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Abstract

Background: Detection of low abundance metabolites is important for de novo mapping of metabolic pathways
related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features
from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of
low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to
enhance such algorithms for feature detection, quality assessment, and annotation.

Results: xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be
classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction
with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2)
evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize
high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical
databases. The package was tested with plasma samples and shown to more than double the number of features
extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that
were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real
metabolites.

Conclusions: xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of
overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was
designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to
enhance data extraction for other LC/MS data software.
Background
Liquid chromatography coupled with mass spectroscopy
(LC/MS) is rapidly evolving as a method of choice for
chemical phenotyping of biological systems. Targeted, non-
targeted and hybrid methods provide effective means to
detect and quantify a broad range of small molecules,
including amino acids, lipids, sugars, drugs and environ-
mental chemicals, in cells, tissues, or biofluids. Applications
include metabolite profiling of tumor samples [1], identi-
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reproduction in any medium, provided the or
fying disease biomarkers [2], and studying complex bio-
logical networks [3].
High-resolution metabolomics uses high-resolution

mass spectrometry to detect thousands of chemicals,
both known and unidentified, as ions with high mass
accuracy m/z and defined chromatographic retention
time. The approach is flexible in that it allows fragmen-
tation of selected ions for identification and stable iso-
tope dilution for quantification of specific targets [4].
LC/MS methods are inherently limited by reproduci-

bility of LC and MS, and numerous approaches have
been used to improve both qualitative and quantitative
reproducibility [5-8]. Lange et al. [8] reported that
XCMS [9] performs better or comparable to other LC/
MS alignment tools such as msInspect [10], MZmine
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[11,12], OpenMS [13,14], SpecArray [15], and XAlign
[16] for the analysis of metabolomics data. XCMS [9] is
a widely used R package for LC/MS data analysis, which
incorporates novel nonlinear retention time alignment,
matched filtration, peak detection, and peak matching.
XCMS uses a second derivative Gaussian filter for fea-
ture detection and noise removal, and uses a feature-
matching algorithm that performs binning of features
by mass followed by use of a kernel density estimator to
resolve groups of peaks with different retention time. A
nonlinear retention time deviation profile is calculated
for each sample using the dynamically identified en-
dogenous metabolites as standards.
An adaptive processing method, apLCMS, was recently

developed which contains a set of algorithms that
improved processing of high-resolution LC/MS data
[17]. Technical improvements included adaptive toler-
ance level searching rather than hard cutoff or binning,
use of non-parametric methods to fine-tune intensity
grouping, use of run filter to better preserve weak sig-
nals and use of model-based estimation of feature inten-
sities for absolute quantification. The method involves 5
major processing steps: 1) noise filter, 2) feature identifi-
cation, 3) retention time correction, 4) m/z feature align-
ment across multiple spectra, and 5) re-analysis to
capture features originally missed because of weak signal
relative to the signal to noise filter.
In the present study, we present xMSanalyzer, an R

package with utilities for improving peak detection using
existing methods such as apLCMS and XCMS, analyzing
quality of metabolite data, finding overlapping and
unique set of metabolites in two or more datasets, and
annotating batches of metabolites in terms of matches to
known compounds and pathways in databases such as
Metlin, KEGG, HMDB, LipidMAPs, and PubChem. The
results demonstrate that a data merger and quality filter
scheme using systematic variation of parameter settings
for peak detection allows detection of more features,
thereby improving both the sensitivity and reliability of
feature detection.
We examined the effect of varying parameter settings

on data extraction using apLCMS as a basis for testing.
The apLCMS routine has user-input parameters for the
number of points to define a feature and the frequency
of occurrence of a feature among consecutive scans.
Because the scanning interval with Fourier-transform
mass spectrometers is relatively constant, the optimal
number of points to define a peak can change over the
course of an LC run. xMSanalyzer varies the number of
points and selects the most reproducible number to best
define each peak. The results show that an increased
number of metabolic features can be obtained by using
an optimized feature detection routine, xMSanalyzer,
while improving quantitative reproducibility. In addition,
feature identification criteria for dietary and environmental
chemicals, which may be present in only a small fraction
of samples, are likely to differ from criteria used to ex-
tract information on higher abundance chemicals found
in most samples [18]. xMSanalyzer can extract features
present both in low abundance and in only a fraction of
samples. The package has been developed to facilitate
data analysis, comparison, and annotation of metabolo-
mics data. To make it accessible with multiple softwares,
we have developed xMSanalyzer to work with either
apLCMS or XCMS.
Implementation
Program description
xMSanalyzer utilities can be classified into four main
modules: 1) feature detection module to increase the
number of quantitatively reproducible features by pro-
cessing samples at two or more parameter settings, mer-
ging the resulting data, and selecting data based upon
feature consistency, 2) sample quality module to sup-
port quality control analysis, 3) feature overlap module
to detect overlap among multiple datasets or software
packages and visualize the extent of overlaps, and 4)
batch annotation module to facilitate annotation of
metabolites.
Software distribution and input requirements
xMSanalyzer is available for download at:
http://userwww.service.emory.edu/~kuppal2/xMSanalyzer/.

The program depends on xcms (Bioconductor) or apLCMS
(www.sph.emory.edu/apLCMS), XML (CRAN), R2HTML
(CRAN), snow (CRAN) and limma (Bioconductor).
Algorithm implementation
apLCMS.align: sample processing using apLCMS at one or
more set of parameters
This utility in xMSanalyzer calls the cdf.to.ftr() function
in the apLCMS package [17] and performs serial sample
processing at multiple combinations of two parameters:
min.run (minimum length of elution time for a series of
signals grouped by m/z to be considered a feature; de-
fault value: 3) and min.pres (minimum proportion of
scans in which the signal was present; default values: 0.3,
0.8). The function allows the user to define parameters
such as min.exp (minimum number of samples in which
a feature is present). This differs from the original
apLCMS in that the original only allows one set of para-
meters, whereas this function allows multiple sets. The
resulting tables containing m/z, retention time, and peak
intensities in each sample are stored at each parameter
combination.

http://userwww.service.emory.edu/~kuppal2/xMSanalyzer/
http://www.sph.emory.edu/apLCMS
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XCMS.align: sample processing using XCMS at one or more
set of parameters
The XCMS.align function in xMSanalyzer is a wrapper
function based on the xcms Bioconductor package for
preprocessing/analysis of mass spectral data. The XCMS.
align utility performs serial sample processing at multiple
combinations of four parameters: step (the step size;
default values: 0.001, 0.01, 0.1), mzdiff (minimum differ-
ence for features with retention time overlap; default
values: 0.001, 0.01, 0.1), snthresh (signal-to-noise ratio
cutoff; default values: 3, 6, 10), and max (maximum
number of peaks per EIC; default values: 5, 10). The
resulting tables containing m/z, retention time, and peak
intensities in each sample are stored at each parameter
combination.

Evaluate.Samples: evaluating sample reproducibility
If at least two analytical replicates are present for each bio-
logical sample, this function calculates the mean pairwise
Pearson correlation coefficient between sample replicates
using the built-in cor() function in R. Only the features
with no missing values are used to evaluate correlation.
Analytical “replicates” refer to multiple injections from the
same biological sample; whereas, “samples” refer to differ-
ent biological samples.

Evaluate.Features: evaluating quantitative feature
reproducibility across sample replicates
This utility uses the built-in summary() function in R to
calculate the summary statistics of the Percent Intensity
Difference (PID; two analytical replicates) or coefficient of
variation (CV; more than two analytical replicates) as a
statistical measure to evaluate feature consistency. PID is
defined as percent ratio of absolute intensity difference to
mean intensity, and coefficient of variation is defined as
the ratio of the standard deviation to mean intensity. Only
the samples with no missing values are used to evaluate
PID if number of replicates is equal to two.

Merge.Results: merging features detected at multiple input
parameter settings
We use a four-step process to merge features from different
parameter settings. In step one, features detected at settings
P1 and P2 are combined into one list. In step two, features
are grouped by a user-defined m/z tolerance (5 ppm is
appropriate for high resolution MS but may not be suitable
for lower resolution instruments; for the LTQ-FT/MS,
examination of m/z tolerance shows little difference be-
tween 5 and 10 ppm) (Additional File 1). In step three, fea-
tures are further sub-grouped based on a user-defined
retention time tolerance. Users are recommended to use
the find.Overlapping.mzs function below to optimize the
retention time tolerance threshold. In step four, a paired
t-test is used to compare the intensity levels of the
metabolites only for the redundant features that have m/z
and retention time within defined tolerance levels as
described above. Users should note that there is no default
correction for multiple comparisons as the t-statistic is user
defined. Features with minimum median PID (or median
CV; for more than two technical replicates) are chosen as
representatives of each sub-group, and added to the final
list. This scheme allows identification of unique features,
and selection of the most consistent feature as a representa-
tive for features that overlap.

Find.Overlapping.mzs: m/z-based feature matching across
multiple datasets
The find.Overlapping.mzs function operates on two sets of
feature lists with m/z and retention times for each feature,
denoted by L1 and L2, and iterates over all m/z values in
L1 to find those that are within a user defined m/z (ppm)
and retention time (sec) threshold in L2. Optionally, the
user can match features based on only the m/z values by
setting time.thresh =NA. The find.Unique.mzs function
uses a similar algorithm to find unique features that are
not within a user defined mass and retention time thresh-
old level.

GetVenn: visualize feature matching results
This utility calls the find.Overlapping.mzs and find.Unique.
mzs functions and generates a Venn diagram showing the
extent of overlap between datasets (up to three).

check.mz.in.replicates: Metabolic characteristics of
individuals
This utility allows identification of rare features that are
present in only some biological samples, but are present in
majority of the analytical replicates of individual samples as
a result of unique environmental exposure. The min.samps
and min.reps are user defined values for defining the mini-
mum number of samples and minimum percentage of
replicates in which a feature should be detected.

Feat.Batch.Annotation: characterization of metabolites
This utility uses the readHTMLTable() function in the
XML package in R to parse the list of compounds and
pathways IDs from METLIN and KEGG REST interface
available at: http://metlin.scripps.edu/metabo_list.php
and http://www.kegg.jp/kegg/rest/keggapi.html, respect-
ively. The output is generated as an HTML report and a
text file that includes pathway and compound annotations
with links to external databases such as Metlin, KEGG
Compound, KEGG Pathway, PubChem Compound, Pub-
Chem Substance, HMDB, ChEBI, CAS, and LipidMAPS.
The function takes as input a data frame with a list of in-
put m/z, a user-defined m/z threshold (ppm) to define the
minimum and maximum mass range, list of adducts; eg: c
(“M+H”, “M+H-H2O”), and the output folder location.

http://metlin.scripps.edu/metabo_list.php
http://www.kegg.jp/kegg/rest/keggapi.html
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A sample annotation report is available at the software
homepage: http//userwww.service.emory.edu/~kuppal2/
xMSanalyzer/SampleAnnotation.html.

xMSwrapper
The wrapper function includes five steps as shown in
Figure 1 in which data are extracted with different para-
meters to maximize feature detection, evaluated for sample
quality, evaluated for feature consistency, merged to obtain
a combined feature table, and characterized with known
metabolites and pathways. Users have the option to filter
poor quality samples and features based on correlation
between technical replicates and feature reproducibility
measures such as PID or CV, respectively.

Results and discussion
To illustrate the applications of xMSanalyzer, metabolo-
mics data were derived from two samples sets of human
plasma. Sample Set 1 consisted of 22 samples taken from
a dietary restriction study [19]. Sample Set 2 was human
reference samples from two sources; one reference sample
was donated from the National Institute of Standards and
Technology (NIST). The second reference sample con-
sisted of pooled plasma from Equitech-Bio, Inc (Kerrville,
TX). Detailed procedure for sample extraction and meta-
bolomics analysis is described in a recent technical manu-
script [20]. For Sample Set 1, analyses were performed
alternately between two anion exchange (AE) columns
(column A and B) to compare characteristics on two
columns [21]. For Sample Set 2, analyses were performed
alternately using AE and reverse phase (C18) columns
[20]. Mass spectral data were collected with a Thermo
Figure 1 xMSwrapper workflow.
LTQ-FT mass spectrometer (Thermo Fisher, San Diego,
CA) set to collect data from m/z 85 to 850 as described
[21] with mass resolution of 50,000. Data were stored as
.raw files and converted using Xcalibur file converter soft-
ware (Thermo Fisher, San Diego, CA) to .cdf files for
further data processing.
The software was developed in three stages. First, the

methodology was designed and tested using apLCMS.
Second, the software was written to be used in conjunc-
tion with apLCMS. Lastly, the software was adapted to be
integrated with XCMS.

Quantitative evaluation
There are various sources of variability such as bio-
logical, sample processing and instrumental that can
affect the quality of alignment of LC/MS profiles. Iden-
tification of technical variation within sample replicates
is critical to minimize false positives as this could influ-
ence the downstream analysis of biological variations
between different samples, which is of main interest.
Pairwise Pearson correlations of feature intensities can
be used as a metric for assessing process variability and
estimate the overall difference in feature intensities
between aligned replicates [6]. xMSanalyzer uses the
functions evaluate.Samples and evaluate.Features to
calculate the mean pairwise Pearson correlation coeffi-
cient between sample replicates, as shown in Figure 2.
The higher correlation of feature intensities between sam-
ple replicates of Sample Set 1 indicates good sample qual-
ity and less technical variation within same experiment.
However, low correlation between replicates in Sample Set
2 indicates a potential technical variability or poor sample
quality. The effect of realigning profiles after removing
poor quality samples (correlation coefficient, R2 < 0.7) on
the quantitative reproducibility of features is shown in the
bottom right panel of Figure 2. A noticeable difference in
median PID can be seen between alignment using all sam-
ples and alignment using only high quality samples for
both columns of Sample Set 2. The samp.filt.thresh and
feat.filt.thresh parameters in xMSanalyzer allow the users
to define thresholds to retain only high quality samples
and features for downstream analysis.

Parameter sensitivity analysis
Sensitivity analysis was performed to identify the para-
meters that affect the number of features detected and the
quantitative reproducibility when requiring a feature to be
present in at least 50% of the LC/MS profiles. Sensitivity
analysis is the assessment of the relationship between the
input parameters and the output [7]. The qualitative or
quantitative effect of systematic variation of parameter Xi

on output Y is studied while all other parameters are fixed.
For apLCMS, we focus on the evaluation of four para-
meters that are used in the feature detection process for

http://userwww.service.emory.edu/~kuppal2/xMSanalyzer/SampleAnnotation.html
http://userwww.service.emory.edu/~kuppal2/xMSanalyzer/SampleAnnotation.html


Figure 2 Quantitative evaluation of LC/MS profile alignment using apLCMS. Top row shows Pearson correlation within sample duplicates in
both datasets; bottom row shows the median PID of feature intensities within sample duplicates. The effect of re-aligning profiles after removing
poor quality samples (correlation coefficient, R2 < 0.7) on the quantitative reproducibility of features is shown in the bottom right panel. A
noticeable difference in median PID can be seen between alignment using all samples and alignment using only high quality samples for both
columns of Sample Set 2.
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grouping of data points based on m/z (max.bw and
min.bw) or noise removal (min.run and min.pres): min.run
(minimum length of elution time for a series of signals
grouped by m/z to be considered a feature), min.pres (mini-
mum proportion of scans in which the signal was present),
min.bw (minimum bandwidth of kernel smoother fitted
along time axis to determine whether there is one single
feature or multiple features), and max.bw (maximum band-
width of kernel smoother fitted along time axis to deter-
mine whether there is one single feature or multiple
features). The number of identified features and the median
PID (from sample duplicates) were used as sensitivity mea-
sures and are compared below.

Feature detection optimization
Some metabolites have narrow elution peaks, while others
have broader peaks. The accuracy of peak integration is
dependent on the parameters used to define the peaks.
The tradeoff between feature detection sensitivity and reli-
ability could be balanced by merging unique features
detected at individual parameter settings and selecting
more reproducible features from the overlapping ones,
respectively. The results in Table 1 suggest that the merge
algorithm implemented in xMSanalyzer increases sensitiv-
ity of feature detection (Features; 2nd column) without
compromising for the reliability (mPID; 3rd column) of
the features. To do this, xMSanalyzer uses the function
merge.Results, which is a four-step process to merge
features detected at settings P1 and P2, where P1 = P[min.
run (x1), min.pres (y1)] and P2 = P[min.run (x2), min.pres
(y2)] , as described in the Implementation section. The
selection of optimal P1 and P2 are described in the follow-
ing sections.

Increased leniency in feature detection within a sample
by decreasing min.run
Using the default settings as a control condition (min.run =
12; min.pres = 0.5), we used Sample Set 1 to test whether
more lenient min.run, varied from 25 to 20, 15, 12, 9, 6,
and 3, increased the number of features detected by



Table 1 Evaluating fitness of parameter combinations based on parameter sensitivity analysis

Parametera Features mPIDb Sc = N-(30*mPID) Sd = N-(100*mPID)

12, 0.5 1454 33.12 460.4 −1858

3,0.3 2350 39.75 1157.5 −1625

3,0.5 1940 34.72 898.4 −1532

3,0.8 1653 30.60 735 −1407

3,0.3 υ 3,0.5 2363 36.16 1278.2 −1253

3,0.3 υ 3,0.8 2384 35.69 1313.3 −1185

3,0.5 υ 3,0.8 2022 32.22 1055.4 −1200

3,0.3 υ 12,0.5 2310 36.59 1214.4 −1342

3,0.5 υ 12,0.5 2037 33.40 1035 −1303

3,0.8 υ 12,0.5 1816 30.37 904.9 −1221

Data was taken from Column A of Sample Set 1. aOnly a subset of the results is shown in the table. bMedian PID (mPID) averaged over all features. cScoring
function weighs more importance to number of features; dScoring function weighs more importance to quality of features.
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apLCMS at min.exp = 50%, i.e., a feature is included if
present in at least 50% of the profiles. The results
(Figure 3a) showed that the default setting (feature detected
in 50% of 24 scans) detected 1454 features with a median
PID of 33.12%. Decreasing stringency in min.run resulted
in a progressive increase in the number of features
(Figure 3a and Additional File 2). Comparison of the fea-
tures detected with different parameters using the xMSana-
lyzer function find.Overlapping.mzs showed that each
analysis identified a set of features that overlapped with
those of the default settings (Additional File 3) with small
change in median PID from duplicates (Figure 3b). The
Figure 3 Variation in stringency for feature detection in sample analy
(panel a); min.pres was varied from 0.3, 0.5, 0.8 (panel b); and m/z were ma
c) and Metlin database (panel d) for Column A from Sample Set 1 at 5 and
here.
finding that the PID between analyses did not increase by a
large extent as stringency in min.run was decreased indi-
cates that in this high-throughput operation, narrower
peaks were detected with reproducibility similar to broader
peaks. This is important because it suggests that the criter-
ion for 25 points to define a chromatographic peak may be
excessively stringent for high throughput analyses.

Effect of variation in min.pres on detection and PID of
features
To determine whether decreased stringency in min.pres
would similarly improve detection, we compared results
ses. Using apLCMS, min.run was varied from 25, 20, 15, 12, 9, 6, 3
tched to Madison Metabolomics Consortium Database (MMCD) (panel
10 ppm mass tolerance. Results at 10 ppm tolerance level are shown
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obtained with min.pres varied from 0.8 to 0.5 and 0.3
(Figure 3a and Additional File 2). As compared to the
default setting, additional features were detected at less
stringent setting (min.pres = 0.3; feature detected in 30%
of 24 scans, Figure 3a), while the consistency of the fea-
tures decreased (Figure 3b). Increasing the threshold of
minimum proportion of signal presence in a segment to
consider it as a feature (min.pres = 0.8; feature detected in
80% of 24 scans, Figure 3a) led to decline in the number
of features detected, but there was a notable improvement
in PID indicating that higher min.pres improved quantita-
tive reliability of detection (Figure 3b). A similar pattern
was observed at all min.run variations.

Effect of variation in kernel smoother bandwidth on
feature detection
The min.bw parameter was varied from 1 to 5, 30, and
NA (estimated from data), and max.bw was varied from
30 to 60, and NA (estimated from data) at default setting
(feature detected in 50% of 24 scans), but as shown in
Additional File 4, no effect on the number of features
detected was observed.
The results show that the min.pres and min.run para-

meters used in the feature detection step of apLCMS have
a significant effect on sensitivity of feature detection and
quantitative reproducibility of the features. The results in
Figure 3 indicate that increase in number of features
detected by relaxing these parameters reduces the
consistency of the features to some extent. The features
detected at each parameter setting were searched against
databases of known metabolites such as Madison Metabo-
lomics Consortium Database (MMCD; http://mmcd.
nmrfam.wisc.edu/) [22] and Metlin Metabolite Database
(http://metlin.scripps.edu/) [23] at 5 and 10-ppm mass
tolerance levels. As compared to the default setting, add-
itional matches to known metabolites were obtained using
the less stringent settings suggesting that the low abun-
dance peaks that were detected are possibly real chemicals
(Figure 3c, d; results at 10 ppm). Comparable pattern was
observed at 5 ppm mass tolerance (not shown).

Identification of optimal pair of parameter settings using
parameter optimization
An optimal pair of parameter settings was determined
such that merging the results from the two settings, P1 υ
P2, using the merge.Results function of xMSanalyzer
resulted in identification of maximum number of fea-
tures with minimum overall PID between duplicates. To
do this, a scoring function (1) was designed to evaluate
the performance of each setting based on the number of
features detected and the quantitative reproducibility of
the features (i.e., PID). The optimization algorithm
searches over a defined set of individual and paired par-
ameter settings, and selects the combination, P1 υ P2,
that maximizes the scoring function.

argmaxN � w �medianPID ð1Þ

P x1; y1ð ÞυP x2; y2ð Þ

such that,

x1; x2 ε 3; 6; 9; 12; 15; 20; 25f g;
y1; y2 ε 0:3; 0:5; 0:8f g;
w ε 30; 100f g

where
x1,x2: search space for min.run parameter,
y1,y2: search space for min.pres parameter,
P(x1,y1) : feature alignment results at min.run = x1, and

min.pres = y1,
P(x2,y2) : feature alignment results at min.run = x2, and

min.pres = y2,
N: number of aligned features after merge,
w: weighting parameter (arbitrary constant),
median PID: median % Intensity Difference averaged

over all features
The weighting parameter, w, in the scoring function

balances the importance between the quantity and qual-
ity of features such that a higher score is assigned to set-
tings that satisfy the criteria of higher number of
features and lower variability in the intensity levels
between sample duplicates. Running the apLCMS algo-
rithm multiple times linearly increased the computation
time while the number of features detected reached a
saturation point following the union of the two param-
eter settings, P1 and P2 (Additional File 5).
Each parameter set (e.g. 3,0.5) and the union of two par-

ameter sets (e.g. 3,0.3 υ 3,0.5) were evaluated using the
scoring function described above that accounts for the
number of features (Table 1, column 4) and the quality of
features (Table 1, column 5) for sensitivity analysis. The
analysis was performed on both datasets, and {3,0.3 υ
3,0.8} provided the largest number of features without
compromising quantitative reproducibility in all cases
(Table 1 and Additional File 6). Users can use a similar ap-
proach to determine optimal parameter settings for their
datasets either by using the scoring method presented
here, or by taking into account additional criteria such as
number of internal standards detected.

xMSanalyzer
Based upon these analyses, an optimized data extraction
routine, xMSanalyzer, was developed with code provided
in R in Additional File 7. The performance of xMSanaly-
zer was evaluated on all datasets with respect to apLCMS,
and significant improvement in the number of quantitative
reproducible features was observed as shown in Figure 4a.
Additionally, xMSanalyzer improved the sensitivity of

http://mmcd.nmrfam.wisc.edu/
http://mmcd.nmrfam.wisc.edu/
http://metlin.scripps.edu/
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feature detection by capturing more low abundance fea-
tures (Figure 4b).
The xMSanalyzer routine is designed to allow the users

to define which parameter settings should be merged
according to desired priorities for feature extraction versus
reliability, or both. The default setting of {3,0.3 υ 3,0.8}
gives higher precedence to the number of features; how-
ever, the users can select other options such as {3,0.5 υ
3,0.8} or {12,0.5 υ 3,0.8} that give importance to quality as
well. The effect of input parameters on the performance
of xMSanalyzer is illustrated in Table 2. On average,
Figure 4 xMSanalyzer improves the sensitivity of feature detection w
of peaks with ranges of percent intensity differences (PID) for LC/MS profile
show that the xMSanalyzer routine allows detection of more quantitatively
intensity levels in features with median PID less than 30% detected using a
xMSanalyzer not only improves the overall quantitative reproducibility of fe
xMSanalyzer identified 410 (73.2%) and 319 (57%) more
quantitatively reproducible features (median PID <30%) at
{3,0.3 υ 3,0.8} and {12,0.5 υ 3,0.8}, respectively. However,
the overall data quality was better at {12,0.5 υ 3,0.8}.

Comparison of xMSanalyzer with apLCMS and XCMS
The performance of using xMSanalyzer in conjunction
with apLCMS was compared to XCMS [9] and apLCMS
[17]. The feature alignment of both sample sets used in
our study was performed at all combinations of the
parameters in XCMS, and the results of the best
ithout compromising data quality. a) Histograms showing number
alignments using apLCMS (left) and xMSanalyzer (right). The results
reproducible features; b) Histograms showing the average log2
pLCMS (left) and xMSanalyzer (right) in Sample Set 2, Column A.
atures, but also allows detection of reliable low abundance features.



Table 2 Comparison of the number of quantitative reproducible features between apLCMS and xMSanalyzer

Datasets apLCMS xMSanalyzer xMSanalyzer

P{12,0.5}: default P1{3,0.3} υ P2{3,0.8} P1{12,0.5} υ P2{3,0.8}

Sample Set 1 (Column A) 839 out of1454 (57.7%) 1208 out of 2384 (50.6%) 1115 out of 1816 (61.3%)

Sample Set 1 (Column B) 791 out of1238 (63.89%) 1236 out of 2201 (56.1%) 1081 out of 1615 (66.9%)

Sample Set 2 (Column A) 134 out of1324 (10.1%) 470 out of 2677 (17.5%) 424 out of 2256 (18.7%)

Sample Set 2 (Column B) 474 out of1573 (30.1%) 966 out of 2969 (32.5%) 897 out of 2546 (35.2%)

Average over all datasets 560 (40%) 970 (37.9%) 879 (42.7%)

The number of reproducible features (median PID < 30%) identified by apLCMS at min.run = 12 and min.pres = 0.5 and xMSanalyzer at P1{3,0.3} υ P2{3,0.8} that
weighs more importance to the number of features as compared to quality, and at P1{12,0.5} υ P2{3,0.8} that gives balanced importance to the quality and
quantity of features.
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parameter settings were used for comparison. Settings
for all three algorithms, apLCMS, xMSanalyzer, and
XCMS, required the features to be detected in at least
50% of the profiles. The apLCMS routine was compared
using default settings (min.pres = 0.5, min.run = 12) and
provided more features than XCMS by an average of
19.3% (Table 3). The apLCMS routine is designed for
high-resolution mass spectrometers, so accurate m/z
may be more clearly separated from noise than in
XCMS. This would provide superior capture of weak
peaks. xMSanalyzer, which combined variations in the
parameter settings, increased the average number of fea-
tures detected in two different sample sets compared to
apLCMS and XCMS, by 83.1% and 118%, respectively.
An example of three features recognized by xMSanaly-
zer, but missed by both apLCMS and XCMS, is shown
in Additional File 8.
To give a reference to the number of m/z that produce

potential matches to known metabolites, all m/z identified
by each routine were searched against the [M+H] +
Table 3 Comparison of the number of features detected (tota

Datasets apLCMS xMSanalyzer

{default} {3,0.3} υ {3,0.

Sample Set 1 (Column A) 1454 2384

MMCD: 314 (21.6%) MMCD: 534 (2

Metlin: 292 (20.1%) Metlin: 433 (1

Sample Set 1 (Column B) 1238 2201

MMCD: 309 (25%) MMCD: 557 (2

Metlin: 279 (22.5%) Metlin: 468 (2

Sample Set 2 (Column A) 1324 2677

MMCD: 408 (30.8%) MMCD: 732 (2

Metlin: 497 (37.5%) Metlin: 705 (2

Sample Set 2 (Column B) 1573 2969

MMCD: 508 (32.3%) MMCD: 794 (2

Metlin: 693 (44.1%) Metlin: 848 (2

Average over all datasets Total: 1397 Total: 2558

Known metabolites: 413 (29.6%) Known metab
adducts of the known metabolites using MMCD and
Metlin at 5 and 10-ppm mass tolerance level. As previ-
ously stated, comparable results were obtained at the two
mass tolerance levels. The results show that both data-
bases retrieved comparable numbers of matches for m/z
detected by each routine (Table 3). The xMSanalyzer algo-
rithm obtained a higher number of matches than both
apLCMS and XCMS for both sample sets; 634 using
xMSanalyzer compared to 413 using apLCMS and 324
using XCMS. However, the apLCMS routine found the
highest average percentage of matches (29.6%) compared
to xMSanalyzer (24.78%) and XCMS (27.7%). When
xMSanalyzer was run in conjunction with XCMS, the
average number of features detected over all datasets
increased from 1171 (XCMS alone; Table 3) to 1771
(XCMS with xMSanalyzer; data not shown).
Using similar search criteria, we annotated a list of 20

randomly generated features within 85–850 m/z range
using Metlin. The process was repeated six times, and
on an average, 12.5% of the features found hits in the
l and known) using apLCMS, xMSanalyzer, and XCMS

-apLCMS XCMS v1.20.1

8} {step = 0.001, snthresh = 3, max = 5, mzdiff = 0.1}

1027

2.3%) MMCD: 222 (21.6%)

8.1%) Metlin: 230 (22.4%)

998

5.3%) MMCD: 261 (26.1%)

1.2%) Metlin: 252 (25.2%)

1262

7.3%) MMCD: 324 (25.7%)

6.3%) Metlin: 431 (34.2%)

1395

6.7%) MMCD: 359 (25.7%)

8.5%) Metlin: 514 (36.8%)

Total: 1171

olites: 634 (24.8%) Known metabolites: 324 (27.7%)



Table 4 xMSanalyzer doubles the number of features
detected in human patient population

Parameter AE column C18 column

12,0.5 (default) 6538 4337

MMCD: 2412 MMCD: 1556

3,0.3 14004 10729

MMCD: 4206 MMCD:2795

3,0.8 10837 8069

MMCD: 3624 MMCD:2367

3,0.3 υ 3,0.8 15955 9396

(xMSanalyzer) MMCD: 5579 MMCD: 2819

Dialysis patients are highly susceptible to environmental chemicals due to
repeated exposures to pharmaceuticals, water, and plastics during dialysis
sessions. A dataset from 10 plasma samples collected in dialysis patients, each
with 2 analytical replicates, were analyzed by xMSanalyzer (at min.exp = 2) and
resulted in a >2-fold increase in feature detection (from 6538 to 15955
features on the AE column), in which most m/z are unmatched in the
metabolomics database MMCD.
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Metlin database. This suggests that true identity of
metabolites cannot be established by database searches
as previously reported [24]; however, the results in
Figure 4 and Table 3 suggest that xMSanalyzer allows
detection of an increased number of metabolites (known
and unknown) that can then be targeted for experimen-
tal validation.

Experimental validation
To test if xMSanalyzer was improving feature extraction
by generation of false positives, a list of features was ran-
domly selected from those features that were detected
exclusively by xMSanalyzer and not by XCMS or apLCMS
in Sample Set 2. From these, we arbitrarily selected 17 fea-
tures that had MS/MS spectra available in the Metlin
database (Additional File 9) and used these for MS/MS on
an LTQ-Velos Orbitrap (Thermo Scientific, San Jose, CA,
USA) at isolation width of 1 a.m.u for ion trap and 2 a.m.u
for Orbitrap. Normalized collision energy of 40% in
collisional-induced dissociation (CID) with 10 ms activa-
tion time was used to acquire MS/MS spectra. A cycle of
one full scan followed by 2 CID MS/MS scans was
acquired for targeted ions and repeated continuously
through each elution time ±60 s for each feature. All 17
features were identified by chromatographic peaks within
60 s of the predicted elution time (Additional Files 9, 10
and 11). Of the 17 features, 14 eluted as single peaks, two
(m/z 340.1607 and m/z 389.2494) appeared as multiple
peaks, and one (m/z 337.235) eluted across a wide range
of time that was consistent with one of the solvents used
for the chromatography (Additional File 11). Similar frag-
mentation patterns were obtained from MS/MS experi-
ments from the ion trap and Orbitrap indicating that the
peaks were not electronic background noises.
Comparison of MS/MS spectra to those in the Metlin

database was consistent with identity of three features as
putative metabolites in the Metlin database (Additional
File 10). For further confirmation, we used DeconMSn
v2.2.2.2 [25], which deisotopes the precursor ion isotopic
profiles to determine monoisotopic masses of parent ions,
and produces. DTA text files of the fragment ion spectra.
11 out of 17 features (including the features with matches
in Metlin MS/MS database) were identified as putative
precursor ions (Additional Files 10 and 11). Although one
caveat of using this approach is that some parent ions
could have overlapping elution profiles with other ions
present in the isolation width resulting in deconvolution
ambiguity. Interestingly, 10 out of the 11 putative metabo-
lites had first quartile PID less than 30% (Additional File
9) suggesting that the PID or CV measures can be used
for eliminating false positives.
To further test the utility of xMSanalyzer for detection of

low-level chemicals, we analyzed samples from a popula-
tion of dialysis patients who are more likely to be exposed
to environmental agents through pharmaceuticals, water,
and plastics than a healthy population. Analysis of 10 bio-
logical samples, each with two analytical replicates, using
apLCMS at min.exp = 2 samples resulted in detected of
over 15,900 features and 9,300 features on the AE and C18
columns, respectively (Table 4). This result more than
doubled the number of features detected by apLCMS at the
default settings, and two-thirds of the m/z detected did not
match to metabolites in the MMCD database.
Accurate identification of metabolites remains a chal-

lenge in metabolomics; however, incorporation of reliable
low abundance and variable peaks (which would have
been missed otherwise) should assist in the discovery of
new metabolites and identification of parent compounds.
xMSanalyzer broadens the range of feature detection and
therefore may facilitate detection and future identifica-
tion of currently unidentified but important chemicals,
such as low-level environmental chemicals and products
of enteric flora.

Conclusions
Most LC/MS data extraction programs are designed to
identify peaks in a conservative manner, which tends to
preclude detection of low abundance chemicals and che-
micals found in small subsets of samples. xMSanalyzer
comprises a package of utilities for metabolomics data that
can be integrated with existing packages such as apLCMS
and XCMS to improve detection of low abundance and
variable peaks from high resolution metabolomics data,
assess feature and sample quality within technical repli-
cates, compare two or more datasets, and perform batch
annotation of metabolites with known chemicals and bio-
logical pathways. The optimization algorithm compares
favorably to the stand-alone versions of apLCMS and
XCMS by increasing the number of quantitatively
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reproducible features. Application of optimization rou-
tines like xMSanalyzer to high resolution metabolomics
data will likely enhance metabolomics databases by allow-
ing inclusion of m/z currently unidentified, such as dietary
and environmental chemicals.

Availability and requirements
Project name: xMSanalyzer
Project home page: http://userwww.service.emory.edu/
~kuppal2/xMSanalyzer/
Operating system(s): Platform independent
Programming language: R
Other requirements: apLCMS or xcms, XML,
R2HTML, limma, snow (R packages)
License: GNU GPLv2
Any restrictions to use by non-academics: none

Additional files

Additional file 1: xMSanalyzer results at different +/− m/z tolerance
levels (ppm) for merging features identified at {3,0.3} and {3,0.8}
(Sample Set 1, 44 samples, min.exp = 50%).

Additional file 2: Feature detection using apLCMS while varying
min.run and min.pres in a) Sample Set 1 Column B; b) Sample Set 2
AE Column; and c) Sample Set 2 C18 Column.

Additional file 3: Venn Diagrams representing overlapping features
between the default setting and variations in min.run at min.pres =
0.3. Only unique features at m/z tolerance level of 10 ppm were used
to generate Venn diagrams using BioVenn (http://www.cmbi.ru.nl/
cdd/biovenn/).

Additional file 4: Effect of variation in min.bw and max.bw on
feature detection at default settings using a random subset of 10
samples from the Sample Set 1 Column A.

Additional file 5: Results for merging more than two parameter
settings using the Sample Set 1 Column A.

Additional file 6: Evaluating fitness of parameter combinations
based on parameter sensitivity analysis in a) Sample Set 1 Column
B; b) Sample Set 2 Column A; and c) Sample Set 2 Column B.

Additional file 7: R code for xMSanalyzer.

Additional file 8: Extracted ion chromatograms of unique features
identified by xMSanalyzer in three biological samples: a) m/z
290.1358 (Gly-Asp-Val); b) m/z 425.16421 (Asp-Tyr-Gln); c) m/z
175.1187 (arginine).

Additional file 9: Summary of MS/MS analysis.

Additional file 10: MS/MS validation results for the metabolites
exclusively identified by xMSanalyzer and with matches in Metlin.
The first column is the full MS scan, second column is the MS/MS
spectrum on LTQ Velos Orbitrap, and the third column shows the
corresponding MS/MS spectrum from Metlin’s database.

Additional file 11: MS/MS validation results for the 8 putative
metabolites identified using DeconMSn. The first row shows the
elution profile of the feature, middle row shows the full MS scan, and the
last row shows the deconvoluted MS/MS spectrum obtained from
DeconMSn.
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