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Abstract We present analytical and numerical models of a normal-polarity quiescent
prominence that are based on the model of Pikelner (Solar Phys. 17, 44, 1971). We de-
rive the general analytical expressions for the two-dimensional (2D) equilibrium plasma
quantities such as the mass density and gas pressure, and we specify magnetic-field com-
ponents for the prominence, which corresponds to a dense and cold plasma residing in the
dip of curved magnetic-field lines. Adapting of these expressions, we numerically solve the
2D, nonlinear, ideal MHD equations for the Pikelner model of a prominence that is initially
perturbed by reducing the gas pressure at the dip of magnetic-field lines. Our findings reveal
that as a result of pressure perturbations, the prominence plasma starts evolving in time. This
leads to antisymmetric magnetoacoustic–gravity oscillations and to the mass-density growth
at the magnetic dip, and the magnetic-field lines subside there. This growth depends on the
depth of the magnetic dip. For a shallower dip, less plasma is condensed, and vice versa. We
conjecture that the observed long-period magnetoacoustic–gravity oscillations in various
prominence systems are in general the consequence of the internal-pressure perturbations of
the plasma residing in equilibrium at the prominence dip.

Keywords MHD · Sun: magnetic fields · Sun: corona · Sun: prominences

1. Introduction

Prominences are dense and cold solar coronal magnetic structures, which are highly com-
plex, as shown for instance by their long and thin threads (Tandeberg-Hanssen, 1974). The
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average prominence temperature is about two hundred times lower and the mass density
approximately two hundred times higher than the ambient coronal values. Prominences are
linked to the underlying photosphere by several footpoints and lie along the polarity inver-
sion line. The length of prominences is in the range of 50 – 500 Mm, their height is between
10 – 100 Mm, and their average thickness is 15 Mm (Priest, 1989).

Solar prominences can be classified into two groups: i) active prominences and ii) qui-
escent prominences (Zirin, 1988). Active prominences have life-times of no more than a
few days, undergoing dramatic changes in plasma motions and magnetic activity. They are
often associated with solar flares. Quiescent prominences can live for months; they form
over a magnetic neutral line that separates the regions of opposite magnetic polarities on the
photosphere.

The first quiescent prominence models were devised about 60 years ago (Menzel,
1951). Two classical models are commonly accepted, which are known as the Kippen-
hahn and Schlüter (1957) and Kuperus and Raadu (1974) models. In these models the
cool and dense plasma is maintained against gravity by the magnetic tension at the local
dip of the magnetic arcade. The distribution of magnetic polarity in this arcade promi-
nence is the same as in the underlying photosphere, i.e. direct polarity. Kuperus and Raadu
(1974) proposed a model in which the prominence, taking the form of a magnetic-flux
rope, is maintained in a vertical current-sheet with open magnetic-field lines. Below this
current-sheet the X-point is present, and the prominence exhibits inverse polarity. Cur-
rently, there are two well-accepted 3D prominence models with inverse polarity: the sheared
arcade and the flux-rope magnetic structures (Labrosse et al., 2010, and references cited
therein).

While these classical models reveal the equilibrium magnetic configurations of qui-
escent prominences, a recent trend is emerging with the observational and theoreti-
cal reports that led to the foundation of plasma and wave dynamics within such sta-
ble magnetic configurations of the prominence system. Luna and Karpen (2012) and
Luna, Díaz, and Karpen (2012) have found that the observed large-amplitude longitu-
dinal prominence oscillations (>20 km s−1) are driven by the projected gravity along
the flux tubes and are strongly influenced by the curvature of the dips of the mag-
netic field in which the prominence threads reside. These oscillations reported by both
Luna and Karpen (2012) and Luna, Díaz, and Karpen (2012) for slow magnetoacoustic–
gravity modes are the symmetric longitudinal oscillations. Terradas et al. (2013) have
studied the excitation of fast and slow antisymmetric magnetoacoustic–gravity modes
of a prominence; they also considered magnetostatic (MHS) equilibrium and performed
linear MHD normal mode analysis. Small-amplitude longitudinal (slow) and fast trans-
verse prominence oscillations either as a collective motion or as an individual thread
(≈2 – 3 km s−1) are well observed and modeled in the solar atmosphere (Arregui, Oliver,
and Ballester, 2012, and references cited therein). Terradas, Oliver, and Ballester (2001)
have reported that slow magnetoacoustic–gravity longitudinal oscillations of the qui-
escent prominences can be damped by the radiation and Newtonian cooling. Longi-
tudinal prominence oscillations were observed and modeled by Li and Zhang (2012),
Zhang et al. (2012), Shen et al. (2014), Bi et al. (2014), and Chen, Harra, and Fang
(2014).

While a number of generalizations to the seminal models of Kippenhahn and Schlüter
(1957) and Kuperus and Raadu (1974) were constructed in the past, we propose an arcade
model of normal polarity as sketched by Pikelner (1971). Pikelner (1971) only sketched the
model, but he did not support it by any analytical expression. Our aim is to devise an analyt-
ical arcade model of a prominence by presenting the stringent mathematical expressions for
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the equilibrium prominence quantities. Our devised analytical model of prominence is rele-
vant for the bounded prominence structures that exhibit collective wave motions and plasma
dynamics. Additionally, our goal is to implement this analytical model into the FLASH
numerical code (Lee, 2013) and develop a numerical model. This numerical model allows
us to study a number of plasma phenomena. As a particular application of this model, we
here simulate magnetoacoustic–gravity waves in the prominence that result from a local-
ized pressure pulse. This is the first article describing our newly developed analytical model
in detail. We also present one numerical experiment on long-period prominence oscilla-
tions to shed light on the driving physical mechanism of these waves. The derived results
can be applied to understand the physical processes of the prominence during evolved non-
linear oscillations and are thereby useful for prominence seismology and related observa-
tions.

This article is organized as follows: Section 2 describes the analytical model of a qui-
escent prominence that is based on Pikelner’s model. The results of numerical simula-
tions are outlined in Section 3. In the last section we present the discussion and conclu-
sions.

2. Analytical Model of Quiescent Prominence

2.1. MHD Equations

We consider a gravitationally stratified and magnetically confined plasma, which is de-
scribed by ideal two-dimensional (2D) magnetohydrodynamic (MHD) equations:

∂�

∂t
+ ∇ · (�V ) = 0, (1)

�
∂V

∂t
+ �(V · ∇)V = −∇p + 1

μ
(∇ × B) × B + �g, (2)

∂B

∂t
= ∇ × (V × B), (3)

∇ · B = 0, (4)

∂p

∂t
+ V · ∇p = −γp∇ · V , (5)

p = kB

m
�T . (6)

Here � is the mass density, p the gas pressure, V = [Vx,Vy,0], B = [Bx,By,0], and g =
[0,−g,0] represent the plasma velocity, the magnetic field, and gravitational acceleration,
respectively. The value of g is equal to 274 m s−2. In addition, T is the plasma temperature,
γ = 5/3 is the adiabatic index, μ is the magnetic permeability of the plasma, and m is
a particle mass that is specified by a mean molecular weight of 0.6. Although this value is
valid for a fully ionized plasma of the corona, its higher value will probably not qualitatively
change the response of the system. We assumed that z is an invariant coordinate (∂/∂z = 0),
and we set the z-components of velocity and magnetic field equal to zero. This assumption
removes Alfvén waves from the system in which magnetoacoustic–gravity waves are able
to propagate.
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2.2. Equilibrium Configuration

We assume that the solar atmosphere is in static equilibrium [V e = 0]. It follows from Equa-
tions (1) – (5) that in such a model this equilibrium is described by

−∇pe + 1

μ
(∇ × Be) × Be + �eg = 0, (7)

∇ · Be = 0. (8)

Here the subscript e corresponds to the equilibrium quantities.
As a result of Equation (8), the magnetic field [Be] can be expressed with the use of the

magnetic-flux function [A(x,y)] as

Be(x, y) = ∇ × (Aẑ), (9)

with ẑ being a unit vector along the z-direction. As a result, the x- and y-components of the
magnetic field are

Bex = ∂A

∂y
, Bey = −∂A

∂x
. (10)

Under the above assumptions, Equations (6) and (7) are reduced to the following expres-
sions (Low 1975, 1980):

∇2A(x,y) = −μ
∂pe(A,y)

∂A
, (11)

�e(x, y)g = −∂pe(A,y)

∂y
. (12)

Now, we can specify the right-hand-side of Equation (11) and thereafter proceed to solve
this equation for the magnetic field; however, this is a formidable nonlinear Dirichlet prob-
lem to solve (Low 1975, 1980). Here we adopt the approach proposed by Low (1980, 1981,
1982), who reversed the mathematical problem by specifying the magnetic field first and
then deriving the equilibrium conditions for the mass density and gas pressure. By defining
the magnetic flux function [A(x,y)] we can in general integrate Equation (11) to find the
formula for the equilibrium gas pressure and then calculate the mass density using Equa-
tion (12). Following this idea, we integrate Equation (11) regarding y-coordinate as a fixed
parameter (Solov’ev, 2010). Then, a variation of A is

dA = ∂A

∂x
dx + ∂A

∂y
dy + ∂A

∂z
dz = ∂A

∂x
dx, (13)

as a result of ∂A/∂z = 0 and dy = 0.
Using this expression in Equation (11), we obtain

μpe = −
∫ (

∂2A

∂x2
+ ∂2A

∂y2

)
∂A

∂x
dx + μC(y), (14)

where C(y) is an integration function. As the integration over the first integrand can be
performed explicitly, we obtain

μpe = −1

2

(
∂A

∂x

)2

−
∫

∂2A

∂y2

∂A

∂x
dx + μC(y). (15)
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Figure 1 Vertical hydrostatic
temperature profile from the data
of Avrett and Loeser (2008).

As the magnetic field tends to zero at x → ±∞ and pe = ph(y), we find

C(y) = ph(y), (16)

where ph(y) is the hydrostatic pressure of the magnetic-free solar atmosphere with

−∂ph

∂y
= �h(y)g, (17)

which is specified by a temperature profile Te(y). In this case we adopt the temperature
model of Avrett and Loeser (2008). We note that the temperature reaches its minimum of
4300 K at ≈0.6 Mm (Figure 1). At higher altitudes, the temperature rises with y. At the
transition region that is located at y ≈ 2.1 Mm, the temperature abruptly increases by about
0.8 MK in the solar corona at y = 10 Mm. The temperature profile uniquely determines the
hydrostatic mass density and gas pressure, which fall off with y (not shown here). For a
recent implementation of ph(y) see Murawski et al. (2013). From Equation (15) we derive

pe(x, y) = ph(y) − 1

μ

(∫
∂2A

∂y2

∂A

∂x
dx + 1

2

(
∂A

∂x

)2)
. (18)

From Equation (12) it follows that to find the distribution of the mass density [�e(x, y)]
we need to calculate ∂pe(A,y)/∂y. To execute this action, we perform the following anal-
ysis. Let A(x,y) be a function of independent variables (x, y). Then we can express any
differentiable function [S(x, y)] as S(y,A(x, y)) and the following equation is derived:

∂S(x, y)

∂y
= ∂S(y,A)

∂y
+ ∂A

∂y

∂S(y,A)

∂A
. (19)

Then

∂S(y,A)

∂y
= ∂S(x, y)

∂y
− ∂A

∂y

∂S(y,A)

∂A
. (20)

Replacing S(y,A) by pe(y,A) and using Equation (11), we find

∂pe(y,A)

∂y
= ∂pe(x, y)

∂y
− ∂A

∂y
∇2A, (21)
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Figure 2 Spatial profiles of
magnetic-field lines in Pikelner’s
prominence model for a2 = 1.5,
a1 = 1.6 (dashed lines) and
a1 = 2.0 (solid lines). Only the
right-hand (x ≥ 0) side of the
prominence is displayed.

and then expressing pe(y,A) by Equation (18), we find the formula for the equilibrium mass
density,

�e(x, y)g = �h(y)g + 1

μ

[
∂

∂y

(∫
∂2A

∂y2

∂A

∂x
dx + 1

2

(
∂A

∂x

)2)
− ∂A

∂y
∇2A

]
. (22)

We note that pe and �e are specified by Equations (18) and (22), respectively. These
equations are general in nature. Specific forms of pe and �e are obtained after es-
timating A(x,y), which is a free function. This function must be chosen based on
some physical reasons. In the following, we present this function for a solar promi-
nence.

2.3. Pikelner’s Prominence Model

For the solar prominence model of Pikelner (1971) we adopt the following expression for
the flux function:

A(x,y) = B0

k

(
1 + a1k

2x2
)

exp
[−k2

(
a2(y − yref)

2 + x2
)]

, (23)

where a1 and a2 are some positive constants, k denotes the inverse length, which deter-
mines the spatial scale of the structure, and B0 is the magnetic-field strength at the reference
point, (x = 0, y = yref). We choose and hold fixed yref = 10 Mm, k = 1/50 (Mm)−1, and
B0 ≈ 6 Gauss. This choice of A(x,y) leads to magnetic-field lines that are characteristic for
a prominence, and the equilibrium mass density and gas pressure can be given by relatively
simple expressions.

The magnetic field resulting from Equations (23) and (10) is illustrated in Figure 2. The
dip in the magnetic-field vectors is discernible along the vertical line x = 0, and this dip
grows with a1 as magnetic lines are more tilted for a high value of a1 (Figure 2). After
specifying A(x,y) by Equation (23), we express the equilibrium gas pressure and the mass
density for the Pikelner’s model with Equations (18) and (22) as

pe(x, y) = ph(y) − 0.5
[(

p3x
4 + p4x

2 + p7

)
y2 + p9x

4x2 + p1x
4 + p2x

2 − 2a2
2

]
exp

[
p10(y − yref)

2 + p11x
2
]
B0, (24)

�e(x, y) = �h(y) + 4
(
p5x

4 + p6x
2 + p8

)
(y − yref)

exp
[
p10(y − yref)

2 + p11x
2
]
B0/g, (25)
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Figure 3 Spatial profiles of log(�e(x, y)) for a2 = 1.5, a1 = 1.6 (a) and a1 = 2.0 (b). Temperature profiles
log(Te(x, y)) for a1 = 1.6 (c) and a1 = 2.0 (d).

where

p1 = k4
(−2a2

1a2 − 8a2
1 + 8a1

)
, p2 = k2

(−4a1a2 + 4a2
1 − 8a1 + 4

)
,

p3 = 4k6a2
1a

2
2, p4 = 8k4a1a

2
2,

p5 = k6
(
a2

1a
2
2 − a2

1a2

)
, p6 = k4

[
2a1a

2
2 + (−a2

1 − 2a1

)
a2

]
,

p7 = 4k2a2
2, p8 = k2

[
a2

2 + (a1 − 1)a2

]
,

p9 = 4k6a2
1, p10 = −2k2a2, p11 = −2k2.

The prominence equilibrium mass-density and temperature profiles that result from
Equations (24), (25), and (6) are displayed in Figure 3. We note that the prominence plasma
occupies the dense (at x = 0, y ≈ 20 Mm) and cold (at y ≈ 35 Mm) region. While the clas-
sical models of a prominence exhibit a single cold region that is centrally located, Pikelner’s
model reveals the central cold region and two cold side regions (Figure 3c and d). These
side regions result from faster fall-off in gas pressure than in mass density.

3. Results of Numerical Simulations

Equations (1) – (6) are solved numerically using the FLASH code (Lee and Deane, 2009;
Lee, 2013). This code implements a third-order, unsplit Godunov solver with various slope
limiters and Riemann solvers (e.g. Tóth, 2000) and also includes an adaptive mesh refine-
ment (MacNeice et al., 2000). We use the minmod slope limiter and the Roe Riemann solver.
For all cases considered we set the simulation box as (−110,110) Mm × (1,111) Mm and
impose boundary conditions by fixing in time all plasma quantities at all four boundaries to
their equilibrium values. In all of our studies we use a static grid with the lowest (highest)
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Figure 4 Block system used in
the simulation studies.

level of refinement set to 3 (9). The whole computational region is covered by a set of blocks
with different grid-cell sizes, which are organized in a hierarchical fashion using a tree data
structure (Figure 4). The blocks at the first or top level of the tree consist of the largest cells,
while their children have a factor of two smaller cells. As a result, at level 3 (9) the block
size contains cells that are smaller by a factor of 22 (28) than the top-level cells. In this way,
we attain the effective finest spatial resolution of about 20 km below the transition region,
y = 2.1 Mm. The total number of grid cells implemented at t = 0 seconds in the model is
almost 106. The typical computation time is 48 hours, and the computations were performed
with 32 CPUs.

3.1. Perturbations in Pikelner’s Prominence

We initially perturb the above-described equilibrium impulsively by adding a Gaussian pulse
in a gas pressure, viz

p(x, y, t = 0) = pe(x, y)

[
1 + Ap exp

(
−x2 + (y − y0)

2

w2

)]
. (26)

Here Ap denotes the amplitude of the initial pulse, y0 its initial position, and w its width.
The relative amplitude of the initial pressure pulse, i.e. Ap = −0.95 means that we con-
sider large-amplitude oscillations. We set and hold fixed Ap = −0.95, w = 4 Mm, and
y0 = 35 Mm, where y0 corresponds to the position at the bottom of the magnetic dip. The
negative value of Ap mimics rapid cooling of the plasma, which was recently studied by
Murawski, Zaqarashvili, and Nakariakov (2011). The sudden, spatially localized decrease
in the gas pressure around the null point sucks the plasma in, creating a region of the den-
sity enhancement around the X-point. The compression of mass density is subject to the
buoyancy force, and its influence is expressed by changing the blob shape.

3.2. Dynamics of the Perturbed Plasma

Figure 5 displays log(�e(x, y, t)) at four consecutive moments of time. As a result of the
initial perturbation, magnetoacoustic–gravity waves, which propagate in the system, are
essentially excited within Pikelner’s prominence. However, these waves quickly leave the
prominence domain. Later the under-pressure that settles at the launching place results in
slow magnetoacoustic–gravity waves, which propagate essentially along the magnetic-field
lines (Figure 5b). This under-pressure region brought some extra plasma from the ambient
region into the launching place (Figure 5c and d).

Figure 6 illustrates the relative mass [Mr] of the prominence. This mass is evaluated
within the region |x| ≤ 20 Mm, 20 Mm ≤ y ≤ 45 Mm. Indeed, according to our expec-
tations, this mass grows in time; at t = 0 seconds, Mr = 1 while at t = 4000 seconds,
Mr reaches a magnitude of 1.13.
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Figure 5 Spatial profiles of log(�(x, y)) for a1 = 1.6 and a2 = 1.5 at t = 1000 seconds (a),
t = 2500 seconds (b), t = 4000 seconds (c), and t = 5500 seconds (d). The vectors denote the velocity
of the perturbed plasma. Only the x ≥ 0 Mm region is displayed.

Figure 6 The relative mass of
the prominence vs. time.

Figure 7 shows temperature profiles at four instants of time. Plasma at the top of Pikel-
ner’s arcade becomes colder than in the ambient medium. As we are considering adiabatic
equations, the cooling plasma results from the inflow of plasma, which is caused by the ini-
tial depression in the gas pressure there. As a result of this depression, plasma is attracted
by the pressure gradient force into the launching place.

We do not include any dissipation mechanism in our model, such as radiation or thermal
conduction. The initial negative pressure imbalance produces an increase of the mass den-
sity at the dip of the model prominence because it produces an inflow there mainly from
chromospheric plasma, which is seen in Figure 8 after the first 250 seconds of the simula-
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Figure 7 Spatial profiles of log(T (x, y)) for a1 = 1.6 and a2 = 1.5 at t = 1000 seconds (a),
t = 2500 seconds (b), t = 4000 seconds (c), and t = 5500 seconds (d). The velocity vectors are denoted
by arrows.

Figure 8 Spatial profiles of
log(�(x, y)) for a1 = 1.6 at
t = 250 seconds. The vectors
denote the velocity of the
perturbed plasma.

tion. As the dip is a potential well, some part of the inflowing plasma is trapped there and the
mass density grows there. A similar physical explanation can be applied to the temperature
field of the prominence. The plasma flows from the foot-points of the prominence along its
field lines, which is colder than the plasma in the dip at t = 0 seconds.

Figure 9 displays the temporal signatures that are drawn by collecting wave signals in
the mass density at the point (x = 0, y = 35) Mm, which corresponds to the location of
the prominence dip. These time-signatures reveal an initial phase with strong mass-density
variations. This initial phase lasts until t ≈ 1500 seconds. The oscillations are later of lower
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Figure 9 Time-signatures of
�(x = 0 Mm, y = 35 Mm) vs.
time for a1 = 1.6 (dashed line)
and a1 = 2.0 (solid line).

Figure 10 Time-signatures of velocity Vx(x = 20 Mm, y = 35 Mm) km s−1 (the left panel) and
Vy(x = 20 Mm, y = 35 Mm) km s−1 (the right panel) vs. time for a1 = 2.0.

Figure 11 The wavelet spectrum of velocity Vx(x = 20 Mm, y = 35 Mm) km s−1 (the left panel) and
Vy(x = 20 Mm, y = 35 Mm) km s−1 (the right panel) for a1 = 2.0.

amplitude, indicating a strong attenuation. The attenuation may result from energy leak-
age through the foot-points of the prominence that are located at the transition region,
and also from the dip in magnetic-field lines. We discuss below some estimates to sup-
port the inherent wave-leakage process to dissipate the magnetoacoustic oscillations. The
temporal evolution of the mass density exhibits a clear nonlinear behavior because the ini-
tial mass density, i.e. the equilibrium value, is lower than the end value, which remains
almost constant. The velocity field also oscillates according to the mass-density perturba-
tions.



440 J. Kraśkiewicz et al.

Figure 12 The Fast Fourier Transform (FFT) (the left panel) and wavelet spectra (the right panel) of
time-signatures of mass density for a1 = 2.0.

Figure 13 Maximum of the
mass density taken from the left
panel of Figure 9 vs. a1.

Figure 10 shows the velocity oscillation near the maximum of the prominence at
(x = 20, y = 35) Mm. The velocity-field perturbations are aligned with the magnetic-field
lines, indicating that the motions are associated with slow modes.

These oscillations for a1 = 2.0, which represent the slow magnetoacoustic–gravity os-
cillations along the arcade, are analyzed by the Fast Fourier Transform (FFT) and wavelet
methods. They exhibit a main period of 1577 seconds, as is shown in Figures 11 and 12.

Figure 13 shows that the maximum of the mass density [�max] grows with a1. A higher
value of a1 corresponds to a larger depth of the dips in the magnetic-field lines; the promi-
nence with a larger depth of the dips, shows a larger amplitude of the slow magnetoacoustic–
gravity oscillations after it has been perturbed and departed from equilibrium. As a result,
more plasma can be trapped in the dips and the mass density there increases, which explains
the growing trend exhibited in Figure 13.

From Figure 9 we infer that a larger depth of the dips in the magnetic-field lines of a
prominence leads to more oscillations in the mass density. Compare the solid line drawn
for the larger depth in the dip with the dashed line, which corresponds to the case of the
shallower dip.

The decay of the slow magnetoacoustic–gravity oscillations clearly decreases with the
depth of the magnetic dip of a prominence. Figure 9 shows the fast attenuation and almost
no oscillatory motion in the case of a shallower depth of the magnetic dip (dashed line).
Figure 14 illustrates how attenuation time [τ ] grows with a1. This means that a prominence
with a larger dip (larger a1) has a longer attenuation time (i.e. longer decay) and vice versa.

Terradas et al. (2013) also found longer oscillation wave periods for massive prominences
and shorter period waves for light prominences.
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Figure 14 Variation of
attenuation time τ vs. a1.

Figure 15 The ratio of the
energy below the footpoints to
the total energy.

Our model considers the prominence and its ambient medium within the framework of
the analytical technique of Solov’ev (2010), in which all forces acting on the plasma are
taken into account. The oscillations excited in the system are not pure gravity or gas pres-
sure, which is a different aspect compared to the previous model. The results in our article
are associated with the antisymmetric longitudinal oscillations, which is a case study of
our developed prominence model, and they match the results obtained by Terradas et al.
(2013). However, it should be noted that the present model is based on nonlinear full
MHD, while the model by Terradas et al. (2013) considered magnetostatic equilibrium
and linear MHD normal-mode analysis. In the context of the model description, these two
cases are therefore not very relevant. As stated above, the most likely dissipation mech-
anism of the excited oscillations is a wave leakage. This can result from energy leakage
through the footpoints of the prominence, which are located at the transition region, and
also from energy leakage through the dip in magnetic-field lines. Figure 15 shows the ra-
tio of kinetic energy of the plasma just below the footpoints to the total kinetic energy
above the footpoints, i.e. above the transition region. This ratio grows with time, which in-
dicates the leakage of energy from the prominence. Figure 16 also shows some leakage
of energy below and above the prominence in the form of side streams of fast-moving
plasma. Therefore, we quantify the wave-leakage process as the dissipative agent for the
evolved antisymmetric magnetoacoustic–gravity oscillations in Pikelner’s model promi-
nence.

We infer from Figure 16 that the highest pulse velocity is about 50 km s−1. This magni-
tude of the flow matches the typical observational data. For a large amplitude of the initial
pulse, nonlinear effects would become more important. However, we have verified by run-
ning the appropriate cases that the general scenario of the system evolution remains similar.
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Figure 16 Total velocity in
km s−1 (color scale and vectors)
for a1 = 1.6 at time
t = 6000 seconds.

4. Summary

We adopted the analytical methods of Solov’ev (2010) to derive Pikelner’s model (Pikel-
ner, 1971) of a normal-polarity solar prominence. We implemented our analytical model in
the publicly available FLASH code (Lee and Deane, 2009) and demonstrated the feasibility
of fluid simulations in obtaining quantitative features in weakly magnetized and gravita-
tionally stratified prominence plasma. In particular, we focused on the perturbation of the
developed normal-polarity prominence model and its subsequent evolution. This perturba-
tion was triggered by launching the initial pulse in gas pressure, which excited fast and
slow magnetoacoustic–gravity waves. Fast waves were present at the initial stage of the
prominence evolution, while slow waves developed later on. They led to an accumulation
of plasma at the launching place, which corresponds to location of the magnetic dip. The
parametric studies that we performed revealed that this accumulation varies with the depth
of the dip; for a shallower dip there is less accumulated plasma and smaller oscillations at
the magnetic dip.

These large-amplitude oscillations consist of motions with observed velocities greater
than 20 km s−1 (Arregui, Oliver, and Ballester, 2012), which is also evident in our model
results. Large-amplitude longitudinal oscillations can be excited by impulsive events, e.g.
microflares that are due to impulsive heating (e.g. Zhang et al., 2012). In our model we
therefore considered the gas-pressure perturbation as a physical initial trigger mechanism of
the oscillations that excite longitudinal fast and slow magnetoacoustic–gravity waves.

Our new analytical prominence model with realistic temperature distribution shows a
reasonable physical behavior of the typical slow acoustic oscillations in these quiescent
prominences, which also matches the numerical results of Terradas et al. (2013). However,
it should be noted that Terradas et al. (2013) considered magnetostatic (MHS) equilibrium
and linear MHD normal-mode analysis, while our model is based on nonlinear full MHD
equations. The general damping mechanism most likely is radiative cooling, as invoked by
many analytical and numerical investigations (e.g. Terradas, Oliver, and Ballester, 2001;
Terradas et al., 2013), which is related to the slow acoustic oscillations of the quiescent
prominences. The fast dissipation of large-amplitude prominence oscillations is clearly evi-
dent in the observational data (e.g. Terradas et al., 2002; Arregui, Oliver, and Ballester, 2012,
and references cited therein). In the present case, we specifically found and quantified that
the wave-leakage process is the dissipative agent for the antisymmetric magnetoacoustic–
gravity oscillations in Pikelner’s model prominence. Since in our model we did not invoke
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any non-adiabatic thermodynamical effects, e.g. radiative cooling, for the dissipation of such
oscillations, even then the wave-leakage is a very effective mechanism for the dissipation
of asymmetric oscillations. The relative significance of various dissipative agents on the
magnetoacoustic–gravity mode oscillations, e.g. wave-leakage, radiative cooling, etc. is an
important task that we will study in a future project.

In conclusion, we have tested our new analytical prominence model numerically and
excited the slow magnetoacoustic–gravity oscillations along its magnetic dip by perturbing a
gas pressure within the prominence. Our model will be further used in a more detailed study
of prominence dynamics and to constrain its oscillations to exploit prominence seismology
with the aim to deduce local plasma conditions.
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