
Gaussian diffusion sinogram inpainting 
for X‑ray CT metal artifact reduction
Chengtao Peng1, Bensheng Qiu1, Ming Li2, Yihui Guan3, Cheng Zhang2, Zhongyi Wu2 and Jian Zheng2*

Background
The use of X-ray computed tomography (CT) in the clinical setting has lasted for sev-
eral decades and has considerably helped disease diagnosis and therapy. However, 
metallic implants in the bodies of patients usually produce severe streaking artifacts, 

Abstract 

Background:  Metal objects implanted in the bodies of patients usually generate 
severe streaking artifacts in reconstructed images of X-ray computed tomography, 
which degrade the image quality and affect the diagnosis of disease. Therefore, it is 
essential to reduce these artifacts to meet the clinical demands.

Methods:  In this work, we propose a Gaussian diffusion sinogram inpainting metal 
artifact reduction algorithm based on prior images to reduce these artifacts for fan-
beam computed tomography reconstruction. In this algorithm, prior information that 
originated from a tissue-classified prior image is used for the inpainting of metal-
corrupted projections, and it is incorporated into a Gaussian diffusion function. The 
prior knowledge is particularly designed to locate the diffusion position and improve 
the sparsity of the subtraction sinogram, which is obtained by subtracting the prior 
sinogram of the metal regions from the original sinogram. The sinogram inpainting 
algorithm is implemented through an approach of diffusing prior energy and is then 
solved by gradient descent. The performance of the proposed metal artifact reduc-
tion algorithm is compared with two conventional metal artifact reduction algorithms, 
namely the interpolation metal artifact reduction algorithm and normalized metal 
artifact reduction algorithm. The experimental datasets used included both simulated 
and clinical datasets.

Results:  By evaluating the results subjectively, the proposed metal artifact reduction 
algorithm causes fewer secondary artifacts than the two conventional metal artifact 
reduction algorithms, which lead to severe secondary artifacts resulting from imper-
tinent interpolation and normalization. Additionally, the objective evaluation shows 
the proposed approach has the smallest normalized mean absolute deviation and the 
highest signal-to-noise ratio, indicating that the proposed method has produced the 
image with the best quality.

Conclusions:  No matter for the simulated datasets or the clinical datasets, the pro-
posed algorithm has reduced the metal artifacts apparently.
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which will obscure crucial information and reduce image quality. The academic com-
munity believes the explanation of this phenomenon is beam hardening [1, 2]. Due to 
the pleochroism of the X-ray energy spectrum, the attenuation coefficient of the high 
energy X-ray is smaller than the low energy X-ray. That is to say, when an X-ray passes 
through body of a patient containing metal, the low energy photons are absorbed and 
output mostly contains high-energy photons, thus the high-energy photons detected 
by detector become richer. Obviously, the conventional algorithm that is widely used 
in CT image reconstruction, namely the filtered back-projection (FBP) reconstruction 
algorithm [3], fails to reconstruct the image clearly in this situation due to inaccurate 
projection data. To solve the problem of severe streaking artifacts, many metal artifact 
reduction (MAR) algorithms have been proposed.

Presently, the most commonly used MAR algorithm is the interpolated sinogram 
inpainting MAR algorithm, aimed to interpolate missing projection data using neigh-
boring data by replacing the corrupted data from the information of nearby slices and 
then using FBP to reconstruct the image. This type of algorithm has an appealing merit 
in its computation speed. Kalender et al. [4] have proposed to interpolate corrupted pro-
jection data via linear interpolation (LI) from their neighbors. The problem is that the 
transition between the original and interpolated projections is not sufficiently smooth, 
causing severe secondary artifacts. In addition to LI, cubic spline [5, 6], wavelet inter-
polation [7], and total variation [8–10] sinogram inpainting techniques are also used in 
MAR. Meanwhile, other methods try to replace the corrupted projections by relying on 
nearby regions or corresponding prior projections. For example, Chen et  al. [11] pro-
posed to restore corrupted projections using nearby regions via the similarity criterion. 
First, they segmented implanted metals and metal artifacts from the original image. 
Second, they restored the corrupted projections relying on nearby projections via the 
similarity criterion. The results of this method are largely dependent on the quality of 
the segmentation. However, when the metal artifacts contain complicated bone struc-
tures, this approach is likely to perceive the bone as bright artifacts, therefore causing a 
blurring of the bone structures in the corrected image. Tang et al. [12] restored the cor-
rupted projections by replacing the metal slices with corresponding prior projections. 
In this method, the prior image is reconstructed with a down-sampled sinogram. This 
method sacrifices high-frequency details so that the final corrected image is relatively 
vague, and the details of the tissue cannot be assessed. Like Tang et al., Bal and Spies [13] 
have proposed to replace the metal slices in the projection domain by prior images in the 
same region. The problem with this method is that the prior projections over the metal 
trace are not well-fitted with their neighbors in the originals, thus producing new arti-
facts. To solve the problem of fitness in the interpolated sinogram inpainting technique, 
Meyer et al. [14] have proposed the normalized metal artifact reduction (NMAR) algo-
rithm. They first normalized the original sinogram using a prior sinogram, the corrupted 
data were linearly interpolated and the final completed sinogram was obtained by de-
normalizing the interpolated sinogram. Because the NMAR algorithm still relies on LI, 
when used in an image with complicated structures, such as a tooth image, secondary 
artifacts would increase. Additionally, in the NMAR algorithm it is hard to avoid severe 
streaking secondary artifacts when the target contains more than one metal because it 
cannot interpolate the metal trace accurately.
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Based on the forward sinogram inpainting MAR framework, in this paper we propose 
a Gaussian diffusion sinogram inpainting technique based on a prior image to reduce 
metal artifacts in a Bayesian framework. In this work, the optimization target is to mini-
mize prior energy. To recover an uncorrupted image from an incomplete dataset, the 
sparsity of the target image is improved by subtracting the prior image. Additionally, the 
Gaussian diffusion function is applied to diffuse energy to recover missing projections. 
The Gaussian diffusion process is realized via a gradient descent algorithm. The final 
target image is reconstructed using the FBP algorithm. Compared with the algorithms 
listed in the last paragraph, this proposed method does not show the smoothness prob-
lem and can be effective for CT images that contain several metal objects. In this work, 
the performance of the proposed algorithm is compared with the LI and NMAR algo-
rithms using both simulation and clinical studies. The evaluation criteria include image 
quality and quantitative analysis within the region of interest, all of which demonstrate 
that our method performs better than the other two MAR algorithms.

Methods
Problem formulation and optimization approach

Let x denote the uncorrupted projection dataset, let y represent the dataset with the 
metal projection data removed, let Ω represent the metal trace set (metal-corrupted 
projection region), and let n represent an unknown noise. We can then formulate the 
following model:

where H is an operator that removes the metal-corrupted projections from x.
In the classical least squares (LS) approach [15, 16], the estimator is chosen to mini-

mize noise:

However, in this work the matrix H is ill-conditioned, thus the LS solution usually has 
a huge norm and is meaningless. We then follow the Bayesian approach [17] whose opti-
mization target in this work is to maximize the posterior probability of x given y, which 
is defined as:

P(y/x) is defined as:

In this framework, the target x is regarded as a stochastic quantity with a prior density, 
and:

where U(x) is the prior energy. Actually, this imposes the prior information onto the esti-
mation. Now, Eq. (3) can be reformulated as follows:
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Next, the optimization target is to minimize the posterior energy, which is formulated 
as:

In this formulation (7), the first part measures the difference between x and y, and the 
second part restricts x to the prior information. In this work, with the decrease of noise, 
y is approximately equal to Hx, so the first term in (7) is close to zero. Next, the problem 
defined in (7) is redefined as a constrained optimization problem:

To solve the problem of (8), we bring in the diffusion equation: [16] 

where the symbol ∇ is a derivative matrix, formed by the first-order forward difference 
in this work. I represents the diffusion target, and Is is the result after diffusion. f(s) is a 
Gaussian diffusion function: [19, 20] 

where s =  ||∇xp||, xp is the sinogram of the prior image, called a prior sinogram. The 
parameter δ determines the level of diffusion.

According to [18], the diffusion process can be observed as a gradient descent of the 
prior energy, and the gradient descent algorithm is:

where the parameter μ weighs the effect of the prior sinogram, and λ is the descent 
speed factor.

In Eq. (11), we introduce xp for two reasons: first, to improve the sparsity of the target 
sinogram; second, to obtain the diffusion objective.

After the step of gradient descent, the algebraic reconstruction technique (ART) is 
applied to reduce the projection onto the convex set (POCS): [21] 

where xori is the original sinogram, and x̄ is the sinogram after the step of gradient 
descent.

In Table  1, x−1 and x0 are set equal to xori, the step size λ is set to 0.03 and δ =  4, 
according to our experience and numerous experiments. The matrix H is exploited to 
remove the metal trace, and it is constructed according to the position of the missing 
projections: the value in the position of the metal in the projection domain is set to zero, 
and the value in other areas is set to one. What calls for special attention is that the 
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operator H multiplies others is multiplying the corresponding elements between two 
matrices. Step 1 and step 2 are quoted from the literature [16]. The stopping criterion of 
the iteration is defined when the relative difference between xk+1 and xk blows the toler-
ance (||xk+1 − xk||/||xk|| < η, η = 1 × 10−4) [16, 17].

Figure  1 provides the diagram of the proposed algorithm. In this diagram, the cor-
responding sinograms are produced by forward projection. Using a simple thresholding 
technique, the metal-only image is obtained, and the CT value for the metal is set to 
3000 HU.

Concerning the prior image, Li et al. proposed an image post-processing strategy to 
create the prior image. First, they segmented the metal, and then a prior image was 

Table 1  The Gaussian diffusion sinogram inpainting MAR algorithm

Initialize k = 0, η = 1×10−4, μ = 1, δ = 4, t0 = 1.

Do {
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.

Fig. 1  Diagram of the proposed Gaussian diffusion sinogram inpainting algorithm. From the uncorrected 
image, the prior image and metal-only image are obtained. The corresponding sinograms are yielded via 
forward projection. The gradient descent algorithm and POCS process are applied to restore the sinogram. 
The final corrected image is reconstructed via the FBP method from the corrected sinogram
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produced via an edge-preserving filter and a recovery procedure of the adjacent anatom-
ical structures [22]. Meyer et al. [14] applied a simple thresholding method to segment 
air, soft tissue, and bone after the image was filtered by Gaussian. Next, the CT values 
for a portion of air and soft tissue were set to −1000 and 0 HU, respectively. Bone pixels 
kept their values because of the inherent variability of the bone densities. Different from 
Bal and Spies [13] who set the values of air and soft tissue with their own average CT 
numbers, in this work we obtained the prior image by the method of [14].

Experiment materials

The performance of the proposed algorithm is tested on both the simulated and clin-
ical datasets, and the results are compared with two conventional algorithms (LI and 
NMAR). In the simulated studies, the jaw and hip phantom are applied, and the phan-
tom size is 200 mm × 200 mm. In the simulation, we suppose that the process of the 
detector receiving photons can be modeled by the Poisson distribution [23]:

where Ii is the number of photons received by the detector, I0 is the number of photons 
emitted, Li is the X-ray path, u is the attenuation coefficient of tissue, Sik is the statistical 
scattering photon number, and δ2e  is the noise variance. After logarithmic processing for 
the result of (13), the projection that contains noise and beam hardening is obtained. In 
this work, we set Ek = 60 keV, I0 = 5.0 × 105 for the hip phantom and I0 = 5.0 × 106 for 
jaw phantom, Sik = 150, δ2e = 10.

The clinical dataset includes four patients: a patient with a single metal tooth, a patient 
implanted with two metal teeth, a patient with a single hip prosthesis and a patient with 
multiple metals implanted in the vertebrae.

In this work, to acquire artificial projection data under conditions close to the actual 
acquisition, we consider the fan-beam geometry of the simulated single-slice CT scan-
ner with 1024 detector channels, 720 angular samples over an 360° orbit, and the CT 
image resolution is 512 × 512 pixels. All of the CT images are processed on a PC work-
station (Intel Core 3 CPU 3.60 GHz processor and 4096 Mb RAM) by MATLAB 2010.

Evaluation criteria

The performance of the Gaussian diffusion sinogram inpainting algorithm was com-
pared with the LI and NMAR algorithms subjectively and objectively. We subjectively 
evaluated the image quality for the proposed algorithm and the two other compared 
algorithms. We objectively evaluated the performance using the signal-to-noise ratio 
(SNR) and the normalized mean absolute deviation (NMAD) for the corrected images:
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where ui,j represents the corrected image, and utruthi,j  is the ideal image. Generally, SNR 
measures the anti-noise performance of the algorithm, and its value is greater, the algo-
rithm produces a better quality image; NMAD measures the difference between result 
image and ideal image, and its value is smaller, the algorithm produces a result that is 
much closer to the ideal image. Besides, the mean pixel value and the standard deviation 
of different region of interests (ROIs) in each resulted image are analyzed.

For the clinic datasets, the ROI is defined on uncorrected images containing the 
metallic implants, and it is magnified for observing clearly. Besides, the reference images 
of the clinic datasets is hard to define, thus, we evaluated the performance only by the 
image quality.

Results
In this section, the results corrected by the LI, NMAR and proposed algorithms for the 
simulation and clinical datasets are presented. We first analyzed the simulated results, 
and the clinical part was analyzed subsequently.

Figure 2 shows the results for the jaw phantom with two metal dental fillings. Figure 2a 
is the true image, which contains no artifacts. Figure 2b is the uncorrected image with 
severe streaking metal artifacts. However, Fig. 2c–e are the corrected images produced 
by LI, NMAR and the proposed algorithm. Clearly, the original metal artifacts are suc-
cessfully reduced by each method. Unfortunately, the LI MAR algorithm causes severe 
secondary artifacts, which blur the tissue around the metal. NMAR and the proposed 
algorithms reduce the artifacts with fewer secondary artifacts than LI, and with regard 
to the entire picture, the proposed algorithm has a better result than NMAR, especially 

Fig. 2  Images of the jaw phantom. a Jaw phantom without any artifacts. b Uncorrected images with severe 
streaking artifacts. c–e The results corrected via LI, NMAR and the proposed algorithms. The display window 
is [0 0.53]
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in the area between the teeth (as indicated by the arrows in Fig. 2d). However, in the pro-
posed algorithm result, some slight artifacts are introduced around the metals, indicated 
as arrows in Fig. 2e primarily because the prior image was not adequate.

Table  2 shows the quantitative evaluation of experimental results. From the table, 
the NMAD of the proposed algorithm is smaller than those of the LI and NMAR algo-
rithms, indicating that the image corrected by the proposed algorithm is closer to that of 
the true image. While the largest SNR indicates that the proposed algorithm has a better 
effect on suppressing the metal artifact and noise, thus producing a higher quality image.

Figure 3 compares the results for the hip phantom with a double-metal prosthesis. Fig-
ure 3a is the reference image with no artifacts and noise. Figure 3b is the uncorrected 
image, as observed the severe beam harden artifacts between the metals. Figure  3c–e 
are the images corrected by the LI, NMAR and proposed algorithms. All of the MAR 
algorithms have a good effect on reducing the metal artifacts, while the LI method intro-
duces many residual artifacts and blurs the bone structures. Compared with LI, NMAR 
has a better quality image but some residual artifacts persist. Regarding the proposed 
algorithm, the image only introduces slight secondary artifacts, which are indicated by 

Table 2  Quantitative evaluation of the experimental results for the jaw phantom

Uncorrected LI NMAR Proposed

SNR  
(dB)

NMAD  
(%)

SNR  
(dB)

NMAD  
(%)

SNR  
(dB)

NMAD  
(%)

SNR  
(dB)

NMAD 
(%)

12.14 57.27 22.97 14.37 27.23 9.49 27.54 9.34

Fig. 3  Images of the hip phantom. a The hip phantom without any artifacts or noise. b The uncorrected 
image with severe streaking artifacts. c–e The results corrected via the LI, NMAR and proposed algorithms. 
The display window is [0 0.52]
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the arrows in Fig. 3e. Thus, from subjective judgment, the proposed algorithm performs 
the best.

Table  3 gives the quantitative evaluation of the hip phantom results. In this table, 
the proposed algorithm NMAD is smaller than LI and NMAR, decreasing by 2.93 and 
0.51%, respectively, revealing that the image corrected via the proposed algorithm has a 
better representation for the true image compared with the other two algorithm results. 
The SNR of the proposed algorithm is larger than LI and NMAR,increasing by 9.35 and 
1.04 dB, respectively, implying the proposed algorithm leads to the best corrected image 
among the three MAR algorithms.

Figure  4 shows the mean pixel value and the standard deviation of eight ROIs in 
resulted images for the two phantoms. The ROIs of different phantoms are defined in 
Figs. 2a and 3a. Generally, the proposed method has the mean pixel that is closest to the 
ideal, and it also has the smallest standard deviation in most ROIs. The results imply that 
the proposed algorithm has the best performance in suppressing the artifacts.

These two groups of phantom experiments show that whether the bone structure in 
the image is simple or complex, the proposed algorithm has a good effect on suppressing 
metal artifacts and reducing the noise level.

Figure 5 illustrates the correction results for the patient with a single metallic dental 
filling. Figure  5a is the uncorrected image. Figure  5b–e are the corrected images pro-
duced by the LI, NMAR and proposed algorithms. Figure 5e–h are the images after local 
amplification of the corresponding Fig. 5a–d in the ROI; this operator is beneficial for 
observing the image quality in ROI clearly, and the ROI is defined in Fig. 5a with a white 
rectangle. In the LI MAR result, the image shows severe secondary artifacts, and some 
structures are even more blurred. Both NMAR and the proposed algorithm successfully 
reduce the artifacts and introduce hardly any secondary artifacts, but the proposed algo-
rithm performs better. As indicated by the arrows in Fig. 5g, the residual dark artifacts 
of the NMAR result are more than those of the proposed one. Thus, in this dataset, the 
proposed method performs the best, and the performance has proven that the algorithm 
can be used in complicated bone structure images containing a single implanted metal.

Figure  6 shows the corrections for the patient with two metallic dental fillings. Fig-
ure 6a–d are the uncorrected images and results corrected via the LI, NMAR and pro-
posed method. Figure 6e–h are the local amplifications of the corresponding Fig. 6a–d 
in the ROI, and the ROI is defined in Fig. 6a by the white rectangle. In this dataset, the 
LI reduces the original metal artifacts existing in the uncorrected image but introduces 
severe secondary artifacts, making the image quality even lower than that of the uncor-
rected image. Compared with LI, NMAR produces a better result and does not cause 
artifacts between teeth; however, secondary artifacts still blur the structures between the 
two metals. While the result produced via the proposed algorithm reduces the metal 
artifacts without causing any obvious secondary artifacts, the tissue structures between 

Table 3  Quantitative evaluation of the experimental results for the hip phantom

Uncorrected LI NMAR Proposed

SNR (dB) NMAD (%) SNR (dB) NMAD (%) SNR (dB) NMAD (%) SNR (dB) NMAD (%)

12.91 56.05 13.34 18.04 21.65 15.62 22.69 15.11
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the two metals and around the teeth are very clear. Thus, in this dataset, the proposed 
method has the best performance, demonstrating that the proposed algorithm has a 
good effect on reducing the artifacts under the condition of two metal fillings in a com-
plicated bone structure image.

Figure 7 shows the correction results for the patient with a single metallic hip pros-
thesis. Figure 7a is the uncorrected image, and Fig. 7b–d are the results corrected via 
LI, NMAR and the proposed methods. Figure 7e–h are local amplifications of the cor-
responding Fig. 7a–d in the ROI; the ROI is defined in Fig. 7a by the white rectangle. In 
this dataset, to analyze the quality of the images produced by these MAR methods, we 
have not implanted metal into the results. For the LI result, as indicated by the arrow 
in Fig.  7f, the region around the metal is totally blurred; in addition, some secondary 
artifacts are also introduced. Altogether, for the results from the NMAR and proposed 
methods, they both reduce metal artifacts thoroughly and cause no new artifacts. There 
are two main reasons for this. First, both the NMAR and proposed methods use the 
same prior image, implying the proposed method relies on the prior image to some 
extent. Second, the uncorrected image has a simple structure, which determines that the 

Fig. 4  The mean pixel value and the standard deviation in different ROIs for the two phantoms. The top one 
are the results of the jaw phantom and the bottom one belong to the hip phantom. Eight RIOs are defined in 
Figs. 2a and 3a for two phantoms, and each ROI contains 20 × 20 pixels
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metal artifacts is easy to be corrected. On the other hand, due to the uncertainty of the 
prior image with the method of [14], the prior image of this experiment just makes the 
NMAR have the same good result as the proposed algorithm. The combination with the 
previous three groups of experimental results of the NMAR shows that the proposed 
method is more stable and lower requirement for prior image quality compared to the 
NMAR. In the next dataset, there are complex bones and soft tissues in the uncorrected 
image, indicating that the correction of this dataset is the most challenging.

Fig. 5  Uncorrected image and results corrected via the different algorithms for the patient with a single 
metal dental filling. e–f The local amplifications of the corresponding images (a)–(d). The display window 
width and window center are 1200 and 100 HU, respectively

Fig. 6  Uncorrected image and results corrected via the different algorithms for the patient with double-
metal dental fillings. e–f The local amplifications of the corresponding images (a)–(d). The display window 
width and window center are 1600 and 300 HU, respectively
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The correction results from the most challenging dataset are shown in Fig.  8. This 
dataset is from a patient whose vertebrae are implanted with several metals. Figure 8a 
is the uncorrected image, which shows severe streaking dark artifacts around the metals 
and tissue structures that are very complicated, indicating that the process of MAR is 
not easy. Figure 8b–d are the results corrected via the LI, NMAR and proposed meth-
ods. After magnifying Fig.  8a–d 1.6 times, the corresponding images are obtained, 
Fig. 8e–h. Here, the LI method reduces the dark metal artifacts obviously, but it brings 

Fig. 7  Uncorrected image and results corrected via the different algorithms for the patient with a single 
metallic hip prosthesis. e–f The local amplifications of their corresponding images (a)–(d). The display win-
dow width and window center are 800 and 0 HU, respectively

Fig. 8  The uncorrected image and the corrected results via the different algorithms for a patient with multi-
ple metallic implants in the vertebrae. e–f The corresponding images after amplifying (a)–(d) 1.6 times. The 
display window width and window center are 800 and 100 HU, respectively
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new streak-like dark artifacts and blurs the bone structure around the metals seriously. 
The NMAR and proposed methods protect the bone structures around the metals effec-
tively and do not introduce new artifacts, but there are still some dark artifacts left. 
When compared with the NMAR algorithm, the proposed method has some improve-
ments, there are less residual dark artifacts in the position as indicated by the arrow in 
Fig.  8h. Globally, in this dataset, the proposed algorithm performs better than LI and 
NMAR in suppressing metal artifacts. As mentioned above, this dataset has complicated 
structures, indicating that the uncorrected image harbors extremely severe metal arti-
facts, and the prior image quality will be poor. However, the best performance in this 
study proves the advantage of the proposed method for complicated bone and tissue 
structure images.

Discussions
Metallic implants in the bodies of patients can lead to severe streaking artifacts, there-
fore degrading the quality of CT images and impacting the diagnostic procedure by 
obscuring image details. In this study, we propose a Gaussian diffusion sinogram 
inpainting algorithm to reduce the metal artifacts in a fan-beam scanner. In our work, 
the optimization objective is to minimize the prior energy. The Gaussian function is 
applied to diffuse prior energy, and the prior image is used to define the diffusion posi-
tion and promote the sparsity of the original image. The gradient descent approach is 
applied to solve this problem. The performance of the proposed method is compared 
with two conventional MAR algorithms (LI, NMAR) using both simulation and clinical 
datasets. In the implementation of the proposed method and NMAR, we use the same 
prior image produced by the tissue-classified technique. From the results described in 
the last section, the proposed algorithm has a great advantage overall. However, there 
are still some factors impacting the effect of the proposed method.

First, the prior image quality is an important influential factor. In this study, the prior 
image is obtained by the tissue-classified method and often cannot introduce high-qual-
ity prior images because of inaccurate classification. Under this background, the pro-
posed algorithm cannot produce an ideal corrected image at all times. This phenomenon 
reveals that the performance of the proposed method is highly dependent on the prior 
image. Thus, we may focus our next work on computing a high-quality prior image.

The second factor is the iteration numbers. The number of iterations determines the 
diffusion degree of the corrupted projections energy. Obviously, under the constraint 
of the prior image, when there is more energy diffused a better image quality will be 
obtained. The influence of the iteration times on the image quality is illustrated in Fig. 8.

In Fig. 9, we chose the clinical hip dataset to explain the impact of the iteration num-
bers because this dataset has an obvious metal region in the projection domain, which 
is convenient to observe the change in the sinogram. From Fig. 9a–g, with an increase 
in iteration number we can easily find that the metal projection energy is gradually 
decreased, the metal artifacts existing in the corresponding images are decreased, and 
the image quality is improved. However, too many iterations will cause an increase in the 
correction time. Thus, in this work, to balance the image quality and corrected time, we 
set the stop criterion as ||xk+1 − xk||/||xk|| < η, η = 1 × 10−4.
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Fig. 9  Comparison of sinograms and corrected images for different iteration times. The left columns are the 
sinograms, while the right columns are the corresponding images. a Original sinogram and uncorrected 
image. b–g Sinograms and corresponding corrected images of the iteration times 20, 50, 100, 150, 200, 260 
and 310 (final result)
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The last key factor is the parameter δ in the Gaussian diffusion function, which deter-
mines the final diffusion extent and impacts the corrected image further. Figure  10 
shows the Gaussian function with different δ. We can find that, as the value of δ becomes 
larger, the diffusion effect of the Gaussian function is better. Figure 11 shows the final 
corrected images for different δ values.

Figure 11 shows the corrected results for different δ values (1, 4, 7, 10). From the pic-
ture, Fig.  11a, b almost show the same results because the small δ values diffuse the 
energy slowly, and the optimal solution is easy to obtain. However, if the value of δ is too 
small, the iteration times would markedly increase. For example, when δ = 1, the itera-
tive numbers would be k = 2000, which is a great waste of time. Conversely, as indicated 
by the arrows in Fig. 11c, d, the bone structure is not clear compared with (b). As men-
tioned before, the diffusion process can be observed as a gradient descent, so a large δ 
usually cannot diffuse energy to the minimum. Through numerous experiments such as 
this, we choose δ = 4.

Conclusions
In this study, a Gaussian diffusion sinogram inpainting MAR algorithm is proposed, and 
the algorithm is realized via gradient descent. In this work, the prior image is obtained 
by a tissue-classified technique to improve the sparsity of the subtraction sinogram 

Fig. 10  The Gaussian function curves for different δ values (deta in the picture)

Fig. 11  The results for different δ values. In a–d, the value of δ is set to 1, 4, 7, 10
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and to locate the diffusion position. The metal-only image is obtained by the simple 
thresholding method. The final corrected image is reconstructed by FBP after sinogram 
inpainting. The performance of the proposed algorithm is compared with that of the LI 
and NMAR algorithms using both simulation and clinical studies. Among the simulation 
and clinical studies, the proposed algorithm reduces the metal artifacts more effectively 
than the other two representative algorithms. The good performance of the proposed 
algorithm in several experiments proves that the method can be used in all types of clini-
cal situations stably. However, the proposed algorithm relies on a prior image to some 
extent; thus, in our next work, we may use deep learning to compute high-quality prior 
images.
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