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Abstract For a proper understanding of flow patterns in
curved tidal channels, quantification of contributions from
individual physical mechanisms is essential. We study quan-
titatively how such contributions are affected by cross-
channel bathymetry and three alternative eddy viscosity
parameterisations. Two models are presented for this pur-
pose, both describing flow in curved but otherwise prismatic
channels with an (almost) arbitrary transverse bathymetry.
One is a numerical model based on the full three-
dimensional shallow water equations. Special feature of this
diagnostic model is that assumptions regarding the relative
importance of particular physical mechanisms can be incor-
porated in the computations by switching corresponding
terms in the model equations on or off. We also present an
idealized model that provides semi-analytical approximate
solutions of the shallow water equations for all three con-
sidered alternative eddy viscosity parameterisations. It
forms an aid in explaining and theorising about results
obtained with the numerical model. Observations regarding
Chesapeake Bay serve as a reference case for the present

study. We find that the relative importance of both along-
channel advective forcing and transverse diffusive forcing
depends on local characteristics of the cross-sectional bot-
tom profile rather than global ones. In our reference case,
tide-residual along-channel flow induced by these forcings
is not small compared to the total tidal residual. Building on
this observation, we present an indicative test to judge
whether advective processes should be included in leading
order in modelling tide-dominated estuarine flow. Further-
more, depending on the applied eddy viscosity parameter-
isation (uniformly or parabolically distributed over the
vertical), we find qualitatively different spatial patterns for
the along-channel advective forcing.
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1 Introduction

Various types of models have been developed to describe
the flow in cross sections of tidal rivers and estuaries.
Complex numerical models (e.g. Lerczak and Geyer 2004;
Chen et al. 2009; Chen and Sanford 2009; Cheng et al.
2009) give detailed insight into the flow characteristics,
but analysing the dominant physical processes is not
straightforward. To acquire insight into the role of individ-
ual physical mechanisms, analytical models have been de-
veloped that focus on specific aspects of residual (e.g. Wong
1994; Valle-Levinson et al. 2003; Cheng and Valle-
Levinson 2009) or residual and tidal flow (e.g. Friedrichs
and Hamrick 1996; Huijts et al. 2006, 2009, 2011) in estu-
arine cross sections. Recently, Burchard et al. (2011) adap-
ted a numerical code that partly bridges the gap between
complex numerical models on the one hand and analytical
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models on the other hand. The resulting numerical model
includes many physical processes and state-of-the-art
parameterisations. Although flow fields for individual driv-
ing mechanisms can be assessed separately, interpretation of
physical mechanisms is still difficult.

Using highly idealized lateral bathymetries and eddy
viscosity profiles, analytical models have been successful
in explaining the physical mechanisms underlying many
observed cross-sectional flow patterns. The insight gained
with these idealized bottom profiles has been applied to
more realistic cross-sectional bathymetries. Huijts et al.
(2009) considered a cross section in the Chesapeake Bay
and compared results obtained with an analytical model to
observations gathered in this cross section. The order of
magnitude of the tide-residual along-channel flow is repro-
duced correctly. An analysis based on velocity scales
showed that the lateral density gradient plays a major role
in the tide-residual cross-channel flow. For the along-
channel direction, they found advection to be one of the
main mechanisms underlying the observed tide-residual
flow. This advective contribution was obtained as a correc-
tion on the leading order tidal water motion, using an
asymptotic expansion technique. The resulting cross-
sectional distribution of the tide-residual along-channel flow
is more pronounced than that obtained from the observa-
tions, which show a seaward directed residual flow in a
major part of the cross section. Near the bottom in both
the centre of the channel and the inner bend, the observed
residual flow is in the landward direction. In the model
results, this landward residual flow is also present, but it is
stronger than in the observations (around 0.15 m/s in the
model vs. 0.05 m/s according to the observations) and it is
spread over a larger area (Huijts et al. 2009, Fig. 2). This
may indicate that the applied first-order correction some-
what exaggerates the advective forcing, resulting in an over-
estimation of the landward residual flow.

For a laterally idealized geometry, the analytic model
results of Huijts et al. (2009) are reproduced using a fully
non-linear model by Schramkowski et al. (2007) under
specific conditions. For a sufficiently large tidal discharge,
Schramkowski et al. (2007) find that in computing residual
flow, advection cannot be neglected in leading order. In low
flow conditions, on the other hand, advective forcing
appears to be of relatively low importance. This seems to
disagree with the results obtained by Huijts et al. (2009) for
a realistic cross-sectional bathymetry. For comparatively
weak tidal conditions, they found advection to play a sub-
stantial role in the residual flow pattern. The difference in
cross-channel bottom topography may be part of an expla-
nation for this discrepancy. The model computations of
Schramkowski et al. (2007) concern a smooth, mildly slop-
ing bottom, whereas Huijts et al. (2009) considered a chan-
nel with a somewhat craggy bottom where gentle slopes are

alternated by steep parts (their Fig. 2). This suggests that the
importance of advection might increase with the steepness
of the transverse bottom profile.

To investigate the influence of transverse topography on
flow patterns in the cross section, with an emphasis on
advective momentum transfer, we develop two diagnostic
models. One of them is more advanced than most analytical
models as it solves the fully non-linear shallow water equa-
tions. It is henceforth referred to as advanced model (AM).
Following Burchard et al. (2011), a special feature of this
model is that individual terms in the basic model equations,
each representing a specific physical mechanism, can be
switched on or off. This facilitates quantification of the
contributions of these mechanisms to the flow pattern. Other
than the model of Burchard et al. (2011), however, our
model includes Coriolis forcing, river discharge and effects
of curvature of the channel.

The other diagnostic model is based on a simplification
of the shallow water equations. It is referred to as idealized
model (IM), and it is meant to facilitate understanding and
explaining features encountered in observed and computed
flow patterns. This model concerns a straight, prismatic
channel, and advective processes are assumed negligible
compared to local accelerations and internal friction.

Apart from idealizing the cross-sectional bathymetry, most
idealized models use an eddy viscosity that is time-invariant
and constant over the water column. Burchard et al. (2011), on
the other hand, deploy a state-of-the-art formulation for the
vertical eddy viscosity in an estuarine cross section with
highly idealized geometry. In that formulation, eddy viscosity
is time-dependent and non-uniform in the vertical. To assess
the importance of eddy viscosity formulation on computed
flow fields, we focus, as a first step, on a time-invariant but
vertically varying distribution. This implies that circulations
due to tidal straining are not considered. Although the vertical
distribution of eddy viscosity can take any prescribed shape,
we focus on only three alternatives. One of them is a parabolic
distribution over the entire water column. Another is a verti-
cally invariant eddy viscosity. The third alternative is a com-
bination of a parabolic distribution in a small region just above
the bottom and vertically invariant further up in the water
column. This latter shape is used to simulate a partial-slip
bottom boundary condition in the AM (Schramkowski et al.
2010). In all three alternatives, the eddy viscosity scale (its
depth-averaged value) may vary in transverse direction. How-
ever, both shape and scale are taken time-invariant. Roughly,
these three alternatives cover the most frequently used param-
eterisations of the eddy viscosity profile (also see Bowden
1965). By comparing results obtained with these parameter-
isations, we can investigate the sensitivity of computed flow
patterns to the choice of turbulence closure.

As we intend to compare our results with those obtained
with an analytical model and observations, we focus on a
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tidal channel that has been studied previously with the aid of
such a model. In this respect, we have chosen to build on the
work of Huijts et al. (2009) concerning Chesapeake Bay.
They evaluate and analyse their model results against flow
velocities and density gradients observed and described
extensively by Fugate et al. (2007). For the present study,
we use the same data as a reference.

The joint deployment of an advanced and an idealized
model is to facilitate identification and understanding of the
relative importance of specific individual physical mecha-
nisms in the conditions investigated as well as to indicate the
implications of these findings in a broader perspective.
More particularly and summarising the above, the aim of
our study is twofold. It is:

& To assess the influence of cross-channel topography on
the along-channel flow structure, with an emphasis on
advective momentum transfer

& To depict the influence of eddy viscosity parameterisa-
tion in this respect

2 Advanced model

The model used for the present investigation simulates the
flow in a cross section of a (tidal) channel. The geometry of
the cross section consists of a schematised bathymetry,
comprising a smoothly varying bottom with vertical walls
on either side of the channel so that the bottom is never
uncovered. Although parts of the bottom may be steep,
vertical jumps cannot be accommodated. Apart from this
restriction, the bottom profile can attain an arbitrary shape.
The geometry of the cross section as well as the flow itself
and the prescribed density gradients are assumed uniform in
along-channel direction. In the horizontal plane, the channel
may be either straight or circular (see Fig. 1 for an example).

In our model, the flow is forced by a combination of
prescribed transverse and longitudinal density gradients and
a prescribed longitudinal pressure gradient due to a surface

slope. These quantities are obtained from observations.
Wind shear stress is not included. Instead of a longitudinal
surface slope, a total discharge may be prescribed. In that
case, this surface slope is chosen such that the prescribed
discharge is produced. Furthermore, the rigid-lid approxi-
mation is applied, meaning that spatial and temporal varia-
tions of the surface level elevation are neglected, although
pressure gradients due to such variations are taken into
account.

The flow is described with the three-dimensional shallow
water equations. For this purpose, we use a coordinate
system as indicated in Fig. 1, with polar coordinates in the
horizontal plane. In all model results discussed in the pres-
ent paper, the θ coordinate increases towards the seaward
end of the tidal channel. Including the assumption of along-
channel uniformity and the rigid-lid approximation, the
model equations read
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reflecting momentum conservation in r and θ direction and
continuity, respectively. In the above expressions; r, θ are
cross-channel and along-channel coordinates; z is a vertical
coordinate (z00 at the free surface); t is time; ur, uθ, uz are
cross-channel, along-channel and vertical flow velocity
components; ζ is surface level elevation; ρ is mass density
of the fluid (ρ0 is a reference density, set at 1,000 kg/m3); γ
is the Coriolis parameter; υt is depth-mean vertical eddy
viscosity; φz is shape function for the vertical distribution
of eddy viscosity (normalized such that its depth-mean
value equals 1); υh is horizontal eddy viscosity (time- and
space-invariant) and g is gravitational acceleration.

Corresponding boundary conditions comprise zero ur and
uθ at the two sidewalls. Along the bottom, a no-slip condi-
tion is applied to the tangential velocity component, and as
no water can pass into or out of the bottom, a zero normal
velocity component is imposed. Put together this means that

Fig. 1 Schematised geometry of a tidal channel. The (r,θ,z) coordinate
system is used in the AM with θ pointing seaward
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at the bottom, all three velocity components are set to zero.
As wind shear stress is not included in the model, vertical
gradients of the two horizontal velocity components at the
water surface are set to zero. Furthermore, a kinematic
boundary condition is imposed at the surface. As we apply
the rigid-lid approximation, this boils down to demanding a
zero vertical velocity at the surface.

Another consequence of the rigid-lid approximation is
that the depth-integrated transverse velocity equals zero at
every location in the cross section. This follows from inte-
grating the continuity Eq. 3 over the water depth:

Z0
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þ @uz
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dz ¼ @
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urdz� ur �hð Þ @h
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in which z0−h refers to the bottom. From the imposed
boundary conditions, it follows that ur(−h)0uz(−h)0uz(0)0
0. Substituting this into the above expression yields
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Combining this with the boundary condition that ur00 at
both side walls of the channel shows that in the present
approach application of the rigid-lid approximation implies
a zero net transverse flow at every location along the tran-
sect. We use this property to have our model resolve the
time- and space-dependent cross-channel pressure gradient.

Flow velocity components and the transverse pressure
gradient are solved numerically using a collocation method
based on Chebyshev polynomials (see, e.g. Boyd 2000). In
the physical domain, we use a non-orthogonal curvilinear
grid. For integration in the time domain, a fully implicit
finite difference approximation is applied. As the model
equations are non-linear in the flow velocity components,
a Newton–Raphson iteration is performed in each time step
(see, e.g. Abramowitz and Stegun (1970); application is
depicted in “Appendix 1”).

As we intend to compare our model results with the
findings of Huijts et al. (2009), we mention three noticeable
differences between their model and ours:

& Our model does not include wind forcing.
& Advection is taken into account in leading order in our

model, whereas Huijts et al. (2009) include it in first
order.

& Boundary layers near the side walls of the channel are
resolved by our model as we include horizontal diffu-
sion and impose a zero transverse velocity at these walls.
These boundary layers are not included in the model
presented by Huijts et al. (2009).

Where appropriate, these differences are considered in the
intended comparison.

3 Idealized model

As an aid to better understand the role of individual flow-
driving mechanisms, we introduce an idealized analytical
model (IM). Compared to the AM, the idealization rests in
the assumption that both advection and transverse diffusion
can be neglected in leading order. Furthermore, we focus on
a straight channel. This way, the basic equations of the IM
read
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in which the x is the along-channel coordinate and y is the
transverse coordinate. The vertical coordinate σ is scaled
such that σ00 at the bottom and σ01 at the surface. A no-
slip bottom boundary condition is applied (at σ0σ0) and as
we disregard effects of wind, the vertical gradient of the
horizontal flow velocity components at the surface is set to
zero.

The shape of the vertical eddy viscosity profile is given
by φ (which is the equivalent of φz for the scaled vertical
coordinate σ). The corresponding scale factor υt (see Eqs. 1
and 2) is incorporated in the parameter β, defined as

b ¼ h2

ut
ð8Þ

Like in the AM, we apply the rigid-lid approximation. As
explained in the section on the AM, this boils down to
demanding a zero net transverse flow:

Z1
σ0

uydz ¼ 0 ð9Þ

Semi-analytical solutions to Eqs. 6, 7, 8 and 9 for both
steady and harmonically varying density gradients and
along-channel surface slopes are given in “Appendix 3”
and “Appendix 4”. An essential approximation in the deri-
vation of these solutions is that the shape φ of the vertical
distribution of eddy viscosity is invariant in time.

Equations 6, 7, 8 and 9 apply to a single point in the
horizontal plane. Repeated application of these equations for

606 Ocean Dynamics (2012) 62:603–631



a series of points along a transect of a channel yields an
image of the flow pattern in that transect. Importantly,
however, this pattern includes the assumption that transverse
advection can be neglected in leading order.

We use this image to compute a first-order estimate of
cross-channel advective forcing. Flow profiles obtained for
two consecutive points along the transect are used to esti-
mate transverse derivatives of the horizontal velocity com-
ponents. The so-obtained ∂uy/∂y is substituted into the
continuity equation to arrive at an estimate of the vertical
velocity component uz. Including a no-slip bottom boundary
condition, the result reads

uzðsÞ ¼ �
Zs
zb

@uy
@y

dz ð10Þ

in which zb is the bottom level elevation. Subsequently, a
first-order estimate of along-channel advective forcing is
obtained from

uy
@ux
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þ uz
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@z

ð11Þ

This procedure is elaborated in detail in “Appendix 3” for
flow driven by both steady and harmonically varying along
and cross-channel density gradients and along-channel sur-
face slope. In a similar fashion, a first-order estimate of
transverse diffusion of the along-channel velocity compo-
nent (νh∂2ux /∂y2) is determined (see “Appendix 4”).

A so-obtained first-order estimate of along-channel ad-
vective forcing can be used to correct computed flow veloc-
ities for effects of advection. Huijts et al. (2009) have
performed such a correction. In the present study, we focus
on the spatial pattern of along-channel advection and how
that is influenced by eddy viscosity parameterisation. In
addition, we address the possibility of an a priori evaluation
of the relative importance of advection based on the first-
order estimate (see under Section 6 in this paper).

4 Turbulence closure

In the basic model Eqs. 1 and 2 for the AM and Eqs. 6 and 7
for the IM, we have written the vertical distribution of eddy
viscosity as the product of a depth-mean value υt and a
shape function φ. In the present paper, we focus on three
options for this shape function. One of them concerns a
parabolic variation of the eddy viscosity over the vertical,
and in another option, the eddy viscosity is taken vertically
invariant (Bowden 1965). The latter is included for compat-
ibility with the idealized model of Huijts et al. (2009). The
two options are depicted in Fig. 2 a, c, respectively.

The profile given in Fig. 2 b is used in the present study
to simulate a partial-slip bottom boundary condition. These
three options are discussed briefly in “Appendix 6”.

The parabolic eddy viscosity distribution serves as a
reference for all model computations discussed in the pres-
ent paper. To evaluate the consequences of choosing a
different type of eddy viscosity parameterisation, it is nec-
essary to formulate a criterion to arrive at mutually compa-
rable depth-mean values for the eddy viscosity. In the
literature, various options for such a criterion are encoun-
tered. For the present investigation, we have chosen to
demand that the various parameterisations must yield iden-
tical energy dissipation rates, as mentioned for instance by
Ianniello (1979). To arrive at an explicit relation between the
eddy viscosity scales, we apply this demand to plane shear
flow (see Eqs. 98 and 99). The corresponding dissipation
rate P per unit of horizontal area reads

P ¼ R1
σ0

u dt
dσ dσ ; t ¼ ρutφ 1

h
du
dσ ð12Þ

in which τ is the shear stress. Evaluating Eq. 12 for both
considered types of eddy viscosity distribution and subse-
quently demanding equality with respect to the resulting
dissipation rates P yields the required relation between the
eddy viscosity scales corresponding to both distributions.

5 Model results

Our investigation starts with fitting our AM to the field data
concerning Chesapeake Bay (Fugate et al. 2007), assuming
that eddy viscosity is distributed parabolically over the
vertical. In the model computations, we have used parameter
values as listed in Table 1. Most of these values are identical
to those mentioned by Huijts et al. (2009). Wind forcing,
however, is neglected. On the other hand, following the
recommendation of Huijts et al. (2011), we include an M2

variation of the cross-channel density gradient. It is uniform
in lateral direction, and its amplitude is chosen equal to the
cross-sectional average derived from the observations
(∼10−3 kg/m4).

The bottom roughness is assumed time- and space-
invariant. It is represented by a roughness length (denoted
by ks; see Eq. 101 in “Appendix 6”). It is used to determine
the relative height σ0 above the bottom at which the bottom
boundary conditions are to be applied in conformity with the
turbulence closure scheme (see Section 4). The value of ks is
typically in the order of a few cm, leading to a σ0 of around
0.001 for the Chesapeake Bay case. For the present study,
we have assumed that ks00.05 m. A sensitivity test based on
the IM has indicated that model results show negligible
variation for σ0 in the range of 0.0005 to 0.05 m.
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On average, the observations exhibit a tide-residual sea-
ward flow. This is caused by river discharge. However, in
the centre of the channel, a landward flow occurs in the
lower part of the water column. This area of landward flow
extends along the bottom of the channel towards the side at
the inner bend (see Fig. 4a). The main features of this flow
pattern can be explained by considering gravitational circu-
lation and river discharge. This combination involves two
flow-driving forces. One of them is related to an along-
channel density gradient. It is zero at the surface and
increases with depth. The other force comes from an
along-channel surface slope and is depth-invariant. These
two forces and their attended flows are in opposite direction.
In Chesapeake Bay, the density gradient acts landward, and
the surface slope is directed seaward. Their cross-sectional
integrated effect yields the river discharge.

Due to the difference in vertical distribution of the two
forces, a density gradient-dominated flow is encountered in
the lower part of the water column, whereas the opposing
flow in the upper part is dominated by the surface slope.
Vertical exchange of momentum has a smoothening effect

on this pattern. It reduces spatial differences in along-
channel flow velocities without affecting the net result (i.c.
the river discharge). An increase of this momentum ex-
change yields an overall reduction of flow velocities. As a
result, a larger part of the channels cross section is needed to
accommodate the river discharge. The density gradient-
dominated flow is confined to the remaining part of that
cross section. This part tends to concentrate around the
deeper, central part of the cross section as only in the lower
part of the water column the flow-driving force related to the
density gradient dominates over that resulting from the
surface slope. This mechanism is addressed in detail in
“Appendix 5” with illustrative applications of the idealized
model IM.

The above reasoning forms the basis for calibrating our
AM to the observed tide-residual along-channel flow pre-
sented in Fig. 4. In all our model computations, the along-
channel density gradient and river discharge are prescribed
based on observations. Vertical exchange of momentum is
reflected by eddy viscosity. In tuning our model, we assume
a parabolic distribution of eddy viscosity over the vertical

Fig. 2 Three options for a
prescribed vertical distribution
of eddy viscosity: a parabolic
shape (a), a combined parabolic
and vertically invariant profile
(b) and a uniform distribution
(c). All three options are
applied in the AM in
combination with a no-slip bot-
tom boundary condition. Op-
tion (b) is meant to simulate
partial slip at σ0σb. Profiles a
and c are used in the IM

Table 1 Parameter values used in model computations

Parameter Unit Value M0 component M2 component

Amplitude Phase (rad)

Along-channel dischargea m3/s 900 9,500 0

Along-channel density gradienta kg/m4 4×10−4 – –

Cross-channel density gradienta kg/m4 −0.5×10−4…−5×10−4 (the transverse profile is given in Fig. 3) 10−3 π/2

Gravitational accelerationb N/kg 9.81

Coriolis parameterb s−1 10−4

Horizontal diffusion coefficientb m2/s 1

Bottom roughness lengthb m 0.05

Period of semi-diurnal tideb s 44,712

Radius of curvatureb km 40

a The quantities listed are related to prescribed flow-driving forces
b Other parameters
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and choose the corresponding scale such that the computed
tide-residual along-channel flow agrees well with the obser-
vations (Fig. 4a). Model results obtained for eddy viscosity
scales of 0.002, 0.006 and 0.010 m2/s are given in Fig. 5. Of
these three values, 0.006 m2/s yields the best agreement with
respect to order of magnitude and direction of the tide-
residual along-channel flow velocity. In computations where
we assume a uniform distribution of eddy viscosity, we use a
scale of 0.0015 m2/s. With these scales, both distributions
yield the same dissipation rate (see Section 4).

As we use the observations as a reference for our inves-
tigating concerning the relative importance of advection and
transverse bottom slope, a more subtle tuning of the model
to the observations than described above has not been car-
ried out. In Fig. 6, computed M0 and M2 components of the
along and cross-channel velocity components for the run
with a depth-averaged eddy viscosity of 0.006 m2/s are
given. A comparison with observational results (Fig. 4)
shows that orders of magnitude are well reproduced by the
model, as well as the overall spatial pattern. A poor agree-
ment is encountered for the M0 velocity components in the
area near the inner bend of the channel (left-hand side of
Fig. 4a, b).

In this area, the observed residual landward flow near the
bottom of the channel is not reproduced correctly. That
holds also for the tide-residual transverse flow in this area

Fig. 3 Cross-channel gradient of the depth-mean density as used in all
model computations discussed in the present paper. The density
increases towards the outer bend. Its gradient varies between a mini-
mum of 0.5×10−4 kg/m4 and a maximum of 5.0×10−4 kg/m4. This
transverse profile is a schematisation, based on the observations by
Fugate et al. (2007)

Fig. 4 M0 (a, b; warm colours
indicate a seaward flow for the
along-channel component or to
the right for the cross-channel
component) and M2 (c, d)
amplitudes of the observed
along-channel (a, c) and cross-
channel (b, d) velocity compo-
nents. Black curves are zero
velocity contours

Fig. 5 Tide-residual along-channel flow computed in three calibration
runs. A parabolic eddy viscosity distribution is assumed. a–c A depth-
mean eddy viscosity of 0.002, 0.006 and 0.010 m2/s, respectively.
Black curves are zero velocity contours. Colour scales are in metres
per second and warm colours indicate a seaward flow
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(see Fig. 6b). Observations near the inner bend show a flow
towards the centre of curvature of the channel (to the left in
the figure) that occurs in the entire water column. A possible
explanation is that the rigid-lid approximation is inadequate
in this comparatively shallow area, as a result of which the
assumption of along-channel uniformity does not apply.
Simultaneously, the lateral flow towards this area that occurs
when during flood the water level rises is attended with a
smaller water depth than the return flow during ebb. As a
result, the flood flow is stronger than the ebb flow. The net
effect shows as a residual in up slope direction. It is inher-
ently impossible for our model to reproduce this phenome-
non. As we apply the rigid-lid approximation, the depth-
averaged cross-channel velocity equals zero at all times.
This means that near the side walls, there is either no flow
or a vertical circulation. A flow towards the side during one
part of the tide and away from that wall in another part is not
possible in our model concept. An alternative possibility is
that a vertical circulation actually occurs in reality, but that
its near-bottom down slope branch does not show in the
observations as it happens to be outside the observational
domain (the blank areas in Fig. 4).

Similar considerations apply to the discrepancy between
observed and computed M2 components of the cross-
channel velocity (Figs. 4d and 6d, respectively). Apart from
these qualitative considerations, no attention has been paid
in the present study to these local discrepancies between
observations and model output.

In our study on the role of eddy viscosity parameter-
isation, we compare the results of three computations with
the AM:

1. Aparabolic eddy viscosity distribution (ut00.006m
2/s) and

including advection (this is the result of tuning the AM)
2. A uniform eddy viscosity distribution of ut00.0015 m

2/s.
According to Eq. 12, this yields similar dissipation as the

combination of a parabolic distribution with a scale of
0.006 m2/s

3. A combined parabolic and vertically invariant eddy viscos-
ity (see Fig. 2 b) to simulate a partial-slip bottom boundary
condition. The eddy viscosity scale is set at ut00.0015m

2/s

We use the model results for these three cases also to
assess the relative importance of advection. For this
purpose, we decompose computed tide-residual horizon-
tal flow velocity components into contributions that can
be ascribed to individual flow-driving mechanisms. We
discriminate between flows induced by advection, Cori-
olis effect, density gradients, along-channel net dis-
charge (i.c. river discharge and Stoke’s drift together),
curvature and lateral diffusion. The decomposition meth-
od is explained in “Appendix 2”.

Tide-residual along and cross-channel flow velocities and
corresponding decompositions are presented in Figs. 7 and
8 for model computations using a parabolic and for a uni-
form eddy viscosity distribution, respectively. Figure 9
shows the tide-residual advective forcing computed from
model results concerning both viscosity parameterisations.
Results obtained for the simulation of a partial-slip bottom
boundary condition are not shown in the present paper.
These results are much alike those found for a uniform eddy
viscosity distribution. The differences are not essential in
view of our present research aims.

From Figs. 7 and 8, it can be seen that assuming a
uniform eddy viscosity distribution yields larger tide-
residual flow velocities than when a parabolic profile is
assumed, but the spatial patterns are much alike. The differ-
ence may be explained partly by the applied eddy viscosity
scales. We have related these scales to one another such that
they yield identical dissipation rates in the case of steady,
plain shear flow. This may be insufficient for the complex
flow at hand.

Fig. 6 M0 (a, b; warm colours
indicate a seaward flow for the
along-channel component or to
the right for the cross-channel
component, and black curves
are zero velocity contours) and
amplitudes of M2 (c, d)
components of the along-
channel (a, c) and cross-channel
(b, d) velocity (in metres per
second) computed assuming a
parabolic eddy viscosity distri-
bution and corresponding
depth-mean value of 0.006 m2/s
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In along-channel direction, the order of magnitude of
flow velocities associated to contributions from river out-
flow and gravitational circulation is comparable to that of
the total residual flow. Around the centre of the channel,
these two mechanisms counteract each other, whereas the
effect of gravitational circulation dominates at the compar-
atively shallow flanks. This is in agreement with the theo-
retical reasoning presented in “Appendix 5”.

In cross-channel direction, curvature, Coriolis deflection
and density gradient yield single circulation cells. When
looking seaward, the circulations due to curvature and Cori-
olis deflection are clockwise. The effect of curvature is
relatively weak as the radius of curvature is rather large
(about 40 km). The circulation related to the transverse
density gradient is anti-clockwise, and it is attended with
larger flow velocities than the other two. The contributions
of curvature and Coriolis deflection to the along-channel
tide-residual flow are relatively small.

The tide-residual advection-induced along-channel
flow computed assuming a parabolic eddy viscosity dis-
tribution seems to be organised more or less in vertical
strips with alternating flow direction (Fig. 7). The com-
putational result based on a uniform eddy viscosity dis-
tribution (Fig. 8) shows a similar tendency, but it

contains also some vertical variation. To some extent,
these patterns can be recognized also in the corresponding
forcings (Fig. 9a, b). In transverse direction, advection
induces two opposing tide-residual circulations, one on
either side of the deepest point of the channel and an
upward flow in between. With a uniform eddy viscosity
distribution, the flow velocities are about three times as
large as in the case of a parabolic distribution. Further-
more, the computational results suggest a relation be-
tween the magnitude of the flow velocity and the
transverse bottom steepness. Seen in transverse direction,
the advection-induced tide-residual flow seems to in-
crease in areas where the bottom steepens. This holds
for both considered eddy viscosity distributions and for
both along and cross-channel flow velocity components.

The effect of transverse diffusion is much alike that of
advection. The flow induced in along-channel direction is
organised more or less in vertical strips in which the flow is
alternately seaward and landward, but with respect to num-
ber and size of these strips the resemblance is poor. In cross-
channel direction, we find two opposing circulations on
either side of the centre of the channel and a downward
flow in between. The circulations found for advection-
induced flow act the other way round.

Fig. 7 Decomposition of the tide-residual flow computed assuming a
parabolic eddy viscosity distribution. Lower left panels concern the
along-channel flow and the cross-channel flow is given in the upper
right panels. The total tide-residual flow is shown in the panels on the

right. Warm colours indicate a flow towards the sea (for the along-
channel component) or to the right (for the transverse component).
Flow velocities are given in metres per second
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6 Analysis

The computational results presented in Figs. 7 and 8 show
for both considered types of eddy viscosity distribution that
the contributions due to advection and horizontal diffusion
to the total tide-residual flow are of the same order of
magnitude as the total. Apparently, in the Chesapeake Bay
transect studied, advection and transverse diffusion cannot
be neglected in leading order. In addition, the computational
results show that along the transect noticeable variations
occur in their effects.

Motivated by this observation, we explore hereafter the
possibility of expressing the relative importance of advec-
tion in terms of characteristics of the flow field, like Rossby
and Stokes numbers. Such an expression may serve as a
general aid in assessing whether advection can be assumed
negligible in leading order and, hence, whether an idealized
approach is adequate to describe and analyse the cross-
sectional flow pattern. Simultaneously, we assess the exis-
tence of a causal relation between local spatial variations in
advective and diffusive forcing on the one hand and local
transverse variations in bottom topography on the other

Fig. 9 Tide-residual
along-channel advective
forcing computed assuming a
uniform eddy viscosity (a, c)
and assuming a parabolic shape
of the vertical distribution of
eddy viscosity (b, d). Warm
colours indicate a seaward
force. a, b Results of
computations in which
advection is taken into account
in leading order. That is not the
case for the computations of
which the results are shown in c
and d

Fig. 8 Decomposition of the tide-residual flow computed assuming a
uniform distribution of eddy viscosity over the vertical. Lower left
panels concern the along-channel flow and the cross-channel flow is
given in the upper right panels. The total tide-residual flow is shown in

the panels on the right. Warm colours indicate a flow towards the sea
(for the along-channel component) or to the right (for the transverse
component). Flow velocities are given in metres per second
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hand. We deploy the IM for these purposes as it provides a
semi-analytical and therefore more transparent solution of
its basic equations than the case-specific, numerical solu-
tions obtained with the AM.

We use flow velocity profiles obtained with the IM to
arrive at a first-order estimate of advective forcing. In this
respect, we focus on the M0 and M2 components of a flow-
driving force d, given by

dðtÞ ¼ d0 þ dc coswt þ ds sinwt ð13Þ
with ω the angular frequency of the semi-diurnal tidal con-
stituent. This force can be related to either an along-channel
density gradient, a transverse density gradient or an along-
channel surface slope. As outlined in “Appendix 3”, the
corresponding first-order estimate of along-channel advec-
tive forcing can be written as a linear combination of an M0,
an M2 and an M4 component. Denoting these components
by A0 (for the M0–M0 interaction), A2 (for the M0–M2

interaction) and A4 (for the M2–M2 interaction), the estimate
becomes

uy
@ux
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þ uz
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h

@ux
@σ

¼ A0 σð Þ þ A2 σ; tð Þ þ A4 σ; tð Þ ð14Þ

(in which x and y are the along-channel and cross-channel
coordinates, respectively, as used in the formulation of the
IM in “Appendix 3”).

The amplitudes of these components are given by
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(^ denotes ‘amplitude’) in which zb is the bottom level, y the
transverse coordinate and the μ are shape functions for the
vertical distribution of the concerned amplitudes.

In the above expressions, the amplitudes bA are written as
products of a scale factor and a shape function. These shape
functions depend on the type of flow-driving mechanism
and on the assumed vertical distribution of eddy viscosity.
Examples of shape functions are given in Figs. 10 and 11.
They concern a flow driven by an along-channel density
gradient. Figure 10 contains the shape functions obtained for
a uniformly distributed eddy viscosity, whereas Fig. 11 is
based on a parabolic eddy viscosity profile.

In setting up these two figures, two contributions to the
shape function μ0 have been discriminated. One of them is
due to the M0–M0 interaction of the flow-driving force,
whereas the other results from the M2–M2 interaction. Sim-
ilar results are obtained for a flow driven by an along-
channel surface slope.

Although less apparent for the response to the M0–M0

interaction, all distribution functions presented in Figs. 10
and 11 show a tendency of decreasing order of magnitude
with decreasing Ekman number. For a sufficiently small
Ekman number, the relative importance of vertical diffusion
vanishes and apart from an ever thinner bottom boundary
layer, the horizontal flow becomes constant over the verti-
cal. Combined with a zero net flow in cross-channel direc-
tion, this means that the transverse flow velocity tends
towards zero. From continuity, it then follows that also the
vertical velocity tends towards zero (at least in our model as
we assume along-channel uniformity). Consequently, our
first-order estimate of along-channel advective forcing
decreases with decreasing Ekman number.

For a flow driven by an along-channel density gradient, the
orders of magnitude of the shape functions μ0, μ2 and μ4 are
much alike. This can be seen from Figs. 10 and 11. This holds
also for a flow driven by an along-channel surface slope. With
this property, an approximate scale of the first-order estimate
of along-channel advective forcing can be written as

uy
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� g2gb3
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dzb
dy

D2
θμA ð16Þ

in which μA is the order of magnitude of the shape functions
and Dθ is a measure for the magnitude of the along-channel
driving force, defined by

Dθ ¼ d0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c þ d2s

q
ð17Þ

This follows from Eqs. 14 and 15 if μ00μ20μ4. If this scale is
small compared to that of other terms in the along-channel
momentum balance, it is likely that along-channel advective
forcing can be neglected in leading order. Such a comparison
can be seen as an indicative test for the relative importance of
this advective forcing. It can be elaborated below.

With the velocity scales

ux � �gbDθ ; uy � �ggb2Dθ ð18Þ
(cf. Eq. 71 in “Appendix 3”), we obtain according to our IM
the following scales for terms in the along-channel momen-
tum balance:

& Inertia:

@ux
@t � �gwbatDθ ¼ �St�1 � gatDθ ; at ¼

ffiffiffiffiffiffiffiffiffiffi
d2cþd2s

p
Dθ

& Coriolis deflection:

guyμC � g gbð Þ2Dθ ¼ μCEk
�2 � gDθ

& External forcing:
−gDθ

& Vertical diffusion:
−gDθ

in which St is the Stokes number (St0(ωβ)−1) and Ek is the
Ekman number (Ek0(+β)−1). Furthermore, μC is the order of
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magnitude corresponding to the shape function for the ver-
tical distribution of Coriolis forcing. According to the IM,
μC010

−2 for a parabolic eddy viscosity distribution. Similar
magnitudes for inertia and vertical diffusion are of order 1
(not mentioned explicitly in the above expressions).

For the scale of the first-order estimate of along-channel
advection, we may write

& Advection:

uy
@ux
@y þ uz 1h

@ux
@σ � μA � Ro � Ek�2 � gDθ

Fig. 10 Vertical distribution of
the first-order estimate of
along-channel advective forc-
ing as a function of Ekman
number (1/γβ) and
corresponding to a flow driven
by an along-channel density
gradient. Each panel shows the
distribution function for a spe-
cific interaction between M0

and M2 components of the
flow-driving force. A uniform
eddy viscosity distribution is
assumed

Fig. 11 Vertical distribution of
the first-order estimate of
along-channel advective forc-
ing as a function of Ekman
number (1/γβ) and
corresponding to a flow driven
by an along-channel density
gradient. Each panel shows the
distribution function for a spe-
cific interaction between M0

and M2 components of the
flow-driving force. A parabolic
eddy viscosity distribution is
assumed. White curves are zero
contours
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in which Ro is the Rossby number, defined by

Ro ¼ gbDθ

gL ; L ¼ 1
h

dzb
dy

� ��1 ð19Þ

The numerator in the above expression is the scale of the
along-channel velocity and L in the denominator is a length
scale that depends on the local water depth and the local
transverse bottom slope.

Comparing the above scales and after dividing them by
gDθ, it follows that along-channel advective forcing is likely
to be relatively small if

μA � Ro � Ek�2 � max at � St�1;Ek�2; 1

 � ð20Þ

The above result forms an indicative test for the relative
importance of along-channel advection in the case of a flow
driven by a force acting in along-channel direction. It is
indicative primarily as it is based on a first-order estimate
of along-channel advection, but also as the shape of the
vertical distribution of advective forcing is not taken into
account, only its order of magnitude (parameter μA).

Figure 12 shows the scale factors involved in Eq. 20 for
the Chesapeake Bay transect studied in the present paper.
Apparently, the relative importance of advection (indicated
with the solid line in the figure) varies along the cross
section. Especially in the central part of the channel, it is
not small compared to vertical diffusion. This indicates that
advective forcing cannot be neglected in leading order.

Also apparent from Fig. 12 is that inertia dominates over
vertical diffusion in the central, deeper part of the channel
whereas the opposite is encountered in the adjacent compar-
atively shallow areas. This is consistent with the transverse
variation of the relative Ekman depth (defined as √(2Ek) and
indicated also in Fig. 12). This relative depth is the smallest
in the centre of the channel, indicating that in this area, the
thickness of the bottom boundary layer is small compared to
the local water depth. Away from this boundary layer, the
flow pattern is dominated by inertia. In the shallow parts of
the channel, on the other hand, the bottom boundary layer
occupies a considerable part of the water column, and the
flow pattern is influenced primarily by vertical diffusion.

According to our IM, the vertical distribution of eddy
viscosity has a noticeable influence on the vertical structure
of along-channel advective forcing, at least for a flow driven

by an along-channel density gradient or surface slope. This
becomes apparent by comparing Figs. 10 and 11. In the case
of a parabolic eddy viscosity distribution, theM0 component
of the advective forcing changes direction over the water
column (upper panels in Fig. 12). For the Ekman number
larger than about 1, the amplitudes of the M2 and M4

components show two peaks: one in the vicinity of the
bottom and one at the surface. This is consistent with the
result obtained with the AM for the same type of eddy
viscosity distribution and assuming that advection is negli-
gible in leading order (see Fig. 9d). On the left-hand side of
the centre of the channel, we see a landward forcing in the
lower half of the water column and a seaward forcing in the
upper half. A mirror image of this pattern is found on the
right-hand side. This is straightforward as advective forcing
is proportional to the transverse bottom slope and on either
sides of the centre these slopes bear opposite signs.

For a uniform eddy viscosity, the M0 component of
along-channel advective forcing does not show a change
of direction over the water column (upper panels in
Fig. 10). Amplitudes ofM2 andM4 components do not show
a peak near the bottom but increase gradually towards the
surface (lower panels in Fig. 10). This finding, based on our
IM, does not seem very consistent with results obtained with
the AM for the same eddy viscosity profile. Along-channel
advective forcing derived from AM results includes changes
of direction over the vertical and also in the horizontal at
unexpected locations, considering the transverse bottom
slope. Whether advection is or is not included in leading
order in these AM computations hardly makes a difference
(see Fig. 9a, c).

This seemingly anomalous behaviour can be explained
from transverse diffusion. As outlined in “Appendix 4” on
the basis of the IM, the along-channel forcing related to
transverse diffusion can be seen as a combination of one
part that scales with the local transverse bottom slope (sim-
ilar to advective forcing) and another part that scales with
the local transverse curvature of the bottom. This second
part causes that bumps in the bottom lead to a local increase
of the relative importance of horizontal diffusion. The rele-
vance of this effect is assessed with an additional computa-
tion with the AM. It concerns a look-alike of the
Chesapeake Bay transect with a rather smooth transverse
bathymetry. Along-channel advective forcing derived from
the results of this additional computation is given in Fig. 13
b, together with the advective forcing found for the actual
bathymetry (Fig. 13 a, identical to Fig. 9c). In both cases,
advection is assumed negligible in leading order and eddy
viscosity is distributed uniformly.

Apparently, the applied smoothing of the bottom profile
substantially reduces the effect of horizontal diffusion. The
tide-residual along-channel advective forcing found for the
smoothed bottom profile (Fig. 13 b) is far closer to the

Fig. 12 Variation of scale factors for advection, inertia, vertical diffu-
sion and Coriolis acceleration along the studied Chesapeake Bay
transect. For comparison, the relative Ekman depth is added
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pattern expected on the basis of the semi-analytical solutions
of the IM (Fig. 10a) than what is obtained for the actual
bottom (Fig. 13 a). However, as horizontal diffusion is not
suppressed completely, the agreement is not perfect.

That the spatial pattern of tide-residual advective forcing
computed for a parabolic eddy viscosity profile agrees better
with the outcome of the IM than that determined for a
uniform eddy viscosity distribution suggests a larger relative
importance of horizontal diffusion in the latter case. This
probably has to do with the difference of the scale of eddy
viscosity in the two cases. According to the semi-analytical
expressions obtained with our IM, transverse diffusion is
proportional to the depth-mean eddy viscosity, whereas
along-channel advection is proportional to third power of
that mean. For a parabolic eddy viscosity profile that mean
is in our computations a factor of four larger than that for a
uniformly distributed eddy viscosity. This indicates that the
importance of transverse diffusion relative to that of along-
channel advective forcing is much larger for a uniform eddy
viscosity profile than for a parabolic one.

7 Discussion

To study the relative importance of advection, we recon-
struct advective forcing from flow velocities computed with
the AM. Subsequently, we determine which part of the total
flow can be assigned to this particular forcing. Results show
that in the Chesapeake Bay case, advection is not negligible
in leading order. In a tide-residual sense, advection-induced
flow is not small compared to contributions of other driving
mechanisms to the total flow pattern (see Figs. 7 and 8).

We assess the relevance of taking advection into account
in leading order by reconstructing tide-residual advective
forcing from computed flow velocities. We compare two
reconstructions. In one of them, flow velocities are comput-
ed including advection, whereas in the other computation
advection is neglected. The results of these reconstructions
are presented in Fig. 9. Those concerning a presumed uni-
form eddy viscosity distribution (panels a and c in Fig. 9)
are obscured by effects of horizontal diffusion and therefore
less suitable for the intended comparison. Results obtained
for a parabolic eddy viscosity profile (panels b and d in

Fig. 9) indicate that neglecting advection in leading order
leads to a larger estimate of tide-residual along-channel
advective forcing than when advection is included in the
flow computations.

This difference may explain why Huijts et al. (2009)
overestimate the magnitude and extent of the area around
the lower part of the centre of the channel in which a
residual landward flow occurs (their Fig. 2; also see
Section 1 in the present paper). They compute the flow in
the channel in two steps. The first step is a zero-order
approximation in which advection is presumed negligible.
Advective forcing is estimated from the so-obtained flow
pattern and used subsequently as an external forcing in a
first-order approximation. Our model results indicate that
for the Chesapeake Bay case, such an approach leads to an
overestimation of the influence of advection on the tide-
residual along-channel flow pattern.

In essence, the approach followed by Huijts et al. (2009)
is based on the hypothesis that the effect of advection can be
described mathematically as a series expansion. Their elab-
oration of that series covers the first two terms only, which
may be too little to reach sufficient convergence.

Semi-analytical expressions for first-order estimates of
along-channel advective forcing obtained with our IM indi-
cate an essential difference in the spatial pattern of that
forcing, depending on the assumed eddy viscosity profile.
For a flow driven by an along-channel surface slope or an
along-channel density gradient, we find for a uniform eddy
viscosity distribution that the advective forcing monoto-
nously increases with height above the bottom. Model
results concerning Chesapeake Bay presented by Huijts et
al. (2009) bear the same property. Our theoretical result
shows that this property is not case-specific but that it is
inherent to a uniform eddy viscosity distribution.

Seen in cross-channel direction, however, the direction of
the along-channel advective forcing may vary. The reason
for this is that this forcing is proportional to the local
transverse bottom slope. Hence, for a fairly simple channel
geometry in which the bottom level increases monotonously
with distance from the centre, the along-channel advective
forcing is organised in two cells, one on either side of the
centre of the channel. Within such a cell the magnitude of
advective forcing may vary, but it has the same direction

Fig. 13 Tide-residual along-channel advective forcing estimated from
flow velocities computed assuming that advection is negligible in
leading order. The left-hand panel shows the estimate obtained with

the actual cross-channel bathymetry of Chesapeake Bay, whereas an
artificially smoothened profile underlies the estimate presented in the
right-hand panel. Warm colours indicate a seaward force
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everywhere. However, the direction changes from one cell
to the other. This is consistent with the findings of Huijts et
al. (2009, their Fig. 9h).

For a parabolic eddy viscosity profile, on the other hand,
our theoretical first-order estimate of along-channel advec-
tive forcing changes direction over the vertical (see Fig. 11).
In the lower part of the water column, the forcing is directed
opposite to that in the upper part. In the case of a channel
geometry like the aforementioned fairly simple one, this
leads to a transverse distribution of along-channel advective
forcing consisting of four cells. Such a pattern can be
recognized in Fig. 9d showing the first-order estimate of
along-channel advective forcing derived from flow veloci-
ties computed with the AM assuming a parabolic eddy
viscosity profile.

With the semi-analytical expressions for a first-order
estimate of along-channel advective forcing obtained with
our IM, we derive an indicative test to judge the relative
importance of advection from orders of magnitude of along-
channel flow-driving mechanisms. This test is formulated in
terms of common oceanographic index numbers, viz. the
Ekman number, the Stokes number and the Rossby number.
Deviant from what is used in most theoretical studies, we
relate the length scale that is part of the Rossby number to a
local geometrical property of the transverse channel profile
instead of a global property. This ensues directly from the
theoretical outcome of our IM, showing that along-channel
advective forcing is proportional to the local transverse
bottom slope and inversely proportional to the local water
depth. Following this finding, we define the length scale to
be used in the Rossby number as the ratio of water depth and
transverse bottom slope. Hence, our test indicates the local
relative importance of along-channel advection. Whether
this advection should be taken into account in leading order
in flow modelling depends on the locations and extent of
areas in the transect where it is relatively important. This
applies especially to studies based on a natural transect. In
many theoretical studies on this subject, however, a sche-
matised and smooth bottom profile is used, fully described
by some continuous mathematical function. For such a
profile, local and global properties may be strongly inter-
related, so a global property may be as appropriate as a local
one to reflect the relative importance of advection.

Transverse diffusion is not included in our IM, but its semi-
analytical outcome can be used to arrive at a first-order esti-
mate of the associated forcing, similar to the way advective
forcing is estimated. In the present study, this is elaborated for
a flow driven by an along-channel surface slope and density
gradient. The theoretical result shows that the magnitude of
the diffusive forcing is directly related to the transverse ba-
thymetry, in particular the local water depth, transverse bottom
slope and transverse curvature of the bottom. This may be a
source of numerical artefacts, for instance when a polynomial

fit is used to describe a bottom profile. Such a fit may be
perfect in the sense that it exactly reproduces observed bottom
levels but simultaneously be attended with the introduction of
bumps that do not exist in the physical bottom. In model
computations, such bumps lead to an artificial amplification
of the effect of transverse diffusion.

8 Conclusion

To study the importance of cross-sectional bathymetry and
eddy viscosity parameterisation in modelling estuarine flow,
we develop two models. One is an advanced numerical model
that solves the full three-dimensional shallow water equations
for a transect of a curved tidal channel, assuming along-
channel uniformity and also that water level variations are
small compared to water depth (rigid-lid approximation). The
other model is focused on idealized conditions in which
advective processes and transverse diffusion can be neglected
in leading order. For those conditions, this model provides
semi-analytical solutions of the shallow water equations as
well as for first-order estimates of along-channel advective
forcing and transverse diffusive forcing. This second model is
meant primarily as an aid in understanding and explaining
results obtained with the numerical model.

First, we calibrate our numerical model to observations
gathered in a transect of Chesapeake Bay. Second, we
deploy this model to compute tide-residual flow using three
parameterisations of eddy viscosity, all in combination with
a no-slip bottom boundary condition: a parabolic vertical
profile (used also in the calibration), a uniform distribution
and a combination of a parabolic profile in the vicinity of the
bottom and uniform higher up in the water column. The
latter is used to simulate a partial-slip bottom boundary
condition imposed at the level of transition from parabolic
to uniform eddy viscosity. With respect to the computed
tide-residual flow patterns, the uniform distribution and the
combined form yield hardly any difference.

On average, assuming a uniform eddy viscosity distribu-
tion yields larger tide-residual flow velocities than in the
case of a parabolic distribution over the water column.
Corresponding spatial patterns, on the other hand, are sim-
ilar to one another. For both parameterisations, advective
and transverse diffusive processes have a noticeable effect
on the tide-residual flow in the considered transect. Flow
resulting from these processes contributes significantly to
the total tidal residual in the concerned Chesapeake Bay
transect. This holds for the along-channel flow component
as well as for the transverse one. In earlier studies, advection
and diffusion were presumed negligible in leading order, but
that is not supported by our results.

In search for an explanation for the apparent significance of
advection and diffusion-induced flow, we deploy our
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idealized model as it provides semi-analytical expressions for
first-order estimates of along-channel advective and diffusive
forcing. From these expressions, we find that the spatial
pattern of along-channel advective forcing changes noticeably
depending on whether a uniform or a parabolic eddy viscosity
distribution is assumed. For a uniform eddy viscosity profile,
the along-channel advective forcing does not change over the
water column. In the case of a parabolic profile, on the other
hand, the direction of the advective forcing in the lower part of
the water column is opposite to that in the upper part. This
holds in general. It is not a case-specific finding.

Furthermore, our idealized model shows that the magni-
tude of along-channel advective forcing scales with local
transverse bottom slope and local water depth. From this
finding, we conclude that judging whether or not along-
channel advective forcing should be included in leading
order in flow computations is better based on local geomet-
rical properties of the considered channel cross section than
on global ones, like channel width.

The relative importance of transverse diffusion depends
also on local properties of the channel cross section, in
particular the curvature of the bottom profile. We therefore
recommend to avoid artificial bumps, however small, in
mathematical representations of bottom profiles to be used
in flow models.

From our idealized model results, we conclude that the
combination of transverse bottom topography and type of
eddy viscosity parameterisation largely determines the spatial
distribution of along-channel tide-residual advective forcing.
In parts of the channel’s transect where the bottom slope does
not change sign, this forcing is organised in cells. Assuming a
uniform eddy viscosity distribution leads to a single cell in the
water column. When a parabolic eddy viscosity profile is
assumed, on the other hand, two cells on top of each other
occur with forcing in opposite directions. For an idealized
transverse bottom profile, like a parabolic one, such cell
structures occur at either side of the centre of the channel.
They are each other’s mirror image. This way, a uniform eddy
viscosity distribution leads to two cells and a parabolic one to
four cells in the cross section.

A more realistic, usually more bumpy transverse topog-
raphy may lead to a larger number of cells in cross-channel
direction as the transverse bottom slope changes sign more
often. On top of that, the cell structure may be obscured by
the effect of horizontal diffusion. That effect gains impor-
tance due to the bumps. The combined effect may be rather
complex as can be seen in our numerical model output.

Throughout our study, we presume that eddy viscosity is
time-invariant. Although the study has provided new insight
into aspects of estuarine flow, this assumption may be too
restrictive for various practically and scientifically relevant
cases. Therefore, flow-dependent eddy viscosity will be
addressed in a subsequent study.
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Appendix 1: Coordinate transformation and numerical
method

In the AM, flow velocity components and the transverse
pressure gradient are solved numerically using a collocation
method based on Chebyshev polynomials (see, e.g. Boyd
2000). In the physical domain, we use a non-orthogonal
curvilinear grid. This domain is mapped onto a rectangular
computational domain in such a way that seen in both
directions, grid points in the computational domain coincide
with collocation points (see Fig. 14). As we apply the rigid-
lid approximation, this mapping is time-invariant.

The coordinate system (ζ,η) is defined such that the
physical domain (the channel’s cross-section) is covered
exactly by ζ∈[−1;1] and η∈[−1;1]. The bottom of the chan-
nel and the water surface coincide with η0−1 and η01,
respectively, whereas the two side walls correspond to
ζ0−1 and ζ01. Furthermore, curves of constant ζ appear
in the physical domain as straight, vertical lines.

The relative height of lines of constant η above the
bottom does not change in transverse direction. As the
bottom level varies across the channel, these lines are
curved. As this curvature is taken into account fully in
transforming the basic model Eqs. 1, 2 and 3 to the coordi-
nate system (ζ,η) of the computational domain, numerical
effects like artificial flow (see, e.g. Stelling and Van Kester
1994) will not occur.

The basic model equations are transformed to the (ζ,η)
coordinate system by consistent and continued application
of the general relations

@
@x ¼ @r

@x
@
@r þ @z

@x
@x
@z ; @

@η ¼ @r
@η

@
@r þ @z

@η
@
@z ð21Þ

Subsequently, the flow velocity components ur, uθ and uz
are solved from the transformed model equations using a
collocation method based on Chebyshev polynomials (see,
e.g. Boyd 2000). The essence of this approach can be
explained below. Velocity components are approximated
by a linear combination of Chebyshev polynomials:

ur x; η; tð Þ
uθ x; η; tð Þ
uz x; η; tð Þ

0@ 1A ¼
XK
k¼0

XM
m¼0

XkmðtÞ
YkmðtÞ
ZkmðtÞ

0@ 1ATk xð ÞTm ηð Þ ð22Þ
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in which Tj denotes a Chebyshev polynomial of order j. The
X, Y and Z are time-dependent weight factors. They are
determined such that series approximations of the velocities
satisfy the transformed model equations exactly in the col-
location points (ζi,ηj), with i00…K and j00…M. In the
computational domain, these points include the bound-
aries and the zeros-crossings of dTK/dζ for ζ and those
of dTM/dη for η (Lobatto grid, see, e.g. Boyd 2000). As
the derivative of Tn (n>0) contains n−1 zero-crossings,
we have (K+1)(M+1) collocation points. Evaluation of
the transformed momentum and mass balances including
corresponding boundary conditions in these points
yields a set of 3(K+1)(M+1) equations. This is identical
to the number of weight factors Xkm, Ykm and Zkm. The
set is therefore sufficient to solve these factors.

The along-channel surface slope ∂ζ/∂θ is chosen such that
the model produces a prescribed time-dependent discharge.
It is taken constant along the transect, but it may vary with
time. The transverse surface slope ∂ζ/∂r is computed by the
model in accordance with the rigid-lid approximation. For
each vertical grid line, it is determined such that Eq. 5 is
satisfied.

The number and the spatial distribution of collocation
points in the computational domain is fully determined once
a choice has been made regarding the extent of the series
expansions like Eq. 22 for the velocity components, i.e.
once K and M have been set. Their distribution in the
physical domain, on the other hand, can be influenced to
some extent by manipulating the relation between the coor-
dinate systems (r,z) and (ζ,η), provided that in mapping the
physical domain onto the computational domain correspon-
dence between boundaries is maintained and that no folds
occur. In our model, we use this freedom to achieve a
comparatively high resolution near the bottom of the chan-
nel. This is necessary for a proper representation of the
bottom boundary layer. In particular, the transformation
from the vertical coordinate z to η is performed in two steps.
The first step is a scaling of z to σ, such that σ00 at the

bottom and σ01 at the surface. This scaling depends on the
location in the cross section of the channel. In the second step,
a non-linear transformation of σ to η is applied to achieve a
relatively high resolution near the bottom. An example of this
transformation is shown graphically in Fig. 15.

The dots in Fig. 15 are situated on a curve given by

σ ¼ σ0 þ 1� σ0ð Þs exp
ηþ 1

2
ln
1þ s

s

� �
� 1

� �
ð23Þ

in which σ0 is the relative height above the bottom at which
the bottom boundary condition is applied (equal to 10−3 in
the example in Fig. 15) and s is a shape parameter. The
vertical lines intersect the η axis at collocation points. The
distribution of these points in the interval [−1;1] is fixed.
Where these vertical lines intersect the curve given by
Eq. 23 determines the distribution of grid points between
the level at which the bottom boundary condition is applied
(σ0σ0) and the surface (σ01) in the physical domain. This
distribution can be influenced by varying the shape param-
eter s. Choosing s identical to σ0 yields a logarithmic distri-
bution. Decreasing the value of s increases the resolution
near the bottom at the expense of that in the upper part of the
water column. In all model computations carried out for the
present study, s010−4 has been used.

For integration in the time domain, we use a fully
implicit finite difference approximation. This means that
we approximate

@u

@t

����
t¼tnþ1

� u nþ1ð Þ � uðnÞ

tnþ1 � tn
ð24Þ

in which the superscripts (n+1) and (n) refer to the time
levels tn+1 and tn, respectively. In the model computa-
tions mentioned in the present paper, we use tn+1− tn0
81 s, so that one tidal cycle (44,712 s) is covered by
exactly 552 time steps. Test computations have shown
that reducing the time step size has negligible effect on
model output.

Fig. 14 Non-orthogonal
curvilinear grid in the physical
domain and the corresponding
rectilinear, orthogonal grid in
the computational domain. Grid
points in the latter domain are
collocation points based on
Chebyshev polynomials applied
in two directions. To illustrate
the spatial variation of
resolution, four grid lines are
coloured red. Those in the
physical domain correspond to
the ones in the computational
domain
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With approximation Eq. 24, the momentum balance for
the radial direction Eq. 1 can be written as

u nþ1ð Þ
r � uðnÞr

tnþ1 � tn
� Nr u nþ1ð Þ

r ; u nþ1ð Þ
θ ; u nþ1ð Þ

z ; x; η; tnþ1

� �
¼ 0 ð25Þ

in which Nr is an operator defined such that the above
expression is identical to Eq. 1 into which the approxi-
mation Eq. 24 has been substituted. Similar expressions
can be formulated for the other two basic model equa-
tions, but for transparency we focus on the above one in
the present appendix. We interpret the left-hand side of
Eq. 25 as a function of the velocity components at time
level tn+1 and in which the known velocity ur

(n) occurs
as a parameter (with a prescribed value). We denote this
function by fr. After substitution of the series expansion
(Eq. 22) for the three velocity components, we may
express this as

fr X nþ1ð Þ
km ; Y nþ1ð Þ

km ; Z nþ1ð Þ
km ; x; η; tnþ1

� �
¼ 0 ;

k ¼ 0::K

m ¼ 0::M

(
ð26Þ

The weight factors X, Y and Z for time level tn+1 are
found by solving the above equation at all collocation points
simultaneously. As fr is non-linear in these factors, we use a
Newton–Raphson iteration (see, e.g. Abramowitz and
Stegun (1970)). In this respect, the X, Y and Z obtained for
time level tn serve as first estimates. Successive corrections
ΔX, ΔY and ΔZ to these estimates are obtained from

fr þ
XK
k¼0

XM
m¼0

$Xkm
@fr
@Xkm

þ
XK
k¼0

XM
m¼0

$Ykm
@fr
@Ykm

þ
XK
k¼0

XM
m¼0

$Zkm
@fr
@Zkm

¼ 0

ð27Þ

evaluated for the current estimates of the weight factors and
at all collocation points simultaneously, together with sim-
ilar expressions derived from the momentum balance for the
along-channel direction and from the continuity equation.

Appendix 2: Contributions of individual driving forces
to the flow pattern

Horizontal flow velocity components uθ and ur may be seen
as a superposition of contributions that can be assigned to
individual flow-driving forces:

uθ ¼
P
i
uθ;i ; ur ¼

P
i
ur;i ð28Þ

in which the index i refers to a specific driving force and the
uθ,i and ur,i are the corresponding contributions. Computa-
tion of these contributions is performed in three consecutive
steps. First, we compute the time- and space-dependent flow
field with the AM. Subsequently, we discriminate between
the driving forces mentioned in Table 2, and we use the
results obtained with the AM to compute these forces. In the
third step, the contributions uθ,i and ur,i related to these
forces are determined from

@uθ;i
@t

¼ Sθ;i � g
1

r

@z
@θ

� �
i

þ @

@z
ut
@uθ;i
@z

� �
;

ZZ
cross
section

uθ;idzdr ¼ Qi

ð29Þ

@ur;i
@t ¼ Sr;i � g @z

@r

� �
i
þ @

@z ut
@ur;i
@z

� �
;
R0
�h

ur;idz ¼ 0

ð30Þ

together with boundary conditions identical to those used in
the AM:

uθ �hð Þ ¼ ur �hð Þ ¼ @uθ
@z

����
0

¼ @ur
@z

����
0

¼ 0 ð31Þ

In expressions 29 and 30, Sθ and Sr reflect the driving
forces under consideration in along- and cross-channel di-
rection, respectively. The along-channel surface slope is
determined such that a total discharge Q is obtained that
corresponds to what the concerned driving force induces.
The transverse slope, on the other hand, is computed in
accordance with the rigid-lid approximation, also applied
in the AM. The driving forces assessed in the present study
are listed in Table 2.

Fig. 15 Example of the transformation of the scaled vertical coordi-
nate σ in the physical domain to the coordinate η in the computational
domain. At the surface, σ01 and η01, whereas at the level at which the
no-slip bottom boundary conditions is applied, η0−1 and, in this
example, σ00.001
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Appendix 3: Estimating advection with the idealized
model

The basic equations of the IM are given in Eqs. 6, 7, 8 and 9.
With the complex notation

u ¼ ux þ iuy ; i2 ¼ �1 ð32Þ
we may write these equations like

@u
@t þ igu ¼ �g h

ρ0
1� σð Þ ρx þ iρy

� �
� g zx þ izy
� �

þ 1
b

@
@σ φ @u

@σ

� �
;

u σ0ð Þ ¼ @u
@σ

��
σ¼1

¼ 0
ð33Þ

Z1
σ0

Im uf gdσ ¼ 0 ð34Þ

in which β is defined in Eq. 8 and x, y, σ are along-channel,
cross-channel and scaled vertical coordinates, ζx, ζy are
along and cross-channel barotropic pressure gradients and
ρx, ρy are along and cross-channel density gradients.

Condition 34 results from application of the rigid-lid
approximation. It says that the depth-averaged flow in
cross-channel direction equals zero at all times. The trans-
verse surface slope ζy is chosen such that this condition 34 is
met. Other flow-driving forces (ρx, ρy and ζx) are prescribed
and taken constant in cross-channel direction. In particular,
we consider driving forces composed of a steady component
and a harmonically varying one. For each force, this is
written as the dot-product of two vectors:

zx ¼ z
x
� t ; ρx ¼ ρ

x
� t ; ρy ¼ ρ

y
� t ; t ¼

1
coswt
sinwt

0@ 1A ð35Þ

The x
y
, ρ

x
and ρ

y
are real vectors representing the

amplitudes of the M0 and M2 tidal components (with ω the
angular frequency of M2) of the along-channel surface
slope, the along-channel and cross-channel density gra-
dients, respectively. For instance, if

z
x
¼

a0
ac
as

0@ 1A ð36Þ

then

zx ¼ z
x
� t

¼ a0 þ ac coswt þ as sinwt

¼ a0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2c þ a2s

p
sin wt þ ϑð Þ ; tanϑ ¼ ac

as

ð37Þ

with ϑ the phase angle of the M2 component and √(ac2+as2)
its amplitude. With Eqs. 35, 36 and 37, the basic model
equation can be written as

@u
@t þ igu ¼ �g h

ρ0
1� σð Þ ρ

x
þ iρ

y

� �
� t � g z

x
þ iz

y

� �
� t þ 1

b
@
@σ φ @u

@σ

� �
;

u σ0ð Þ ¼ @u
@σ

��
σ¼1

¼ 0

ð38Þ

As this equation is linear in u, we may expect a solution
of the form

u ¼ u � t ð39Þ
in which the complex vector u contains the amplitudes of the
M0 and M2 tidal components of the flow velocity compo-
nents in a similar way as Eqs. 36 and 37. To find this vector,
we use the eigenfunction expansion

u σ; tð Þ ¼
XM
m¼1

fm σð ÞumðtÞ ð40Þ

in which the um contain time-dependent weight factors and
the fm are vertical shape functions derived from the eigen-
value problem

d
dσ φ dfm

dσ

� �þ lmfm ¼ 0 ; fm σ0ð Þ ¼ dfm
dσ

��
σ¼1

¼ 0 ð41Þ

where λm are eigenvalues (see, e.g. Davies, 1987). The
advantage of this choice lies in the similarity of the homo-
geneous boundary conditions imposed on the shape func-
tions and the physical boundary conditions that apply to the
horizontal velocity components. Due to this similarity, the
expansion (Eq. 40) by definition meets those physical
conditions. That is convenient as after substitution of the
expansion into the basic model Eq. 38, the term reflecting
vertical diffusion takes the form of a linear combination
of shape functions. The explicit occurrence of vertical

Table 2 Driving forces for
which the contribution to the
along- and cross-channel flow
patterns is determined

Origin of driving force Description
(along-channel direction) (cross-channel direction)

Attended
discharge

Advection Sθ ¼ �ur
@uθ
@r � uz

@uθ
@z Sr ¼ �ur

@ur
@r � uz

@ur
@z Q00

Coriolis Sθ0−γur Sr0γuθ Q00

Along-channel density gradient Sθ ¼ z
r

g
ρ0

@ρ
@θ Sr ¼ z g

ρ0

@ρ
@r Q00

Cross-channel diffusion Sθ ¼ uh 1
r

@
@r r @uθ

@r

� �
Sr ¼ uh 1

r
@
@r r @ur

@r

� �
Q00

Curvature Sθ ¼ � uθur
r Sr ¼ u2θ

r
Q00

River discharge Sθ00 Sr00 Q0Q0
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derivatives vanishes in this process. This necessitates an
alternative imposition of the physical boundary conditions,
which is found in the present study in the definition of the
shape functions.

With the expansion, we may write the terms reflecting
inertia, Coriolis deflection and vertical exchange of momen-
tum in the basic model Eq. 33 as a linear combination of
shape functions:

XM
m¼1

b
@um
@t

þ igb þ lmð Þum
� �

fm

 !
� t ¼ �gb

h

ρ0
1� σð Þ ρ

x
þ iρ

y

� �
� t � gb z

x
þ iz

y

� �
� t ð42Þ

Subsequently, we apply the Galerkin technique to optimise
the weight factors um (see, e.g. Boyd 2000). As the fm form a
complete set of mutually orthogonal functions, the series
expansion (Eq. 40) yields an exact solution if M→∞. For
practical reasons, however, we truncate the series at M040.
A property of the Galerkin technique is that the error that
remains after truncation cannot be expressed as a linear

combination of the included shape function. In that sense,
it yields an optimisation of the weights of those shape
functions. Computational experiments on the convergence
of the expansion have shown that for the considered flow
conditions, u40 is at least 10 orders of magnitude smaller
than u1.

Using Eq. 35, we may write Eq. 42 as

PM
m¼1

fmEmum

� �
� t ¼ �gb h

ρ0
1� σð Þ ρ

x
þ iρ

y

� �
� t � gb z

x
þ iz

y

� �
� t ; Em ¼

igb þ lm 0 0
0 igb þ lm wb
0 �wb igb þ lm

0@ 1A
ð43Þ

Note that apart from the eigenvalue λm, matrix Em con-
tains the Ekman number +β and the Stokes number ωβ.
Application of the Galerkin technique and taking the or-
thogonality of the fm into account yields the following set of
equations for the weight factors um:

Emum ¼ �gb h
ρ0
a1;m ρ

x
þ iρ

y

� �
� gba0;m z

x
þ iz

y

� �
; m ¼ 1::M

ð44Þ
in which

ak;m ¼

R1
σ0

1� σð Þk fmdσ
R1
σ0

f 2mdσ

ð45Þ

By substituting condition Eq. 34 into Eq. 44, we may
eliminate the transverse surface slope x

y
. This results in

um ¼ �gb
h

ρ0
Xmρx þ iYmρy

� �
� gbZmzx ð46Þ

in which

Xm ¼ E�1
m a1;mI� ia0;mRe D0f g�1Im D1f g
� �

Ym ¼ E�1
m a1;mI� a0;mRe D0f g�1Re D1f g
� �

Zm ¼ E�1
m a0;mI� ia0;mRe D0f g�1Im D0f g
� � ð47Þ

with

Dk ¼
PM
m¼1

ak;mE�1
m Fm ; Fm ¼ R1

σ0

fmdσ ð48Þ

and I is a unit matrix of rank 3.
Combination of Eq. 46 with Eq. 40 yields

u σ; tð Þ ¼
XM
m¼1

fm σð Þ �gb
h

ρ0
Xmρx þ iYmρy

� �
� gbZmzx

� �
� t

ð49Þ
which is the zero-order approximation of the flow velocity
profile for prescribed forcing (M0 and M2 components of
along-channel surface slope as well as along and cross-
channel density gradients).

In our IM, along-channel advective forcing and cross-
channel diffusion are assumed negligible in leading order. How-
ever, flow profiles computed as described above are used to
arrive at first-order estimates of these quantities. Hereafter, we
focus on advection. Diffusion is the subject of “Appendix 4”.

For the estimate of advection, the vertical flow velocity uz
is required. This flow component is derived from continuity
and the bottom boundary condition according to

1

h

@uz
@σ

þ @ImðuÞ
@y

¼ 0

uz σ0ð Þ ¼ 0

9=; ! 1
h uz ¼ � Rσ

σ0

@
@y Im uðsÞf gds

ð50Þ
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Combination of this result with the rigid-lid approxima-
tion (which leads to Eq. 34) and the no-slip bottom bound-
ary condition consistently yields uz(1)00.

To obtain the cross-channel derivative ∂u/∂y, we consider
a curvilinear, non-orthogonal coordinate system (ψ,σ) sim-
ilar to what is used in the AM (see Fig. 16: ψ connects
points of equal σ along the transect). The coordinate ψ is
chosen such that ∂ψ/∂y01 and the vertical coordinate is
defined by

σ ¼ z� zb
h

ð51Þ

with zb bottom level elevation. As we apply the rigid-lid
approximation, transverse variations in water depth h and
bottom level elevation zb are equally large, but bear opposite
signs (zb0−h). Hence,

dσ
dy

¼ � 1� σð Þ 1
h

dzb
dy

ð52Þ

With this property of the coordinate system, we may
write

@�
@y

¼ @y
@y

@�
@y

þ @σ
@y

@�
@σ

¼ @�
@y

� 1� σð Þ 1
h

dzb
dy

@�
@σ

ð53Þ

Hence, combining Eq. 35 with eigenfunction expansion
Eq. 40 gives

@u

@y
¼
XM
m¼1

fm
@um
@y

� 1

h

dzb
dy

1� σð Þ dfm
dσ

um

� �
� t ð54Þ

Substituting this derivative into Eq. 50 yields

1

h
uz ¼ 1

h
uz � t ¼ �

XM
m¼1

@Im umf g
@y

Zσ
σ0

fmðsÞds� Im umf g 1� σð Þfm þ
Zσ
σ0

fmðsÞds
0@ 1A 1

h

dzb
dy

0@ 1A � t ð55Þ

in which uz is a real vector reflecting the amplitudes of the
M0 and M2 tidal components of the vertical velocity (cf.
Eq. 39).

To compute the derivative of the weight factors in the
above expression, we write

@um
@y

¼ db
dy

@um
@b

¼ db
dy

@um
@b

ð56Þ

(note that β does not vary with σ).
In many analytical models, it is assumed that the depth-

averaged eddy viscosity scales with the water depth to some

power p, where p is of order 1. Friedrichs and Hamrick
(1996) reason that for well-mixed conditions, ut scales with
h, so that p01. Alternatively, assuming resemblance with
plane shear flow leads to p03/2. In the case of a uniform eddy
viscosity distribution, on the other hand, p00. In any such
case, it holds that

db
dy

¼ b p� 2ð Þ 1
h

dzb
dy

ð57Þ

Elaboration of the derivative with respect to β in Eq. 56 is
a matter of consistent application of the chain rule to Eq. 46.
We start by calculating

dEm

db
¼

ig 0 0

0 ig w

0 �w ig

0BB@
1CCA ;

dDk

d b
¼ �

XM
m¼1

ak;mFmE
�2
m

dEm

d b

ð58Þ
and resulting in

@um
@y

¼ � 1

h

dzb
dy

gb p� 3ð ÞXm þ p� 2ð Þb dXm

db

� �
h

ρ0
ρ
x

� 1

h

dzb
dy

gb p� 3ð ÞYm þ p� 2ð Þb dYm

db

� �
h

ρ0
iρ

y

� 1

h

dzb
dy

gb p� 2ð ÞZm þ p� 2ð Þb dZm

db

� �
z
x

ð59Þ
Fig. 16 Definition of the curvilinear, non-orthogonal coordinate sys-
tem (ψ,σ) used in the IM. ψ connects points of equal σ along the
transect
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in which

dXm

d b
¼ �E�1

m

dEm

d b
Xm þ ia0;mE

�1
m Re D0f g�1 dRe D0f g

d b
Re D0f g�1Im D1f g � dIm D1f g

d b

� �
dYm

d b
¼ �E�1

m

dEm

d b
Ym þ a0;mE

�1
m Re D0f g�1 dRe D0f g

d b
Re D0f g1Re D1f g � dRe D1f g

d b

� �
dZm

d b
¼ �E�1

m

dEm

d b
Zm þ ia0;mE

�1
m Re D0f g�1 dRe D0f g

d b
Re D0f g�1Im D0f g � dIm D0f g

d b

� � ð60Þ

Summarizing the above, semi-analytical expressions
have been obtained for the horizontal flow velocity
components u (with Eq. 49), the vertical flow velocity
component uz (with Eq. 55) and the transverse deriva-
tive of the horizontal flow velocity components (with
Eqs. 54, 59 and 60). With these expressions, the men-
tioned velocity components and attended derivatives can
be determined for a prescribed density gradient and
along-channel surface slope. Each of these expressions

applies to a single location along the channel’s transect.
Combining results for all locations yields the cross-
sectional flow pattern. These results apply to the ideal-
ized situation in which advection can be assumed neg-
ligible in leading order and in which external forcing
(density gradient and along-channel surface slope) are
composed of an M0 and an M2 component only.

With this result, our first-order estimate of the along-
channel advective forcing becomes

Im uf g @Re uf g
@y

þ uz
1

h

@Re uf g
@σ

¼ Im uf g � tð Þ @Re uf g
@y

� t
� �

þ uz � tð Þ 1

h

@Re uf g
@σ

� t
� �

¼ A0 σð Þ þ A2 σ; tð Þ þ A4 σ; tð Þ
ð61Þ

In which A0, A2 and A4 are the M0, M2 and M4 compo-
nents of the along-channel advective forcing, respectively.

By writing

Re uf g ¼
ux;0
ux;c
ux;s

0@ 1A ; Im uf g ¼
uy;0
uy;c
uy;s

0@ 1A ; uz ¼
uz;0
uz;c
uz;s

0@ 1A
ð62Þ

(cf. Eq. 36), these components can be written as

A0 ¼ uy;0
@ux;0
@y

þ 1

2
uy;c

@ux;c
@y

þ uy;s
@ux;s
@y

� �
þ uz;0

1

h

@ux;0
@σ

þ 1

2
uz;c

1

h

@ux;c
@σ

þ uz;s
1

h

@ux;s
@σ

� � ð63Þ

A2 ¼ þ uy;0
@ux;c
@y

þ uy;c
@ux;0
@y

þ uz;0
1

h

@ux;c
@σ

þ uz;c
1

h

@ux;0
@σ

� �
coswt

¼ þ uy;0
@ux;s
@y

þ uy;s
@ux;0
@y

þ uz;0
1

h

@ux;s
@σ

þ uz;s
1

h

@ux;0
@σ

� �
sinwt

ð64Þ
A4 ¼ þ 1

2
uy;c

@ux;c
@y

� uy;s
@ux;s
@y

þ uz;c
1

h

@ux;c
@σ

� uz;s
1

h

@ux;s
@σ

� �
cos 2wt

¼ þ 1

2
uy;c

@ux;s
@y

þ uy;s
@ux;c
@y

þ uz;c
1

h

@ux;s
@σ

þ uz;s
1

h

@ux;c
@σ

� �
sin 2wt

ð65Þ
First-order estimates of transverse diffusion can be obtained

in a similar fashion. This is outlined in “Appendix 4”.

Semi-analytical solutions for flow profiles obtained
with the IM can be written as a product of a shape
function and a scale factor. The velocity profile for a
flow driven by an along-channel surface slope, for in-
stance, reads

u ¼ �gb
XM
m¼1

fmZmzx

 !
� t ð66Þ

(see Eq. 49). In this expression, −g bx
x
can be desig-

nated as a scale factor and ΣfmZm as a shape function.
Both contain three elements: one corresponding to the
M0 component of the response to the flow-driving force
whereas the other two are related to the amplitude and
phase of the M2 response. We may take this one step
further by looking closer at Zm. From Eqs. 47 and 60, it
can be seen that this matrix as well as its derivative
with respect to β is proportional to Em

−1. Evaluation of
this inverse matrix reveals that its imaginary part scales
with +β. Its real part does not bear this property:

Re E�1
m


 � ¼

lm
l2mþ gbð Þ2 0 0

0 lm
l2m�3 gbð Þ2þ wbð Þ2

d �wb l2m� gbð Þ2þ wbð Þ2
d

0 wb l2m� gbð Þ2þ wbð Þ2
d lm

l2m�3 gbð Þ2þ wbð Þ2
d

0BB@
1CCA

ð67Þ
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Im E�1
m


 � ¼ gb

�1
l2mþ gbð Þ2 0 0

0 3l2m� gbð Þ2þ wbð Þ2
d � 2lm gbð Þ wbð Þ2

d

0 2lm gbð Þ wbð Þ2
d

3l2m� gbð Þ2þ wbð Þ2
d

0BB@
1CCA

ð68Þ
with

d ¼ l2m � gbð Þ2 þ wbð Þ2
� �2

þ 4l2m gbð Þ2 ð69Þ

As a result,

Re uf g � �gbz
x

; Im uf g � �ggb2z
x

ð70Þ
A similar result is obtained for a flow driven by an along-

channel density gradient. For a cross-channel density gradi-
ent, we find

Re uf g � �ggb2 h
ρ0
ρ
y

; Im uf g � �gb h
ρ0
ρ
y ð71Þ

Using Eqs. 49 and 59, the transverse derivative of
the velocity profile can be written as the product of a
scale factor and a shape function in a similar fashion.
That holds also for the vertical velocity component uz
and for ∂u/∂σ. These scale factors are summarized in
Table 3 for flow driven by either an along-channel
density gradient, a transverse density gradient or an
along-channel surface slope.

We use these scale factors to arrive at a general
expression for the first-order estimate of along-channel
advective forcing. For this purpose, we consider a flow
induced by the M0 and M2 components of some mech-
anism. Like we did in expressions Eqs. 36 and 37 for
the along-channel surface slope, we represent the ampli-
tudes of these two harmonic components by a vector d,
defined by

d ¼
d0
dc
ds

0@ 1A ð72Þ

This vector stands for either h=ρ0ð Þρ
x
or h=ρ0ð Þρ

y
or x

x
.

With this vector and the scale factors given in Table 3, the
amplitudes of the components A0, A2 and A4 of the along-
channel advective forcing can be written as

A0 σð Þ ¼ g2gb3
1

h

dzb
dy

d20 þ
d2c þ d2s

2

� �
μ0 σð Þ

bA2 σð Þ ¼ g2gb3
1

h

dzb
dy

2d0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c þ d2s

q� �
μ2 σð Þ

bA4 σð Þ ¼ g2gb3
1

h

dzb
dy

d2c þ d2s
2

� �
μ4 σð Þ

ð73Þ

(^ stand for ‘amplitude’) in which the μ are shape functions
for the vertical distribution of the concerned amplitudes.
Similar expressions are obtained for combinations of flow-
driving forces. They have the scale factor g2+β 2(dzb/dy)/h in
common. We use this property in the present study to judge
indicatively the relative importance of this type of forcing.

Appendix 4: Estimating cross-channel diffusive forcing
with the idealized model

As our IM is basically a single point model, it does not
include transverse diffusion in leading order. A first-
order estimate diffusive forcing can be obtained, how-
ever, in the same fashion as the first-order estimate of
advective forcing is derived in “Appendix 3”. Hereafter,
this is demonstrated for a flow driven by an along-
channel surface slope. The procedure for a density
gradient-driven flow is a similar one.

According to the IM, the zero-order approximation of a
flow driven by an along-channel surface slope is given by

u ¼ �gb
XM
m¼1

fmZmzx

 !
� t ð74Þ

(see Eq. 46). The corresponding estimate of cross-channel
diffusive forcing is given by

uh
@2u

@y2
ð75Þ

We elaborate Eq. 75 assuming that the flow-driving force
does not vary in transverse direction. Furthermore, we use
the curvilinear, non-orthogonal (ψ,σ) coordinate system in-
troduced in “Appendix 3” and shown in Fig. 16. The first-
order transverse derivative in this system is given in Eq. 53.
The second-order derivative reads

Table 3 Scale factors for flow
velocities and related quantities Flow-driving force Im uf g @Re uf g

@y
1
h uz

@Re uf g
@σ

Along-channel density gradient � ggb2 h
ρ0
ρ
x

� gb 1
h
dzb
dy

h
ρ0
ρ
x

� ggb2 1
h
dzb
dy

h
ρ0
ρ
x

� gb h
ρ0
ρ
x

Transverse density gradient � gb h
ρ0
ρ
y

� ggb2 1
h
dzb
dy

h
ρ0
ρ
y

� gb 1
h
dzb
dy

h
ρ0
ρ
y

� ggb2 h
ρ0
ρ
y

Along-channel surface slope � ggb2z
x

� gb 1
h
dzb
dy zx � ggb2 1

h
dzb
dy zx � gbz

x
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@2�
@y2

¼ @y
@y

@

@y
@y
@y

� �
@�
@y

þ @y
@y

@2�
@y2

þ @

@y
@σ

@y

� �
@�
@σ

þ @σ

@y

@2�
@y@σ

� �
þ @σ

@y

@

@σ

@y
@y

� �
@�
@y

þ @y
@y

@2�
@σ@y

þ @

@σ

@σ

@y

� �
@�
@σ

þ @σ

@y

@2�
@σ2

� �
ð76Þ

With definition Eq. 51 of σ, it follows that

@σ
@y

¼ � 1� σð Þ 1
h

dzb
dy

@

@y
@σ
@y

� �
¼ � 1� σð Þ 1

h

dzb
dy

� �2

þ 1

h

d2zb
dy2

 !
@

@σ
@σ
@y

� �
¼ 1

h

dzb
dy

@

@y
@y
@y

� �
¼ 0

ð77Þ

so that the derivative in Eq. 67 can be written as

@2�
@y2

¼ @2�
@y2

þ 1

h

dzb
dy

� �2

�2 1� σð Þ @�
@σ

þ 1� σð Þ2 @
2�

@σ2

� �
� 1

h

dzb
dy

2 1� σð Þ @2�
@σ@y

� 1� σð Þ 1
h

d2zb
dy2

@�
@σ

ð78Þ

Substitution of the tidal velocity u given in Eq. 74 into
the above expression for the second-order derivative yields
for the diffusive forcing

uh
@2

@y2
�gb

XM
m¼1

fmZmzx

 !
¼ �guhb

1

h

dzb
dy

� �2XM
m¼1

fmHm þ 1� σð Þ dfm
dσ

Jm þ 1� σð Þ2 d
2fm
dσ2

Zm

� �
z
x

� guhb
1

h

d2zb
dy2

XM
m¼1

fmKm � 1� σð Þ dfm
dσ

Zm

� �
z
x

ð79Þ

in which

Hm ¼ p� 2ð Þ p� 1ð ÞZm þ p� 2ð Þ 3p� 5ð Þb dZm

db
þ p� 2ð Þb2 d

2Zm

db2

Jm ¼ �2 p� 1ð ÞZm þ�2 p� 2ð Þb dZm

db

Km ¼ p� 2ð ÞZm þ p� 2ð Þb dZm

db

ð80Þ
To find the transverse diffusive forcing related to an

along-channel density gradient, Zm and z
x
in Eqs. 79 and

80 should be replaced by Xm and ρ
x
, respectively, or by Ym

and ρ
y
in the case of a transverse density gradient. With this

result, we have obtained semi-analytical expressions for the
transverse diffusive forcing for prescribed horizontal density
gradient and along-channel surface slope.

Appendix 5: Eddy viscosity scale as calibration
parameter

In the present investigation, we evaluate the performance
of our AM by comparing computed and observed tide-
residual along-channel flow. In this respect, the scale of
the eddy viscosity is used as a calibration parameter. The
observations show a landward residual flow in the lower
part of the water column around the deep centre of the
channel’s cross section and a seaward flow almost ev-
erywhere else (see Fig. 4a). The zero velocity contour in
this figure marks the boundary between the areas with
opposite flow directions. This contour looks somewhat

like the cross section of a bell. In the calibration of the
AM, we have seen that the scale of the eddy viscosity
influences the size of this bell. It becomes smaller with
increasing eddy viscosity and vice versa.

In the present appendix, we use our IM to explain
this tide-residual flow pattern and how the AM can be
tuned to properly reproduce this pattern by varying the
scale of the eddy viscosity. For this purpose, we sche-
matise the flow pattern in the cross section to a super-
position of three contributions. One of them is related to
a harmonically varying along-channel surface slope. In
our linear IM, this contribution does not generate a
residual. Another contribution is due to a steady river
discharge into the channel. It is driven by a time-
invariant along-channel surface slope chosen such that
it produces a prescribed discharge Q. The third contri-
bution is a steady gravitational circulation with a land-
ward component in the lower part of the water column
and a seaward component in the upper part. Averaged
over the channel’s cross section, however, there is no net flow.
As our interest is due to tide-residuals only, we may limit this
discussion to the latter two contributions.

Defining uriv as that part of the horizontal flow velocity
components that can be ascribed to the river discharge, it
must hold that

Q ¼
Z

transect

h

Z1
σ0

Re urivf gdσdy ð81Þ

As this uriv is generated by an along-channel surface
slope, we may write, according to the IM,
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uriv ¼ �gb
XM
m¼1

fmZmzx ð82Þ

(cf. Eq. 46, with matrix Zm defined in Eq. 47). As we focus
on steady conditions, only the upper element of vector x

x
is

non-zero. This means that for the product Zmxx, only the left

column of Zm is relevant. Only the top element of this
column is non-zero. Hence, we may replace the product by
Zmζx, in which Zm is the upper left element of Zm and ζx is
the upper element of x

x
. Hence, in this particular case,

uriv ¼ �gbzx
XM
m¼1

fmZm ð83Þ

We assume that the surface slope does not vary across the
channel and that Coriolis forcing can be considered negli-
gible. In that case, ζx and the Zm are independent of the
transverse coordinate y so that Eqs. 81 and 83 can be
combined to

zx ¼ � Qh2

gb
PM
m¼1

Re Zmf gFm

R
transect

h3dy

ð84Þ

in which Fm is defined in Eq. 48
With this result, along-channel flow profile can be writ-

ten as

Re urivf g ¼ h2Q

Z
transect

h3dy

0@ 1A�1
PM
m¼1

Re Zmf gfm
PM
m¼1

Re Zmf gFm

ð85Þ

Gravitational circulation can be described in a similar
fashion. The effect of an along-channel density gradient ρx
is compensated by an along-channel surface slope such that
the net discharge equals zero:

0 ¼ R
transect

h
R1
σ0

Re ugrc

 �

dσdy ;

ugrc ¼ �gbh ρx
ρ0

PM
m¼1

Xmfm � gbzx
PM
m¼1

Zmfm
ð86Þ

with Xm the upper left element of matrix Xm and in
which ugrc is the flow profile corresponding to gravita-
tional circulation. The two expressions in Eq. 86 can be
combined to

Re ugrc

 � ¼ �gbh

ρx
ρ0

XM
m¼1

Re Xmf gfm � A

h
sM
XM
m¼1

Re Zmf gfm
 !

ð87Þ
in which

sM ¼
PM
k¼1

Re Xkf gFkPM
k¼1

Re Zkf gFk

; A ¼
R

transect

h4dyR
transect

h3dy
ð88Þ

In the above expression 87 for the flow profile ugrc
corresponding to gravitational circulation, the summation
containing Xm reflects the part driven by a horizontal density
gradient. The summation with Zm, on the other hand, reflects
that part of the flow that is induced by the surface slope.

The total along-channel velocity profile is obtained by
superimposing the river discharge Eq. 85 and the gravita-
tional circulation Eq. 87. We may divide this total into a
surface slope-induced part uζ and a density gradient-induced
part uρ according to

uz ¼ gbh
ρx
ρ0

A

h
sM
XM
m¼1

Re Zmf gfm þ h2Q

Z
transect

h3dy

0@ 1A�1
PM
m¼1

Re Zmf gfm
PM
m¼1

Re Zmf gFm

ð89Þ

uρ ¼ �gbh
ρx
ρ0

XM
m¼1

Re Xmf gfm ð90Þ

Both parts share the property that the magnitude of the
velocity increases monotonously with height above the bot-
tom. Both parts reflect uni-directional flow, but that is not
necessarily the case for their superposition. As the surface
slope and density gradient are counteracting forces, the total
flow profile may be either uni- or bi-directional. Which of
these forms occurs depends on the relative magnitudes of
the two forces involved, the local water depth h and the
geometry of the channel’s cross section (reflected by h3

integrated over the transect and A). More in particular, if
we consider an estuary through which a river discharges into
the sea, like Chesapeake Bay, the following three types of
flow profiles may occur at individual locations along a
transect:

1. A uni-directional landward flow (the density gradient-
induced landward flow is stronger than the surface slope-
induced outflow).
2. A bi-directional flow (in the upper part of the water
column the surface slope-induced outflow is stronger than
the density gradient-driven flow, whereas it is just the other
way around in the lower part of the water column).
3. A uni-directional seaward flow (the surface slope-induced
outflow is stronger than the density gradient-induced land-
ward flow).

The transition between cases 1 and 2 is characterized by a
zero flow velocity at the water surface and for the transition
between cases 2 and 3 that is a zero vertical gradient of the
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horizontal flow velocity at the bottom. This follows imme-
diately from the aforementioned property that both uζ and uρ
increase monotonously with height above the bottom. These
transitions are given by

Re uzð1Þ þ uρð1Þ

 � ¼ 0 ; Re @

@σ uz þ uρ
� ���

σ¼σ0

n o
¼ 0

ð91Þ
respectively. These relations can be elaborated to

Q g
ρx
ρ0

Z
transect

h3dy

0@ 1A�1

¼ h

ut

PM
m¼1

Re Xmf gCm

PM
m¼1

Re Zmf gCm

XM
m¼1

Re Zmf gFm � A

h

XM
m¼1

Re Xmf gFm

0BBB@
1CCCA ð92Þ

with Cm0fm(1) for the flow velocity at the surface and Cm0

dfm/dσ evaluated at σ0σ0 for the velocity gradient at the
bottom. All summations over m in the above expressions
depend only on the shape functions fm defined in Eq. 41. If
we use the shape functions corresponding to a parabolic
eddy viscosity distribution, it follows for Eq. 92 that

Q g ρx
ρ0

R
transect

h3dy

� ��1

¼ h
ut

0:5807� 0:6127 A
h

� �
;

Q g ρx
ρ0

R
transect

h3dy

� ��1

¼ h
ut

0:6542� 0:6127 A
h

� �
ð93Þ

for the velocity at the surface and the velocity gradient at the
bottom, respectively.

We apply this result to Chesapeake Bay. For the concerned
cross-channel profile and with the river discharge and along-
channel density gradient as specified in Table 1, we find thatR
transect

h3dy ¼ 1:91 � 106 m4½ 	 ;
R

transect
h4dy ¼ 2:16 � 107 m5½ 	;

Q g ρx
ρ0

R
transect

h3dy

� ��1

¼ 120:1 s
m

� 

ð94Þ

Hence, the transition between 1 and 2 (from a uni-
directional flow, dominated by a density gradient to bi-
directional flow) is given by

120:1
s

m

h i
ut ¼ 0:5807h� 6:9290 m½ 	 ð95Þ

and that for the transition between 2 and 3 (from bi-
directional flow to a uni-directional flow dominated by river
discharge), it holds that

120:1
s

m

h i
ut ¼ 0:6542h� 6:9290 m½ 	 ð96Þ

(with h in metres and ut in square metres per second).
From the above two expressions, it can be seen that the

water depths at which the transitions occur depend on the
scale of the eddy viscosity. This particular property is used
in the present study to tune the AM to observed flow
patterns by varying the eddy viscosity scale. As an

illustration, it is shown in Fig. 17 in which part of the
considered transect of Chesapeake Bay which type of flow
profile may be expected, depending of the prescribed eddy
viscosity scale.

One of the things the central graph in Fig. 17 and the
underlying theory show is that the combination of river
discharge, along-channel density gradient, channel geome-
try and eddy viscosity scale influence the height above the
bottom up to which the density gradient-driven landward
flow reaches. In all model computations performed for the
present study, the eddy viscosity scale is the only one of
these four items that has not been assigned a value before-
hand. Instead it is used as a calibration parameter. Its value
has been tuned to have the model reproduce the observed
pattern of uni- and bi-directional tide-residual flow. Evident-
ly, the result of this tuning must be interpreted in relation to
the presumed shape of the vertical distribution of eddy
viscosity (parabolic in this case).

In the centre of the considered Chesapeake Bay transect,
for instance, the landward flow reaches all the way up to the
surface if ut is less than about 0.01 m

2/s. This landward flow
is suppressed entirely by river discharge for ut>0.018 m2/s
approximately. For intermediate values of this scale, the
flow in the centre of the channel is bi-directional. Compar-
ing this with the observed tide-residual along-channel flow
(Fig. 17) suggests an eddy viscosity scale of about 0.013 m2/
s. However, this figure is based on the IM, not including
tidal forcing, Coriolis deflection, advection, horizontal dif-
fusion and transverse density gradient. These mechanisms
are taken into account in the AM. As calibration of this AM
resulted in a lower value of the eddy viscosity scale
(0.006 m2/s), these mechanisms apparently hamper penetra-
tion of the density gradient-driven landward flow up to the
water surface.

Appendix 6: Eddy viscosity shape functions

The shape function for the parabolic profile is written as

φ σð Þ ¼ φpσ σs � σð Þ ; φ�1
p ¼ R1

σ0

σ σs � σð Þdσ ð97Þ
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The coefficient φp ensures that the integral of the shape
function over the range from the level of zero intercept
(σ0σ0, the level at which the bottom boundary condition
is applied) to the surface level (σ01) equals 1. This is
consistent with defining υt as the depth-mean eddy viscos-
ity. One of the zero-crossings of the parabola is chosen just
above the water surface level (σs01.001 in all our model
computations mentioned in the present paper). A physical
argument for choosing σs>1 is that the turbulence scale at
the water surface cannot become infinitely small. In addi-
tion, it prevents singularities in the model computations.

The other zero crossing is located at σ00, which is
slightly below the level σ0 where the no-slip condition is
applied. The distance between the two is chosen in corre-
spondence with the bottom roughness. This approach is
similar to Prandtl’s mixing length concept applied to plane
shear flow. This type of flow is given by

0 ¼ �g dz
dx þ ut

h2
d
dσ φ du

dσ

� �
; u σ0ð Þ ¼ du

dσ

��
σ¼1

¼ 0 ð98Þ

If we use Eq. 97 for the shape of the eddy viscosity
distribution, the velocity profile becomes

u σð Þ ¼ � gh2

ut

dz
dx

Zσ
σ0

1� s

φðsÞ ds ð99Þ

in which h is the water depth and x is the direction of the
surface slope. Elaborating the above expression and taking

the limit for σs→1 yields the well-known logarithmic ve-
locity profile.

The value of σ0 is chosen such that Eq. 99 yields the
same depth-averaged velocity as follows from the Chézy
relation that applies to the same type of flow:

u uj j ¼ C2
hR

dz
dx

ð100Þ

in which u is depth-averaged velocity, R is hydraulic radius
(approximately equal to the water depth h if the width of the
channel is large compared to its depth) and Ch is the Chézy
coefficient. It is related to the bottom roughness length ks
according to

Ch ¼ 1

k
ffiffiffi
g

p
ln

12R

ks

� �
ð101Þ

(κ is Von Karman’s constant) which is known as the White–
Colebrook formula (see various textbooks on the subject).
By combining Eqs. 99, 100 and 101, σ0 can be determined
for a prescribed ks.

The second option we address is a vertically invariant
eddy viscosity. This schematisation is encountered in the
literature in combination with either a no-slip or a partial-
slip bottom boundary condition. In our study, we consider
both alternatives. For the no-slip case, we use the eddy
viscosity profile given in Fig. 2 c and apply the bottom
boundary conditions mentioned in the previous section
(boiling down to ur0uθ0uz00 at σ0σ0).

Fig. 17 Application of the IM to the studied transect of Chesapeake
Bay (shown on the left) for a steady flow, driven by a combination of
an along-channel density gradient and river discharge (explained in
“Appendix 5”). Vertical sections taken from the graph in the middle
show for the corresponding eddy viscosity scale in which part of the
transect which type of flow profile (a through e on the right-hand side)

may be expected. In the dark grey area, a landward, density gradient-
driven flow dominates of river outflow (profile a). The opposite is
encountered in the white area (profile e). In the light grey area, the flow
is bi-directional: In the lower part of the water column, the density
gradient prevails whereas the river outflow dominates in the upper part
(profile c). Profiles b and d are transitions between these three areas
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A partial-slip condition is commonly applied at some
relative height σ0σb above the bottom. This level
divides the water column into an upper layer in which
a vertically invariant eddy viscosity is assumed and a
lower layer in which the eddy viscosity tends towards
zero with decreasing height above the bottom in a way
that agrees with Prandtl’s mixing length concept (see
expression 98 and Fig. 2 b). The velocity profile within
this layer hence attains a shape similar to the one given
by Eq. 99. This layer is not included in the actual flow
computations, but properties of the velocity profile in-
side it are used to specify the partial-slip condition
imposed at the lower end (at σ0σb) of the upper layer.
The eddy viscosity is assumed continuous at this level
(see Fig. 2 b) and so are the horizontal velocity and its
vertical gradient. Combined with Eq. 99, it then follows
that at the transition level σ0σb the horizontal flow
velocity component should satisfy

u σbð Þ ¼ cb @u
@σ

��
σ¼σb

; cb ¼
Rσb
σ0

1�s
φ
ðsÞ ds

1�σb
ϕ
 σbð Þ
� ��1

ð102Þ

in which φ* stands for the combined parabolic and
vertically invariant eddy viscosity distribution depicted
in Fig. 2 b and given by

φ
 σð Þ ¼ φcσb σs � σbð Þ ; σb � σ � 1
φcσ σs � σð Þ ; σ0 � σ < σb

�
ð103Þ

with

φ�1
c ¼ 1

1� σ0
σb σs � σbð Þ 1� σbð Þ þ σ2

b

1

2
σs � 1

3
σb

� �
� σ20

1

2
σs � 1

3
σ0

� �� �
ð104Þ

In common applications of a partial-slip condition,
Eq. 102 is imposed at σ0σb and the part of the water column
below this level is not considered explicitly in the flow
computations. One might say that it is represented by the
coefficient cb.

Expression 102 shows that the ratio cb of the flow veloc-
ity and its vertical gradient at the level σb at which the
partial-slip condition is applied depends on the structure of
the flow below that level. In other words, the ratio cb cannot
be chosen arbitrarily. Proper flow modelling requires that
the value assigned to cb is consistent with the actual flow
profile below σb or at least a plausible estimate of that
profile.

In addition, the level σ0σb at which the partial-slip
condition is applied is not impermeable. A condition to be
imposed on the flow velocity component normal to this
level is therefore not self-evident. In our model computa-
tions, we deal with this by considering the entire water
column from σ0σ0 up to σ01 and prescribe the full eddy
viscosity profile (Eq. 103) in combination with demanding

that all velocity components are zero at σ0σ0. This way, we
simulate partial slip. An additional benefit of this approach
is that it allows evaluation of the flow through the level
σ0σb which may contribute to finding an appropriate
boundary condition for the velocity component normal to
this level consistent with partial slip.
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