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Abstract The structure of close communication, contacts

and association in social networks is studied in the form of

maximal subgraphs of diameter 2 (2-clubs), corresponding

to three types of close communities: hamlets, social circles

and coteries. The concept of borough of a graph is defined

and introduced. Each borough is a chained union of 2-clubs

of the network and any 2-club of the network belongs to

one borough. Thus the set of boroughs of a network,

together with the 2-clubs held by them, are shown to

contain the structure of close communication in a network.

Applications are given with examples from real world

network data.

Keywords Social networks � Close communication � Close
communities � Boroughs � 2-clubs � Diameter 2 � Ego-
networks

1 Introduction

The last decade has produced an increasing volume of

methods and algorithms to analyze community structure in

social and other networks, as witnessed by an abundance of

recent reviews, e.g. Girvan and Newman (2002), Newman

(2004), Balasundaram et al. (2005), Palla et al. (2005),

Reichhardt and Bornholdt (2006), Blondel et al. (2008),

Leskovec et al. (2008), Porter et al. (2009), Fortunato

(2010) and Xie et al. (2013).

In this paper, we study the structure of close commu-

nication, contacts and association in networks, as repre-

sented by simple graphs. Close communication is defined

here as contact between nodes at distances of at most 2,

that is by direct contact or by at least one common

neighboring node. Such communication is associated with

closely knit groups like cliques, coteries, peer groups,

primary groups and face-to-face communities, such as

small villages and artist colonies. Considered as dense

social networks they can form powerful sources of social

capital and support for their members and serve both quick

internal diffusion of social innovation as well as speedy

epidemiological contamination from outside sources.

The parts of a network where close communication can

take place are marked by overlapping subsets of nodes,

which all are neighbors of each other or have a common

neighbor in the same subset. These correspond to graphs

with a diameter of at most two.

In the following sections, we shall characterize this

structure and indicate ways to detect these in social

networks.

Mokken (1979, 2008) introduced the concept of k-clubs

of a graph as maximal induced subgraphs of diameter at

most k of a simple connected graph G: ’maximal’ in the

sense that there is no larger induced subgraph of diameter
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k which includes them. He also showed that close com-

munity networks, in the form of simple graphs of diameter

at most two (2-clubs), come in three distinct types: coter-

ies, social circles and hamlets, respectively (Mokken

1980–2011).

Accordingly, the 2-clubs of a simple graph or network

G cover the areas of close communication in that network

consisting of non-inclusive, possibly mutually overlapping

coteries, social circles and hamlets.

In the following sections this system of close com-

munication is studied further and we show that it con-

sists of a set of disjoint containers of nonseparable 2-

clubs, i.e. subgraphs that we call boroughs, each of

which is formed by a set of edge-chained 2-clubs

(hamlets, social circles and coteries) of the network

G. Each (nonseparable) 2-club of G is included in

exactly one borough of G and each borough consists of a

nonseparable union of overlapping 2-clubs of G. Conse-

quently this system of close communication of a network

can be analyzed by studying its boroughs and the 2-clubs

within each or selected boroughs. The final sections

show applications with some real networks and conclude

with a discussion.

2 Concepts and notation

As the representation and analysis of networks will be in

terms of simple graphs, we will summarize the necessary

concepts and notation here (for standard graph-theoretic

background see, e.g. Harary 1969, 1994; Wasserman and

Faust 1994; Diestel 2005).

A social network will be represented by a simple graph,

i.e. an undirected graph G ¼ G V ; Lð Þ, without loops or

multiple edges, where V ¼ V Gð Þ is its set of nodes and

L ¼ L Gð Þ is its set of edges u; vð Þ; u; v 2 V Gð Þ; joining

nodes u and v in G. Two nodes u and v are adjacent if the

edge u; vð Þ 2 L Gð Þ; notation uv. An edge u; vð Þ is incident

with its endnodes u and v. Let Vj j denote the size of G, i.e.

the number of its nodes and Lj j its number of edges. Unless

specified otherwise we shall assume Vj j ¼ n and Lj j ¼ m.

A subgraph H ¼ GðV 0; L0Þ of a graph G is a graph such

that all its nodes and its edges are in G:

V 0 � V Gð Þ and L0 � L Gð Þ:

If H is a subgraph of G then G is called the supergraph of

H.

If a subgraph G(V’) of G, with V 0 � V , has all edges

(u, v) with (u, v) � L , then G(V’) is an induced subgraph

of G. Unless stated otherwise, we shall use the term

subgraph to denote an induced subgraph and consider

only subgraphs G(V’) with at least three nodes and three

edges.

A path Pl is a sequence of distinct adjacent nodes of G,

u; x1; . . .; xl�1; vf g, and consecutive incident edges

ðu; x1Þ; . . .; ðxl�1; vÞf g joining two nodes u and v in G.

Its length is the number l of its edges. A chordless path

Pl is a path such that no two non-successive nodes

( i � jj j 6¼ 1) are adjacent. Two nodes are connected in G if

there is a path joining them. The distance dG u; vð Þ ¼
d u; vð Þ between two nodes u and v of G is the length of a

shortest path joining u and v in G . If the nodes are not

connected then d u; vð Þ is defined as 1.

The diameter dm Gð Þ of G is the largest distance between

nodes in G.

A k-club in G is an induced subgraph of G of diameter at

most k (Mokken 1979, 2008). It is a maximal k-club of G if

there is no larger k-club in G which includes it. A maximum

k-club is one with the largest size in G.

Unless stated otherwise in this paper, k-club, respec-

tively, 2-club, of G will denote a maximal k-club, or 2-club,

because k-clubs in G, which are included in larger k-clubs,

are not of primary interest here. We shall refer to graphs of

diameter at most 2 as 2-clubs.

A cycle of G is a closed path in G where each node is

both a starting and an endnode in that path and no node

occurs more than once. Its length lð Þ is the number of edges

(or nodes) of it. The smallest cycle C3ð Þ, a triangle, has

length three. A graph with cycles is cyclic. A cycle which is

an induced subgraph of G is called a chordless cycle or (for

l[ 3) a hole of G (Nikolopoulos and Palios 2007).

Unless stated otherwise ’cycle’ will denote a C3 or a

hole of G .

Any edge u; vð Þ of a cyclic graph can be a part of

multiple cycles, to be denoted as its cycles. Its removal

from G can increase some distances between nodes in G .

For instance, the distance d(u, v) then increases from 1 to

l � 1 if the length of its shortest cycle is a Cl.
1

The degree dGðuÞ ¼ d uð Þ of a node u is the number of

edges incident with u, which in a simple graph is equal to

its number of neighbors. An isolated node has degree 0. A

pendant is a node with a single neighbor and has degree 1.

The average degree of a graph is �dG ¼ 2m
n
.

For a connected graph G the degree dG uð Þ of a node u

takes values in the interval

1� d� dGðuÞ�D� jV Gð Þj � 1 ¼ n � 1:

where d and D are the minimum and maximum degrees of

G.

A component of a graph is a maximal connected sub-

graph. A cutpoint is a node, the removal of which increases

the number of components, and a bridge is an edge with the

same property. A graph with cutpoints is called separable.

Connected graphs without cutpoints are called

1 For related points see Granovetter (1973) and Everett (1982).

20 Page 2 of 16 Soc. Netw. Anal. Min. (2016) 6:20

123



nonseparable (n-s) or, alternatively, 2-connected or bi-

connected, and have minimum degree d � 2: Hence it has

no pendants. A bicomponent of a graph is a maximal

biconnected subgraph and is part of a component of that

graph. Such a (sub)graph is also called a block. Unless

specified otherwise we shall assume the simple graph and

network to be connected, thus consisting of a single

component.

A connected graph with no cycles (acyclic) is called a

tree. Each connected graph has at least one spanning tree,

i.e. an acyclic subgraph on all nodes of the graph.

A shortest spanning tree (s.s.t.) of G is a spanning tree

with the smallest diameter.

In a complete graph Kl all l nodes are mutually adjacent

and its diameter is dm Klð Þ ¼ 1. A clique of a graph G is an

induced subgraph of G which is a complete graph. It is a

maximal clique of G if there is no larger clique in G con-

taining it. A maximum clique of G is one with the largest

size.

For a node u 2 V Gð Þ we distinguish:

• the k-neighbors of u: VkðuÞ is the set of all nodes v 2
VðGÞ with dðu; vÞ ¼ k; k ¼ 1; :::; dmðGÞ. Note that

u 62 VkðuÞ.
• the k-neighborhood of u: NkðuÞ ¼

Sk
i¼1 ViðuÞ, the set of

all nodes v 2 VðGÞ with dðu; vÞ ¼ 1; 2; :::; k � dm(G).

Note that u 62 NkðuÞ. The closed k-neighborhood of u is

defined as �NkðuÞ ¼ NkðuÞ [ uf g.

The k-degree d
kð Þ

G uð Þ ¼ dk uð Þ ¼ NkðuÞj j is the size of the k-

neighborhood of u. We shall in particular consider the 2-

neighborhoods of nodes u of G: N2ðuÞ and �N2ðuÞ. The 2-

degree of nodes u of G, ðd2 uð Þ : u 2 VÞ are bounded by

minimum and maximum 2-degrees given by d2 Gð Þ ¼ d2
and D2 Gð Þ ¼ D2 in the interval

2� d2 �D2 � jV Gð Þj � 1 ¼ n � 1

The k-ego-network of u in G is the subgraph Gð �NkðuÞÞ
induced by the nodes of its closed k-neighborhood, to be

denoted as EG
k ðuÞ (or EkðuÞ if the context is clear). Note that

u thus is part of its ego-network and is its central ego. We

shall in particular consider the ego-networks EðuÞ ¼ E1ðuÞ
and E2ðuÞ of nodes, with sizes �N1ðuÞj j and �N2ðuÞj j.

Twinned ego-networks can occur when the ego-net-

works of two or more nodes u0; u1; . . .; un coincide:

Eðu0Þ ¼ Eðu1Þ ¼ � � � ¼ EðunÞ

thus forming a single ego-network with multiple egos

u0; u1; . . .; un. Its ego nodes are called twinned nodes or just

twins. The set of central egos u0; u1; . . .; unf g of a twinned

ego-network forms a clique and is called its center. Each

center can be represented by one of its ego-nodes, e.g. u0.

We can accordingly define a reduced node set V cð Þ Gð Þ as

the set of ego-nodes of G, including just a single ego node

u0 from each twinned ego-network.

Observe that if Eðu0Þ ¼ Eðu1Þ ¼ � � � ¼ EðunÞ then

Ekðu0Þ ¼ Ekðu1Þ ¼ � � � ¼ EðunÞ for k� 2, so that for twin-

ned ego nodes all their k-ego-networks are twinned ego-

networks.

Moreover, as nodes can belong to various (sub)graphs, it

should be stressed that the relevant ego-network EH
k ðuÞ of a

node u; u 2 VðHÞ � VðGÞ; is determined by the particular

(sub)graphs H of G for which they are induced.

In this paper close communities, such as acquaintance

networks, are studied in the form of simple (sub)graphs of

diameter at most 2.2 In a close community of that type the

closed 2-neighborhood of each of its members covers its

complete population: the 2-ego-network (E2ðuÞ) of each

node u coincides with the network of that community.

3 Close communities as 2-clubs of a network

Close communities are closely-knit in the sense that every

pair of its members are neighbors or has at least one

common neighbor, where the neighboring relationship

represents a durable or stable acquaintance, contact or

association relation. They are modeled by 2-clubs: graphs

of diameter at most 2. Mokken (1980–2011) characterized

such graphs in terms of the diameter 2 , 3 , or 4 of a shortest

spanning tree (s.s.t.), i.e. a spanning tree with smallest

possible diameter (assuming jVðGÞj � 3), as a measure of

their compactness.

3.1 Close communities: hamlets, social circles,

coteries

2-Clubs can only have s.s.t.’s with diameter 2, 3, or 4

corresponding to the following three types:

1. Coteries A coterie is a 2-club with a shortest spanning

tree of diameter 2, corresponding to a spanning star,

formed by one central node u0, which is adjacent to all

other nodes. Hence a coterie is the ego-network E u0ð Þ
of its central ego u0. When a coterie has several s.s.t’s,

each with central nodes u0; u1; :::; it is a twinned ego-

network with twinned ego nodes u0; u1; :::, with the

extreme case of a clique (diameter 1) were each node is

the center of a spanning star. Thus a clique is a special

case of a coterie. The smallest separable coterie is a

2 The theorems and corollaries in this paper can be extended and

proven for the general case of diameter k, e.g. k-clubs, k-clubs, k-

boroughs, etc. Given the focus of this paper on diameter 2, and to

simplify presentation and analysis accordingly, we shall formulate our

results mainly for this special case.
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tree of three points. The smallest nonseparable coterie

is C3, a triangle (diameter 1).

2. Social circles A social circle is a 2-club with an s.s.t.

of diameter 3. Because every spanning tree with odd

diameter has a center consisting of two adjacent nodes

(Harary 1969, 1994), a social circle has at least one

central pair of neighbours (adjacent nodes) u0v0,

which together are adjacent to all the other nodes (a

coupled star; See Fig. 4 in Mokken 1980–2011).

Hence a social circle is a 2-club, such that there is at

least one (central) edge u; vð Þ with V1ðuÞ [ V1ðvÞ ¼
VðGÞ. The smallest social circle is C4, a rectangle

(diameter 2).

3. Hamlets A hamlet is a 2-club with an s.s.t. of diameter

4. Such an s.s.t. (a double, 2-step, star; Fig. 5 in

Mokken 1980–2011), can be obtained in two steps

from any node of the graph as its center. Hence a

hamlet has no central node or a spanning star, nor a

central adjacent pair of nodes on a coupled star. Each

node can be used as the starting node and center of an

s.s.t. The smallest hamlet is C5, a pentagon (diameter

2).

We summarize the above observations in the following

theorem.

Theorem 1 Three types of 2-clubs.

(i) A 2-club is either a coterie, a social circle or a

hamlet.

(ii) Social circles and hamlets are nonseparable.

(iii) Coteries can be separable or nonseparable.

Examples of these types are given in Fig. 1. If a 2-club is

separable, then it must have a single spanning star and a

corresponding single central node, which is its cutpoint

(Mokken 1980–2011, p. 6). Hence it is a separable ego-

network and coterie. Thus only coteries can be separable,

and then have a single central node, which is its cutpoint

(see Fig. 1d), while twinned coteries ares always nonsep-

arable (cf. Fig. 1c)

The smallest nonseparable examples of each type are the

cycles C3 (coterie), C4 (social circle), C5 (hamlet).3

The next theorem shows how the types of nonseparable

2-clubs are formed by these cycles.

Theorem 2 Let G be a nonseparable 2-club, then for

each edge of G its shortest cycle is C3, C4, or C5, and

(i) if G is a coterie: for each edge this is a triangle C3;

(ii) if G is a social circle: for each edge this is a

triangle C3 or a rectangle C4;

(iii) if G is a hamlet: for each edge this is a triangle C3,

a rectangle C4, or a pentagon C5.

Proof No edge of G can be on a shortest cycle Ck for

k [ 5 because then its diameter would be larger than 2.

(i) coterie: G has a shortest spanning tree (s.s.t.)

consisting of a central node adjacent to all other

nodes of G . Hence all other edges joining nodes

of G are on at least one triangle C3 of G;

(ii) social circle: G has an s.s.t. consisting of a central

edge u; vð Þ with V1ðuÞ [ V1ðvÞ ¼ VðGÞ. Hence

any other edge joining nodes of G forms either a

triangle with node u, v or edge (u, v), or a

rectangle on the edge u; vð Þ;
(iii) hamlet: G has an s.s.t. such that all other edges

joining nodes of G are on triangles, rectangle, or

pentagons. h

We will call these cycles basic cycles and will denote

the set of cycles fC3;C4;C5g of a 2-club as its set of basic

cycles C 3;5½ �, or just its basic set.

More general: we shall call the set of cycles of type

fC3;C4;C5g of a graph G its set of basic cycles, or basic

set C 3;5½ �, which form its nonseparable 2-clubs, as we shall

see below. Moreover, we shall denote by basic edge of G

any edge (u, v) of G which is on at least one basic cycle of

G.

3.2 The 2-clubs of a graph or network

A k-club of a simple graph G is a maximal induced sub-

graph of diameter at most k (Mokken 1979, 2008). It was

introduced as a generalized clique concept to distinguish it

from k-cliques of a graph, which were defined as maximal

(a) Hamlet (b) Social circle (c) Coteriee (nonsep) (d) Coteriee (sep)

Fig. 1 The three types of

2-clubs

3 Note that C3 has diameter 1 and is a 1-club also.
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clusters of nodes of a graph within distance k in the dis-

tance matrix of that graph (Luce 1950). However, consid-

ered as subgraphs k-cliques need not be connected, whereas

k-clubs, due to the diameter restriction, are warranted to be

connected subgraphs. The k-clubs of a network correspond

to locally autonomous subnetworks in the sense that their

nodes can communicate or reach each other within distance

k along paths involving only nodes of the k-club, and not

outside nodes in the larger supernetwork, as would be the

case for k-cliques. Occasionally a k-club happens to be a k-

clique as well, in which special case it is called a k-clan.4

Recently k-clubs have found interest and applications in

many network oriented disciplines, such as telecommuni-

cation (Balasundaram and Butenko 2006), biology (Bala-

sundaram et al. 2005), genetics (Pasupuleti 2008), forensic

data mining (Memon and Larsen 2006), web search

(Terveen et al. 1999), graph mining (Cavique et al. 2009),

and language processing (Miao and Berleant 2004;

Gutiérrez et al. 2011).

Above we defined close communication, contact or

association in connected networks and graphs as connect-

edness along paths of at most length 2 and, accordingly,

close communities as 2-clubs of a graph or network.

As such the concept of 2-clubs of a network is of central

importance for the analysis of close communities and close

communication structures in networks. In that analysis,

however, the first type of 2-club (ego-network or coterie) is

of subordinate interest compared to the other two, the

social circles and hamlets.

Three types, three levels of close communication: These

three types of 2-club imply different perspectives or levels

of local communication:

• Level 1 and most local (ego-network or coterie).

Coteries in a graph are rather restricted forms of close

communities, as they correspond to just all the ego-

networks of a graph, which define and span that graph.

There is a central ego node and all close communica-

tion is possible via that ego within its ego-network:

tightly meshed, involving triangles only. Thus every

ego-network E1ðuÞ of G is a rather trivial coterie in

G with its ego node(s) u as the center of a spanning star

joining all its neighbors. However, only when it is not

included in a larger 2-club of G, and therefore maximal,

it is a coterie of G.

• Level 2: intermediate (social circle). There is no central

node but instead at least one central pair of nodes: two

adjacent neighbors, forming a central edge, which

together are adjacent to the other nodes of the social

circle. All close communication is possible via two

central neighbours within (parts of) their ego-networks:

more loosely meshed, along triangles and rectangles.

• Level 3 and widest (hamlet). In hamlets there are no

central nodes or central pairs of nodes and all close

communication is between (parts of) ego-networks,

widely meshed along triangles, rectangles, pentagons.

Thus coteries are limited forms of close communities, as

they correspond to (maximal) ego-networks of G , varying

from stars to cliques. Moreover, any ego-network which, as

an induced subgraph of G, is separable, i.e. has a cutpoint,

is a coterie of G, because any subgraph of G containing that

ego-network will have diameter larger than 2, as can be

verified easily.

In particular. every pendant of G promotes the ego-

network of its single neighbor to a coterie of G (cf.

Fig. 1d). Again, long isolated paths Pl in G are formed by

overlapping path segments P3, which are overlapping

separable coteries of G , consisting of one central node and

two pendant neighbors.

As a consequence any graph or network will also show a

multitude of rather trivial (separable) coteries. Hence, from

a perspective of close communication, the coteries of a

network G are relatively elementary, if not trivial, 2-clubs

as such, when compared with the social circles and hamlets

of G. They are confined to the level of local communica-

tion within their ego-network, whereas the hamlets and

social circles involve the wider levels of close communi-

cation between and across (parts of) different ego-networks

of G.

Our main focus will be on the more proper types of

2-clubs: social circles and hamlets. Moreover, we will

consider only 2-clubs with at least three nodes and three

edges.

3.3 The boroughs of a graph or network

The nonseparable 2-clubs of a network or graph G are

contained in the bicomponents of G. We shall now intro-

duce a new type of maximal subgraph of G, always con-

tained in a single bicomponent of G, which we call a

borough of G.

The main result of this section is that each borough

contains nonseparable 2-clubs of G, that each nonseparable

2-club of G is a nonseparable 2-club of exactly one bor-

ough of G, and that both nonseparable 2-clubs and bor-

oughs consist of edge chained basic cycles: C3 (triangles),

C4 (squares) and C5 (pentagons).

Two cycles of a graph G are said to be edge connected

when they share at least one common edge.

More generally: a pair of basic cycles Ca;Cb 2 C 3;5½ � of

G is edge chained in G if they are edge connected, or there

is a sequence of edge connected basic cycles4 This case was called a sociometric clique by Alba (1973).
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C1; . . .;Ci; . . .;Cc 2 C 3;5½ � of G, such that Ca is edge con-

nected with C1, and Cc with Cb, and each intermediate

consecutive pair of basic cycles Ci, Ciþ1 2 C 3;5½ � is edge

connected as well.

Using these concepts we can now define a borough in a

graph.5

Definition 1 A borough in a graph G is an induced sub-

graph of G such that each of its edges is on a shortest cycle

Cs 2 C½3;5�, the basic set of G, and all pairs of its basic

cycles are edge chained in G.

A borough of G is maximal, denoted as a borough (B) of

G, if it is not contained in a larger borough of G. Unless

specified otherwise we shall consider only maximal bor-

oughs of G .

A nonseparable 2-club is a special case of a borough as

stated in the next proposition:

Proposition 1 A nonseparable 2-club is a borough of

diameter at most 2.

Proof Let G be a 2-club. By Theorem 2 every edge of G

lies on a basic cycle. Let Ci and C j be two basic cycles of

G which are not edge connected in G and let ei and ej be

two edges of Ci and C j respectively. As G has diameter 2

and is nonseparable, the endnodes of both edges must have

common neighbours in G, on intermediate edge connected

basic cycles which are edge connected with Ci and C j, thus

establishing the edge chained connection between them.

Hence G is a borough. h

Analogously, two nonseparable 2-clubs are said to be

edge connected when they have at least one common edge.

Two nonseparable 2-clubs H0 and Hk are edge chained if

they are edge connected or there is a sequence of edge

connected 2-clubs H0;H1; ::; ;Hi; ::Hk, such that each con-

secutive pair Hi, Hiþ1 is edge connected.

Thus we can state the following proposition without

proof.

Proposition 2 A set of pairwise edge chained nonsepa-

rable 2-clubs is a borough.

An example of a borough, formed by the three edge

chained 2-clubs of Fig. 1 is given in Fig. 2.

Thus boroughs and nonseparable 2-clubs of G are

formed by cycles in its basic set C 3;5½ � ¼ C3;C4;;C5

� �
.

Properties of boroughs of G Taking into account the

maximality of boroughs of G, a number of properties fol-

low from these definitions and previous results. These are

listed below as corollaries. They show that, from a

perspective of close communication, boroughs can be seen

as larger supercommunities packing or hosting close

communities in a social network.

Corollary 1 Given the maximality and nonseparability of

boroughs of G:

(i) Every borough of a network G is contained in

exactly one bicomponent of G;

(ii) Two boroughs of G can not share a basic cycle of

G, and each basic cycle of G is part of only one

borough of G.

(iii) Each edge of a borough of G is on a basic cycle of

G and all its basic cycles are part of that borough

of G only. Hence a basic edge of G is a basic edge

of one and only one borough of G.

(iv) Any edge of G, which is not part of any borough of

G, is not a basic edge of G but either a bridge or on a

shortest cycle Cl; l� 6 and part of the outback of G.

(v) Thus the boroughs of G are edge induced

subgraphs of G: they are induced by the basic

edges of G. The outback of G is induced by the

non-basic edges of G.

The maximality and non-separability of boroughs also

imply:

Corollary 2 Every nonseparable 2-club of a network G is

a 2-club of exactly one borough of G.

Note that a nonseparable 2-club of a graph G is either

itself a borough of G, or part of just one borough of G. If it

would have been part of two boroughs of G these would

share a common edge and could be merged into a larger

borough, which contradicts their required maximality.

However, the reverse of Corollary 2 is true only for

social circles and hamlets and not for nonseparable coter-

ies, conform the following theorem:

Theorem 3 Let B denote a borough of G.

(i) A subgraph of G is a hamlet or social circle of G if

and only if it is a hamlet or social circle of the

corresponding borough B of G.

(ii) A coterie of a borough B of G is either itself a

coterie of G or included in a larger coterie of G.

Proof

(i) If: let B be a borough of G and assume that a hamlet

(or social circle) of B is not a 2-club of G . Then, as

it is a 2-club in G , it must be contained in a larger

2-club of G.

(a) that 2-club cannot be a nonseparable 2-club

of G , because then B would not be maximal

in G;

5 Batagelj and Zaversnik (2007) introduced k-gonal connectedness of

cycles. Our edge chained connection of basic cycles corresponds to

their 5-gonal connectedness.
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(b) if that 2-club is separable, then it must be a

coterie of G with a unique central node,

adjacent to all the other nodes of the 2-club

(see Sect. 3.1). But then that node must also

be a node of B and the hamlet or social circle

would be a coterie of B instead, contrary to

assumption.

(i) Only if: follows directly from Corollary 2.

(ii) If a coterie of a borough B of G is not also a coterie

of G, then it must be included in a larger 2-club of

G. That must be a coterie of G, as by (i) it cannot be

a hamlet or social circle of G, because then it would

be included in the same social circle or hamlet of

B as well, contradicting its maximality in B. Thus a

non-separable coterie of B can be included in a

larger, separable coterie of G and therefore, though

maximal in B and sharing the central node, is not a

coterie of G. h

A fictitious and elementary illustration is given with

Fig. 3a which gives an example of a simple graph G with

29 nodes.

Considering only 2-clubs of at least three points and

three lines, a straightforward count of the 2-clubs of the

simple graph G of Fig. 3a results in one hamlet, 5 social

circles and 13 coteries of G. The hamlet is the pentagon

(C5) formed by nodes {13, 14, 16, 17, 18}. The social

circles are identified by:

1. central pairs: (w, 1), (w, 6); size: 6;

2. central pairs: (6, 7), (6, v), (7, u); size: 5;

3. central pairs: (20, 19), (20, 17), (19, 18); size: 5;

4. central pairs: (12, 15), (15, 14), (12, 13); size 5;

5. central pairs: (12, 11), (11, 10), (12, v); size: 5

Graph G has 13 coteries, of which one coterie is the non-

separable ego-network of node 3, which as a 2-club is

maximal.

The other 12 coteries of G are the separable ego-net-

works of the nodes: 1, 7, 6, u, v, 17, 18, 13, 14, 12, 21 and

24.

Note that the ego-network of node w is nonseparable but

not a 2-club of G, because it is included in the social circle

1 of G.

Fig. 2 A borough (three edge-connected 2-clubs: Fig. 1a–c)

Fig. 3 Simple graph G (29

nodes): two boroughs with two

touch points and outback (edges

boroughs red-bold and blue-

solid; outback black-dashed)
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As shown in Fig. 3b graph G has two boroughs: one

indicated with red-bold edges and the other with blue-solid

edges. Its outback is given with black-dashed edges.

If we consider only the close community area covered

by these two boroughs of G, we note that all non-separable

2-clubs of G are contained by the two boroughs:

• the top red-bold borough has two social circles, which

are the social circles 1 and 2 of G, and its nonseparable

coterie of node 3;

• the bottom blue-solid borough has three social circles:

the social circles 3, 4 and 5 of G, as well as its hamlet.

Boroughs of a graph G can have one or more common

points, to be called touch points, as illustrated in Fig. 3b by

the neighbour nodes (u,v). The extra bold red edge (u,v)

belongs to the top red-bold borough only, as it is part of its

basic cycle formed by edges u-v-6-7-u. Its other cycle u-v-

12-13-18-19,u is a hole of G of 6 nodes and edges, and not

a basic cycle of the lower blue-solid borough. Would that

hole have been a basic cycle instead, then the two boroughs

would have been edge chained and, due to the required

maximality for boroughs of G (see Definition 1), form a

single borough of G. Thus edge (u,v) is a basic edge for the

top red-bold borough only.

More general: if touch points of a graph G are on

common basic cycles of G, then, due to maximality of

boroughs of G, all these basic cycles belong to the same

borough of G.

Referring to the particular nature of ego-networks as

coteries (see conclusion Sect. 3.2), we see in Fig. 3 that the

separable coteries of G are not fully covered by its bor-

oughs. For instance, the ego-network of touch points

between boroughs, or between boroughs and outback of a

graph, are separable and therefore coteries of that graph.

This is illustrated above for the ego-networks of nodes

u and v. Though both are coteries of G, they are dissolved

as such, because their edges are distributed over the two

boroughs and, for node v, the outback of G. Again, the ego-

networks of nodes 1 and 14, reduced by missing outback

edges, are also (separable) coteries of their boroughs of G,

but not of graph G itself, because they are included in the

corresponding unreduced (separable) coterie of G.

Moreover, the separable coteries in the outback of a

graph, mainly stars, such as the ego-networks of nodes 21

and 24 in Fig. 3b, will be ignored by a focus on the bor-

oughs only.

However: all of the coteries of the boroughs are either

also coteries of G, or included in a separable coterie of

G sharing its ego node:

• for the red-bold borough: its three separable coteries are

either also coteries of G (see nodes 6 and 7) or included

in a coterie of G, e.g.. that of node 1;

• for the blue-solid borough: its 5 separable coteries are

also coteries of G: those of nodes 17, 18, 13 and 12, or

included in a coterie of G with the same ego node, e.g.

node 14, and its only nonseparable coterie of node 3

coincides with its nonseparable coterie of G.

Consequently a graph or network G can be partitioned

into its boroughs and its outback, where its basic edges and

their basic cycles induce the borough structure of G, which

contains its areas of close communication and its 2-clubs as

close communities, while its non-basic edges determine its

outback of more remote communication. So, when the

main focus of the analysis of a graph or network is on its

close community structure, one might as well ignore its

outback part and focus on its boroughs and the 2-clubs

contained by them.

Lastly, it is well known that removal of an edge from a

nonseparable graph can increase its diameter. The next

corollary shows that for boroughs this increase is limited to

at most three.

Corollary 3 Let B be a borough of G and let B � ðu; vÞ,
denote the subgraph obtained by removing an edge (u, v)

from B, then

dmðBÞ� dmðB � ðu; vÞÞ� dmðBÞ þ 3:

Proof Consider the set of all shortest paths containing

(u, v) defining distances between pairs of nodes of B. Note

that such pairs can also be joined by alternative shortest

paths in B not containing (u,v).

As (u,v) is on a basic cycle, its removal extends the

distance between the nodes u and v by 1, 2, or 3 along the

remaining part of the basic cycle(s) on (u,v). Thus, all

distances between pairs of nodes of the set, and the

diameter of B � ðu; vÞ, increase by at most 3. h

An increase of the diameter by exactly 3 implies that the

removed edge is on a basic C5 of a hamlet of B, as illus-

trated by Fig. 4 for the removal of the bold-lined edge.

Summary We conclude that the set B Gð Þ of boroughs of
G contains the proper 2-clubs of G, as distributed across

and within its boroughs. Thus, where we defined 2-clubs as

the basic type of close community in a network, we can see

Fig. 4 Borough with diameter 3. After removing the bold edge, the

remaining graph has diameter 6
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the boroughs to which they belong as a supercommunity in

that network, enveloping chained sets of such close

communities.

Moreover, conform Footnote 2 these concepts and

results can be extended to the general case of diameter k.

Corresponding k-clubs (diameter at most k) and k-boroughs

are both formed from the basic set C 3;2kþ1½ � ¼
C3; . . .;C2kþ1f g of basic cycles with diameter 3 to k.

For instance, since the early days of social network

analysis (SNA) triangles and triad censuses have been of

central importance in the analysis of social networks (e.g.

Holland and Leinhardt 1970, 1971; Davis and Leinhardt

1972; Johnsen 1985; Frank 1988; Watts and Strogatz

1998). Such ‘very local structures’, Faust (2007) of direct

communication between neighbours in triads, correspond

to 1-clubs and 1-boroughs, as formed by triangles only

(e.g. 3-cliques K3ð Þ as in Palla et al. 2005). It is not difficult
to see that the 1-clubs and 1-boroughs of a network are

nested in the 2-clubs and (2)-boroughs which are the sub-

ject of this paper.

In other, e.g. topological, contexts 3-clubs (at most

diameter 3) and corresponding 3-boroughs will require for

their formation the smallest 3-clubs hexagon (C6) and

heptagon (C7) in the corresponding basic set C3; ::;C7f g. A
rather special case is that of a ‘football’ type of graph, a

single borough, consisting of pentagons and hexagons only,

so that all its 3-clubs are formed by just two types from the

basic set: the pentagon C5ð Þ and hexagon C6ð Þ.

4 Some applications

With the introduction of k-clubs (Mokken 1979) it was

pointed out that in practice their search, detection, and

identification in other than small networks would be a hard,

if not prohibitive, computing task, at the time beyond

available hardware and algorithmic capabilities, such as the

clique algorithm of Bron and Kerbosch (Bron and Ker-

bosch 1973).

Later results in computational complexity theory

demonstrated that for k � 2 several variants of k-club

detection were NP-hard (e.g. Bourjolly et al. 2002; Bala-

sundaram et al. 2005), such as, for instance, finding a k-

club of size larger than DðGÞ þ 1 (Butenko and Prokopyev

2007), or more generally, for a given k-club, finding a

larger k-club containing it (Pajouh and Balasundaram

2012).

4.1 Finding boroughs and 2-clubs

Despite these theoretical limits, in the last decade resources

and algorithm theory have made significant progress

toward workaround, heuristic and practical detection

algorithms to detect k-clubs (Bourjolly et al. 2000, 2002;

Pasupuleti 2008; Asahiro et al. 2010; Yang et al. 2010;

Carvalho and Almeida 2011; Schäfer et al. 2012; Chang

et al. 2012; Veremyev and Boginski 2012; Hartung et al.

2012, 2013; Pajouh and Balasundaram 2012; Shahinpour

and Butenko 2012). Most of these algorithms find either k-

clubs of at least a given minimum size in a given graph G,

or the maximum (i.e. largest in number of nodes) k-club of

G.

These sources inspired us to develop some specific

software modules enabling us to detect both boroughs and

2-clubs in a simple graph. From a perspective of commu-

nity detection and network analysis it is more interesting to

find all (inclusion-wise maximal) 2-clubs than just the

largest 2-clubs (i.e. maximum cardinality). Hence our

approach of detecting 2-clubs in a graph was designed to

achieve or approximate that purpose within the limits of

available computational capabilities.

In doing so we made use of the crucial intermediate

position of the boroughs, as separate components of a

graph or network, hosting its edge-chained 2-clubs: its

hamlets, social circles and (part of) its coteries (see The-

orem 3). This suggested a two step approach to finding all

2-clubs: first find all boroughs, then find all 2-clubs inside

boroughs, taking into account the proviso at the end of

Theorem 3 concerning the special nature of coteries of a

network and of its boroughs.

We thus developed algorithms, conform to Definition 1,

to detect all boroughs of a graph by joining and chaining

cycles from its set of basic cycles (triangles, rectangles and

pentagons), using available methods of finding all cycles

(e.g. Tiernan 1970; Weinblatt 1972; Fosdick et al. 1973;

Johnson 1975 or, more specifically, of finding only cycles

of given length (Alon et al. 1994; Yuster 2011).

Another set of algorithms was developed for finding all

2-clubs of a graph, sorted by type (coterie, social circle or

hamlet).

Thus we could also detect the 2-clubs in separate

selected (e.g. the largest) boroughs of a network.

The (usually numerous and overlapping) 2-clubs that are

found are stored in a database, per borough classified

according to the three possible types/level of close com-

munication (coteries, social circles, hamlets) and per type

sorted according to size. They can then be inspected and

analyzed by a Viewer interface. Details are given in Laan

(2012) and in the available open source licensed package

by Laan (2014).

4.2 Some real network results

In this section, we illustrate the concepts introduced above

with some datasets, chosen to cover different data domains
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as well as to provide some analytic perspectives. The dif-

ferent data domains and associated network data are:

• the well-known small network of Zachary’s karate

club;

• corporate board networks as given by the interlocking

directorate networks for the top 300 European firms for

the year 2010;

• co-authorship data taken from the large DBLP dataset.

The Zachary data will illustrate the perspectives of 2-club

analysis at the micro scale of small face-to-face networks.

The European corporate network concerns a much larger

network and the ensuing multitude of 2-clubs thus changes

the analytic perspectives.

Finally we investigated the distribution of boroughs and

their sizes in much larger datasets, as illustrated for the

DBLP co-authorship data set.

4.2.1 Zachary’s karate club

Zachary (1977), a well known dataset, concerned a vol-

untary association, a university student karate club, with a

total membership of about 60 persons/nodes. Zachary

analyzed a valued network, where edges denoted the

observed number of 8 types of mutual interaction outside

karate lessons. He restricted his analysis to the main

component of 34 interacting members, thus disregarding 26

other non-connected or isolated members. After conflicting

views two factions polarized around two main opponents—

node 1 (labeled ‘Mr. Hi’, the karate teacher) and node 34

(‘John A.’, president and main officer)—and subsequently

split accordingly. Zachary predicted the composition of the

splits using a max-flow–min-cut algorithm.

For this paper we reanalyzed his data in the form of a

simple undirected graph with an edge indicating at least

one of the 8 types of interaction. First we used a standard

SNA package (Borgatti et al. 2002) and then applied our

borough and 2-club detection algorithms to the relevant

components. This simple connected network of 34 nodes

has diameter 5 and consists of two bicomponents (size 27

and 7), separated by a common cut point (node 1: Mr. Hi),

and a pendant (node 12) attached to node 1 (Mr. Hi) as

well. Both bicomponents prove to be boroughs and node 1

(Mr. Hi) is a member, and touch point, of each of these.

Thus the ego-network of cutpoint Mr. Hi is a coterie in the

larger graph and distributed over the two boroughs and the

pendant node 12. Given the face-to-face nature of this

(subset of) a student association, it is not surprising that all

its edges, except the pendant (1,12), are part of at least one

2-club in just one of the two boroughs.

The smallest borough of size 6 contains, in addition to

touch node 1 (Mr. Hi), nodes 5, 6, 7, 11, and 17, which

were not further considered by Zachary. It has diameter 2

and thus is a 2-club (a social circle) and a trivial borough as

such.

The second, largest, borough of size 27 corresponds to

the network analyzed in Zachary’s paper. This borough has

diameter 4 and contains 13 2-clubs including 4 coteries (all

separable), 8 social circles, and one hamlet. They are listed

in Table 1.

The two opposing leaders, Mr. Hi (node 1) and John A.

(node 34), are both part of just three 2-clubs:

• the 7-node ego-network (coterie) of node 32;

• a social circle of size 14 (with central pair 34-14); and

• the hamlet of size 8.

The latter two 2-clubs are depicted in Fig. 5.

Moreover, each of the two opposing nodes (1 or 34) are

part of five 2-clubs excluding the other opponent. Hence,

all 2-clubs contain at least one of the two opponents: node

1 or node 34. In particular the 14 node social circle and 8

node hamlet look like negotiation forums of the two

opposing sides. For instance, the hamlet of 8 nodes con-

nects the central egos (nodes 1, 34, 3, and 32) of the 4

coteries.

These four coteries represent the ego-networks of the

two opposing nodes 1 (Mr Hi: size 12) and 34 (John A.:

size 18), and the nodes 32 (size 7) and 3 (size 11), where

node 3 appears to be a supporting ‘lieutenant’ node for Mr.

Hi (node 1) and node 32 for his opponent John A. In terms

of their 2-club memberships both nodes show extensive

liaison connections with the opposing side.

Membership of particular 2-clubs appears to be a good

predictor for faction membership after the split. To keep

within the bounds of this paper, we can illustrate this with

the problematic mysterious node 9, the only node men-

tioned explicitly by Zachary in his paper, apart from Mr. Hi

(1) and John A. (34). Node 9 was problematic in the sense

that he was classed as a (mild) supporter of the side of 34

(John A.), but in the end showed up as a member of the

opposing faction of Mr. Hi after the split. However, this

move can be understood by an analysis of his 2-club

memberships.

Node 9 was member of eight 2-clubs, each of which

included at least one of the two opponents 1 or 34, and

distributed as follows:

• five 2-clubs with only node 1 (Mr. Hi);

• two 2-clubs with only node 34 (John A.); and

• one 2-club with node 1 and node 34.

Moreover, in 7 of its eight 2-clubs node 9 is accompanied

by node 3, its neighbor and firm Mr. Hi supporter, as we

noted above.

So, on the basis of its 2-club affiliations alone, one

would have predicted node 9 to move (or stay) with the
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faction of Mr. Hi after the split, as in fact he did. The

2-club analysis also revealed liaison roles of two nodes, not

mentioned as such in the Zachary paper: node 3 for Mr. Hi

(node 1) and node 32 for John A. (node 34).

4.2.2 European corporate network 2010

This network was constructed from the interlocking

directorates of the largest 286 stock listed companies, as

studied by Heemskerk (2013).6 Its nodes designate the

boards of individual companies and its edges indicate that

the companies they connect share at least one common

director in their boards. Hence the network provides

channels of interpersonal contact and communication

between companies at the level of their boards.

The source network for these 286 companies had one

giant component of 259, which we chose for further anal-

ysis. Apart from three trivial ’boroughs’ of sizes 4, 3 and 3,

we found one single giant borough of 225 companies.

This single borough, covering 87 % of the dominant

component and 79 % of all firms, formed a compact sub-

network in the corporate European network of 2010,

consisting of 2128 overlapping or edge-chained 2-clubs

of corporations, with a median 2-club size of 10 cor-

porations in a size range of 4–27. This result confirms

Heemskerk’s (2013) original conclusion that by 2010 this

European network appeared to be well integrated.

However, with a diameter of 7 the borough was rather

stretched.

(a)The Hamlet. (b) The Social circle. The central pair is high-
lighted.

Fig. 5 Two of the three 2-clubs

containing both John and Mr. Hi

Table 1 List of all 2-clubs in

the large 27-node borough of

Zachary’s Karate Club

Type Size List of members

Coterie 7 [1, 25, 26, 29, 32, 33, 34]

Social circle 8 [24, 26, 28, 29, 30, 32, 33, 34]

Social circle 8 [3, 24, 25, 28, 29, 32, 33, 34]

Social circle 8 [24, 25, 26, 28, 29, 32, 33, 34]

Hamlet 8 [1, 3, 25, 28, 29, 32, 33, 34]

Social circle 10 [1, 2, 3, 4, 8, 9, 14, 29, 32, 33]

Social circle 10 [1, 2, 3, 4, 8, 9, 14, 31, 32, 33]

Coterie 11 [1, 2, 3, 4, 8, 9, 10, 14, 28, 29, 33]

Social circle 11 [1, 2, 3, 4, 8, 9, 14, 18, 20, 22, 31]

Coterie 12 [1, 2, 3, 4, 8, 9, 13, 14, 18, 20, 22, 32]

Social circle 14 [1, 2, 3, 4, 9, 10, 14, 20, 28, 29, 31, 32, 33, 34]

Social circle 17 [3, 9, 10, 14, 15, 16, 19, 21, 23, 24, 28, 29, 30, 31, 32, 33, 34]

Coterie 18 [9, 10, 14, 15, 16, 19, 20, 21, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34]

For each two club, the type, size and the members are given. The leaders of the two parts after the split (1

and 34) are indicated in boldface

6 The European data for 2010 were kindly made available to us by

Eelke Heemskerk.
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The multitude of 2-clubs, to be expected for large net-

works, can be analyzed by means of views and selections

from their database. Table 2 shows some results.

The first upper part of Table 2 gives the distribution of

these 2128 2-clubs of the European borough over the three

types and levels of close communication.

The first, most local level of communication, the co-

teries, formed 6.5 % of the 2-clubs of the borough. They

were the ego-networks of 138 central companies: 62 % of

the 225 companies in the borough. Together the nodes of

these coteries covered practically all (coverage: 99.9 %) of

the companies (nodes) of the borough.

The ego-networks of the other 85 companies were not

coteries of the borough but were included in or split over

larger 2-clubs. That was, for example, the case for the

German automotive company Volkswagen AG and two

large banks: the German Deutsche Bank AG and the

Spanish Banco Santander SA.

Thus this set of 138 coteries formed the local backbone

of the borough, as the two next levels of more extended

close communication, social circles and hamlets, are

formed from parts of the ego-networks of their central

companies. Their composition strongly suggests a pre-

dominance of French 2-clubs in the borough: the 20 largest

coteries consist of the ego-networks of 12 French, 3 Ger-

man, 2 British firms, and a Swedish, a Belgian and a Swiss

company.

The second intermediate level of social circles was

formed by one-third (717: 33.7 %) of the 2-clubs of the

borough, with a median size of 14 companies in a size

range of 5–25. Together the social circles cover 89.4 % of

all nodes of the borough.

The composition of the largest social circles again

confirms the predominance of the largest French compa-

nies in the network. They were formed around one or more

central pairs of major French companies (i.e. pairs of

central neighbors adjacent to all others in the 2-club).

Figure 6 gives a detail of a large social circle of 25

companies, mainly French, with 19 French firms, 1 Franco-

Belgian, 2 British, 2 Dutch, and 1 Luxembourg. It shows its

densest part around two central pairs, one formed by two

French companies, Total SA and GDF Suez SA, the other

by Total SA and the Belgian company Compagnie Natio-

nale à Portefeuille SA.

The third and widest level of close communication, the

hamlets, occupied a major part (1273: 59.8 %) of the

2-clubs of the European borough, with a median size of 16

in a size range of 5–24. Altogether the hamlets of the

borough cover nearly all, i.e. 92.5 % of its 225 nodes. An

example is given by Fig. 7 to which we will return later.

Heemskerk (2013, p. 91) cites Compagnie Nationale à

Portefeuille SA, a Belgian investment holding of the Frère

family, as most involved in European interlocks, with 17

European and 2 national (Belgian) interlocks. We investi-

gate this conclusion further in terms of its participation in

major 2-clubs of the European borough of corporate

interlocks.

The second, lower part of Table 2 summarizes this

analysis. It was a member of almost half (990: 46.5 %) of

the 2-clubs of the borough. At the most local level it was a

member of 15 (10.9 %) of the coteries of the borough. Of

these 15 ego-networks, identified by their central (ego)

company and ordered by size, it was the center of the sixth

coterie (size 22). Of the other 14 coteries ten were large

French companies, two were Luxembourg based, followed

by another Belgian company and a German company.

This predominant francophone orientation suggests that

it is more part of the French regional network than of a

cross-European one. Widening the level of close commu-

nication to its (Compagnie Nationale à Portefeuille)

Table 2 European corporate

borough 2010: 2-clubs of

borough and two of its major

companies compared

European borough 2010 Cot. Soc. circ. Hamlet Total

All 2-clubs borough 138 717 1273 2128

% of total 2-Clubs Borough 6.5 % 33.7 % 59.8 % 100 %

Size range 4–27 5–25 5–24 4–27

Median size 10 14 16 15

Coverage nodes borough* 99.6 % 89.4 % 92.5 % 100 %

Compagnie Nationale à Portfeuille SA 15 284 691 990

% of type 2-club borough 10.9 % 39.6 % 54.3 % 46.5 %

BNP Paribas SA 12 105 350 467

% of type 2-club borough 8.7 % 14.6 % 27.5 % 21.9 %

Cie Nat. à Portefeuille or BNP Paribas 25 332 752 1109

% of total 2-clubs borough 18.1 % 46.3 % 59.1 % 52.1 %

Common 2-clubs 2 57 289 348

% Cie Nat. à Portefeuille of BNP Paribas 16.7 % 54.3 % 82.6 % 74.5 %

* Coverage: % of nodes of borough (100 % = 225)

20 Page 12 of 16 Soc. Netw. Anal. Min. (2016) 6:20

123



membership of social circles and hamlets of the borough

confirmed this impression: it was part of 284 social circles

(39.6 %) and 691 (54.3 %) hamlets. Among the largest

social circles it formed part of one or more central pairs

with the five largest French companies, as illustrated by

Fig. 6, where it forms one of the two central pairs with the

French company Total SA.

We therefore studied its 2-club memberships together

with those of the largest French bank: BNP Parisbas SA, as

summarized in the lower part of Table 2. BNP Paribas SA

itself was included in 467 (21.9 %) of the 2-clubs of the

borough. The combined membership of Compagnie

Nationale à Portefeuille or BNP Parisbas accounted for

1109 (52.1 %), or more than half of the 2128 2-clubs in the

European borough. In 348 of those they participated

together. Consequently Compagnie Nationale à Porte-

feuille participated in almost three quarter (74.5 %) of the

2-clubs to which BNP Parisbas belonged.

Hence in terms of 2-club memberships the Belgian

Compagnie Nationale à Portefeuille was clearly a part of

the center of the French corporate sub-network in 2010.

Subsequent developments appear to support this con-

clusion. The controlling Belgian holding ERBE, for 53 %

owned by the Belgian Frère family and for 47 % by BNP

Parisbas, removed Compagnie Nationale à Portefeuille

from the Belgian stock exchange on 2 May 2011, after a

successful bid for outstanding stock. This appeared to be

part of a familial succession strategy and an agreement

allowing BNP Paribas to withdraw from ERBE. In a press

release of December 10, 2013 BNP Paribas announced its

completion of this arrangement through the purchase by the

Frère Group of the entire BNP Paribas shareholding in

ERBE.

As the second firm, most involved in European inter-

locks, with a reported 14 European and 2 national inter-

locks, Heemskerk (l.c) cites ABB Ltd, a Swiss based

multinational corporation operating mainly in power and

automation technology, such as robotics. In this case his

conclusion appears to be fully supported by investigating

its 2-club memberships in the corporate European borough

for 2010. Not surprisingly it was central ego of a coterie

(size 17) of the borough, consisting of companies from six

European nations: 3 German, 2 French, 3 Swiss, 5 Swedish,

3 Dutch and 1 Finnish.

ABB Ltd participated in 64 social circles (size 7–21): the

first 5 largest social circles solidly German with central

pairs from the largest German companies. After those

follow a number of mainly Swedish social circles and a

number of social circles of mixed nationality.

At the widest level of close communication ABB Ltd

participated in 75 hamlets (size 5–19) of different nation-

alities. An example is given with the hamlet of Fig. 7,

containing thirteen firms: three French, four British, one

Swedish and one Swiss, ABB Ltd itself.

For a more elaborate analysis, beyond the scope of this

paper, we refer to Mokken and Laan (2015).

4.2.3 Boroughs in DBLP co-authorship networks

We use the DBLP database of Computer Science publi-

cations to obtain some insights on the availability of bor-

oughs in large real live networks.7 DBLP can be seen as a

bipartite network consisting of authors and publications as

nodes connected by the ‘is author of’ relation. For a given

integer threshold t, we induce an undirected co-authorship

Fig. 6 European corporate Borough 2010: detail of center of largest

social circle (size 25) with the two central pairs shaded

Fig. 7 Hamlet (size 13): Swiss ABB Ltd with 12 French, British,

Dutch or Swedish firms

7 Downloaded from http://dblp.uni-trier.de/xml at 2012-02-21.
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network between authors from the DBLP network by

relating two author nodes when they have coauthored at

least t publications. For t between 5 and 10, Table 3 con-

tains basic statistics about the number of boroughs, and

their distribution according to their size. Thus, for a

threshold t, the number of nodes in the t-co-authorship

network is the number of authors who have at least t joint

publications with one other author. The density of the

resulting networks is fairly stable and slowly increases

from 2 � 10�5 for t ¼ 5 to 4 � 10�5 for t ¼ 10.

We can draw several conclusions from this experiment:

• Large sparse networks contain relatively many bor-

oughs, roughly an order of magnitude smaller than the

number of nodes in the network.

• Large networks contain one ‘giant’ borough, whose

number of nodes is roughly an order of magnitude

smaller than the number of nodes in the network.

• The number of nodes of all boroughs except the ‘giant’

one is small.

• The sizes of the boroughs of the DBLP co-authorship

networks are distributed according to a power-law.

Given the complexity of finding basic cycles for such large

networks and available capacities, we only computed the

boroughs for t from 5 to 10.

5 Discussion

Our reanalysis of the Zachary karate club network

demonstrated the usefulness of 2-club analysis for rela-

tively small ’very local’ networks (Faust 2007). The next

example, concerning the networks of corporate interlock-

ing directorates for Europe in 2010, illustrated the huge

numbers of distinct, but overlapping 2-clubs of the three

types to be expected for larger, possibly dense networks.

However, once the boroughs and their 2-clubs are detected,

identified and stored, the challenge of their analysis can be

met with the plethora of currently available statistical

methods of search, data mining and matching techniques of

massive databases.

Our exercise with the large DBLP data set shows that a

much larger challenge will be how to combine the micro,

i.e very local, in-depth focus of close communication by

boroughs and 2-clubs with the global analysis of the Big

Data massive networks which currently confront commu-

nity detection. Promising techniques can be based on the

analysis of appropriate segments of such networks, using

their hierarchical modularities with techniques such as

proposed by Blondel et al. (2008) or by focusing on

selected 2-neighborhoods.

Finally, some researchers (e.g. Hartung et al. 2012) have

noted that the largest 2-clubs they found in real-world

networks just coincided with the ego-network of a node

with maximum degree (D Gð Þ þ 1). As the size of a coterie

cannot be larger than that limit, any 2-club of larger size

than the maximum degree plus one must be a hamlet or a

social circle. In our analyses of various real world networks

we also did not find a social circle or hamlet larger than the

maximum degree, the largest coterie.

As it is not difficult to construct examples of networks

with hamlets or social circles which exceed that limit, a

question of further research is to hunt for empirical, real-

world datasets where that is indeed the case. Networks with

no or limited preferential attachment seem likely

candidates.
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