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Abstract
We prove the Hyers-Ulam stability of the Cauchy functional inequality and the
Cauchy-Jensen functional inequality in 2-Banach spaces.
Moreover, we prove the superstability of the Cauchy functional inequality and the
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1 Introduction and preliminaries
In , Ulam [] suggested the stability problem of functional equations concerning the
stability of group homomorphisms as follows: Let (G,◦) be a group and let (H,�,d) be a
metric group with the metric d(·, ·). Given ε > , does there exist a δ = δ(ε) >  such that if
a mapping f : G →H satisfies the inequality

d
(
f (x ◦ y), f (x) � f (y)) < δ

for all x, y ∈ G , then a homomorphism F : G →H exists with

d
(
f (x),F(x)

)
< ε

for all x ∈ G?
In , Hyers [] gave a first (partial) affirmative answer to the question of Ulam for

Banach spaces. Thereafter, we call that type the Hyers-Ulam stability.
Hyers’ theorem was generalized by Aoki [] for additive mappings and by Rassias []

for linear mappings by considering an unbounded Cauchy difference. A generalization of
the Rassias theorem was obtained by Gǎvruta [] by replacing the unbounded Cauchy
difference by a general control function.
Gähler [, ] introduced the concept of linear -normed spaces.

Definition . Let X be a real linear space with dimX > , and let ‖·, ·‖ : X × X → R≥

be a function satisfying the following properties:
(a) ‖x, y‖ =  if and only if x and y are linearly dependent,
(b) ‖x, y‖ = ‖y,x‖,
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(c) ‖αx, y‖ = |α|‖x, y‖,
(d) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖

for all x, y, z ∈ X and α ∈ R. Then the function ‖·, ·‖ is called -norm on X and the pair
(X ,‖·, ·‖) is called a linear -normed space. Sometimes condition (d) is called the triangle
inequality.

See [] for examples and properties of linear -normed spaces.
White [, ] introduced the concept of -Banach spaces. In order to define complete-

ness, the concepts of Cauchy sequences and convergence are required.

Definition . A sequence {xn} in a linear -normed spaceX is called a Cauchy sequence
if

lim
m,n→∞‖xn – xm, y‖ = 

for all y ∈X .

Definition . A sequence {xn} in a linear -normed space X is called a convergent se-
quence if there is an x ∈X such that

lim
n→∞‖xn – x, y‖ = 

for all y ∈ X . If {xn} converges to x, write xn → x as n → ∞ and call x the limit of {xn}. In
this case, we also write limn→∞ xn = x.

The triangle inequality implies the following lemma.

Lemma . [] For a convergent sequence {xn} in a linear -normed space X ,

lim
n→∞‖xn, y‖ =

∥∥∥ lim
n→∞xn, y

∥∥∥
for all y ∈X .

Definition . A linear -normed space, in which every Cauchy sequence is a convergent
sequence, is called a -Banach space.

Eskandani and Gǎvruta [] proved the Hyers-Ulam stability of a functional equation in
-Banach spaces.
In [], Gilányi showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f
(
xy–

)∥∥ ≤ ∥∥f (xy)∥∥, (.)

then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (xy) + f
(
xy–

)
.

See also []. Gilányi [] and Fechner [] proved the Hyers-Ulam stability of functional
inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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Park et al. [] proved the Hyers-Ulam stability of the following functional inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥, (.)

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥. (.)

In this paper, we prove the Hyers-Ulam stability of Cauchy functional inequality (.)
and Cauchy-Jensen functional inequality (.) in -Banach spaces.
Moreover, we prove the superstability of Cauchy functional inequality (.) and Cauchy-

Jensen functional inequality (.) in -Banach spaces under some conditions.
Throughout this paper, let X be a normed linear space, and let Y be a -Banach

space.

2 Hyers-Ulam stability of Cauchy functional inequality (1.2) in 2-Banach spaces
In this section, we prove the Hyers-Ulam stability of Cauchy functional inequality (.) in
-Banach spaces.

Proposition . Let f :X → Y be a mapping satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤ ∥∥f (x + y + z),w

∥∥ (.)

for all x, y, z ∈ X and all w ∈ Y . Then the mapping f :X → Y is additive.

Proof Letting x = y = z =  in (.), we get ‖f (),w‖ ≤ ‖f (),w‖ and so ‖f (),w‖ =  for
all w ∈ Y . Hence f () = .
Letting y = –x and z =  in (.), we get ‖f (x) + f (–x),w‖ ≤ ‖f (),w‖ =  and so ‖f (x) +

f (–x),w‖ =  for all x ∈ X and all w ∈ Y . Hence f (x) + f (–x) =  for all x ∈X .
Letting z = –x – y in (.), we get

∥∥f (x) + f (y) + f (–x – y),w
∥∥ ≤ ∥∥f (),w∥∥ = 

and so

∥∥f (x) + f (y) + f (–x – y),w
∥∥ = 

for all x, y ∈ X and all w ∈ Y . Hence

 = f (x) + f (y) + f (–x – y) = f (x) + f (y) – f (x + y)

for all x, y ∈X . So, f :X → Y is additive. �

Theorem . Let θ ∈ [,∞), p,q, r ∈ (,∞) with p + q + r < , and let f : X → Y be a
mapping satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤ ∥∥f (x + y + z),w

∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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for all x, y, z ∈ X and all w ∈ Y . Then there is a unique additive mapping A :X → Y such
that

∥∥f (x) –A(x),w
∥∥ ≤ rθ

 – p+q+r
‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y .

Proof Letting x = y = z =  in (.), we get ‖f (),w‖ ≤ ‖f (),w‖ and so ‖f (),w‖ =  for
all w ∈ Y . Hence f () = .
Letting y = –x and z =  in (.), we get ‖f (x) + f (–x),w‖ ≤ ‖f (),w‖ =  and so ‖f (x) +

f (–x),w‖ =  for all x ∈ X and all w ∈ Y . Hence f (x) + f (–x) =  for all x ∈X .
Putting y = x and z = –x in (.), we get

∥∥f (x) – f (x),w
∥∥ ≤ ∥∥f (),w∥∥ + rθ‖x‖p+q+r‖w‖ = rθ‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . So, we get

∥∥∥∥f (x) – 

f (x),w

∥∥∥∥ ≤ rθ


‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . Replacing x by jx in (.) and dividing by j, we obtain

∥∥∥∥ 
j
f
(
jx

)
–


j+

f
(
j+x

)
,w

∥∥∥∥ ≤ (p+q+r–)j+r–θ‖x‖p+q+r‖w‖

for all x ∈X , all w ∈ Y and all integers j ≥ . For all integers l,m with  ≤ l <m, we get

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)
,w

∥∥∥∥ ≤
m–∑
j=l

(p+q+r–)j+r–θ‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . So, we get

lim
l→∞

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)
,w

∥∥∥∥ = 

for all x ∈ X and all w ∈ Y . Thus the sequence { 
j f (

jx)} is a Cauchy sequence in Y for
each x ∈X . SinceY is a -Banach space, the sequence { 

j f (
jx)} converges for each x ∈X .

So, one can define the mapping A :X → Y by

A(x) := lim
j→∞


j
f
(
jx

)

for all x ∈X . That is,

lim
j→∞

∥∥∥∥ 
j
f
(
jx

)
–A(x),w

∥∥∥∥ = 

for all x ∈X and all w ∈ Y .

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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By (.), we get

lim
j→∞

∥∥∥∥ 
j

(
f
(
jx

)
+ f

(
jy

)
+ f

(
jz

))
,w

∥∥∥∥
≤ lim

j→∞

(

j

∥∥f (jx + jy + jz
)
,w

∥∥ +
(p+q+r)j

j
θ‖x‖p‖y‖q‖z‖r‖w‖

)

≤ lim
j→∞


j

∥∥f (jx + jy + jz
)
,w

∥∥

for all x, y, z ∈X and all w ∈ Y . So,

∥∥A(x) +A(y) +A(z),w
∥∥ ≤ ∥∥A(x + y + z),w

∥∥

for all x, y, z ∈X and all w ∈ Y . By Proposition ., A :X → Y is additive.
By Lemma . and (.), we have

∥∥f (x) –A(x),w
∥∥ = lim

m→∞

∥∥∥∥f (x) – 
m

f
(
mx

)
,w

∥∥∥∥ ≤ rθ
 – p+q+r

‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y .
Now, let B :X → Y be another additive mapping satisfying (.). Then we have

∥∥A(x) – B(x),w
∥∥ =


j

∥∥A(
jx

)
– B

(
jx

)
,w

∥∥

≤ 
j

[∥∥A(
jx

)
– f

(
jx

)
,w

∥∥ +
∥∥f (jx) – B

(
jx

)
,w

∥∥]

≤  · rθ
 – p+q+r

‖x‖p+q+r‖w‖ · 
(p+q+r)j

j
,

which tends to zero as j → ∞ for all x ∈X and allw ∈ Y . ByDefinition ., we can conclude
that A(x) = B(x) for all x ∈X . This proves the uniqueness of A. �

Theorem . Let θ ∈ [,∞), p,q, r ∈ (,∞) with p + q + r > , and let f : X → Y be a
mapping satisfying (.). Then there is a unique additive mapping A :X → Y such that

∥∥f (x) –A(x),w
∥∥ ≤ rθ

p+q+r – 
‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y .

Proof It follows from (.) that

∥∥∥∥f (x) – f
(
x


)
,w

∥∥∥∥ ≤ θ

p+q
‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . Replacing x by x
j in (.) and multiplying by j, we obtain

∥∥∥∥jf
(
x
j

)
– j+f

(
x
j+

)
,w

∥∥∥∥ ≤ jθ
p+q · (p+q+r)j ‖x‖

p+q+r‖w‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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for all x ∈X and all w ∈ Y and all integers j ≥ . For all integers l,m with ≤ l <m, we get

∥∥∥∥lf
(
x
l

)
– mf

(
x
m

)
,w

∥∥∥∥ ≤
m–∑
j=l

jθ
p+q · (p+q+r)j ‖x‖

p+q+r‖w‖

for all x ∈X and all w ∈ Y . So, we get

lim
l→∞

∥∥∥∥lf
(
x
l

)
– mf

(
x
m

)
,w

∥∥∥∥ = 

for all x ∈ X and all w ∈ Y . Thus the sequence {jf ( x
j )} is a Cauchy sequence in Y . Since

Y is a -Banach space, the sequence {jf ( x
j )} converges. So, one can define the mapping

A :X → Y by

A(x) := lim
j→∞jf

(
x
j

)

for all x ∈X . That is,

lim
j→∞

∥∥∥∥jf
(
x
j

)
–A(x),w

∥∥∥∥ = 

for all x ∈X and all w ∈ Y .
The further part of the proof is similar to the proof of Theorem .. �

Nowwe prove the superstability of the Cauchy functional inequality in -Banach spaces.

Theorem . Let θ ∈ [,∞), p,q, r, t ∈ (,∞) with t 	= , and let f :X → Y be a mapping
satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤ ∥∥f (x + y + z),w

∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖t (.)

for all x, y, z ∈X and all w ∈ Y . Then f :X → Y is an additive mapping.

Proof Replacing w by sw in (.) for s ∈R \ {}, we get
∥∥f (x) + f (y) + f (z), sw

∥∥ ≤ ∥∥f (x + y + z), sw
∥∥ + θ‖x‖p‖y‖q‖z‖r‖sw‖t

and so

∥∥f (x) + f (y) + f (z),w
∥∥ ≤ ∥∥f (x + y + z),w

∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖t |s|
t

|s| (.)

for all x, y, z ∈X , all w ∈ Y and all s ∈R \ {}.
If t > , then the right-hand side of (.) tends to ‖f (x + y + z),w‖ as s → .
If t < , then the right-hand side of (.) tends to ‖f (x + y + z),w‖ as s → +∞.
Thus

∥∥f (x) + f (y) + f (z),w
∥∥ ≤ ∥∥f (x + y + z),w

∥∥
for all x, y, z ∈ X and all w ∈ Y . By Proposition ., f :X → Y is additive. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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3 Hyers-Ulam stability of Cauchy-Jensen functional inequality (1.3) in
2-Banach spaces

In this section, we prove the Hyers-Ulam stability of Cauchy-Jensen functional inequality
(.) in -Banach spaces.

Proposition . Let f :X → Y be a mapping satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)
,w

∥∥∥∥ (.)

for all x, y, z ∈X and all w ∈ Y . Then the mapping f :X → Y is additive.

Proof Letting x = y = z =  in (.), we get ‖f (),w‖ ≤ ‖f (),w‖ and so ‖f (),w‖ =  for
all w ∈ Y . Hence f () = .
Letting y = –x and z =  in (.), we get ‖f (x) + f (–x),w‖ ≤ ‖f (),w‖ =  and so ‖f (x) +

f (–x),w‖ =  for all x ∈ X and all w ∈ Y . Hence f (x) + f (–x) =  for all x ∈X .
Letting z = – x+y

 in (.), we get

∥∥∥∥f (x) + f (y) + f
(
–
x + y


)
,w

∥∥∥∥ ≤ 
∥∥f (),w∥∥ = 

and so
∥∥∥∥f (x) + f (y) + f

(
–
x + y


)
,w

∥∥∥∥ = 

for all x, y ∈X and all w ∈ Y . Hence

 = f (x) + f (y) + f
(
–
x + y


)
= f (x) + f (y) – f

(
x + y


)

for all x, y ∈X . Since f () = , f :X → Y is additive. �

Theorem . Let θ ∈ [,∞), p,q, r ∈ (,∞) with p + q + r < , and let f : X → Y be a
mapping satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)
,w

∥∥∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖ (.)

for all x, y, z ∈ X and all w ∈ Y . Then there is a unique additive mapping A :X → Y such
that

∥∥f (x) –A(x),w
∥∥ ≤ θ

 – p+q+r
‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y .

Proof Letting x = y = z =  in (.), we get ‖f (),w‖ ≤ ‖f (),w‖ and so ‖f (),w‖ =  for
all w ∈ Y . Hence f () = .
Letting y = –x and z =  in (.), we get ‖f (x) + f (–x),w‖ ≤ ‖f (),w‖ =  and so ‖f (x) +

f (–x),w‖ =  for all x ∈ X and all w ∈ Y . Hence f (x) + f (–x) =  for all x ∈X .

http://www.journalofinequalitiesandapplications.com/content/2013/1/447
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Letting y = x and z = –x in (.), we get

∥∥f (x) – f (x),w
∥∥ ≤ ∥∥f (),w∥∥ + θ‖x‖p+q+r‖w‖ = θ‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . Replacing x by jx in (.) and dividing by j, we obtain

∥∥∥∥ 
j
f
(
jx

)
–


j+

f
(
j+x

)
,w

∥∥∥∥ ≤ (p+q+r)j

 · j θ‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y and all integers j ≥ . For all integers l,m with ≤ l <m, we get

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)
,w

∥∥∥∥ ≤
m–∑
j=l

(p+q+r)j

 · j θ‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y . So, we get

lim
l→∞

∥∥∥∥ 
l
f
(
lx

)
–


m

f
(
mx

)
,w

∥∥∥∥ = 

for all x ∈ X and all w ∈ Y . Thus the sequence { 
j f (

jx)} is a Cauchy sequence in Y for
each x ∈X . SinceY is a -Banach space, the sequence { 

j f (
jx)} converges for each x ∈X .

So, one can define the mapping A :X → Y by

A(x) := lim
j→∞


j
f
(
jx

)
= lim

j→∞

j
f
(
jx

)

for all x ∈X . That is,

lim
j→∞

∥∥∥∥ 
j
f
(
jx

)
–A(x),w

∥∥∥∥ = lim
j→∞

∥∥∥∥ 
j
f
(
jx

)
–A(x),w

∥∥∥∥ = 

for all x ∈X and all w ∈ Y .
The further part of the proof is similar to the proof of Theorem .. �

Theorem . Let θ ∈ [,∞), p,q, r ∈ (,∞) with p + q + r > , and let f : X → Y be a
mapping satisfying (.). Then there is a unique additive mapping A :X → Y such that

∥∥f (x) –A(x),w
∥∥ ≤ θ

p+q+r – 
‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y .

Proof It follows from (.) that

∥∥∥∥f (x) – f
(
x


)
,w

∥∥∥∥ ≤ 
p+q+r

θ‖x‖p+q+r‖w‖ (.)

for all x ∈X and all w ∈ Y . Replacing x by x
j in (.) and multiplying by j, we obtain

∥∥∥∥jf
(
x
j

)
– j+f

(
x
j+

)
,w

∥∥∥∥ ≤ j

(p+q+r)(j+)
θ‖x‖p+q+r‖w‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/447


Park Journal of Inequalities and Applications 2013, 2013:447 Page 9 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/447

for all x ∈X and all w ∈ Y and all integers j ≥ . For all integers l,m with ≤ l <m, we get

∥∥∥∥lf
(
x
l

)
– mf

(
x
m

)
,w

∥∥∥∥ ≤
m–∑
j=l

j

(p+q+r)(j+)
θ‖x‖p+q+r‖w‖

for all x ∈X and all w ∈ Y . So, we get

lim
l→∞

∥∥∥∥lf
(
x
l

)
– mf

(
x
m

)
,w

∥∥∥∥ = 

for all x ∈X and all w ∈ Y . Thus the sequence {jf ( x
j )} is a Cauchy sequence in Y for each

x ∈ X . Since Y is a -Banach space, the sequence {jf ( x
j )} converges for each x ∈ X . So,

one can define the mapping A :X → Y by

A(x) := lim
j→∞jf

(
x
j

)

for all x ∈X . That is,

lim
j→∞

∥∥∥∥jf
(
x
j

)
–A(x),w

∥∥∥∥ = 

for all x ∈X and all w ∈ Y .
The further part of the proof is similar to the proof of Theorem .. �

Now we prove the superstability of the Jensen functional equation in -Banach spaces.

Theorem . Let θ ∈ [,∞), p,q, r, t ∈ (,∞) with t 	= , and let f :X → Y be a mapping
satisfying

∥∥f (x) + f (y) + f (z),w
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)
,w

∥∥∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖t (.)

for all x, y, z ∈X and all w ∈ Y . Then f :X → Y is an additive mapping.

Proof Replacing w by sw in (.) for s ∈R \ {}, we get

∥∥f (x) + f (y) + f (z), sw
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)
, sw

∥∥∥∥ + θ‖x‖p‖y‖q‖z‖r‖sw‖t

and so

∥∥f (x) + f (y) + f (z),w
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)
,w

∥∥∥∥ + θ‖x‖p‖y‖q‖z‖r‖w‖t |s|
t

|s|

for all x, y, z ∈X , all w ∈ Y and all s ∈R \ {}.
The rest of the proof is similar to the proof of Theorem .. �
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