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1 Introduction

A key feature of quantum field theory (QFT) is that it can not predict overall scales.

Scale ratios are, however, calculable and this leads to the question how large ratios can

be explained or made natural. Symmetries play here an important role. The fermions of

the Standard Model (SM) are protected by chiral symmetry such that only logarithmic

corrections occur, while the SM Higgs mass is unprotected which leads to the famous

hierarchy problem. As a consequence one expects either new physics in the TeV-range or

a new symmetry which also leads to new particles in the TeV-range. This is one of the

main motivations for the LHC, but so far no new particles or interactions showed up. Even

though there are good reasons that e.g. supersymmetric particles show up at a somewhat

higher scale one may wonder if the fact that so far no new particle has been found points

into some other direction. A potential role of conformal symmetry has therefore recently

been discussed as a solution and we would like to discuss in this paper the implications for

neutrino mass generation.

It is interesting to note that the standard model of particle physics (SM) is nearly

conformal invariant. Only the mass term of the scalar field which is responsible for the
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breaking of SU(2)L ×U(1)Y symmetry violates conformal symmetry explicitly and all SM

masses are directly proportional to this scale. Note that the introduction of an explicit

Higgs mass term in the SM does not only break conformal invariance, but it also creates the

hierarchy problem, namely the quadratic sensitivity of quantum corrections to high scales.

It is therefore tempting to relate the breaking of conformal symmetry with the generation

of the electro-weak (EW) scale by dimensional transmutation. Scale invariance is broken

at the quantum level (i.e. it has an anomaly) even in perturbation theory [1], but it has

been argued that the protective features of conformal symmetry may not be completely

destroyed [2]. Specifically logarithmic sensitivities still would exist, while quadratic diver-

gencies would be absent. Various attempts of this type exist in the literature [3–35] and

applications for the breaking of the EW symmetry have recently received more attention.

Realizing these ideas within the SM corresponds to the Coleman-Weinberg effective

potential, where mt < 79 GeV would be required and where the Higgs mass would have

to be mH ' 9 GeV. This is obviously ruled out. However, we know that the SM is in-

complete, since neutrino masses must be included. Furthermore, there is no dark matter

(DM) candidate in the SM. Phenomenologically successful models which employ conformal

electro-weak symmetry breaking require therefore some extension and a number of them

predict also interesting DM candidates [11, 18, 23, 30, 31, 36–39].

In this paper we focus on neutrino masses and we argue that the dynamical genera-

tion of scales forbids any explicit Majorana or Dirac mass term which would otherwise be

possible and expected for a given set of fermions. This implies that all mass terms must be

dimensionless Yukawa couplings times one of the vacuum expectation values (VEVs) gen-

erated by the dynamical symmetry breaking. This clearly alters expectations for neutrino

masses and we will discuss how this leads naturally to a generic TeV scale see-saw, inverse

see-saw and pseudo-Dirac scenarios.

It has been shown in [7, 9] that extending the SM by merely right-handed neutrinos

and an additional scalar field can result in the correct low energy phenomenology. The

basic idea is that introducing additional scalar degrees of freedom makes the running of

the couplings such that spontaneous symmetry breaking is possible. The additional scalar

singlet gets a VEV and by its admixture to the Higgs a mass term is generated which

can again induce EW symmetry breaking. This cascading symmetry breaking mechanism

results in the discussed model in the correct Higgs mass and VEV. Thus, the EW scale

appears naturally given the particle content of the model.

The simplest model compatible with data contains a complex scalar singlet [40] and the

symmetry breaking takes place entirely in the new scalar sector, then it is transmitted via

the Higgs portal to the SM boson. Explicit Majorana masses are not allowed and Majorana

mass terms arise via Majorana-Yukawa couplings to the new scalar, which exemplifies nicely

how neutrino mass generation is affected. Note that this has immediate consequences for

the expected Majorana mass terms. Usually, an explicit mass is expected to have the largest

possible value allowed by the symmetries of the system, while it is now the product of the

symmetry breaking hidden scalar with a TeV-scale VEV with a Yukawa coupling. Since

the Yukawa couplings of the SM show numerically a huge range, we assume the same to

be true more general for all Yukawa couplings and Majorana mass terms can consequently

have now any value between zero and the symmetry breaking scale.
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Motivated by this simple example we would like to discuss in this paper the changes

for neutrino mass terms in conformally invariant theories in a more general way. We give

therefore in section 2 an overview of the considered cases for the generation of neutrino

masses within the framework of conformal theories. The consequences for the possible

structure of VEVs are elaborated in the same paragraph. On the other hand we investigate

if different conformally invariant neutrino mass models are possible at all with regard to

the occurrence of radiative symmetry breaking and the correct Higgs mass. The different

models are presented in section 3 and are divided into two parts. The first part is based

on mere extensions of the particle content of the SM, whereas the second part consists of

theories that extend the SM gauge group by a U(1) symmetry which separates a Hidden

Sector (HS) from the SM. Different models within these parts are organized by their effects

on the neutrino mass matrix M.

For neutrino masses it is in this context crucial that conformal symmetry forbids

explicit mass scales in the classical Lagrangian. Phenomenological viable conformal EW

symmetry breaking employs Higgs portals which connect to another sector with TeV scale

dynamical mass generation. This implies that all Dirac and Majorana fermion masses are

governed by this TeV scale or by the EW scale times some Yukawa coupling. This severely

affects expectations for neutrino masses. A parameter scan for an effective model reveals

that there are basically four phenomenological classes of theories. This scan is performed

in section 4. We summarize our findings and conclude with a discussion in section 5.

2 Model building rules

In this section we present model building rules for neutrino masses in a theory with classi-

cally conformal Lagrangian. Specifically we consider the following cases for neutrino masses

in extensions of the standard model.

• The SM can be embedded in a larger gauge group, which breaks to the required gauge

group to describe the observed particle spectrum as is the case in GUT models.

• The SM gauge group can be left unchanged and additional fields postulated.

• A Hidden Sector (HS) with an additional symmetry group can be postulated. Re-

sulting in the total symmetry group being a direct product of the SM and the new

sector G(SM)×G(HS).

In the following we will assume that the latter two possibilities are relevant, since

the embedding of the SM in a larger gauge sector requires an additional scale of symmetry

breaking which itself poses a little hierarchy problem, as in [15] where additional parameter

tuning is required. Furthermore, the additional symmetry is assumed to be global to avoid

the need for anomaly cancellation at this point.

2.1 General conformal building rules

A fermion mass term is a chirality flip of the field. Therefore, we will have an incoming

particle of one chirality, e.g. the left-handed neutrino νL and its antiparticle of opposite
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chirality as an outgoing particle, which is right-handed. This particle can either be its own

antiparticle with a Majorana mass or a distinct particle with a Dirac mass. The operators

in the Lagrangian have dimension three and thus have to be augmented by a dimension

one scalar field in order to fulfil the conformal requirements. Thus we assume the fermions

only to couple via Yukawa couplings of the form

ψLψRϕ and ψRψLϕ , (2.1)

where the ψ are fermions and ϕ represents a scalar. Explicit mass terms are forbidden in

the Lagrangian, i.e. any diagram like

with an explicit fermion mass term (cross) is forbidden. Yukawa couplings and mass terms

which are generated via Yukawa and VEVs couplings like

y ψLψRvϕ and y ψRψLvϕ . (2.2)

are allowed:

〈ϕ〉

Each neutrino mass diagram needs an odd number of mass insertions. Note that we

work within the flavour basis, i.e. we use fields that appear in the unbroken Lagrangian.

For the scalars conformal invariance only allows couplings which connect 4 scalars, i.e.

diagrams of the form

These rules will be used throughout this work and will serve to derive rules with regard

to specific neutrino mass questions.

2.2 The Weinberg operator case

We will argue that all neutrino mass diagrams, leading to a Majorana mass contribution

for the active neutrinos, involve at least one vacuum expectation value other than the

Higgs VEV and show that this is a topological necessity of conformally invariant theories

including upto SU(2) triplet representations.
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S D T

S ϕSS Dφ̃S Tr [T∆S]

D DDcϕ , D∆Dc φ̃†TL

T Tr [ϕT cT ]

Table 1. Possible dimension 4 Yukawa coupling terms. S, D and T denote singlet, doublet and

triplet fermions respectively. ϕ, φ and ∆ denote singlet, doublet and triplet scalars respectively.

The totally antisymmetrc coupling of three triplets T̄1 T2∆ is also allowed if two different fermion

triplet fields are present.

To prove this we first note that any diagram has an even number of doublet scalar mass

insertions. This is because all diagrams generating left-handed Majorana masses have the

left-handed doublet as the incoming and the outgoing particle, i.e. we have to start and

end up with a doublet. If we assume that the theory has only upto SU(2) triplet scalars

and fermions, the only possibilities to connect two fermionic doublets are Yukawa couplings

with a scalar triplet or singlet. Connecting a doublet fermion to a singlet fermion involves

a doublet scalar. Equivalently a doublet and a triplet fermion are connected via a scalar

doublet. Furthermore, two fermion singlets connect to a singlet scalar, two fermion triplets

to a singlet scalar as well and a triplet and singlet fermion to a triplet scalar (see table 1).

Thus scalar doublets occur if and only if we connect a fermionic doublet to a fermionic

non-doublet. Therefore, in order to start and end up with a fermion doublet we necessarily

have an even number of scalar doublet mass insertions.

Secondly, note that in any theory including upto SU(2) triplets there are only potential

couplings possible that involve an even number of SU(2) doublets. Thus, each doublet line

will couple to an odd number of doublet lines. As the product of an even and an odd

number is an even number, the number of doublet lines will remain even. Connecting some

of these lines and producing a loop will not change this fact as this closing reduces the

number of external doublet lines by an even number.

On the other hand two fundamental building rules for conformally invariant neutrino

mass generation require that firstly there is always an odd number of mass insertions and

secondly potential couplings always connect four lines. Both together yield that there has

to be left an odd number of scalar external lines. Consequently as there has to be an odd

number of VEVs but an even number of doublet VEVs, there has to be a singlet or a triplet

VEV. Note, however, that this proof is based on the assumption that there are no fermion

or gauge boson loops involved. This finding can be summarized as follows: If there are

no gauge boson or fermion loops possible, a conformally invariant theory with upto SU(2)

triplet scalars and fermions needs a singlet or triplet scalar vacuum expectation value to

generate left-handed Majorana neutrino masses.
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2.3 Radiative models

In this subsection we deal with the question if it is possible to choose the particle content

and the VEV structure of a theory such that the lowest order contribution to the left-

handed Majorana masses is fully radiative i.e. there is no scalar with a VEV coupled to

the neutrino line.

We assume that there are no fermion or gauge boson loops. In this case, if in the

potential only terms appear which couple fields in singlet pairs neutrinos can not gain

mass via loops. This is the case, as scalars connected to the fermion line can only be

coupled in such a way that they either produce one scalar of the own kind and two of

another or couple to a particle of the own kind coming from the fermion line and thus

reducing the number of its species by an even number. So either the number of a species

stays the same, reduces or increases by an even number. As there has to be an odd number

of mass insertions to the fermion line it is thus impossible to combine all scalars connected

to the fermion line in a loop without producing at least one external line that already

couples to the fermion line.

An other way to understand this, is that for a loop induced active neutrino mass there

has to be a lepton number violating term in the potential. Since the potential contains only

four scalar operators, there has to be at least one among them with non pairwise coupled

scalars. We can summarize this result: In a conformally invariant theory without fermion

or gauge boson loops it is impossible to generate left-handed Majorana neutrino masses in

a fully radiative way if the potential contains only terms coupling scalars in singlet pairs.

We present models, which have not only pairwise scalar combinations in the potential,

and yield fully radiative left-handed neutrino masses in appendix B. We only discuss mod-

els, which can yield neutrino masses with non vanishing diagonal elements, as those are

excluded experimentally, as argued in [41]. Furthermore, two possibilities to circumvent

the above argument are presented, one is a model containing fermion loops. The other is

the Ma model [42] with a Z2 symmetry, which forbids the Dirac tree level coupling and vi-

olates lepton number with the sterile neutrino Yukawa term. However, we do not consider

discrete symmetries in the main body of the articles and the only way to have a model

with this topology is with a hidden sector symmetry. The requirement of electrically neu-

tral VEVs makes this model only viable for generating loop induced masses for the sterile

neutrinos. This possibility will be discussed later on.

3 Overview of viable models

In this section we will give a summary of models in which it is possible to have neutrino

masses and radiative scale symmetry breaking (RSSB). The criteria for the generation of

neutrino masses are presented in section 2. As we will see the RSSB works in the case that

at least two additional bosonic degrees of freedom are present, of which at least one must be

a scalar. This modifies the beta function of the mass parameter in such a way that a scalar

component gets a VEV, which is then cascaded to the Higgs sector through the Higgs-

scalar mixing as described in section 1. The symmetry breaking is consistently studied

in the Gildener-Weinber approach [43], which relies on the existence of a flat direction in
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the classical potential. Then the one loop effictive potential is computed. The minimal

requirement of two bosonic degrees of freedom in the additional sector is crucial, since the

RSSB relies on the bosonic degrees of freedom dominating over the top quark contributions.

The symmetry breaking has to be triggered by the hidden sector and the pseudo-

glodstone boson (PGB) associated with the scale symmetry breaking has to reside mainly

in the hidden sector, see for example [31]. In the case of one additional bosonic degree

of freedom, the Higgs boson is mainly the PGB which phenomenologically requires larger

values of quartic couplings and leads to low scale Landau poles, see for example discussion

in [9], which corresponds to model 3A with only one real scalar field. It was demonstrated

that RSSB is possible, but in our opinion the low scale Landau pole is problematic and we

will take the model with two real scalars as the simplest realistic model.

We will demonstrate the RSSB in a case with two bosonic degrees of freedom in the

HS. The scalar field content is given by the SU(2) doublet H and two real SM singlets Φ

and S. The potential has the form

V (H,Φ, S) =
λH
2

(H†H)2 +
λS
2
S4 +

λΦ

2
Φ4

+ λHS H
†H S2 + λHΦH

†H Φ2 + λSΦ Φ2 S2 . (3.1)

For simplicity we will use spherical coordinates in field space with the replacements

H = r sin θ sinω ,

S = r sin θ cosω ,

Φ = r cos θ .

We find with eq. 3.2 and the definitions (tan θ)2 =: ε and (sinω)2 =: δ that

(r cos θ)4 V (r, θΦ) =
1

2

(
λΦ + ε(2 δλH Φ + 2(1− δ)λSΦ

+ ε(δ2λH + 2(1− δ) δ λHS + (1− δ)2 λS))
)

= R(Λ) . (3.2)

The vanishig of this quantity at the scale of symetry breaking R(ΛRSSB) = 0 defines

the classically flat direction in the potential, it is the renormalization condition.

Assuming that the mixing anomg the scalars is not large i.e. ε, δ < 1 a hierarchical

VEV structure appears

〈Φ〉 = 〈r〉 (1 + ε)−1/2 =: v (3.3)

〈S〉 = 〈r〉 (1 + ε)−1/2√ε = v
√
ε

〈H〉 = 〈r〉 (1 + ε)−1/2
√
ε δ = v

√
ε δ

⇒ 〈Φ〉 > 〈S〉 > 〈H〉 .

After the symmetry breaking the right handed neutrinos get their Majorana mass

through Yukawa interactions with the HS scalars MNi = YNi/2 v
2(1 + ε). The scalar

spectrum contains two massive excitations and one which is mass-less on tree level and

– 7 –



J
H
E
P
1
0
(
2
0
1
4
)
1
7
7

Figure 1. The phenomenlogically allowed mass region in the simplest neutrino mass model with

RSSB, a Higgs mass of 125 GeV, a higgs portal mixing compatible with the bound sin θ < 0.37,

perturbative potential parameters and no low scale Landau pole. Here MN is the mass of the

heaviest right handed neutrino, MΦ is the heavy scalar dominating the spectrum and MS is the

mass of the PGB.

corresponds to the flat direction in the potential. The idea behind the Gildener Weinberg

approach is that the quantum effects are taken into account in the one loop correction

to the mass of this particle, making it a PGB of broken scale symmetry. This procedure

ensures perturbativity as discussed in detail in, [43]. The mass of the PGB is given by

M2
S =

1

8π2 〈r〉

(
M4
H + 6m4

W + 3m4
Z +M4

Φ − 12m4
t − 2

∑
i

M4
Ni

)
, (3.4)

while the tree level scalar masses are (with λΦS < 0 and λHS , λΦS > 0 for explicitness)

M2
H = v2 [(δ − 1)(1 + 16δ ε)λΦS + δ ε(3δ λH − (δ − 1)λHS)] δ−1 , (3.5)

M2
Φ = −v2 [(16(δ − 1)ε− 1)λΦS − ε(δλHS − 3(δ − 1)λS)] . (3.6)

As can be seen the PGB resides mainly in the HS and thus the mixing with the Higgs

can be brought in agreement with the experimentally constrained Higgs-scalar mixing [36],

while the potential parameters are perturbative and no low energy Landau pole appears.

We plot the phenomenologically allowed mass regions in figure 1.

Next we study neutrino mass models with RSSB, which will be organized in the fol-

lowing way. Firstly we distinguish models with the SM model gauge group and secondly

those where an additional hidden sector symmetry comprises with the SM symmetry group

a direct product group. In the first case models are distinguished which affect the left

handed neutrino mass directly (#A) and those with an additional singlet fermion state

which contributes to the left handed neutrino masses, as known from the type I see-saw

mechanism (#B).

– 8 –
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In the second scenario in all models there are additional SM singlet fermion states.

We distinguish models with effect on the masses of the total singlets under the full gauge

group (#C), denoted by νR and those where masses of fermions are affected, which carry a

hidden sector charge (#D) and are denoted by νx. The Dirac type masses in our framework

are always determined by Yukawa couplings yD and the Higgs VEV, and assumed to exist

if allowed by the symmetry. We comment on loop effects in models where those can lead

to suppression of mass matrix entries. Furthermore, some comments on phenomenological

implications will be made, but the main phenomenological discussion is omitted at this

point and postponed to section 4. All models carry an identification number and are

described in detail in appendix A.

At first we focus on the models where the SM field content is extended. Assuming that

we have singlet, doublet and triplet fermionic and scalar SU(2) representations we list all

combinations systematically and check whether a conformal neutrino mass model can be

constructed, see table 2. Assuming only the above mentioned representations the presented

list is complete. The models share features with the non-conformal analogues, nevertheless

the scalar sector is in all cases enlarged to make the graph construction topologically

possible without explicit mass insertions. Furthermore, the mass scales are all around the

TeV scale, since the general spirit of the radiativly broken scale invariance forbids large

scale separation.

We again present a full catalogue of models with a U(1)hidden, given that we only

involve up to the triplet representation of the SU(2)L group, see table 3. This model

sector could be enlarged by regarding more complex Hidden groups, but due to our little

knowledge of the dark sector we stick here to the minimality condition. As a result we

find a variety of tree level and radiative models with possible textures in the neutrino mass

matrix. As one of the most promising models we point out 1D and 2D, which lead to an

inverse see-saw (ISS) mass matrix structure which implies seizable active sterile mixing,

discussed in [44, 45]. The active-sterile mixing and the light masses are given by

ε =
1

2
m†D(M−1

Rx )∗(M−1
Rx )TmD ≈

y2
D

y2
M

v2

TeV2 , (3.7)

mν = mT
D(M−1

Rx )TµM−1
RxmD ≈ µ ε.

The MRx scale is of the order of one to few TeV and the µ scale is loop induced in 2D

and suppressed by heavier scales in 1D, which brings it to the keV scale. The Yukawa

couplings in this region can be close to one, which makes it an attractive alternative to the

fine tuned solutions. The effects of the active-sterile mixing can lead to an improved χ2

for the Electro-weak precision observables, as shown in [46] and we will comment on it in

the next section.

In general the requirement of no scalar scale hierarchy restricts the vacuum expectation

values of the new scalars not to be higher than the TeV scale. This leads with Yukawa

couplings in the perturbative region to a particle spectrum below the TeV scale. However,

this is not a necessity in all models. For instance if several additional scalar VEVs induce a

cascade where the heaviest field begins with the symmetry breaking and transfers the scale

– 9 –
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by a portal to the next which in turn cascades down to the third scale, the scale separation

can become larger without large tuning of the couplings, this can lift up the spectrum to

a few TeV, as can be the case in the conformal inverse see-saw.

In several models, see table 2 and 3, the Majorana contribution to the light neutrino

mass is suppressed and therefore an other neutrino mass scenario appears, in that case

the active neutrinos are almost mass degenerate with the sterile components comprising

pseudo Dirac pairs. This possibility is experimentally extremely challenging, but might be

accessible in long baseline and low energy oscillation experiments [47].

In general scale separation does not appear naturally in models with RSSB, thus the

neutrino mass scale can appear if the Yukawa couplings are arranged in a way leading to

a see-saw suppression. The other possibility is that the lightness is connected to a small

lepton number violation parameter. This smallness can be argued to be natural in t’Hoft

sense, as the symmetry of the theory would increase if this parameter would be exactly

zero. Furthermore, in radiative neutrino mass models the smallness of the lepton number

violation is augmented by a mass suppression by the loop factors. The most interesting

possibility is, however, if both of this mechanisms are at work. This is the case if the

Majorana scale is induced by a loop involving a lepton number violating coupling, leading

to the Pseudo Dirac and Inverse see-saw scenarios. Where in the last scenario the Yukawa

couplings can be of order one.

4 Phenomenology

In this section we will check which of the proposed models can indeed reproduce the correct

neutrino mass phenomenology i.e. the mass square differences and the correct mixing angles

and at the same time be consistent with rare decay experiments and electroweak precision

observables (EWPO). In a plot we will demonstrate viable regions of the allowed param-

eter space and estimate expected signals for future lepton flavour and number violation

experiments.

In most of the discussed models the PMNS matrix becomes not exactly unitary. This

happens if the active-sterile mixing is considerable and induces a number of effects on

physical quantities as the Weinberg angle, the W-boson mass, the left and right handed

couplings gL, gR, the leptonic and invisible Z-boson decay width and the neutrino oscillation

probabilities, for more detailed discussion and limits see [48] and references therein. Thus

studying the non unitarity allows to narrow down the parameter space of a given model.

However, some effects are not captured by this treatment only. Those are processes where

explicit particle propagation is responsible for the new physics signal. To get an order

of magnitude estimate we integrate out heavier degrees of freedom to obtain an effective

scenario with a (3 + n)× (3 + n) nearly unitary mixing matrix U.

U =

U R

W V

 . (4.1)
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Conformal Mass Models within the SM Gauge Group

# particle content
non-conformal

motivation

neutrino

masses

correct

Higgs

mass

phenomenological note

Left-Handed Majorana Masses

1A
Conformal SM

(CSM)
� No No

This theory does not yield neutrino

masses.

2A CSM + νR : (1, 0) See-saw type I Yes No
Neutrinos in this theory are of

Dirac type.

3A
CSM + νR : (1, 0) +

ϕ : (1, 0)
See-saw type I Yes Yes

In dependence of the coupling

constants this theory can yield Sub

TeV or Pseudo-Dirac neutrinos.

4A CSM + ∆ : (3,−2) See-saw type II Yes No
This theory yields pure left-handed

Majorana neutrinos.

5A
CSM + ∆ : (3,−2)

+ ϕ : (1, 0)
See-saw type II Yes Yes

This theory yields pure left-handed

Majorana neutrinos as well.

6A

CSM + νR : (1, 0) +

ϕ : (1, 0) +

∆ : (3,−2)

See-saw type I/II Yes Yes
Sub TeV and Pseudo-Dirac

neutrinos are possible.

7A CSM + δ− : (1,−2) � No No Neutrinos remain massless.

8A
CSM + δ− : (1,−2)

+ ∆ : (3,−2)
� Yes No

The additional δ− only contributes

corrections to the masses.

9A CSM + Σ : (3, 0) See-saw type III No No Neutrinos remain massless.

10A
CSM + Σ : (3, 0) +

ϕ : (1, 0)
See-saw type III Yes Yes

This theory yields the same

neutrino phenomenology like the

conformal See-saw type I.

11A

CSM + δ− : (1,−2)

+ ε++ : (1, 4) +

ϕ : (1, 0)

Zee-Babu Yes Yes

Pure left-handed Majorana

neutrino masses suppressed by 2

loops.

12A

CSM + H2 : (2, 1) +

η+ : (1, 2) +

ϕ : (1, 0)

Zee Model Yes Yes

Pure left-handed Majorana

neutrino masses suppressed by 1

loop.

13A

CSM + φ1 : (2, 3)

H2 : (2, 1) η :

(1,−4); φ2 : (1, 0)

Law-McDonald Yes Yes

Pure left-handed Majorana

neutrino masses suppressed by 2

loops.

Right-Handed Majorana Masses

1B

CSM + νR : (1, 0) +

Σ : (3, 0) + ∆ : (3, 0)

+ ϕ : (1, 0)

� Yes Yes

This theory can generate

conditions for the Pseudo-Dirac

and the Sub TeV see-saw.

2B

CSM + νR : (1, 0) +

νx : (1, 0) +

ϕ : (1, 0)

� Yes Yes

The extension by further sterile

neutrinos is trivial if they cannot

be distinguished from the original

sterile neutrinos.

Table 2. Summary of different conformally invariant models for the generation of neutrino masses

within the SM gauge group. The Lorentz nature of the fields is the following: νR, Σ are fermions

and φ, δ, ε, ∆ are scalars. It is always mentioned if there is a non conformal motivation to the

particular model. Furthermore, short comments on the phenomenology are displayed. All models

carry a number for later reference.

Note that in the case of model 3A with one real singlet scalar RSSB is possible, however the theory

has a low scale Landau pole. Thus, we consider the model to be only phenomenologically viable if

at least two real scalars are present, as discussed in section 3.
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Conformal Mass Models with Additional U(1) Symmetry

# particle content U(1)H VEV structure phenomenological note

νR Majorana Masses

νR : (1, 0) 0
The double see-saw mass

structure is implied.

1C νx : (1, 0) 1 all scalars get a VEV Pseudo-Dirac and

ϕ1 : (1, 0) 1 sub TeV scenarios

ϕ2 : (1, 0) 2 are possible .

νR : (1, 0) 0
The minimal extended

see-saw structure is implied.

2C νx : (1, 0) 2 all scalars get a VEV Light sterile neutrinos

ϕ1 : (1, 0) 0 with large

ϕ2 : (1, 0) -2 active-sterile mixing .

3C theory 1C +
theory

1C
ϕ1 gets no VEV radiative model,

ϕ3 : (1, 0) -4
implies Pseudo-Dirac

scenario

νR : (1, 0) 0

Σ : (3, 0) 1 Pseudo-Dirac and sub TeV

4C ∆ : (3, 0) 1 all scalars get a VEV scenarios

ϕ1 : (1, 0) 1 are possible.

ϕ2 : (1, 0) 2

5C theory 3C +
theory

3C
ϕ1 gets no VEV radiative model,

ϕ3 : (1, 0) -4
implies Pseudo-Dirac

scenario

νx Majorana Masses

νR : (1, 0) 0

νx : (1, 0) 1

1D Σ : (3, 0) -2 all scalars get a VEV generates small νx mass,

∆ : (3, 0) -3
implies the inverse see-saw

scenario

ϕ1 : (1, 0) -3

ϕ2 : (1, 0) -4

ϕ4 : (1, 0) 1

2D theory 1D +
theory

1D
ϕ1 gets no VEV radiative model,

ϕ3 : (1, 0) 10
implies the inverse see-saw

scenario

Table 3. Summary of different conformally invariant models for the generation of neutrino masses

with an additional HS symmetry. The Lorentz nature of the fields is the following: νR, νx, Σ are

fermions and φi for i ∈ {1, 2, 3} are scalars. All hidden sector charges are shown in the third column

and the VEV structure is summarized in the fourth column. Furthermore, short comments on the

phenomenology are displayed. All models carry a number for later reference.
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This corresponds to a scenario with three active and n sterile neutrinos. Here R can

be considered as the active-sterile mixing. U is the PMNS matrix and is not unitary any

more. A measure for non-unitarity of the PMNS matrix is given by

εα ≡
∑

i≥4|Uαi|2 . (4.2)

This matrix diagonalizes the following mass matrix

M =

mL mD

mT
D MR

 . (4.3)

Thus, the active and sterile neutrinos have a Majorana mass and mix due to the Dirac

mass terms. This set up covers all the effects on neutrino physics of a given model. The

Majorana mass nature opens the possibility for lepton number violation and neutrino-less

double beta decay. The propagating sterile states lift the GIM suppression in the lepton

flavour violating processes for the charged leptons and different non-unitraity parameters

εα in eq. 4.2 parametrise deviation from lepton universality. Furthermore, in this set up

we can get estimates on the oblique corrections [49]. As shown in [46] they can contribute

significantly to EWPOs especially given large non-unitarity and heavy sterile neutrinos.

The mass terms in the effective theory after integrating out heavier degrees of freedom

have the following form.

−Lm =
1

2
m∗L,ij ν̄

c
L,iνL,j +m∗D,ij ν̄L,iνR,j +

1

2
M∗R,ij ν̄

c
R,iνR,j + h.c., (4.4)

where m∗D,ij = gH,ij · vH and M∗R,ij = gϕ,ij · vϕ. While direct masses for the left handed

neutrinos are generated due to a scalar or fermionic triplet. m∗L,ij = gaL,ij · v∆ + (gΣ,ij +

gb∆,ij) · v2
H/vφ. The scalar triplet contributes a dimension four operator, both triplets

generate terms proportional to the squared Higgs VEV, the fermionic triplet a dimension

fife operator and the scalar triplet a dimension six operator. The g parameters are effective

Yukawa couplings which can contain corrections from heavier particles integrated out of

the theory. Thus depending on the theory in question the perturbativity condition is not

to be taken as a strict bound.

Scanning over the effective Yukawa coupling space provides us with sets of viable solu-

tions according to the above criteria. To visualize the solutions we set up a two dimensional

map with the horizontal axis for the averaged right handed mass scale and the vertical axis

for the averaged Dirac couplings. The average represents the order of magnitude of the

Yukawas in the case they are in the same ball park, if they are spread apart the average

is dominated by the largest. The spread over several orders of magnitude, however, is

not considered as it would require unnaturally large tuning. The results of our study are

presented in figure 4. We would like to discuss four phenomenological scenarios separately.

4.1 Pure left handed Majorana mass

In the case that the Dirac coupling is very small, or there are no fermionic singlets under

the SM gauge group included in the theory, the only possible neutrino mass term is the left
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handed Majorana mass. In this scenario the charged lepton flavour violation is strongly

GIM suppressed and beyond experimental precision. The PMNS mixing matrix is unitary

and therefore the most promising signals are expected in the 0νββ experiments. The total

mass scale enters the effective electron neutrino mass, since it is entirely Majorana. For

a detailed study if the 0νββ sensitivity depending of the hierarchy see [50] and references

therein. The current experimental bound on the electron neutrino effective mass, the

parameter controlling the 0νββ decay, is 〈mee〉 < 0.4 eV [51].

The models leading to a pure left handed Majorana mass are in our set up 11A, 12A

and 13A here the neutrino masses are suppressed by one or two loops.

4.2 Pseudo Dirac scenario

The other distinct region with only light neutrinos is around the point in the parameter

space where the active and sterile neutrinos form mass degenerate pairs of Dirac fermions.

This point has no lepton number violation and an effective GIM suppression of the charged

lepton flavour violating process. Now the pairs can acquire a small Majorana mass, either

through contributions of light sterile neutrinos or a small mL mass.

This leads to a mass splitting among the degenerate Majorana pairs forming the effec-

tive Dirac neutrino states. Phenomenologically this is consistent with observations as long

as this splitting is smaller than the experimental accuracy of the mass square difference

measurement. For detailed bounds consult [52]. It turns out that the strongest constraints

apply to the splitting of the first and second mass state and are of the order of 10−9 eV,

while in the third mass state, with the dominant tau flavour, the splitting can be up to

10−3 eV. Since the right-handed neutrinos are light in this scenario, the PMNS matrix is

unitary and there are no phenomenological bounds from EWPOs, lepton universality or

lepton flavour violation.

The origin of the mass splitting is not important for oscillation experiments, when it

comes to lepton flavour violation, however, there is an interesting subtlety. Consider the

two cases in the one flavour scenario, where in the first case the Majorana mass appears

on tree level for the active neutrino and in the second case for the sterile component

M1 =

 µ mD

mD 0

 and M2 =

 0 mD

mD µ

 . (4.5)

In the limit µ� mD the mass eigenvalues are given in both cases as m± = ±mD+µ/2

and the diagonalizing mixing matrices are

U1/2 ≈
√

1

2

1± ε −1 + ε

1∓ ε 1 + ε

 with ε =
µ

4mD
. (4.6)

We consider now the expansion of the effective mass for the neutrnoless double beta

decay in powers of the momentum transfer. The effective mass is approximately given by
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〈mee〉 ≈ |q2
∑

iU
2
eimi/(q

2 −m2
i )|, the relation holds that m2

i � |q2| ≈ (0.1 GeV)2 and we

can expand

〈mee〉 ≈
∣∣∣∣∑

i

U2
eimi + 1/q2

∑
i

U2
eim

3
i +O(1/q4)

∣∣∣∣. (4.7)

Inserting the parameters we find that in the case where the active neutrino has a direct

Majorana mass the effect is of order [50],

〈mee 1〉 ≈ µ ≈ (m2
+ −m2

−)/(2mD) . (4.8)

In the case where the Majorana mass appears via the sterile component, the first order

contribution vanishes, as the electron neutrino entry of the neutrino mass matrix is zero

and one has to leading order

〈mee 2〉 ≈ mD (m2
+ −m2

−)/(2 q2) ≈ µm2
D/q

2 , (4.9)

since mD is of the order of the absolute neutrino mass scale the effective mass is sup-

pressed by the factor (mD/q)
2 with respect to eq. 4.8 which is at least 14 orders of magni-

tude. Thus there is an interesting experimental possibility to distinguish these scenarios.

Assume, neutrino oscillation experiments on cosmic scales detect a small mass splitting

testing oscillations on cosmic length scales as described in [47]. If this splitting is in the

phenomenologically allowed region today, the contribution to the effective mass for 0νββ

decay can be up to a few 10−5 eV, as displayed in figure 4 in the zoomed in region. This

is only the case, if the mass splitting originates from a direct active neutrino Majorana

mass, in the second case it would be of the order 10−17 eV and beyond experimental reach.

Thus, measuring the 0νββ decay provides evidence of scenario one and placing a limit

smaller than the predicted value shows that scenario two is realized. Even though the

possibility is interesting from the theoretical perspective, it is extremely challenging ex-

perimentally, since the maximal expected decay rate is four orders of magnitude below the

current sensitivity.

Among the presented models the pseudo Dirac scenario can be realized in 3A, 6A with

a direct active neutrino Majorana mass and in 1B and possibly in all the (#C) models

with a sterile neutrino Majorana mass, leading to no observable 0νββ decays. The Yukawa

couplings in the Majorana and Dirac sector have to be tiny, in fact below 10−12, but there

is no hard theoretical argument which could exclude this possibility a priori.

4.3 Sub-TeV Yukawa see-saw

In several models where the right handed Majorana couplings are not loop or scale sup-

pressed the right handed Majorana mass is below one TeV. Viable solutions lie in a trian-

gular shaped region for Majorana couplings smaller than one. In this parameter region the

contributions to mL are subdominant and thus the averaged effective Yukawa couplings

represent the sterile Majorana mass on the x-axis and the Dirac mass on the y-axis respec-

tively. For the scan the Casas-Ibarra parametrisation [53] was used, which parametrizes the
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q′

q̄

W+

N

e+α

e+α

Jet

Jet

W−

Figure 2. The lepton number violating decay as a collider signature for the Sub-TeV and multi

TeV see-saw with a heavy Majorana Neutrino decay.

active sterile-mixing as R = −iD√mνO∗D√MR
UPMNS with OT O = 1. Thus the physical

effects connected to non-unitarity are controlled by the norm of O.

The shape of the Sub-TeV see-saw region is explained as follows. The see-saw relation

(m2
D/MR ≈ mν = 0.1 eV) and MR > mD sets the lowest value for mD given a MR, which is

mD >
√
mνMR. This sets the lower boundary of this region and is represented by a black

dotted diagonal line of gradient two in the log plot in figure 4. Deviations to higher Dirac

couplings induce a larger active-sterile mixing and thus larger non-unitarity. The unitarity

bounds constrain the region to the left and are represented by a brown line, for non-

unitarity of one percent. Since deviation from unitarity is proportional to mD/MR the line

has gradient one in the log plot. However, those turn out to be not the strongest constraints.

The most stringent bounds come from neutrino-less double beta decay, displayed as a red

line. In the region of interest the dominant contribution to the electron neutrino effective

mass for 0νββ is given by 〈mee〉 ≈ |
∑

i≥4U
2
ei GeV2/Mi|. The predicted effective electron

neutrino mass violates the observational bound if the right handed neutrinos become too

light. The constraints from rare lepton flavour violating decays and lepton universality are

somewhat weaker. The EWPOs in this parameter region are consistent with their measured

values. To this end the χ2 function as in [46] has been calculated and loop effects of the

right handed neutrinos included, the resulting χ2 values do not differ significantly from the

SM values.

The main characteristics of this scenario is lepton number violation, since the Majo-

rana mass of the sterile neutrino is not suppressed. Besides the rare decay processes, lepton

number violation can lead to beyond SM processes at colliders in decays of the heavy Ma-

jorana neutrinos, see figure 2. The production cross section for this process, is proportional

to |∑iU
2
αiM

−1
i | [54] and has basically zero SM background.

It is interesting to discuss the values of the Yukawa couplings in this region. Since in our

models of spontaneous broken scale invariance all the masses are a result of a VEV coupled

with a Yukawa term, the see-saw relation is induced entirely by the Yukawa coupling

structure. While for the Majorana coupling the region of the Sub-TeV see-saw implies in

the presented models couplings between 10−3 and one, the Dirac Yukawa couplings vary

between 10−7 and 10−4. This values might be considered small and fine-tuned, however we
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have to stress here that in that case the electron Yukawa coupling, which is of order 10−6

is suspicious as well. In the models discussed above this scenario is realized in 3A, 6A,

10A , 1B, 1C and 4C.

4.4 Inverse Yukawa see-saw

The most interesting scenario from the theoretical point of view in the context of RSSB

is the inverse see-saw, introduced in [44, 45]. It naturally occurs in models D1 and D2,

where the mass matrix has the following texture and the scale µ is loop or scale suppressed

M =


0 mD 0

mT
D 0 MRx

0 MT
Rx µ

 . (4.10)

The spectrum of this models contains Pseudo Dirac pairs of heavy neutrinos, with

masses of order MRx and their mass splitting µ determines the amount of lepton number

violation present. At the same time it is the parameter, which controls the smallness of

the active neutrino masses. As given by eq. 3.7 the active sterile mixing is determined

by the ratio m2
D/M

2
Rx and the general spirit of RSSB together with no tuning in the

Yukawa couplings suggests seizable values. Seizable mixing is only compatible with small

active masses if a cancellation mechanism is at work. It can be seen in the Casas-Ibarra

parametrization, we choose the two flavour case with UPMNS = 1 for simplicity here. The

orthogonal complex matrix O(θ) is in this case a simple 2 × 2 rotation matrix with the

complex angle θ = a+ ib. In the limit a� 1 and 1� b we have

O(θ) ≈

 cosh(b) −i sinh(b)

i sinh(b) cosh(b)

 . (4.11)

As shown in [55], this leads in the limit of mν → 0 and with sinh(b) ≈ cosh(b) ≈ eb,

eb
√
m1 → √µ, eb

√
m2 → α

√
µ to an

mD ≈

 √µM1 −i
√
µM2

i
√
µM1α

√
µM2α

 . (4.12)

Which in the limiting case has rank 1 and thus induces massless active neutrinos. This

shows that the orthogonal matrix with dominating imaginary arguments is a good effective

description of the ISS.

Using this fact we study experimental constraints on this scenario. At first we consider

the 0νββ decay, which placed the most severe bounds on the Sub-TeV scenario. The general

expression useful to consider in this case is [45] 〈mee〉 ≈ |q2
∑

iU
2
eimi/(q

2 −m2
i )| . Which

now can be studied in three cases, depending on the ratio of q2/M2
Rx, where the neutrino

momentum is |q| ≈ 0.1 GeV.
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If we have MRx � 0.1GeV and using the facts that for i > 3, U2
ei ≈ m2

D/M
2
Rx and

µm2
D/M

2
Rx ≈ mν the following approximation holds

〈mee〉 ≈
∣∣∣∣∣

3∑
i=1

U2
eimi −

q2

2

∑
i>3

U2
ei

µ

m2
i

∣∣∣∣∣ (4.13)

≈
∣∣∣∣∣

3∑
i=1

U2
eimi −mν

q2

M2
Rx

∣∣∣∣∣ ≈
∣∣∣∣∣

3∑
i=1

U2
eimi

∣∣∣∣∣ .
Which means that the rate is purely given by the light neutrino spectrum with well

known phenomenology.

The other limit is MRx � 0.1 GeV, leading to 〈mee〉 ≈ |
∑

i(U
2
eimi + 1/q2 U2

eim
3
i )| =

Mee + O(µm2
D/q

2). This situation is similar to the discussed Pseudo Dirac scenario with

light neutrinos and the lowest order contribution is µm2
D/q

2 < µM2
Rx/q

2, which in this

limit is negligible.

The only case when the heavy Pseudo Dirac states can measurably contribute to the

0νββ decay is when MRx ≈ 0.1 GeV. Then we have

〈mee〉 ≈
∣∣∣∣∣ mlight

ee +
∑
i>3

U2
ei µ

(
1 +

m2
i

|q2|

)−1
∣∣∣∣∣ (4.14)

≈
∣∣∣∣∣ mlight

ee +
∑
i>3

mν

(
1 +

m2
i

|q2|

)−1
∣∣∣∣∣ ,

which is of the order of the light neutrino contributions. Thus, we see that neutrinoless

double beta decay does not provide strong bounds in the ISS scenario, since the lepton

number violation is suppressed as the scale µ.

This is not the case for the Lepton flavour violating processes. The best constrained

value is the branching ratio Br(µ → e + γ), where the limit is placed by the MEG col-

laboration [56] and is 5, 7 · 10−13. The neutral fermion contribution to this loop induced

decay is

Br(µ→ e+ γ) =
3αem

32π

∣∣∣∣∣ ∑
i

U∗µiUeiG

(
m2
i

M2
W

) ∣∣∣∣∣
2

, (4.15)

where in the loop function G(x) the masses appear squared and the cancellation leading to

a vanishing 0νββ process can not work. We find that the MEG bound together with the

non-unitarity constraints [48] lead to the most severe constraints on this models, as shown

in figure 4.

As stated before the ISS opens the possibility in the RSSB framework to have states

above the TeV scale. The region of right handed masses between one and a few ten TeV is

divided in two subregions, which are distinguished by the value of the active-sterile mixing.

If this value is sizeable, in fact above 10−6, the phenomenology is considerably affected.

The most sensitive observables are the Z boson invisible decay width and the Muon decay
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constant, which is used to determine the Fermi constant. The observables dependence on

the non unitarity parameters, see eq. 4.2 is given by

Γinv
Z

[Γinv
Z ]SM

=
1

3

∑
α

(1− εα)2 , (4.16)

Gµ = GF (1− εe)(1− εµ) . (4.17)

This region of seizable active sterile mixing with heavy particles is of particular interest,

since here the oblique corrections can become large. So, on the one hand the χ2 with the

EWPOs provides us with phenomenological bounds in this region. On the other hand this

is an example of a theory where contributions from heavy sterile neutrinos can improve the

electroweak fit, as discussed in [46]. In figure 4 the region with an improved χ2 is bound

towards lower mass values by experimental constraints from the µ → e + γ decay and

towards higher masses the radiative corrections become incompatible with observations in

case of large active-sterile mixing.

Having discussed constraints on the right handed mass, it is interesting to study which

Dirac mass scales are allowed. The mass scale of the light neutrinos is set by the following

scale relation mν ≈ µm2
D/M

2
Rx, furthermore it is required that µ/MRx =: δ � 1 and

mD < MRx. Those relations imply that mD >
√
mνMRx/δ. Given a right handed mass

scale, the minimal Dirac mass is larger than in the usual see-saw scenario, which implies

that the active-sterile mixing has to be larger as well.

The most promising signature to distinguish the heavy Pseudo Dirac neutrino from

the ISS scenario from a heavy Majorana neutrino is a direct test at a collider, which is

feasible as all the particles involved are around the TeV scale. The difference lies in the

dominant decay channel of the right handed neutrinos. While in the Majorana see-saw the

lepton number violation is unsuppressed generically, the dominant process is expected to

be the lepton number violating decay in figure 2. In the case of a decay of a heavy Pseudo

Dirac neutrino, lepton number violation is suppressed by the smallness of the right handed

Majorana scale µ [55], thus the dominant processes are lepton number conserving decays.

As argued in [57, 58], the opposite sign dilepton decay has a very large SM background and

thus the relevant channel becomes the trilepton decay with missing energy, see figure 3. As

shown by Das et al. the inclusive cross section of the trilepton final state is controlled by

the branching ratio of the heavy neutrino in the W boson and a lepton, it has the partial

decay width

Γ(N → `αW ) =
g2 εα
64π

m3
i

M2
W

(
1− M2

W

m2
i

)2(
1 + 2

M2
W

m2
i

)
. (4.18)

As shown by eq. 4.18, the decay width crucially depends on the non-unitarity parameter

εα. The interesting feature of the ISS in the RSSB framework is, that the requirement of

no large scale separation results in naturally large active-sterile mixing, as ε ≈ m2
D/M

2
Rx.

Thus the most natural value for ε, given an order of magnitude between the scales and

Yukawa couplings of order one is about one percent, close to the sensitivity threshold of

modern experiments. Note that the recently proposed production mechanism for heavy

sterile neutrinos via t-channel processes can further increase the collider sensitivity, as

argued in [59].
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Figure 3. The dominant collider signature for the ISS scenario with the trilepton plus missing

energy signature.

4.5 Decoupled hidden sector

The discussion of RSSB led us to the finding that generically all scalar scales are close to

the TeV scale if no finetuning in the potential is involved. The most natural mechanism to

generate the neutrino mass scale, far below was the connection to lepton number violation

and thus models seem favourable where this scale is suppressed. We found the most natural

model to be the ISS, in this scenario the Majorana scale is generically at the order of keV.

We would like to point out that the connection to the dark matter sector in this context

seems very promising by considering two set-ups.

Suppose a scenario in which the Hidden sector contains a SM singlet fermion νx with

the dark U(1) charge 1 and a SM scalar singlet φD with a dark charge 2 which gets a VEV

and thus via the term φDν̄xν
c
x generates a mass between the EW and the TeV scale for the

fermion. This particle is stable but also almost decoupled from the SM, since the Higgs

portal coupling to φD is so far the only allowed interaction channel and it is constrained to

be small by experiment. Therefore, it is a decoupled sterile neutrino. It is however possible

to switch on a fermionic portal of the form ν̄xη `R, as discussed in [60–63] and in a scale

invariant context in [64]. Here `R is a right handed lepton, which is a phenomenologically

allowed interaction. The η is an electrically charged scalar mediator which has to be of a

similar mass due to the requirement of no scalar mass hierarchies. This interaction can lead

with the appropriate parameter choice to the production of νx in the early universe with the

correct abundance to be a cold dark matter candidate via the lepton portal interaction, as

discussed in the literature. This class of models has a rich phenomenology including gamma

ray signals which can be peaked and serve as a good DM detection signature [63]. The

detailed discussion, however, goes beyond the scope of this work. The intriguing insight

is, that the requirement of no scalar mass hierarchy leads automatically to the region of

typical WIMP masses.

In the second scenario the ISS, as in 1D and 2D with an additional fermionic state νx
in the hidden sector, with the charges (1, 0, 1) in (SU(2),U(1)Y ,U(1)Hidden) is considered. It

is thus a 3 active and 3+3+1 sterile scenario. The mass matrix after eliminating unphysical
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phases has the structure

M =



0 m3×3
D 0 0

mT
D 0 M3×3

Rx A3×1

0 MT
Rx µ3×3

1 0

0 AT 0 µ2


. (4.19)

The spectrum would be given by three Pseudo Dirac neutrinos of the scale MRx. The

light neutrino mass is given by eq. 3.7 and with A ≈ MRx, which is natural given order

one Yukawas, the additional sterile state has a mass of µ and a small mixing with the

active neutrinos of the order µ2/M2
Rx. The remarkable feature is that the scale µ ≈ keV

required by the see-saw relation is also the correct scale for this state to be a Dark Matter

candidate [65, 66].

We find that incorporating the neutrino mass generation in the RSSB framework nat-

urally provides us with two scales of DM candidates, those are the TeV scale suitable for

a cold Dark Matter particle and the keV scale leading to warm Dark Matter.

5 Conclusion

We studied in this paper consequences of conformal electro-weak symmetry breaking models

for neutrino masses. Many phenomenologically viable models contain extra scalars which

undergo dimensional transmutation. The VEV of this scalar triggers then via the Higgs

portal electro-weak symmetry breaking. This over-all picture has interesting consequences

for neutrino masses. First, no explicit Dirac or Majorana mass terms are allowed, since

they would violate conformal symmetry explicitly. All fermion masses must therefore arise

as some Yukawa coupling times the VEV of some scalar. The second generic feature is that

Coleman-Weinberg type symmetry breaking leads to a loop-generated symmetry breaking

effective potential where the Higgs mass (curvature of the minimum) is loop suppressed

compared to the VEV. This can be seen in the Standard Model, where Coleman-Weinberg

symmetry breaking leads to a Higgs mass of about 9 GeV, which is excluded. This explains

also why the scale which is generated by the extra scalar should be in the TeV range in

order to match the EW scale. This implies finally that all neutrino masses come from Dirac

and Majorana Yukawa couplings which are multiplied either with the EW scale or with

the TeV-ish symmetry breaking scale of the extra scalar.

We studied such scenarios in this paper in a rather general context. For that we

distinguished three basic strategies of accommodating neutrino masses. Embedding of the

SM in a larger gauge group, enlarging the field content of the SM by additional fields

or extending the SM by a Hidden sector. In section 3 we present a catalogue of viable

conformal neutrino mass models and describe them in more detail in the appendix.

Note that any neutrino mass between zero and the VEVs (or even somewhat bigger)

can be obtained by selecting the corresponding Yukawa couplings. The wide spectrum of

Yukawa couplings for other fermions of the SM implies that a wide spectrum of neutrino

mass terms is expected in these scenarios. Note that very tiny neutrino masses are still quite
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Figure 4. The phenomenologically allowed regions on the Mass Map are displayed. The averaged

right handed scale normalized to the TeV scale of symmetry breaking is shown on the x-axis and

the averaged EW Dirac mass is shown on the y-axis. Two regions are zoomed in and shown as

insets. In the left upper corner the blow up shows the region around the TeV right handed scale, the

color coding represents the non-unitartity of the active mixing matrix. In the right lower corner the

region of sub-dominant Majorana masses is shown, the color code indicates the maximal expected

effective electron neutrino mass for 0νββ decays. The experimental constraints are the limits on

the rare decay µ → e + γ, shown as the magenta line, the lepton universality, shown as the blue

line and the 0νββ decay, leading to the red exclusion line. The points allowed only in the inverse

see-saw are shown in grey-green. The most universal bounds come from non-unitarity constraints,

shown as a brown line with gradient one in the log-plot. The see-saw relation explains the lower

boundary of the allowed region, it has gradient one-half in the log-plot. I is a fraction of parameter

space without a see-saw relation, it is the Pseudo-Dirac region. Here neutrinos come in pairs of

strongly mixed left and right particles, with mass splitting induced by Majorana mass fraction. II

Yukawa see-saw with the upper bound- Scale 1- set by the requirement of perturbative couplings.

III ISS allows perturbative couplings and at the same time the right handed mass up to Scale 2.

The most natural parameter choice in the ISS scenario leads to considerable active-sterile mixing of

states at the TeV scale and a significantly improved χ2 of the Electro-Weak fit w.r.t. the standard

model (light blue points).

natural, since the discussed models suppress them via a see-saw or via loops. We show that

in the Yukawa see-saw model the adjustment of the couplings can be reduced to the same

amount as present in the charged lepton sector. The amount of tuning the Yukawa couplings

can be largely reduced if the neutrino mass generation is related to lepton number violation.
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If lepton number is taken to be an approximate symmetry, which is broken explicitly in the

Lagrangian, the smallness of the braking parameter is natural in the sense, that its absence

would increase the symmetry. The lepton number violation parameters can lead to light

neutrino masses via loops, or to small Majorana mass contributions of Dirac particle pairs.

We present several models where small and or loop suppressed lepton number violation is

the driving principle behind neutrino mass generation. In particular when combined with

the ISS mechanism the small Majorana mass fraction in the heavy Dirac neutrino pair

leads to small active neutrino mass and no fine-tuning is needed.

In addition we perform in section 4 a phenomenological analysis with the goal to check

whether the models can indeed reproduce the neutrino oscillation data and at the same

time be consistent with rare decay experiments, as the 0νββ searches. Our finding is, that

there are four phenomenologically viable regions.

Scenario A has only light neutrinos with Majorana masses, which are generated on

tree or loop level by particles with lepton number violating couplings. This scenario can

lead to detectable signals in the 0νββ decays and the additional states, such as the triplet

scalar can be produced at colliders, since their mass must be about the TeV scale.

Scenario B is a Pseudo-Dirac scenario where pairs of light mass eigenstates are almost

degenerate with only small Majorana mass fractions. This scenario requires, however, very

small Dirac Yukawa couplings and is in general experimentally very challenging. The most

promising searches for light Pseudo Dirac neutrinos are oscillations on cosmic scales which

could probe the small mass splitting.

Scenario C is the Sub-TeV scenario with right handed Majorana states below the TeV

scale. This region is severely constrained by limits in the 0νββ decay, since the lepton

number violation is unsuppressed. The collider signature which one would expect are

decays to same sign dileptons, a process practically without SM background.

In scenario D the right handed mass can be up to few ten TeV. This can be achieved

in ISS models where several scalars are in the game and have a hierarchical VEV structure.

The ISS scenario is of particular interest, since it improves the Electro-Weak fit with

respect to its SM value. In this parameter region the active-sterile mixing is enlarged

and can provide testable signals. This conformal ISS is also theoretically attractive since

it contains Yukawas of order one and the smallness of the hidden sector parameters is

implied by loop suppression and thus completely avoids fine-tuning. In this region the

heavy sterile neutrinos are almost mass degenerate Pseudo Dirac pairs with small Majorana

mass fractions. This leads to a suppression of lepton flavour violation and the most relevant

constraints in this case, come from searches of lepton flavour violating decays, as µ→ e+γ.

At colliders a decay of such a heavy neutrino would have a trilepton final state and missing

energy without lepton number violation as the smoking gun signal.

We briefly comment that the Hidden sector can contain almost decoupled Dark Matter

candidates, which can be either coupled via the lepton portal to the SM or due to small

active-sterile neutrino mixing. The masses are either at the EW or the keV scale. The

observation here is, that taking the gauge hierarchy problem seriously can provide us with

a hint for a Dark matter scale.

Additional signals in collider experiments are expected to appear in all viable neutrino

mass models, since all require new scalar or fermionic states around the TeV mass region.
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Therefore, we expect that all those models can be tested by the LHC. The collider signa-

tures and neutrino experiments combined will provide very powerful tools for studying and

distinguishing among the different scenarios. Phenomenological details of such models and

further theoretical aspects will be discussed in future work.
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A Conformal neutrino mass models

Models within the SM gauge group. We begin with the systematic description of

viable conformal neutrino mass models. It will be very important in this section to point

out which particles have been integrated out and which picture of neutrino mass generation

we are considering.

(I) Models with dominant contributions to the left-handed Majorana entry.

• 3A: SM + νR +ϕ

– Particle content:

L : (2,−1); H : (2, 1); νR : (1, 0); ϕ : (1, 0),

– Yukawa Lagrangian:

−LY = gHLH̃νR + gϕϕν
c
RνR + h.c.

– Potential:

VI = λH(H†H)2 + λϕ(ϕ†ϕ)2 + λHϕ(ϕ†ϕ)(H†H)

With this we find the diagrams

νR

νR

〈H〉 〈ϕ〉 〈H〉

L L +
νR νR

H H

〈H〉 〈H〉

〈ϕ〉

L L

+
νR νR

H ϕ

〈H〉 〈ϕ〉 〈H〉

L L +
νR

νR

ϕ H

〈H〉 〈ϕ〉 〈H〉

L L

– 24 –



J
H
E
P
1
0
(
2
0
1
4
)
1
7
7

The first diagram is the tree level contribution while the other three are one-loop cor-

rections to the first diagram and have thus a smaller contribution to the total neutrino

mass. Further contributions have either at least two loops or 9 mass insertions and

thus have even smaller impact on the masses.

The mass matrix has the following structure:

M =

ML mD

mD MR

 . (A.1)

The masses are given by MR = gφ 〈ϕ〉, mD = gh 〈H〉 and the loop supressed left

handed contributions

ML ≈
g2
Hgφ 〈H〉2 〈ϕ〉

(4π)2Λ2
+
g2
Hgφ 〈H〉2 〈ϕ〉
MR(4π)2Λ

(A.2)

with Λ the dominant loop mass contribution. Integrating out the heavier right handed

states leads to an effective mass for the light species of the order

mν ≈ g2
H

〈H〉2
MR

+
g2
Hgφ 〈H〉2 〈ϕ〉

(4π)2Λ2
+
g2
Hgφ 〈H〉2 〈ϕ〉
MR(4π)2Λ

(A.3)

=
g2
H

gφ

v2
H

vϕ

(
1 +

gφvϕ
(4π)2Λ

+
g2
φ v

2
ϕ

(4π)2Λ2

)
.

With gH being the Dirac and gφ the Majorana type Yukawa coupling. The tree

level contribution dominates in this scenario. We refer to this model type as the

Yukawa see-saw.

We consider now in addition a moled with tree level correction to the left-handed

Majorana entry by introducing a scalar triplet.

• 5A: SM + ∆ + ϕ

– Particle content:

L : (2,−1); H : (2, 1); ∆ : (3,−2); ϕ : (1, 0)

– Yukawa Lagrangian:

−LY = g∆L̄~σ∆Lc + h.c. = g∆(L̄~σ∆Lc + L̄c~σ∆∗L)

– Potential:

VII = λH(H†H)2 + λ∆TTr(∆
†∆)2 + λT∆(Tr(∆†∆))2

+ λH∆,1(H†H)Tr∆†∆ + λH∆,2H
†∆∆†H

+ λϕ(ϕ†ϕ)2 + λHϕ(ϕ†ϕ)(H†H)

+ λϕ∆(ϕ†ϕ) Tr ∆†∆ + λϕ∆H [ϕHT iσ2∆H + h.c.].

– 25 –



J
H
E
P
1
0
(
2
0
1
4
)
1
7
7

All 1-Particle-Irreducible (1PI) diagrams with upto 3 mass insertions and maximum

one loop are given by

L L

〈∆〉

+

∆

L L

∆

L L

〈∆〉 〈∆〉

〈∆〉

+

∆

L L

〈H〉 〈ϕ〉 〈H〉

The theory at hand is the conformal analogue of the type II see-saw mechanism.

Based on measurments of EWPOs the VEV 〈∆0〉 has to be orders of magnitude

below the EW scale and in our single scale scenario it seems more natural for it to

be exactly zero at tree level. Therefore, the main contribution comes from the third

diagram which yields the neutrino mass

ML = g∆
λϕ∆H

M2
∆

〈ϕ〉〈H〉2, (A.4)

where M∆ is the physical mass of the scalar triplet. This is controlled by the lepton

number violating coupling λϕ∆H , furthermore the neutrino mass is suppressed by

the mass of the triplet scalar. The mass of the double charged triplet component is

experimentally constrained to be above 450 GeV [67] and since there should be no

large splitting among the components we assume the neutral component to be at

least of the same order.

This model can be enlarged by right handed neutrinos, which leads us to

• 6A: SM + νR + ϕ + ∆

– Particle content:

L : (2,−1); H : (2, 1); ∆ : (3,−2); ϕ : (1, 0); νR : (1, 0)

– Yukawa Lagrangian:

−LY = gHL̄H̃νR + gϕϕν̄
c
RνR + g∆L̄~σ∆Lc + h.c.

– Potential:

V = VII

The following diagram is additional to those of 3A and 5A

νR νR

H ϕ

〈H〉 〈∆〉 〈H〉

L L
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The diagram contributes to the left handed mass an approximate term of the order

〈H〉2 〈∆〉 /((4π)2ΛMR) which is supressed by the smallness of the triplet VEV and

therefore subdominant. In this model the ϕ field can have a VEV, which brings us to

the Yukawa see-saw scenario, or it can have no VEV and the right handed neutrino

only adds a Dirac contribution to the neutrino mass. In this case the phenomenology

would be of the Pseudo Dirac scenario.

Like seen in the non-conformal case it is also possible to introduce a triplet fermion

to couple to the left-handed doublet. Unlike in the non-conformal scenario we now

have to introduce an uncharged singlet scalar to generate neutrino masses.

• 10A: SM + Σ + ϕ

– Particle content:

L : (2,−1); H : (2, 1); Σ : (3, 0); ϕ : (1, 0),

– Yukawa Lagrangian:

−LY = gΣH̃
†ΣL+ gϕϕTr

[
ΣcΣ

]
+ h.c.

– Potential:

V = VI

The main contribution to the neutrino mass is given by

Σ

Σ
L L

〈H〉 〈ϕ〉 〈H〉

This diagram yields the mass

ML = g2
Σ

〈H〉2
gϕ〈ϕ〉

. (A.5)

(II) Models with dominant contributions to the right-handed Majorana entry.

Already in model 3A right handed neutrinos with Majorana mass were considered. There

are, however, further ways to influence the right-handed Majorana mass. The first possi-

bility we want to study is to introduce a scalar and a fermion triplet and a scalar singlet.
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• 1B: SM + νR + Σ + ∆ +ϕ

– Particle content:

L : (2,−1); νR : (1, 0); Σ : (3, 0);

H : (2, 1); ∆ : (3, 0); ϕ : (1, 0)

– Yukawa Lagrangian:

−LY = gHL̄H̃νR + g∆ Tr [Σ∆νR] + gϕ,1 Tr [ϕΣcΣ] + gϕ,2ϕνRν
c
R + h.c.

The relevant lepton number violating term in the potential is displayed.

– Potential:

V ⊃ λϕHT iσ2∆
†H̃ + h.c.

Furthermore we forbid the VEV of ∆. In addition to the diagram of 3A we get

the diagram

Σ

Σ
∆ ∆

νR νR

〈H〉 〈ϕ〉 〈H〉 〈H〉 〈ϕ〉 〈H〉

〈ϕ〉
Note that the scalar triplet ∆ cannot be used to generate left-handed Majorana

masses as it has the wrong hypercharge. Adding contributions from both diagrams

the right-handed mass is given by

MR = gϕ,2〈ϕ〉+ λ2g2
∆

〈H〉4〈ϕ〉2
MΣ ·M4

∆

≈
(
gϕ,2 + g2

∆

GeV2

gϕ,1 〈ϕ〉2
)
〈ϕ〉 . (A.6)

Here the fact was used, that the combination λ 〈H〉2 〈ϕ〉 /M∆ from the diagram in-

duces an effective VEV of the triplet field , which is experimentally constrained

by measurements of the ρ parameter to be 〈∆〉 . 1GeV. Thus the second term

is subdominant.

Models with an additional hidden sector symmetry. The particle content is ex-

tended by additional SM singlet fermions. However, those would not be distinguishable

from the sterile neutrinos νR if they had all quantum numbers in common. Now with the

Hidden Sector symmetry, which will be denoted by U(1)H , there are observable effects.
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The SM singlet fermions with a hidden charge are denoted by νx and this requires the

mass matrix to be extended to 3× 3 in the one flavour case

M =


ML mD 0

mD MR MRx

0 MRx Mx

 . (A.7)

Note that the sterile neutrino νR must not carry a hidden charge, as otherwise coupling to

the Higgs would be forbidden and the complete sector would decouple.

(I) Modifying the νR Majorana mass. We begin with a theory in which the di-

rect term

gϕνRν
c
R (A.8)

is forbidden by the additional HS symmetry.

• 1C: SM ×UH(1)

– Particle content:

L : (2,−1, 0); H : (2, 1, 0); νR : (1, 0, 0);

νx : (1, 0, 1); ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2),

where the third number in brackets denotes the HS charge. This particle content

yields the additional terms

– Yukawa Lagrangian:

−LY1 = g1ϕ1νRν
c
x + g2ϕ2νxν

c
x + gHL̄H̃νR

If ϕ1 and ϕ2 get a VEV this theory yields the mass matrix

M =


0 mD 0

mD 0 MRx

0 MRx Mx

 . (A.9)

This mass matrix represents the double see-saw mechanism [68]. In language of

diagrams this model is represented by

νx

νx
νR νR

〈ϕ1〉 〈ϕ2〉 〈ϕ1〉
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Integrating out νx we obtain an effective mass MR and find the contracted

mass matrix

M =

 0 mD

mD MR

 , (A.10)

where MR can be calculated from the diagram. Two cases are relevant, either if

MRx �Mx one has

MR ≈
g2

1

g2

〈ϕ1〉2
〈ϕ2〉

, (A.11)

or in the other limit MRx �Mx the mass is

MR ≈MRx = g1〈ϕ1〉 . (A.12)

This indicates that it is possible to have either the double or the inverse see-saw

scenario realized. So far there is no reason to assume that Mx is small, thus the more

natural scenario in this model is the double see-saw, leading to a Sub-TeV see-saw

scenario.

• 2C: SM ×UH(1)

– Particle content:

L : (2,−1, 0); H : (2, 1, 0); νR : (1, 0, 0);

νx : (1, 0, 2); ϕ1 : (1, 0, 0); ϕ2 : (1, 0,−2)

– Yukawa Lagrangian:

−LY ⊃ −LY1

We see that the Majorana mass term for the hidden sector fermion can not be con-

structed and hence the matrix structure is

M =


0 mD 0

mD MR MRx

0 MRx 0

 . (A.13)

This is a structure of the minimal extended see-saw, discussed in [69], but here it is

at the TeV scale. The interesting feature is that with MR > mD and MR > MRx

this see-saw scenario generates light active and sterile neutrinos which can have large

mixing with the active sector. The light sterile neutrino could for instance explain

the missing upturn in the Super Kamiokande data, as discussed in [33], a detailed

discussion of this scenario is beyond the scope of this work.

A phenomenologically different scenario occurs if we forbid the VEV 〈ϕ1〉. Consider

the following theory.
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• 3C: SM ×UH(1)

– Particle content:

L : (2,−1, 0); H : (2, 1, 0); νR : (1, 0, 0); νx : (1, 0, 1);

ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2); ϕ3 : (1, 0,−4),

Note that the newly introduced SM singlet scalar ϕ3 does not change the Yukawa

Lagrangian. There is, however, an additional potential term:

– Potential:

V ⊃ λϕ2
1ϕ2ϕ3 + h.c.

Thus if we forbid, as mentioned, the VEV of ϕ1, the diagram with the main contri-

bution to MR is given by

ϕ1

νx

νx

ϕ1

νR νR

〈ϕ2〉 〈ϕ3〉

〈ϕ2〉

The mass of the right handed neutrino is generated at one loop and the effective mass

matrix reads

M =

 0 mD

mD MR

 . (A.14)

To approximate the scale of MR we use the fact that this loop has the same topology

as in the Ma model. Therefore, the right handed mass scale is

MR ≈
λ

16π2

g2
1

g2
〈ϕ3〉 I

(
〈ϕ2〉2
M2
ϕ1

)
, (A.15)

with I(x) =
1

1− x

(
1 +

x log x

1− x

)
. (A.16)

Thus the right handed mass is loop suppressed and controlled by the parameter λ,

which if set to zero increases the Lagrangian symmetry. Therefore, this model leads

to a scenario with Pseudo-Dirac active neutrinos.
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• 4C: SM ×UH(1)

– Particle content:

L : (2,−1, 0); H : (2, 1, 0); νR : (1, 0, 0);

νx : (1, 0, 1); Σ : (3, 0, 1); ∆ : (3, 0, 1);

H : (2, 1, 0); ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2)

– Yukawa Lagrangian:

−LY = −LY1 + g∆ Tr [Σ∆νR] + gΣ Tr [ϕ2ΣcΣ] + h.c.

Potential:

V ⊃ λϕ1H
T iσ2∆

†H̃ + h.c.

Note that we only displayed terms in the Yukawa Lagrangian and the potential that

are relevant for the lowest order diagram of right-handed neutrino mass generation.

The diagram additional to 1C is given by

Σ

Σ
∆ ∆

νR νR

〈H〉 〈ϕ1〉 〈H〉 〈H〉 〈ϕ1〉 〈H〉

〈ϕ2〉
If ∆ does not get a VEV at tree level this is the leading tree-level diagram in the 3×3

space as the term ϕνRν
c
R is forbidden. The right-handed mass MR can therefore be

estimated using the same argument as in 1B

MR =
λ2g2

∆

gΣ

(〈H〉
M∆

)4 〈ϕ1〉2
〈ϕ2〉

.
g2

∆

gΣ

GeV2

〈ϕ2〉
. (A.17)

This means that the mass matrix is given by

M =


0 mD 0

mD MR MRx

0 MRx Mx

 . (A.18)

Which is similar to 1C but with a non vanishing MR at tree level.

Now we turn to a theory with different phenomenology by forbidding the VEV of ϕ1.
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• 5C: SM ×UH(1)

– Particle content:

L : (2,−1, 0); νR : (1, 0, 0); Σ : (3, 0, 1); ∆ : (3, 0, 1);

H : (2, 1, 0); ϕ1 : (1, 0, 1); ϕ2 : (1, 0, 2); ϕ3 : (1, 0,−4)

The Yukawa Lagrangian is the same as in the previous theory, while we get an

additional potential term.

– Potential:

V ⊃ λϕ1H
T iσ2∆

†H̃ + λ′ϕ2
1ϕ2ϕ3 + h.c.+ . . .

With 〈ϕ1〉 = 0 the lowest order diagram contributing to the right-handed neutrino

mass is given by

Σ

Σ
∆

ϕ1 ϕ1

∆

νR νR

〈H〉 〈H〉

〈ϕ2〉

〈ϕ2〉 〈ϕ3〉 〈H〉 〈H〉

Using the fact that the loop has the same topology as in 3C and just the external

VEVs are different we get

MR ≈
λ2λ′

16π2

(〈H〉
M∆

)4 g2
∆

gΣ
〈ϕ3〉 I

(
〈ϕ2〉2
M2
ϕ1

)
. (A.19)

This loop suppression combined with a mass suppression to the fourth power with

the Triplet mass can generate the Pseudo-Dirac scenario for active neutrinos without

large fine tuning in the Majorana mass sector.

(II) Modifying the νx Majorana mass. The general mass matrix structure for the

following models will be of the form

M =


0 mD 0

mD 0 MRx

0 MRx Mx

 . (A.20)
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• 1D: SM ×UH(1)

– Particle content:

L : (2,−1, 0); νR : (1, 0, 0); νx : (1, 0, 1);

Σ : (3, 0,−2); H : (2, 1, 0); ϕ1 : (1, 0,−3);

ϕ2 : (1, 0,−4); ∆ : (3, 0,−3); ϕ4 : (1, 0, 1)

– Yukawa Lagrangian:

−LY ⊃ gHLH̃νR + gRxϕ4νRν
c
x + g∆ Tr [Σ∆νx] + gΣ Tr [ϕ2ΣcΣ] + h.c.

– Potential:

V ⊃ λϕ1H
T iσ2∆

†H̃ + h.c.+ . . .

The leading diagram is

Σ

Σ
∆ ∆

νx νx

〈H〉 〈ϕ1〉 〈H〉 〈H〉 〈ϕ1〉 〈H〉

〈ϕ2〉

The mass matrix is given by eq. (A.20) and the Majorana mass of νx is

Mx =
λ2g2

∆

gΣ

(〈H〉
M∆

)4 〈ϕ1〉2
〈ϕ2〉

.
g2

∆

gΣ

GeV2

〈ϕ2〉
,

where the suppression of the small lepton number violating contribution by the heavy

scalar VEV makes it an inverse see-saw scenario. Implying sterile neutrinos with at

the TeV scale and slightly above. Those form pseudo Dirac pairs and can have seizable

mixing with the active neutrinos. With the mass scale of 〈ϕ2〉 around a few TeV and

the yuakawa couplings of g∆ ≈ 10−1 and gΣ ≈ 1, the scale Mx is naturally at the keV

scale, which is required phenomenologically to have sub eV active neutrino masses.

The active-sterile mixing is approximately given by (mD/MRx)2 and can in principle

range from 1% to undetectable values below 10−10. The interesting observation is

that small active-sterile mixing requires unnaturaly small Dirac Yukawa couplings in

this model.

It is possible that the νx Majorana masses are generated radiatively.
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• 2D: SM ×UH(1)

– Particle content:

L : (2,−1, 0); νR : (1, 0, 0); νx : (1, 0, 1);

Σ : (3, 0,−2); H : (2, 1, 0); ϕ1 : (1, 0,−3);

ϕ2 : (1, 0,−4); ϕ3 : (1, 0, 10); ∆ : (3, 0,−3); ϕ4 : (1, 0, 1)

Here 〈ϕ1〉 = 0 and the Yukawa Lagrangian is the same as in the theory before.

The potential, however, is extended.

– Potential:

V ⊃ λϕ1H
T iσ2∆

†H̃ + λ′ϕ2
1ϕ2ϕ3 + h.c.

We obtain the following diagram

Σ

Σ
∆

ϕ1 ϕ1

∆

νx νx

〈H〉 〈H〉

〈ϕ2〉

〈ϕ2〉 〈ϕ3〉 〈H〉 〈H〉

As before the Majorana mass of νx can be approximated by

MR ∼ 10−2 · g
2
∆λ

2λ′

gΣ

(〈H〉
M∆

)4

· EWS . (A.21)

We see that in this setup the νx mass is at the keV scale when the Yukawa couplings

are of order one, the potential terms between 0.1 and one and the Triplet around the

TeV scale. This is the right scale for the inverse see-saw scenario. Note that as before

we need another scalar ϕ4 for the connection between SM sector and Hidden Sector.

B Fully radiative generated left-handed masses

As was shown by 2.3 there is no way of generating left-handed neutrino masses radiatively

by pairwise coupling scalars in the potential. We go through the five possibilities for

non pairwise coupling of scalars and study whether radiative mass generation is possible.

Furthermore, we present possibilities to circumvent 2.3.
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• Possibility 1: we can introduce a potential coupling of four different SU(2) singlet

scalars such that their hypercharges add up to zero. In this case one SU(2) singlet

with vanishing hypercharge has to be included as we need an electrically neutral

scalar to gain a VEV.

With this kind of coupling it is indeed possible to construct a theory that generates

neutrino masses fully radiatively. Consider as an example the theory 11A.

– Particle content:

L : (2,−1); `R : (1,−2); H : (2, 1); δ− : (1,−2); ε++ : (1, 4)

– Yukawa Lagrangian:

−LY ⊃ gδL̄Lcδ− + gεlcR`Rε++ + LH`R + h.c.

– Potential:

V ⊃ λϕδ−δ−ε++ + h.c.+ . . .

For this theory we find the radiative generation of neutrino masses represented by

the diagram:

δ−

L lR

lR

ε++

L

δ−

L L

〈ϕ〉

The crosses denote the insertion of a Higgs VEV, i.e. they represent the mass of the

charged lepton. This theory is the conformally invariant analogue to the Zee-Babu

model. The corresponding left-handed neutrino mass is given by

ML = 8λ〈ϕ〉m2
l g

2
δgεI , (B.1)

where I is given by eq. (B.2).

I =

∫
d4p

(2π)4

∫
d4q

(2π)4

1

p2 −m2
l

1

q2 −m2
l

× 1

p2 −m2
δ

1

q2 −m2
δ

1

(p− q)2 −m2
ε

.

(B.2)

• Possibility 2: we can introduce an additional SU(2) doublet H2, an additional

charged scalar singlet η+ and a total singlet ϕ : (1, 0). As stated by before there

has to be a term in the potential with non pairwise coupled scalars. This λL term

violates lepton number and its size controls the neutrino masses.
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– Particle content:

L : (2,−1); `R : (1,−2); H1 : (2, 1);

H2 : (2, 1); η+ : (1,+2); ϕ : (1, 0)

With additional terms in the Yukawa Lagrangian and potential.

– Yukawa Lagrangian:

−LY ⊃ g1 η+L̄ iσ2L
c + g2 L̄H2`R + h.c.

– Potential:

V ⊃ λLηH̃†1H2 ϕ+ h.c.+ . . .

The loop diagram gives neutrino masses

H1/2

`R

L

η+

L L

〈H2/1〉 〈ϕ〉

which have the mass pattern as the non conformal Zee model [70], with the difference

that the dimensionful parameter controlling the neutrino masses is replaced by the

product of the coupling with the scalar VEV λL · 〈ϕ〉, see 12A.

• Possibility 3: we can introduce a potential coupling of 3 different SU(2) doublets

such that their hypercharges add up to zero in the following structure(
φ†1~σHi

)(
H̃†j~σHj

)
. (B.3)

As proposed in [41] an additional doubly charged singlet scalar can be used to gain

neutrino masses at two loop level. In a conformal model, however, an additional

scalar is required to have a lepton number violating term in the Lagrangian without

an explicit mass scale.

– Particle content:

L : (2,−1); `R : (1,−2); φ1 : (2, 3);

H1 : (2, 1); H2 : (2, 1); η : (1,−4); φ2 : (1, 0)

– Yukawa Lagrangian:

−LY ⊃ g η ¯̀
R`

c
R + h.c.

– Potential:

V ⊃ λi φ2ηφ
†
1H̃i + λij

(
φ†1~σHi

)(
H̃†j~σHj

)
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Here, both doublets H1 and H2 as well as the singlet scalar get a VEV and generate

neutrino masses at two loop level.

• Possibility 4: a potential term coupling 4 different SU(2) triplets such that their

hypercharges add up to zero in the following way(
∆†1∆2

)(
∆†3∆4

)
. (B.4)

This term generates neutrino masses at the two loop level with the same topology as

in the conformal Zee-Babu model in example 1.

• Possibility 5: a further term that can be introduced is given by the coupling

ϕHT
1 iσ2∆

†H2 , (B.5)

where ϕ is a SU(2) singlet, H1 and H2 are doublets and ∆ is a SU(2) triplet with

hypercharges such that they add up to zero in this term. That with the help of such

a coupling the fully radiative generation of neutrino masses is possible can be seen in

the following theory:

– Particle content:

L1 : (2,−1); L2 : (2,−3); L3 : (2, 0)

∆1 : (3,−4); ∆2 : (3,−3); ∆3 : (3,−1)

H1 : (2, 1); H2 : (2,−1); H3 : (2,−3); H4 : (2, 0) ϕ : (1, 0)

– Yukawa Lagrangian:

−LY ⊃ gaL̄1~σ∆1L
c
2 + gbL̄2~σ∆2L

c
3 + gcL̄3~σ∆3L

c
1 + h.c.

– Potential:

V =λaϕH
T
2 iσ2∆

†
1H3

+ λbϕH
T
3 iσ2∆

†
2H4 + λcϕH

T
4 iσ2∆

†
3H2 + h.c.

+ λ13(H†3H3)(H†1H1) + λ14(H†4H4)(H†1H1)

+ pairwise couplings

If we forbid the VEVs 〈∆1〉, 〈∆2〉 and 〈∆3〉, then the following diagram describes the

radiative generation of neutrino masses:

∆1

L2

L3

∆3

H3

∆2

H4

L1 L1

〈ϕ〉 〈H2〉 〈ϕ〉 〈H2〉 〈ϕ〉
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Admittedly this theory is very baroque and can be phenomenologically problematic.

Especially to ensure anomaly cancellation the new fermions have to be vector like.

The particle content in the loop is intended to show that it is possible to generate

neutrino masses fully radiatively from a topological point of view.

• Alternative 1: so far in the radiative models no additional symmetries were con-

sidered. However, the argument of 2.3 can be avoided if a new symmetry is present,

which forbids tree level couplings for fermion singlets in the SM Dirac term. If there

is a discrete symmetry, for example Z2 under which all SM particles are even and the

spectrum given by

– Particle content:

L(2, 1, (+)); H1 : (2, 1, (+)); H2 : (2, 1, (−)); νx : (1, 0, (−)); ϕ : (1, 0, (+))

Additional in the Yuakawa Lagrangian there are the following terms.

– Yukawa Lagrangian:

−LY ⊃ g1L̄H2νx + g2ϕν̄xν
c
x + h.c.

The relevant coupling in the potential is:

– Potential:

V ⊃ λ (H†2H1)2 + pairwise couplings

with H1 being the SM Higgs. This would be the conformal analogue of the Ma

model and generates neutrino masses at one loop level. Note, however, that

in general discrete symmetries are not so restrictive. Therefore, in our models

continuous symmetries are used. For example a hidden sector U(1) would have

the same effect on the Yukawa Lagrangian, but the potential term would be

forbidden. Thus a model of this type can only generate neutrino masses in the

hidden sector, as shown in the model 3C.

• Alternative 2: to circumvent the argument of 2.3 we can allow fermion loops. The

following theory shows that it is possible to construct left-handed Majorana masses

such that the lowest order diagram has to be a full loop diagram.

– Particle content:

L1 : (2,−1); L2 : (2, 0); L3 : (2, 2); L4 : (2,−2)

∆1 : (3,−2); ∆2 : (3, 0); ∆3 : (3, 2)

– Yukawa Lagrangian:

−LY ⊃ g11L̄1~σ∆1L
c
1 + g24L̄2~σ∆1L

c
4 + g22L̄2~σ∆2L

c
2

+ g23L̄2~σ∆3L
c
3 + g34L̄3~σ∆2L

c
4 + h.c.
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Furthermore we require the VEV of the neutral component of ∆1 to vanish. The

following diagram is then the lowest order contribution to the left-handed neu-

trino masses:

∆1

L2 L4

L2 L3

L1 L1

〈∆2〉

〈∆3〉

〈∆2〉

Like before this theory can be phenomenologically problematic. And again it is only

intended to show that the topological possibility of fully radiative mass generation in

conformally invariant theories with pairwise scalar coupling exists when introducing

fermion loops.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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