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Abstract

Background: Time course gene expression experiments are an increasingly popular method for exploring
biological processes. Temporal gene expression profiles provide an important characterization of gene function, as
biological systems are both developmental and dynamic. With such data it is possible to study gene expression
changes over time and thereby to detect differential genes. Much of the early work on analyzing time series
expression data relied on methods developed originally for static data and thus there is a need for improved
methodology. Since time series expression is a temporal process, its unique features such as autocorrelation
between successive points should be incorporated into the analysis.

Results: This work aims to identify genes that show different gene expression profiles across time. We propose a
statistical procedure to discover gene groups with similar profiles using a nonparametric representation that
accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis,
and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we
cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the
screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression
screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression
data with alpha-factor synchronization.
The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain;
(ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the
data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles.

Conclusions: Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed
method is general and can be potentially used to identify genes which have the same patterns or biological
processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.
Background
Time-course gene expression data are often measured to
study dynamic biological systems and gene regulatory
networks. Array technologies have made it straightfor-
ward to monitor the expression pattern of thousands of
genes simultaneously. The challenge now is to interpret
such massive data sets. The first step is to extract the
fundamental patterns of gene expression inherent in the
data. Gene-expression levels can be monitored with
cDNA or oligonucleotide chips over a time-course for a
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temporal process. Following a microarray time series ex-
periment, a key challenge is to extract the continuous
representation of all genes throughout the time-course.
Identifying significant or differentially expressed genes is
challenging because different genes may have different
profiles, and because of the noise present in time series
expression data. A comprehensive review about time
series expression data analysis and the related computa-
tional challenges may be found in [1].
Microarrays have recently been used for the purpose of

monitoring expression levels of thousands of genes simul-
taneously and for identifying genes that are differentially
expressed. With the number of inferences made in the
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analysis of microarray data, it is natural to be concerned
about multiple testing. This problem of multiplicity can be
dealt with by controlling the false discovery rate (FDR) [2].
In the past decade, many approaches to gene selection

have been considered including a two sample t-test [3], a
regression approach [4], and a mixture model approach
[5]. Other approaches to this problem include the Em-
pirical Bayesian (EB) method [6] and the Significance
Analysis of Microarray (SAM) method [7]. The multipli-
city problem is addressed in adopting a resampling-
based approach to controlling FDR [8]. Also an ANOVA
formulation and an empirical Bayes adjustment to the t-
statistics [9] and an empirical Bayes screening procedure
have been proposed [10].
There has been considerable research about discovering

patterns using clustering and testing including clustering
after transformation and smoothing as a technique for
nonparametrically estimating and clustering a large num-
ber of curves [11] and clustering short time series gene ex-
pression data by selecting a set of potential expression
profiles [12].
Smoothing away noise-induced wiggles of gene expres-

sion data with Fourier series for microarray data has been
considered including an improved Fourier method with ir-
regular or monotonic components of cell-cycle expression
[13], a two-step procedure for clustering periodic patterns
of gene expression profiles using a Fourier series approxi-
mation with frequency and amplitude of order one [14], a
multivariate modeling approach using partial least squares
(PLS) regression to identify genes with periodic fluctua-
tions in the budding yeast cell cycle data [15], a Hidden
Markov Models (HMMs) approach to account for the
horizontal dependencies along the time axis [16], and a
model-based clustering of the Fourier coefficients calcu-
lated on the first difference of the time-course data [17].
Model-based hierarchical clustering was proposed in

character recognition problems using a multivariate nor-
mal model [18] and it may be used to guide the choice
of the model based on computing an approximate max-
imum for the classification likelihood [19].
There has been much work done on clustering mic-

roarray data, mostly on grouping common expression
patterns. However, less attention has been paid to time-
course gene studies. Currently the analysis of GETS
(gene expression time-series) is commonly performed
using a GP (Gaussian process) [20-24]. Also a Bayesian
analysis of microarray time series has been developed
with the software package BATS [25].
In this research, we propose a new method for gene

screening using Fourier coefficients to cluster time-
courses of genes that exhibit similar patterns.
This paper introduces a methodology for gene selection

based on time-course data. The first step is screening, in
which we seek to isolate the inactive genes from the active
ones, while properly taking into account the serial depend-
ence in the time course data and controlling the FDR, all
in the Fourier domain. The second step involves a model-
based clustering of the “active” genes, also in the Fourier
domain. We evaluate the performance of the methodology
using both simulated data and yeast cell cycle data.

Results and discussion
Simulated data
Since real expression data sets are generally noisy and
their clusters may not be fully reflective of the class in-
formation, we first evaluate the performance of our
method with simulated data, for which the “true” classes
are known.
We simulate data according to the regression model

Y iu ¼ f i tiuð Þ þ εiu i ¼ 1; 2; ⋅⋅⋅n; u ¼ 1; 2; ⋅⋅⋅;m

where n = 800 genes, m = 20 time points, and E(εiu) = 0
and εiu’s from an autoregressive AR(1) process with a
variety of values of the AR parameter. The regression
functions for f are:

f 1 tð Þ ¼ 0

f 2 tð Þ ¼ 10t

f 3 tð Þ ¼ min
2−5t
2

� �
;

5t−2
3

� �2

þ sin
5πt
2

 !( )

f 4 tð Þ ¼ −f 3 tð Þ

f 5 tð Þ ¼ 2 cos 2πtð Þ

f 6 tð Þ ¼ 5þ f 5 tð Þ

Each simulated dataset consists of 800 curves originat-
ing from the 6 functions: 400 f1, s and 80 curves of each
f2,⋯, f6, to reflect typical gene expression data. Thus,
there are 5 sets of differential genes and 1 set of non-
differential genes. The standard deviation of the
innovation process was set to σ = 0.5 and σ = 1.5 to rep-
resent low and high noise situations, respectively.
The cosine system

ffiffiffi
2

p
cos πjtð Þ� �

is used as the set of
basis functions. Though the optimal choice for J could
vary from function to function, we choose to use a single
smoothing parameter that performs reasonably well for
all of the curves. In the simulation ten Fourier coeffi-
cients are used for the spectrum estimation. Several
numbers of Fourier coefficients are considered for test
statistics in the proposed screening method.
The number of clusters is determined according to the

Bayesian Information Criterion (BIC).
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Let T be a clustering map defined as

T f ; gð Þ ¼ 1;
0;

if f and g are in the same cluster
otherwise:

�

Regarding the estimation error, the clustering estima-
tion error rate η(K) depending on K clusters is defined as

η Kð Þ ¼ 2
n n−1ð Þ

X
r<s

I TK f r; f sð Þ≠T̂ K f̂ r; f̂ s
� 	� 	

where {f1,⋯, fn} denote the true curves and f̂ 1;⋯; f̂ n
n o

denote the estimated curves. Let T and T̂ represent the
corresponding cluster maps, and K denote the number of
clusters. n(K) is the fraction of all pairs that are incor-
rectly placed in different clusters.
We compare our screening method with the recently

proposed GPR (Gaussian process regression) screening
[24]. GPR seeks to quantify the true signal and noise in
a gene expression time series, allows us to rank the
differential expression of the gene profile. A Gaussian
process using a squared-exponential covariance function
is based on the assumption that the underlying true sig-
nal in a profile is a smooth function. GPR is applied to
each gene curve with the assumption that each gene can
be categorized as either quiet or differentially expressed.
The genes may then be ranked in decreasing order
according to their values of likelihood ratio (LR) test sta-
tistics for testing between these two characterizations.
The optimal critical value for the LR test statistics for
GPR screening was empirically determined to be log(1.5)
based on the true positive rate (sensitivity) since in the
simulation, this cutoff allowed more than 80% of differ-
entially expressed genes to be detected. There is no
clear-cut critical value for this scheme. The genes greater
than the critical value are detected as differential. After
the differential genes are obtained with GPR screening,
clustering procedure can be done with those genes.
To summarize the performance across the 500 replica-

tions of 800 curves in each data set, we compute four
performance measures to evaluate the procedures:

i. Sensitivity: proportion of differentially expressed
genes that are declared significant

ii. Specificity: proportion of non-differentially expressed
genes that are not declared significant

iii. False discovery rate (FDR): proportion of genes
declared significant that are not differentially expressed

iv. False non-discovery rate (FNR): proportion of genes
not declared significant that are differentially
expressed

Tables 1 and 2 show the clustering estimation error
rates, average silhouette values and Adjusted Rand Index
values (See Section on ‘Performance Metrics’) for the
model-based clustering without screening versus with
the proposed screening according to the positive correl-
ation. They also show the sensitivity, specificity, FDR
and FNR of our proposed screening procedure and GPR
screening.
As shown in Table 2 the error rates of the high noise

case are bigger and the sensitivity is smaller than those
of the lower noise case in Table 1. However the high
noise level does not diminish the performance of the
screening procedure. From Tables 1 and 2 it can be seen
that the clustering estimation error is smaller after
screening than it is without screening. Also, the cluster-
ing estimation error becomes smaller as the number of
Fourier coefficients J becomes larger and for smaller
values of the AR parameter. Table 2 (higher noise level)
shows that the screening percentage of our method is a
little higher than GPR for some choices of J. Overall, the
proposed method demonstrates improved sensitivity
according to the number of Fourier coefficients J and
much improved specificity and FDR as compared to
GPR. In addition, the proposed method has an advan-
tage that it does not require estimation of the covariance
structure

Yeast cell cycle data analysis
We have used alpha synchronized yeast cell expression
data [26] available at http://genome-www.stanford.edu/
cellcycle/ to test our algorithm. After removing genes
with missing values, there were 4,489 genes remaining
out of 6178 genes. This data contained 18 time points
sampled uniformly every 7 min between 0 and 119 min.
Following [27], we assumed a first-order auto-

correlation structure for the error terms. The method was
repeated for each of several choices for J. Table 3 shows
the median and the average silhouette values with Euclid-
ean distance between samples by model-based clusterings
for various J values both with and without the screening
step using a significance level of FDR 5%. The number of
genes with differentially expression is 2,227 out of 4,489 at
the significance level α = 0.05.
Judging from the silhouette value, the model-based with

4 Fourier coefficients and 4 clusters was considered most
appropriate. Therefore it should be noted that silhouette
values of Euclidean distance between two clustering models
may not be the only criterion for model comparison. Ra-
ther, as in the following gene ontology analysis, clustering
should be evaluated based on biological interpretation of
results. With J = 4, the model-based clustering approach re-
sults in 4 clusters consisting of 51, 29, 2077, and 70 genes,
respectively. Figure 1 shows plots of the sample Fourier co-
efficients. Figure 2 shows pointwise means of Fourier esti-
mated gene scores in each cluster with J = 4 sample Fourier
coefficients. The graph in the bottom left-hand corner of

http://genome-www.stanford.edu/cellcycle/
http://genome-www.stanford.edu/cellcycle/


Table 1 Comparison of screening and clustering results (low noise)

Without screening With screening

AR(1) parameter Method J Error Sil ARI Error Sil ARI Sensitivity Specificity FDR FNR

p = 0.1 FC* 2 .037 .509 .909 .015 .560 .918 .878 .723 .121 .276

3 .020 .471 .921 .016 .484 .932 .860 .783 .139 .216

4 .015 .430 .963 .017 .438 .937 .863 .842 .136 .157

5 .015 .388 .964 .014 .403 .944 .854 .798 .145 .201

8 .015 .305 .964 .017 .317 .940 .851 .836 .148 .163

GPR** .855 .779 .220 .144

p = 0.2 FC 2 .052 .471 .871 .021 .523 .875 .871 .722 .128 .277

3 .036 .423 .912 .026 .443 .888 .846 .783 .153 .217

4 .029 .386 .931 .028 .398 .895 .847 .839 .152 .160

5 .027 .348 .935 .022 .366 .906 .837 .798 .162 .205

8 .028 .274 .936 .029 .287 .895 .830 .836 .169 .163

GPR .826 678 .321 .173

p = 0.3 FC 2 .073 .430 .822 .030 .487 .815 .863 .723 .136 .276

3 .056 .380 .865 .042 .402 .814 .828 .783 .171 .217

4 .052 .339 .875 .045 .356 .825 .827 .834 .172 .165

5 .049 .306 .883 .036 .326 .845 .817 .790 .182 .209

8 .047 .244 .888 .049 .257 .823 .803 .832 .196 .167

GPR .798 .571 .428 .201

p = 0.5 FC 2 .159 .340 .610 .056 .414 .633 .835 .717 .165 .201

3 .139 .287 .663 .093 .329 .591 .775 .768 .224 .231

4 .124 .255 .702 .113 .280 .578 .766 .811 .233 .188

5 .132 .226 .682 .093 .259 .615 .762 .773 .237 .226

8 .143 .181 .649 .134 .205 .562 .730 .815 .269 .184

GPR .756 .410 .589 .244

p = 0.7 FC 2 .266 .287 .345 .088 .357 .351 .755 .704 .244 .295

3 .264 .224 .347 .153 .272 .314 .682 .738 .317 .261

4 .258 .190 .370 .186 .230 .303 .668 .771 .331 .228

5 .258 .171 .375 .161 .211 .317 .676 .745 .324 .255

8 .267 .137 .339 .220 .172 .287 .641 .769 .358 .230

GPR .731 .335 .664 .268

* FC: proposed method with Fourier coefficients, **GPR: Gaussian process regression.
Comparison of estimation error rate (E), Silhouette width (S) and Adjusted Rand Index (ARI) values of model-based clustering without screening vs with screening
with J Fourier coefficients including sensitivity, specificity, FDR and FNR with m = 20 time points. These summaries are based on 500 repetitions of each consisting
of 800 curves with AR(1) parameter ρ’s with the noise standard deviation σ = 0.5.
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Figure 2 shows the estimated mean of gene scores of
screened out. Gaussian mixture model clustering allows
clusters to have different orientation or sizes while preserv-
ing some common features, such as an ellipsoidal shape.
Clusters 1, 2 and 4 in particular show a cycle while cluster
3 consists of less active genes.
We also applied GPR screening for yeast data with the

critical value log (1.5) and identified 1,620 non-quiet dif-
ferentially expressed genes. A Gaussian mixture model
clustering algorithm was applied to these genes indicating
4 clusters. The clusters have 209, 477, 598, and 336 genes,
respectively. For this clustering the median silhouette
value is 0.508 and the average silhouette value is 0.370,
each less than the corresponding silhouette summaries for
the proposed procedure.
Owing to noise and the high dimensionality of data,

careful consideration of statistical and biological validity
is needed when analyzing microarray data. From our re-
view we have found that without plausible interpretation
and biological validation, the number of partitions pro-
duced by numerical analysis is highly unreliable, and
sometimes even misleading.
In order to evaluate our clustering analysis, Gene

Ontology (GO) is applied to the clustered genes [28].



Table 2 Comparison of screening and clustering results (high noise)

Without screening With screening

AR(1) parameter Method J Error Sil ARI Error Sil ARI Sensitivity Specificity FDR FNR

p = 0.1

FC*

2 .326 .259 .200 .235 .292 .149 .589 .708 .411 .291

3 .321 .192 .199 .298 .214 .151 .561 .716 .439 .283

4 .321 .151 .194 .320 .166 .156 .553 .722 .447 .278

5 .323 .125 .185 .269 .142 .156 .571 .714 .428 .285

8 .324 .084 .175 .324 .094 .148 .552 .722 .448 .277

GPR** .483 .779 .221 .517

p = 0.2 FC 2 .343 .253 .164 .234 .291 .117 .567 .697 .432 .302

3 .339 .185 .155 .287 .208 .117 .545 .703 .454 .296

4 .338 .149 .151 .306 .160 .120 .539 .708 .461 .291

5 .337 .125 .146 .261 .138 .120 .555 .702 .445 .297

8 .338 .086 .132 .307 .094 .113 .538 .706 .462 .293

GPR .536 .677 .323 .463

p = 0.3 FC 2 .359 .248 .128 .284 .290 .090 .546 .681 .453 .318

3 .351 .185 .119 .329 .208 .089 .531 .683 .468 .316

4 .350 .148 .115 .347 .159 .092 .526 .685 .473 .314

5 .350 .127 .108 .304 .137 .088 .537 .681 .462 .318

8 .357 .083 .089 .351 .091 .079 .526 .685 .474 .314

GPR .584 .572 .427 .415

p = 0.5 FC 2 .383 .246 .073 .330 .284 .053 .517 .632 .482 .367

3 .375 .183 .066 .356 .198 .051 .512 .634 .488 .365

4 .369 .151 .062 .365 .158 .052 .510 .633 .490 .366

5 .369 .126 .056 .338 .137 .046 .514 .633 .485 .367

8 .370 .086 .046 .370 .092 .042 .509 .634 .490 .365

GPR .646 .409 .590 .353

p = 0.7 FC 2 .395 .248 .035 .356 .275 .030 .505 .504 .495 .422

3 .384 .186 .034 .368 .193 .028 .503 .503 .496 .424

4 .383 .148 .031 .373 .155 .026 .502 .502 .497 .421

5 .381 .125 .028 .358 .134 .024 .504 .504 .496 .419

8 .377 .092 .027 .370 .097 .023 .503 .502 .497 .415

GPR .679 .337 .662 .320

* FC: proposed method with Fourier coefficients, **GPR: Gaussian process regression
Comparison of estimation error rate (E), Silhouette width (S) and Adjusted Rand Index (ARI) values of model-based clustering without screening vs with screening
with J Fourier coefficients including sensitivity, specificity, FDR and FNR with m = 20 time points. These summaries are based on 500 repetitions of each consisting
of 800 curves with AR(1) parameter ρ s with the noise standard deviation σ = 1.5.
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GO consists of three organizing principles: biological pro-
cesses, molecular functions, and cellular components. Bio-
logical process evidences will be used in this study because
the yeast dataset was obtained from the cell cycle process.
The GO database provides useful tools to annotate and
analyze a set of genes. For example, GOstat searches for
statistically overrepresented GO annotations by evaluating
the significance of functional processes and molecular
mechanisms [29]. This tool simply derives the statistical
significance between expected and observed functional
categories based on the Fisher’s exact test. So we firstly
apply this tool to our four clusters and select significantly
overrepresented GO terms in each cluster with a criterion
p-value < 0.001. Along with the four clusters, we also look
for the significant GO terms of the screened 2,227 genes
for the comparison. Before performing the hypergeometric
tests, we filtered out the genes which cannot be identified
from the Yeast annotation database (R package: org.Sc.sgd.
db). Table 4 shows the number of genes in each cluster be-
fore and after the filtering and the selected (overrepre-
sented) GO terms from the hypergeometric test of the
clustered genes.
Even though the number of genes affects to the

hypergeometric test, cluster 3 and the screened-out



Table 3 Silhouette values for model-based clustering with Fourier coefficients of yeast data

Number.
of

Fourier
coeff

Number
of

clusters
without-
screening

Number
of

clusters
with

screening

No.
of
sig.

genes

Without-screening Screening

Med sil Avg. sil Med sil Avg. sil

J = 2 5 4 1715 .160 .112 .451 .388

J = 3 5 4 1735 .204 .146 .505 .426

J = 4 5 4 2227 .174 .119 .552 .485

J = 5 5 4 2792 .029 .015 .048 .028

J = 6 5 4 3071 .196 .119 .041 .043

J = 8 5 4 3050 .136 .055 .032 .024

J = 10 5 4 3142 .153 .092 .031 .010

Median and average silhouette values for model-based clustering with Fourier coefficients using Euclidean distance with screening vs. without screening.
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group have only one and six significantly overrepresented
GO terms, respectively. This means that all the genes (or
some of them) in those clusters rarely share their bio-
logical processes and these clusters can be considered as
random collections of genes. So, we focused on the three
clusters 1, 2, and 4 to find their biological meanings.
In order to identify the relationships among the se-

lected GO terms, we construct a GO graph of each clus-
ter. This graph is constructed by locating the selected
terms as leaf nodes and linking all the nodes to their an-
cestors until their root term. Note that whatever GO
terms are selected in a cluster, the cluster has only one
GO relationship graph because every GO terms are even-
tually ended up at the root term if we follow their ances-
tors. Figure 3 depicts the GO graphs of the three clusters.
Gray colored nodes represent selected GO terms in each
cluster. We realize that most of the selected GO terms are
Figure 1 Means of J = 4 sample Fourier coefficients with yeast
data. The mean profiles of Fourier coefficients in the four clusters
and one cluster with genes screened out.
related with each other as a parent–child relationship and
they tend to be closely located in each graph.
Among the selected GO terms, we looked into the terms

which are connected sequentially from the top node to the
bottom (root). This cascade form of GO terms provides
more enhanced evidences that the corresponding genes
are more closely related in their biological processes than
that of a parent–child relationship. These sequentially
connected terms are labeled by their subset number in the
Figure 3 and are summarized in Table 5. In cluster 1, sub-
set 2 includes the genes mainly affect to cell cycle espe-
cially Mitosis. Mitosis is a division process that produces
two daughter cells having the same genetic information as
their parent cell. During this Mitosis, structural assembly
of DNA and nucleosome is processed, which can be repre-
sented in the subset 1 of cluster 1. Mitosis is followed by
cytokinesis and the cell wall of the daughter cells is
formed, whose related genes are shown in cluster 2. In
cluster 4, genes in subset 3 are in charge of DNA replica-
tion in the S phase of cell cycle. So, our method enables us
to identify the genes that are expressed in dynamical cellu-
lar events of DNA duplication and cell division. Though
the subset 1 and 2 of cluster 4 seem to be more related
with the responses to DNA stresses then cell cycle, it is
known that heat shock proteins are also responsible for
cell proliferation and cell cycle ([30,31]). Therefore, based
on this result, further experimental investigation could be
possible to reveal the link between two different biological
processes, “heat-shock response” and “cell cycle”.

Conclusions
A number of recent studies in this field have focused on
the analysis of time series of gene expression data, col-
lected by performing DNA microarray experiments at
several or more points in time. We have proposed a sig-
nificance method to identify differentially expressed
genes in time course microarray gene expression data
using time series screening based on Fourier coefficients
controlling FDR and model based clustering with the



Figure 2 Average gene curves in four clusters and one screened-out cluster. The mean curves of gene curves in 4 clusters and one mean
curve with genes screened out.
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sample genewise Fourier coefficients, and have compared
our screening method with GP screening. Recently spec-
tral mixture kernels [32] have been introduced with a
Gaussian mixture as a Fourier transform of kernels and
these kernels are able to discover patterns and extrapolate
and model negative covariances, illustrating the relation-
ship between the GP and the Fourier approach.
We demonstrated the effectiveness of our approach

using model-based clustering of gene profiles. Although
we assumed that the residuals follow an AR process, we
found that it is not necessary to assume a specific cor-
relation structure since the sample Fourier coefficient
estimates themselves do not depend heavily on the
underlying covariance structure. The most commonly
used techniques are clustering (unsupervised) tech-
niques, which are particularly well suited for an explora-
tory investigation of this kind of data. The main
advantage of the model-based methods is their reliance
on a highly structured theoretical basis. Model-based
Table 4 Number of genes in each cluster with J = 4

Screened out Cluster 1

Number of genes 2262 51

Filtered genes 2041 46

Significant GO terms 1 36

The number of genes screened, screened out and significant genes with respect to
clustering methods are based on the assumption that the
data were generated by some underlying model and at-
tempt to infer these models from data. Data generated
by the same model is then considered to be “similar”
and clustered together. Also, the choice of the optimal
number of clusters and the selection of the best model
can be performed using sound statistical criteria.
The proposed method is able to identify a set of cell-

cycle-regulated genes in yeast and time-course genes.
The proposed method is general and can be potentially
used to identify genes which have the same patterns or
biological processes, and help facing the present and
forthcoming challenges of data analysis in functional
genomics.

Methods
The Fourier representation model
We observe data Yiu, uth observation on the ith curve,
of the form
Cluster 2 Cluster 3 Cluster 4

29 2077 70

28 1881 64

17 6 37

GO.
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Figure 3 GO graph of each cluster of yeast data.
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Y iu ¼ f i tiuð Þ þ εiu i ¼ 1; 2;⋯n;
u ¼ 1; 2;⋯;m

ð1Þ

where E(εiu) = 0 and the εiu values arise from a covariance-
stationary process with mean zero and covariance function
γi, γi(k) = E(εiuεi,u + k) for all u and k. In a microarray ex-
periment Yiu is the log gene expression of gene i at time u.
We assume that the data from one curve are independent
from those of other curves.
We assume further that the curve fi belongs to a class

of smooth functions as defined below:

f i tð Þ ¼ φi0 þ
X∞
j¼1

φijbj tð Þ ð2Þ

where {bj} is an orthonormal basis system and

φij ¼ ∫ f i tð Þbj tð Þdt ð3Þ

We can estimate each fi using its empirical Fourier co-
efficients:
f̂ i tð Þ ¼ φ̂i0 þ
XJ
j¼1

φ̂ijbj tð Þ ð4Þ

which is the projection onto the first J basis functions
where J , 1 ≤ J ≤m, is a smoothing parameter to be
chosen based on the data.
The empirical Fourier coefficients can be computed as

φ̂i0 ¼
1
m

Xm
r¼1

Y ir and φ̂ij ¼
1
m

Xm
r¼1

Y irbj trð Þ ð5Þ

with tr = r/m. To estimate the true Fourier coefficients,
the covariance structure is not considered since the co-
variance matrix of a finite set of estimated Fourier coeffi-
cients is asymptotically proportional to the identity
matrix.

Screening out flat genes
Many microarray experiments are aimed at finding ‘ac-
tive’ genes that vary significantly in expression. Differen-
tial expression indicates the changing of transcription



Table 5 GO terms connected sequentially in their GO relationship graph (C: cluster number, S: subset number)

C S GO ID Terms S GO ID Terms

1 1

GO:0006334 Nucleosome assembly

2

GO:0000280 Nuclear division

GO:0031497 Chromatin assembly GO:0000087 M phase of mitotic cell cycle

GO:0006323 DNA packaging GO:0048285 Organelle fission

GO:0034728 Nucleosome organization GO:0022402 Cell cycle process

GO:0006333 Chromatin assembly or disassembly GO:0000278 Mitotic cell cycle

GO:0016043 Cellular component organization GO:0007049 Cell cycle

GO:0051276 Chromosome organization GO:0007067 Mitosis

GO:0006325 Chromatin organization GO:0000279 M phase

GO:0006996 Crganelle organization GO:0022403 Cell cycle phase

2 1

GO:0007109 Cytokinesis, completion of separation

2

GO:0071554 Cell wall organization or biogenesis

GO:0000920 Cell separation during cytokinesis GO:0007047 Cellular cell wall organization

GO:0032506 Cytokinetic process GO:0071555 Cell wall organization

GO:0000910 Cytokinesis GO:0070882 Cellular cell wall organization or biogenesis

GO:0031505 Cungal-type cell wall organization

4 1

GO:0051716 Cellular response to stimulus

2

GO:0006302 Couble-strand break repair

GO:0050896 Response to stimulus GO:0006281 DNA repair

GO:0033554 Cellular response to stress GO:0000724 Couble-strand break repair via homologous recombination

GO:0006950 Response to stress GO:0006974 Cesponse to DNA damage stimulus

GO:0034605 Cellular response to heat

3

GO:0006260 DNA replication

GO:0009408 Response to heat GO:0006273 Cagging strand elongation

GO:0009628 Response to abiotic stimulus GO:0006261 DNA-dependent DNA replication

GO:0009266 Response to temperature stimulus GO:0006271 DNA strand elongation during DNA replication

GO:0022616 DNA strand elongation

GO:0006259 DNA metabolic process

Cluster 1, 2 and 4 have biologically meaningful genes as shown in the table.
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levels across different time points, and it is thought that
these transcription changes might be responsible for the
change in phenotype. For example, the genes responsible
for the presence of a certain disease will be transcribed
at a different rate than when the disease is absent. Clus-
ter analysis often fails to detect differentially expressed
genes that belong to clusters for which most genes do
not change because most of the other genes in their
clusters do not change significantly.
The problem can be formulated as hypothesis-testing

for individual genes as follows:
H0 : fi(⋅) =C versus H1 : fi(⋅) ≠C for i = 1, 2,⋯ n,

i.e., for n genes, we are considering n pairs of mutually
exclusive hypotheses:
H0: Gene i is not differentially expressed.
H1: Gene i is differentially expressed.
In a microarray setting, it is typical to consider thou-

sands of tests simultaneously. In this situation the
familywise error rate (FWER) or FDR (false discovery
rate), the average proportion of inactive genes among
those that were declared active, should be controlled.
The FDR procedure [2] is as follows:
Let k be the largest g, 0 ≤ g ≤ n, for which

P gð Þ≤
gα
n

Then reject all H(g)0, for g = 1, 2,⋯, k, where H(g)0 is the
associated null hypothesis and P(g) is the gth smallest
p-value among all the p-values calculated for each of the
hypotheses. For all genes, we apply a first-order auto-
regressive (AR(1)) process to model the time dependency
of the data. For testing change in the mean function of
time series data, the test [32] rejects the null hypothesis of
no change for large values of

TS ¼ max
1≤k≤m−1

1
k

Xk
j¼1

mφ̂2
j

Ŝ 0ð Þ

where Ŝ 0ð Þ ¼ γ̂ 0ð Þ þ 2
Xm�1

k¼1
γ̂ kð Þ is the estimated trun-

cated spectrum at 0. The sample spectrum is the Fourier
cosine transform of the estimate of the autocovariance
function. The error covariance function at lag k is
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γ̂ kð Þ ¼ 1
m

Xm−k

u¼1

ε̂u−�̂ε

 �

ε̂uþk−�̂ε

 �

and

γ̂ 0ð Þ ¼ 1
m

Xm
u¼1

ε̂u−�̂ε

 �2

where ε̂ is the residual from the Fourier estimation in (4).
The p-values of test statistics Ts can be calculated

from the asymptotic distribution. Since each mφ̂2
j =Ŝ 0ð Þ

has an approximate chi-squared distribution ([33,34]),

P TS≤Cð Þ≈ exp −
X∞
j¼1

Pðχ2j > jCÞ
j

( )

where χ2j is a chi-squared random variable with j degrees

of freedom.

Clustering differentially expressed genes
All genes for which the null hypothesis of no change has
been rejected will undergo clustering analysis, and this
will operate on the Fourier domain representation of each
expression profile. The sample Fourier coefficient φ̂ j is a
weighted average of the observations with

Var φ̂j

� 	
¼ O

1
m

� �
and Cov φ̂j; φ̂v

� 	
¼ O

1
m

� �
:

By the Central Limit Theorem for dependent data
[35], the sample Fourier coefficient φ̂j is asymptotically
normally distributed [36] as m→∞. With this asymp-
totic property, we can use the Gaussian mixture model
for clustering.
With the large number of genes monitored in these

studies, clustering is a key task for microarray data ana-
lysis. It seeks to identify groups of genes with similar ex-
pression profiles across samples. Clustering can reduce
the effort of studying individual genes and more import-
antly it can unmask the functional groups among genes.
Considering that the empirical Fourier coefficients of

the gene profiles have an asymptotic multivariate normal
distribution enables the use of an efficient algorithm to
compute the posterior probability that a gene belongs to
a certain cluster.
The geometric features (shape, volume, orientation)

of each group k are determined by the covariance
matrix ∑k of the Fourier coefficients. A general frame-
work for exploiting the representation of the covariance
matrix is done in terms of its eigenvalue composition
[37]. Each elliptical model for the covariance matrix is
implemented in Mclust [19]. Model-based hierarchical
agglomerative clustering is an approach to compute an
approximate maximum of the classification likelihood.
Each component is weighted by the probability that a
sample Fourier coefficient belongs to that component.
Our clustering strategy involves model-based agglom-
erative hierarchical clustering and selection of the
model and the number of clusters using approximate
Bayes factors with the BIC approximation.

Performance metrics
For evaluating the performance of clustering algorithms,
the adjusted Rand Index [38] and the Silhouette index
[39] are used for the simulated data and for the yeast
data.
Suppose T is the true clustering of a gene expression

data set based on domain knowledge and C a clustering
result given by some clustering algorithm applied to the
observed data. Let a, b, c and d respectively denote the
number of gene pairs belonging to the same cluster in
both T and C, the number of pairs belonging to the same
cluster in T but to different clusters in C, the number of
pairs belonging to different clusters in T but to the same
cluster in C and the number of pairs belonging to differ-
ent clusters in both T and C. The adjusted Rand index
ARI(T,C) is defined as.

ARI T ;Cð Þ ¼ 2 ad−bdð Þ
aþ bð Þ bþ dð Þ þ aþ cð Þ cþ dð Þ

The silhouette width [39] for ith sample in the jth
cluster is defined as.

s ið Þ ¼ b ið Þ−a ið Þ
max a ið Þ; b ið Þf g

where a (i) is the average distance between the ith sam-
ple and all other samples included in the jth cluster, b(i)
is the minimum average distance between the ith sample
and all of the samples clustered in kth cluster for k ≠ j
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