),
i.e., P∗(M) < sup(P∗), and u is no solution of (P), i.e, P(u) > inf(P). Then we
have that

P(u) > inf (P) = sup (P∗) > P∗(M).

Thus (51) is valid if and only if M is a solution of (P∗) and u is a solution of (P)
which amounts to saying that ζ ∈ ∂Jϕ(u).

If additionally ϕ is differentiable and |(∇u)(x)| �= 0 for x ∈ �, we show that we
can compute M̄(x) explicitly. From Eq. (19) (respectively, (54)) we have

2αϕ∗
1

( | − M̄(x)|
2α

)

= −〈M̄(x), (∇u)(x)〉Rd − 2αϕ(|(∇u)(x)|). (56)

From the definition of conjugate function we have

2αϕ∗
1

( | − M̄(x)|
2α

)

= 2α sup
t∈R

{〈 | − M̄(x)|
2α

, t

〉

− ϕ1(t)

}

= 2α sup
t≥0

{〈 | − M̄(x)|
2α

, t

〉

− ϕ1(t)

}

= 2α sup
t≥0

sup
S∈Rd

|S|=t

{〈−M̄(x)

2α
, S

〉

Rd
− ϕ1(|S|)

}

= sup
S∈Rd

{〈−M̄(x), S〉Rd − 2αϕ(|S|)} . (57)

Now, if |(∇u)(x)| �= 0 for x ∈ �, then it follows from (56) that the supremum is taken
on in S = |(∇u)(x)| and we have

∇S(−〈M̄(x), S〉Rd − 2αϕ(|S|)) = 0,

which implies

M̄ j (x) = −2α
ϕ′(|(∇u)(x)|)

|(∇u)(x)| (∇u) j (x) j = 1, . . . , d,

and verifies (22). This finishes the proof.
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Appendix B: Computation of conjugate functions

Let us compute the conjugate function of the convex function G1(w0) = ‖w0 − g‖2
2.

From Definition 5.1 we have

G∗
1

(
p∗

0

) = sup
w0∈H

{〈
w0, p∗

0

〉

H − G1(w0)
} = sup

w0∈H
{〈w0, p∗

0〉H − 〈w0 − g, w0 − g〉H}.

We set H(w0) := 〈w0, p∗
0〉H − 〈w0 − g, w0 − g〉H. To get the maximum of H we

compute the Gâteaux-differential at w0 of H ,

H ′(w0) = p∗
0 − 2(w0 − g),

and we solve H ′(w0) = 0, since H ′′(w0) < 0, and get w0 = p0
2 + g, being the

maximizer of H . Thus we have that

sup
w0∈H

H(w0) =
〈

p∗
0

4
+ g, p∗

0

〉

H
= G∗

1 (p∗
0).

Now we are going to compute the conjugate function of G2(w̄) = 2αϕ(|w̄|)(�). Asso-

ciated to our notations we define the space H+
0 = R

+
0

N1×···×Nd . From Definition 5.1
we have

G∗
2 ( p̄∗) = sup

w̄∈Hd
{〈w̄, p̄∗〉Hd − 2αϕ(|w̄|)(�)}

= sup
t∈H+

0

sup
w̄∈Hd

|w̄(x)|=t (x)

{〈w̄, p̄∗〉Hd − 2αϕ(|w̄|)(�)}

= sup
t∈H+

0

{〈t, | p̄∗|〉H − 2αϕ(t)(�)}.

If ϕ were an even function then

sup
t∈H+

0

{〈t, | p̄∗|〉H − 2αϕ(t)(�)} = sup
t∈H

{〈t, | p̄∗|〉H − 2αϕ(t)(�)}

= 2α sup
t∈H

{〈

t,
| p̄∗|
2α

〉

H
− ϕ(t)(�)

}

= 2αϕ∗
( | p̄∗|

2α

)

(�),

where ϕ∗ is the conjugate function of ϕ.
Unfortunately ϕ is not even in general. To overcome this difficulty we have to

choose a function which is equal to ϕ(s) for s ≥ 0 and does not change the supremum
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for s < 0. For instance, one can choose ϕ1(s) = ϕ(|s|) for s ∈ R. Then we have

sup
t∈H+

0

{〈t, | p̄∗|〉H − 2αϕ(t)(�)} = sup
t∈H

{〈t, | p̄∗|〉H − 2αϕ1(t)(�)}

= 2α sup
t∈H

{〈

t,
| p̄∗|
2α

〉

H
− ϕ1(t)(�)

}

= 2αϕ∗
1

( | p̄∗|
2α

)

(�),

where ϕ∗
1 is the conjugate function of ϕ1. Note that one can also choose ϕ1(s) = ϕ(s)

for s ≥ 0 and ϕ1(s) = ∞ for s < 0.
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