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Abstract Computational chemistry is a largely empirical

field that makes predictions with substantial uncertainty.

And yet the use of standard statistical methods to quantify

this uncertainty is often absent from published reports. This

article covers the basics of confidence interval estimation

for molecular modeling using classical statistics. Alternate

approaches such as non-parametric statistics and boot-

strapping are discussed.
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Introduction: Error bars

When we report a number what do we mean by it? Clearly our

intention is to convey information: after an experiment we

think a property has a certain value; after this calculation our

prediction of quantity X is Y. In reality, we know whatever

number we report is only an estimate. For instance, we repeat

an experiment to measure a partition coefficient between

water and octanol five times and get an average, or we apply a

computer model to a set of ten test systems and calculate a

mean performance. In the former case, will a sixth measure-

ment produce a similar number? In the latter case, do we know

if the program will perform as well over a new test set? In other

words, how do we know if these numbers are useful?

In statistics utility is about being able to say something

concerning the population from a sample. Here population

means ‘‘everything’’, e.g. it could mean all members of a

set, or all (infinite) repeats of an experiment. When we test

predictive software we hope the average over a set of

systems represents what we might get from the population

of all possible test systems, including ones not yet imag-

ined. For a physical property measurement we assume our

experiments sample the possible range of small variations

in conditions, what we call ‘random variables’, in an even

and comprehensive way such that the ‘population’ of all

such experiments is represented. In either case we know

that we have only sampled, not enumerated all possibilities.

As such there is an uncertainty in our number. In fact,

without an assessment of this uncertainty, or a description

of how to estimate it, what we have really delivered is a

report, not a prediction; ‘‘we did X, followed by Y, and got

Z’’. In a completely general sense, i.e. from information

theory, it can be shown that without at least some estimate

of uncertainty a single value technically has no informa-

tion—essentially because it is represented by a delta

function in the probability distribution of possible values,

which has a vanishing overlap with the actual distribution

of values of the population. In reality a lone number does

have some usefulness because we assign it a default sense

of certainty from our experience. However such a sense can

often be misleading, for instance our default may be wildly

optimistic! A rigorous way of incorporating such prior

knowledge is the Bayesian framework. Although Bayes

approaches are very powerful and general, they lie outside

the scope of this article. Interested readers should consider

such excellent works as [1–5].

A classic case of the problems of reporting a single

number without some sense of the range of possibilities is

illustrated in Fig. 1. On the left was the prediction by the

U.S. National Weather Service that the likely flood level of

the Red River at Grand Forks, North Dakota in January of
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1997 would be forty-nine feet. Based on this report the town

levees were set at a protective fifty-one feet. What had not

been included were the error bars on this prediction of plus or

minus nine feet! The actually flood level in April of that year

was fifty-four feet, and the cost of the ensuing devastation

came to $3.5 billion. The error bars would have predicted the

chance of a flood of this magnitude or worse at about one in

three—substantial given the potential consequences. This

information was not reported along with the prediction in

part because of a fear that any apparent imprecision would

lead to criticism of the forecast! Yet, to the people of Grand

Forks the error bars were the key data.

Traditionally we express our uncertainty with an indi-

cation of our range of confidence. This can be by reporting

a number with a plus-or-minus ‘error estimate’, or graph-

ically by error bars attached to points or representative

columns. We try to convey an expectation that the true

value, the value of the ‘population’, lies within a given

range: a probability assessment for the real value. Often

this estimate is symmetric around our ‘‘best-guess’’; we

attempt to describe possible variation with a single, ‘‘plus-

or-minus’’, number. The reason this is common practice is

that error in some variable x is often distributed according

to a (symmetric) Gaussian function:

N l; rð Þ ¼ ð2pr2Þ�1=2
e
�ðx�lÞ2

2r2 ð1Þ

Here l is the center of the function, our best guess at the

average value, and r is related to the width of the function,

our uncertainty (a smaller r means a narrower Gaussian,

larger r means a wider one). We only need to know r to

state what fraction falls within a given range of l. The

ubiquity of this description is a consequence of the famous

‘‘Central Limit Theorem’’ (CLT). The CLT says that if one

samples from some distribution, no matter what that dis-

tribution looks like, the distribution of the average of that

sample can be expected to look more and more like a

Gaussian as the number of samples grows. This does not

mean that the ‘true’ value is asymptotically approached;

there might be an experimental bias away from the actual

value. What the CLT tell us about is the reproducibility of

the experimental setup we are using, i.e. it is concerned

with precision, not accuracy.

The above description is typically taught in introductory

classes to the scientific method, and experimentalists rarely

forget it because reproducibility is their core concept. The

same cannot be said for theoreticians. The presentation of

error estimates, whether reasoned or derived, is rare in the

field of computational chemistry. Perhaps this is because of

the mistaken belief in the exactness of theory. Evidence for

this would be a discernable inverse correlation between the

level of theory in publications and the sophistication of any

accompanying statistics. Or perhaps it is because practi-

tioners see only a single number from a calculation that can

be reproduced by rerunning the program. Of course, this

belies the fact that small changes in either inputs to the

program, programming presets or even the computer

architecture or operating system can lead to great vari-

ability [6]. A third possibility is simply that knowledge is

lacking. This author, for example, realized some years ago

that he had only a very rudimentary knowledge of statis-

tical assessment. It is to the latter possibility that this paper

is addressed, to present, in the context of molecular mod-

eling, how basic error bar evaluation and comparison

should be done.

This goal turned out to be a considerable undertaking.

The field of molecular modeling is diverse and complex,

incorporating many levels of theory and physical approx-

imation. Attempting to cover all eventualities is beyond the

scope of a journal article. However, there are many com-

mon tasks and principles that would be of use if more

widely known and this paper attempts to organize and

present such a collection. In order to keep even that goal

within reasonable bounds the statistics introduced here will

be largely what is often referred to as ‘‘classical’’. By

classical we mean it is Frequentist and ‘‘parametric’’. The

term Frequentist refers to the school of statistics developed

Fig. 1 The predicted (a) and

actual (b) flood levels at Grand

Forks, North Dakota in 1997.

The lack of error bars had

catastrophic consequences
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by Fisher, Pearson, Gossett, Neyman and others during the

late 19th century and first half of the 20th century. It is

based on the concept of reproducibility, of being able to

imagine repeating events or experiments an arbitrary

number of times. As such, quantities calculated from

Frequentist approaches are ‘‘asymptotic’’, by which is

meant the key aspects are often just how many reproduc-

tions are necessary to give a certain level of confidence in a

prediction. The Frequentist approach is often contrasted to

the Bayesian approach, which is different in its focus on

the past; what did we know and how does that help us make

sense of what we did next. The advantage of the Bayesian

approach is that it adapts more easily to the real world, e.g.

some experiments we really cannot rerun. However, the

Bayes formalism often requires numerical simulation and,

in fact, really became popular only once computing power

was widely available. The advantage of the Frequentist

approach is a wealth of carefully constructed formulae that

can be used to address all kinds of problems.

The availability of many of these formulae is due to the

second part of the description of the work presented here, i.e.

that the statistics are ‘‘parametric’’. This term is often made

synonymous with statistics that assume a Gaussian distri-

bution of random variables, although more properly it

applies to any approach where a functional form has been

assumed for the distribution of some quantity, a functional

form controlled by some ‘‘parameters’’. In the case of

Gaussians it is the center and the width, but there are other

functional forms, e.g. Binomial, Poisson, Laplacian, Cauchy

etc., with their own characteristics. Non-parametric, classi-

cal statistics do not make assumptions about the form of

distributions and, as such, are more general. A few will be

mentioned in this article. However, the focus will be on

classical, Gaussian-based, statistics. The first reason is that

classical statistics usually give a simple way to rapidly assess

likely error and how this error decreases with sample size.

More than other approaches, they can be ‘‘aids to thinking’’,

rather than magic boxes producing numbers. The second

reason is to keep this report of manageable length.

Even with these decisions it has been necessary to split

this paper into two parts, corresponding to the two defini-

tive uses of confidence limits: comparison to fixed values,

for instance the height of a levee, and comparison to other

confidence limits: such as comparing prediction methods.

Both uses are valuable; if your company gets a milestone

payment if it identifies a one-nanomolar lead compound,

then the accuracy of the measurement of that affinity is of

some importance. If you are comparing two (or more)

models of activity you will waste a lot of time and

resources if you cannot tell which is more accurate. As

such, the comparison of properties with associated confi-

dence intervals will be described in a subsequent paper,

with the focus here on the estimation of a single error bar.

Given these restrictions the structure of the paper is as

follows:

1. Basic principles

a. Standard terms

b. The Gaussian distribution

c. One- or two-tailed significance

d. Long tails

e. The test statistic, t

f. The origin of the square-root in asymptotic error

g. Reporting data, box plots

h. The error in the error

2. Small sample size effects

a. The Student t distribution

b. p values and the Student test statistic

3. Useful analytic forms for error bars in modeling

a. Probabilities

b. Area under the (ROC) curve (AUC)

c. Virtual screening enrichment

d. Linear regression (straight-line fit) properties

e. Pearson’s correlation coefficient, r

4. Asymmetric error bars

a. Probabilities

b. Area under the (ROC) curve (AUC)

c. Virtual screening enrichment

d. RMSE

5. Combining errors from different sources

a. General formulae and examples

b. The general error formula

c. Estimating unknown contributions to error

d. Assessing adding noisy systems to test sets

e. Variance-weighted averages with examples

f. Weighted averages of variances

6. Bootstrapping error bars

a. Introduction

b. Limitations

c. Advantages

Basic principles

Standard terms

Error bars are a graphical depiction of a confidence inter-

val; a range within which we expect some value to fall with

a certain probability given what we currently know. Sup-

pose we make N observations, xi, and calculate the average:

J Comput Aided Mol Des (2014) 28:887–918 889

123



x ¼ 1

N

XN

i¼1

xi ð2Þ

The standard deviation (SD) is defined as the square

root of the average squared difference from the mean. It is

often represented by the Greek symbol (lower case) sigma,

r. However this is strictly meant for the SD of the popu-

lation, as described above. The SD of the sample is rep-

resented by the letter ‘‘s’’, and defined as:

sN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

ðxi � xÞ2
vuut ð3Þ

Note that the averaging of the sum of squares uses (N - 1)

not N, the number of observations. This is necessary

because the formula uses the sample mean, x, not the

population mean (‘‘l’’). This is generally explained as due

to the (N - 1) degrees of freedom in the expression for sN.

The concept of degrees of freedom occurs a lot in classical

statistics, and is typically represented by the symbol m. It

basically means, ‘‘How many independent samples from a

distribution really occurred’’. In the above example we can

see that we could derive any one measurement from the

mean and the rest of the values, e.g.

xN ¼ Nx�
XN�1

i¼1

xi ð4Þ

As such, there are really only (N - 1) variables in the

equation for sN. This explanation always seemed mysterious

to this author! As such, ‘‘Appendix 1’’ includes a simple proof

that using (N - 1) gives an estimate of the SD that is unbiased,

i.e. in the limit of large sample sizes the sample mean will

approach the population mean by being slightly larger or

slightly smaller with equal likelihood. In many cases it is not

obvious how many degrees of freedom there are; sometimes

approximations are employed that give fractional degrees!

Another widely used term is the ‘variance’. This term can

be flexible; typically it refers to the square of the standard

deviation, although sometimes it can also refer to the standard

deviation divided by the number of samples. In the former

case it refers to the intrinsic property of how widely spread are

the measurements. In the latter case it refers to the spread of

likely values of the average of those measurements. In this

case it is the square of the standard error (SE) of the mean. The

standard deviation and standard error are related by:

SE ¼ SD=
ffiffiffiffi
N
p

ð5Þ

Given x and sN, the usual prescription for 95 % confidence

limits to a quantity, x, is:

E x½ � ¼ x� 1:96sNffiffiffiffi
N
p ¼ x� 1:96SE ð6Þ

Here ‘‘E’’ stands for ‘‘Estimate’’. There is a lot in this simple

formula: where did the square root of N come from? Why

‘‘1.96’’ and why 95 %? The 95 % is completely arbitrary and

should be treated with suspicion! It comes from R. A. Fisher,

one of the founders of Frequentist statistics. Fisher decided

that if nineteen times out of twenty the difference in yield

between two differently treated fields of cabbages was less

than would be expected due to random variation, then there

was no real difference in the two treatments. This sense of

‘real’ as being defined by being more unusual than ‘‘one in

twenty’’ now pervades statistics, so much so that there are

real concerns as to the problems it causes [7–9]. For instance,

if the consequences of being outside the predicted range are

small then one in twenty may be a perfectly acceptable risk.

If billions of dollars and lives are at stake, as in the Red River

example in Fig. 1, then perhaps it is not. There is also a

problem when this concept is invoked relative to deviation

from a ‘‘null’’ model, i.e. perhaps a simpler model. In this

case the interpretation in terms of the probability one method

is better than another can be subtle [9]. Finally, if multiple

comparisons are made, i.e. if one is actively searching

amongst many methods, then some will appear significantly

different by random chance. Despite these issues, ‘‘p values’’

of 0.05 are almost inescapable.

The Gaussian distribution

Suppose we have a property with a standard deviation, r,

of 0.1 units and an average of 0.5 units for a set of mea-

surements of a property x. Our Gaussian distribution of

what we know about x appears in Fig. 2.

The y-axis in Fig. 2 is the ‘probability density’ not

probability. Probability density tells us the ‘amount’ of

probability in the local vicinity of a value of x, i.e.

Fig. 2 A Gaussian centered at 0.5 with standard deviation 0.1. The

one-sided percentage under one and two standard deviations from the

mean (center) is indicated. The y-axis is not probability, but

probability density
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p x 2 x� 0:5d; xþ 0:5d½ �ð Þ ¼ pdf xð Þ � d ð7Þ

The function pdf(x) has to be positive but does not have to

be less than one, which at first can be confusing. Within

one standard deviation of the center lies 68.2 % of the

probability density and 95.4 % within two standard devi-

ations. It can be shown that 95 % of the area lies between

±1.96r, which is close enough to two standard deviations

that the two are often used interchangeably, i.e. two stan-

dard deviations is used to represent 95 % of the likelihood.

One- or two-tailed significance

An important distinction needs to be made here as to the

‘‘sided’’-ness of areas under a Gaussian. The 95 % confi-

dence limits that are usually mentioned refer to the possi-

bility of a value being larger or smaller than a given range.

But suppose we are interested in whether a value is larger

than a given value? For that we do not have to consider the

lower range—our interest is ‘‘one-tailed’’, i.e. only con-

cerns one tail of the distribution function. For instance, in

the above example, there is only a 2.5 % chance the actual

value is greater than 0.7. One-sided comparisons go with

questions such as, ‘‘Is quantity A greater than a value X’’,

or ‘‘Is quantity A less than a value Y’’, but not both (in

which case the two-tailed distribution is required). A focus

of classical statistics, possibly to its detriment, is whether

two things are different. In such tests we are agnostic as to

which might be better and which worse, only if they are

distinguishable. As such, the 95 % range and its association

with roughly two standard deviations from the mean is

appropriate. However, when we are asking a more specific

question: is drug A worse than drug B, is treatment C better

than no treatment, we are asking a one-tailed question. As

this issue is more germane to the comparison of quantities,

i.e. to confidence limits on differences of properties, further

discussion will be postponed until the second paper of this

series.

Long tails

Much of the criticism of classical statistics concerns the tails

of the Gaussian distribution not being accurate. For example,

Taleb and others [10, 11] have pointed out that the distri-

bution of returns on stock investment is Gaussian (i.e. ran-

dom) for short time intervals but that rare events (‘‘Black

Swans’’) appear much more frequently than expected. Taleb

co-founded an investment vehicle, ‘‘Empirica Capital’’,

based on this principle, i.e. designed to lose money when the

stock market was behaving in a regular, ‘‘Gaussian’’ manner,

and yet to win big when it deviated from this behavior. There

is considerable work in the area of unlikely events and their

distributions, so-called ‘‘extreme-value’’ distributions such

as the Gumbel, Fréchet or Weibull distributions [12]. In

addition, we will consider the most applied ‘‘long-tailed’’

function, the Student t-function, shortly.

Test statistic, t

The number of standard deviations used to test for a

probability of something happening is usually referred to as

t, the ‘test statistic’. It is called that because it is what we

use to test a difference between an observed value and the

expected (mean), scaled by the standard error, i.e. we

expect 95 % of the time:
ffiffiffiffi
N
p

x� xd e
r

\t95 % ð8Þ

This equation is very basic as it relates to the probability of

seeing a (two-tailed!) difference of a given size. Note it is

the size of the effect scaled by the standard error, not the

standard deviation. The origin of the square root of N in the

standard error is considered next.

The origin of the square root in asymptotic error

The fact that the error in an average goes down with the

square root of the number of observations was not always

appreciated. Examples of it not being known can be dated

back to the Trial of the Pyx, 1282 AD [13]. The Trial was a

test designed by the English Royal Mint to check for

unlawful deviations in the weight of the King’s coinage

and it was assumed such variation would be linear with the

number of coins tested. Thus an unnecessarily large tol-

erance was assumed allowing the unscrupulous but math-

ematically astute to ‘game’ the King’s system, at some

peril naturally! Even today it is at the root of many mis-

understandings of published data [14].

So why does a square root appear in the error of the

average? All that is required is to know that the probabil-

ities for independent events multiply. Suppose we want to

estimate the variation of the average of N quantities, but let

us assume the average is known to be zero, i.e. l = 0. It

makes no fundamental difference but the derivation is

simpler. Then the variance is simply:

Varð xh iÞ ¼
XN

i¼1

xi=N

 !2* +

¼
XN

i¼1

x2
i =N2

* +
þ

XN

i¼1

XN

j6¼i

ðxixjÞ=N2

* +
ð9Þ

Now, the first term is just:

XN

i¼1

x2
i =N2

* +
¼ 1

N

XN

i¼1

x2
i =N

* +
¼ r2

N
ð10Þ
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The second term must be equal to zero, because the dif-

ferent measurements of xi are independent, i.e.

xixj

� �
¼ 0 ð11Þ

One way to look at this is that the N2 terms for the variance

of the average of N things reduces to just N terms because

of measurement independence, and so instead of a depen-

dence on H(N2), we get HN.

Reporting data, box plots

Although 95 % is a standard for a confidence interval,

there are variations worth knowing. The first is that

‘‘1.96’’ is often simply replaced with ‘‘2.0’’, a ‘two-

sigma’ error bar, since this makes very little difference

(95.4 % compared to 95.0 %). However, this leads to

error bars that are based on the number of sigmas, not a

percentage. So, for instance, a one-sigma error bar (not

uncommon) contains 68.2 %, roughly two-thirds, of

expected outcomes; a three-sigma error bar (unusual)

contains about 99.7 %. It is important a researcher is

clear as to which is being presented—especially if the

smaller one-sigma error bars are reported. No report is

complete unless the meaning of presented error bars is

explicitly recorded.

Secondly, we have described above the difference

between the intrinsic variance, or standard deviation,

which is a measure of the spread of measurements, and

the extrinsic variance, or standard error, which is a

measure of the accuracy of the mean. The common

confusion between these led Tukey to introduce the ‘‘box

plot’’. An example is shown in Fig. 3. Tukey’s plots were

‘non-parametric’, i.e. were not intended to rely on the

data following a Gaussian. As such his ‘boxes’ were

meant to represent ‘ranges’ of data, e.g. the top box is the

range from the median (Q2) to the third quartile (Q3), i.e.

the 25 % of measurements greater than the median, the

bottom box the lower 25 % (Q1). In Tukey’s original

designation the ‘‘whiskers’’ represent the nearest data

points to 1.5 * (Q3 - Q1) of the median in either direc-

tion. However, since its introduction box plots have

evolved in several ways; only the meaning of the size of

the boxes is standard. The whiskers can represent the

maximum and minimum observations, or a given %

(typically 91 % and 9 % of all measurements). In the

latter case, measurements that lie outside this range are

represented by crosses, as in the outliers depicted for the

affinity of ligand A in Fig. 3. More importantly, for our

purposes, were the introduction of ‘notches’ around the

median. These can be used to represent the standard error,

i.e. the extrinsic property of the collection of measure-

ments. Notches, then, are equivalent to the more standard

error bars, where as the boxes describe the variation

within the set of measurements as well as the extrema. As

such, box plots are a rich description of the measurements

of properties.

Why are box plots non-parametric, i.e. why the ‘median’

and ‘‘quartiles’’, rather than the mean or SD? The answer

lies in Tukey’s interest in ‘‘Robust Statistics’’ [15]; a field

he helped to create. Robust statistics attempts to address

the problems that outliers can cause to traditional, para-

metric, Gaussian-based statistics. For instance, a single

outlier can shift the mean (or SD) of a set of measurements

an arbitrary amount; the mean (or SD) is ‘fragile’ with

respect to a single measurement. Contrast this to the

median (or quartile) where adding a single value, no matter

how extreme, can move the median (quartile) only to an

adjacent measurement. Ripley nicely describes Tukey’s

investigations and those that followed in robust statistics

[16].

The error in the error

As the variance plays such a key role in classical statistics

an obvious question might be as to how we calculate its

variance. At least as far as Gaussian statistics goes, this is

an easy question to answer:

r2 ¼ r2 �
ffiffiffi
2
p

t95 %
�r2

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p ð12Þ

A derivation of this result can be found in ‘‘Appendix

2’’. Notice that the error bounds are given for the variance,

not the standard deviation. Because we have to take a

further square root to get the error limits for the standard

deviation they will not be symmetric! We will consider

asymmetric error bars in some detail in a later section, but

as an illustration consider the Gaussian depicted in Fig. 2
Fig. 3 A typical ‘‘Box’’ plot containing much more information than

the standard error-bar plots
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with a SD of 0.1. Let us assume that this is an estimate

derived from fifty observations, then:

r2 ¼ ð0:1Þ2 �
ffiffiffi
2
p

t95 %
ð0:1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1
p

r2 2 ð0:1Þ2 �
ffiffiffi
2
p
� 2

0:1ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1
p ; 0:1ð Þ2þ

ffiffiffi
2
p
� 2
ð0:1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1
p

" #

r2 2 0:6 � ð0:1Þ2; 1:40 � 0:1ð Þ2
h i

r 2 0:077; 0:118½ � ð13Þ

Where we have set the t95 % to 2.0. As predicted, the 95 %

confidence limits are asymmetric, the lower limit differing

from the ‘‘best guess’’ by more than the upper limit.

The variation of the standard deviation or, more prop-

erly, of the variance is of use. Consider that common

measure, the root-mean-square-error or RMSE. The RMSE

is a standard deviation; it is the r of some property pre-

diction because it describes the expected variation of that

property. We talk about the RMSE of affinity prediction or

solvation or solubility estimation, for example. Equa-

tion 12 tells us how to estimate the error in our assessment.

For instance, if a paper quotes an RMSE for affinity pre-

diction of 2.0 kcal/mol for a test system with fifty data

points:

RMSE2 ¼ RMSE
2 �

ffiffiffi
2
p

t95 %
RMSE

2

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

RMSE2 ¼ 2:02 �
ffiffiffi
2
p

t95 %
2:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 1
p

RMSE2 2 4� 8
ffiffiffi
2
p

7
; 4þ 8

ffiffiffi
2
p

7

� �

RMSE 2 1:54; 2:37½ � ð14Þ

Here we set t95 % to 2.0 again. Now, suppose we had only

eight data points and we repeated the calculation. The

range for the RMSE squared would come to:

RMSE2 2 4� 8
ffiffiffi
2
p
ffiffiffi
7
p ; 4þ 8

ffiffiffi
2
p
ffiffiffi
7
p

� �

RMSE2 2 �1:33; 8:28½ � ð15Þ

But the lower limit of a squared quantity cannot be

negative! So what has gone wrong? The problem is that

the distribution of expected variation of an aver-

aged quantity is Gaussian, by the CLT, when the number

of observations is large. It is an asymptotic observation,

not a universal one. The properties of the variation for

small samples can be quite different. We shall return to a

more complete description of the error bounds on RMSE

in the section on asymmetric confidence intervals, but

first consider what ‘‘large’’ means for sampling from

Gaussian distributions.

Small samples

The Student t distribution

William Gossett worked at Guinness as one of the first

industrial statisticians. He was aware of the standard

Gaussian statistics that Karl Pearson (of the Pearson r

coefficient), Fisher and others were developing. However,

his work revolved around small numbers of samples, not

the large data sets that Pearson had in his biometric work or

Fisher at his agricultural station. Gossett was confronted

with problems such as the quantity of barley of a particular

strain to use in fermentation or a particular size of fer-

mentation vat, or at what temperature to run the process.

Here the number of such experiments he could affect was

in the single digits, not hundreds or thousands. He applied

to be an intern with Pearson for a year and wrote two

papers (published under the name Student to abide by

Guinness’ internal policies) that changed the world of

statistics by rigorously showing what the expected distri-

bution of averages should look like for small samples [17].

That function is known as the Student t-distribution:

f tð Þ ¼
C mþ1

2

� �
ffiffiffiffiffiffi
mp
p

C m
2

� � 1þ t2

m

	 
�mþ1
2

ð16Þ

Here the symbol C represents the gamma function

(equivalent to the factorial function for integer values).

Figure 4 illustrates it for different m values.

p values and the Student test statistic

As the number of degrees of freedom, m, increases the

function looks more and more like a Gaussian, but for

small m it has wider tails. This means the 95 % confidence

Fig. 4 The Student t-distribution for different degrees of freedom, m
(number of samples = m ? 1). When m is large the function

approaches a Gaussian but has longer ‘tails’ for small values of m
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band is significantly larger. As such, the factor ‘‘1.96’’ for

95 % of the area under the Student-t function needs to be

replaced with a bigger number—significantly bigger for

very small m. Table 1 shows some example values.

As can be seen, you need about twenty samples before

the inaccuracy in the prefactor of 1.96 is less than 10 %.

Consider the case where a standard deviation is being

estimated from a measurement done in triplicate—the

t statistic is more than twice what one would expect for

large sample sizes!

The ramifications of Student’s work were slow to

materialize but were eventually recognized as fundamental

to practical statistics in industrial settings. It also illustrates

one of the issues with ‘‘classical’’ statistics, i.e. its reliance

on look-up tables. That is inevitable because the functions

that describe the different probability distributions are not

common outside of statistics. These days, however, it is

easy to find such tables on-line.

One further aspect of the Student-t that has only become

appreciated in recent years is that it can also be used to

improve the robustness of linear regression [18]. This is

because the long tails of the Student function better toler-

ates outliers, i.e. the ‘‘unlikelihood’’ of an outlier does not

outweigh the ‘‘likelihood’’ of ‘‘in-liers’’ as much.

Useful analytic forms for error bars in modeling

We present here some known and some new results for

error bars of typical measures of importance in computa-

tional chemistry, namely, (1) the probability of an event,

(2) the area under the curve (AUC) for receiver operator

characteristics (ROC), (3) virtual screening enrichment, (4)

Pearson’s R2 and (v) linear regression. Analytic results may

seem old-fashioned when modern computing power can

simulate distributions, e.g. via bootstrapping, but they can

be invaluable when the primary data is not available. In

addition, they allow us to think about the contributions to

the error terms in a way that simulations do not. Finally, as

will be discussed below, there are occasions when the prior

knowledge they represent can be helpful in producing more

robust estimates.

Probabilities

The mathematics described above for the estimation of a

confidence limit is very basic and it is not always obvious

how it is to be applied. Take the simple example of a

probability p, arrived at from observing an outcome X a

total of m times out of N, e.g. a docking program places

molecules within 2 Å of the crystal structure m times out of

N. What is the error bar on p? Suppose we think of the

observation X as having a value c, where c is equal to 1.0

when we see the event and 0.0 when we do not. Then p is

the average value of ‘‘c’’. If we looked to calculate the

variance of c we would obtain:

var cð Þ ¼ 1

N � 1

XN

i¼1

ci � �cð Þ2¼ 1

N � 1

XN

i¼1

ci � pð Þ2

¼ 1

N � 1

XN

i¼1

c2
i þ

XN

i¼1

p2 � 2
XN

i¼1

cip

" #

¼ 1

N � 1
Npþ Np2 � 2Np2
� �

¼ N

N � 1
p� p2
� �

� p� p2 ð17Þ

I.e. we have a very simple formula for the variance of the

probability, and hence for the SD and 95 % confidence

limits:

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p� p2

p
ð18Þ

p ¼ m

N
� t95 %r=

ffiffiffiffi
N
p

ð19Þ

We can translate this into error bounds on an integer

(count) by multiplying Eq. 19 though by N.

n ¼ Np ¼ m� t95 %r
ffiffiffiffi
N
p

ð20Þ

Typical political polls have a sample size of N = 1,000.

If there are two candidates, p is likely to be about 0.5, for

which r is then roughly also 0.5 from Eq. 18. The fraction

error is then about 1/HN & 0.03, which is the origin of the

oft-quoted three percent margin of error. If p2 is much

smaller than p then the error bars on p are roughly ±2H(p/

N). Translated to error bounds on the number of observa-

tions, m:

n ¼ Np ¼ mobserved � t95 %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1� pÞ

p

� mobserved � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mobserved

p ð21Þ

I.e. a quick estimation of the expected 95 % range of a

number of observations is twice the square root of the

number of observations. This formula is only appropriate

when p is small, yet it should be noted that this is also the

Table 1 Table showing the

95 % Student t test statistic for

different numbers of data points,

N

N (m ? 1) t95 %

2 12.71

3 4.30

4 3.18

5 2.78

10 2.26

20 2.09

50 2.01

100 1.98

? 1.96
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range in which one has to worry about error bars not

straying into nonsensical regions, i.e. an error bound on a

probability should not suggest a value that is less than zero.

This condition is examined later in this article. One final

observation on Eq. 21 is that it is mysteriously free of the

sample size, N! As such, as long as an event is rare, i.e. p is

small, knowledge of the total number of events is not

required.

Area under the (ROC) curve (AUC)

A popular metric of virtual screening is the AUC, or area

under the curve, where the curve is the ROC or receiver

operator characteristic curve. Despite its odd name, which

came from its origins in radar detection, it is simply a plot of Y,

the fraction of true results (e.g. active compounds) observed to

have a property (e.g. docking score) greater than some

threshold, T, as a function, X, of the fraction of false results

(e.g. inactives) which also are lower than this threshold. As

T is varied from the highest value any molecule possesses to

the lowest, a curve is swept out from the origin (0,0) to the

point (1,1). If all the actives are seen before any inactives then

the area under this curve (essentially two sides of the unit

square) is 1.0. When the actives are randomly distributed with

respect to the inactives the AUC will, on average, be 0.5 as the

ROC ‘curve’ will be a line from (0,0) to (1,1). Figure 5

illustrates the concept.

The ROC AUC is equivalent to the probability a ran-

domly chosen true event is ranked higher than a randomly

chosen false one, i.e. the higher the AUC the greater the

ability of the property to distinguish true from false. In

what follows ‘true’ will mean active, e.g. an active

molecule, a correctly docked molecule etc., whereas ‘false’

will mean an inactive molecule, an incorrectly docked

molecule etc. A subtlety arises as to how ties are managed.

The simplest prescription, followed here, is to count a tie as

one half of its normal contribution.

The expected accuracy of the AUC will depend on the

number of actives and the number of inactives. Consider

each active in turn. It contributes to the AUC by the

fraction of inactives for which it ranks higher. Since this

contribution is a probability, accuracy of this property will

depend on the number of inactives. We then combine the

probability of this active with the similar probability for all

other actives. This average of probabilities will have its

own distribution, the tightness of which will depend

on the square root of the number of actives. Thus there are

two sources of error. In a later section we shall more

generally consider the situation of multiple contributions to

error but this is an example of just such, i.e. error from the

finite number of actives and from the finite number of

inactives.

If the variance for each active was strictly proportional

to the probability, p, we could merely average over all

actives to obtain the net variance. However, since the

variance depends on p2, not just p, we need to know the

distribution of p across all actives to calculate its average,

i.e. we cannot calculate the expected error bars without

knowing the shape of the ROC curve. If we have the pri-

mary data we know this and can use the formula for the

total error in the AUC first proposed by Delong et al. [19]:

VarTotal ¼
VarðpactiveÞ

Nactive

þ VarðpinactiveÞ
Ninactive

ð22Þ

Here N{active/inactive} is the total number of {actives/inac-

tives} and the variance, Var(p{active/inactive}) is the variance

associated with the probability each {active/inactive}

scores higher than a randomly chosen {inactive/active}

averaged over all {actives/inactives}, i.e.

VarðpactiveÞ ¼
1

Nactive � 1

XNactive

i¼1

pi;active � AUC
� �2 ð23aÞ

VarðpinactiveÞ ¼
1

Ninactive � 1

XNinactive

j¼1

pj;inactive � ð1� AUCÞ
� �2

ð23bÞ

Note the (1 - AUC) factor in Eq. 23b. If the AUC is the

probability an active scores higher than an inactive then the

reverse property, i.e. the probability an inactive scores

higher than an active, must simply be (1 - AUC). Equa-

tion 22 is an example of combining different contributions

to produce a net error.

But what of the case when the primary data is not

available, i.e. we do not know the shape of the ROC curve?
Fig. 5 Illustration of receiver operator characteristic curves, with

annotations of their area under the curve
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There are two approaches in this situation. The first is to

average over all possible ROC curves that have that AUC.

This sounds like a formidable challenge but Cortez et al.

[20] did just that to arrive at a complicated result using

combinatorics. The second approach is to assume what the

ROC curve looks like, i.e. to use a ‘typical’ curve with the

same AUC, e.g. as introduced by Hanley et al. [21]. By

assuming a simple form for the scores of actives and in-

actives (an exponential) they derived a analytic form that

resembles many ROC curves:

Y ¼ X
1�AUC

AUC ð24Þ

The curves in Fig. 5 were produced from this equation. The

expected standard error of an AUC of this form is:

w ¼ AUCobserved

VarðactiveÞ ¼ w2ð1� wÞ=ð1þ wÞ
Nactive

ð25aÞ

VarðinactiveÞ ¼ wð1� wÞ2=ð2� wÞ
Ninactive

ð25bÞ

AUC ¼w� t95%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ð1�wÞ=ð1þwÞ

Nactive

þwð1�wÞ2=ð2�wÞ
Ninactive

s

ð25cÞ

Note that Eq. 25b can be obtained from Eq. 25a simply by

replacing w with (1 - w), by analogy with swapping AUC

for (1 - AUC) in the Delong formula. These equations are

derived from integrating across the distribution form pro-

posed by Hanley. See [22] for a complete derivation.

ROC curves never look perfectly like those in Fig. 5. Fig-

ure 6 shows a comparison of the Hanley equation to that from

Delong on a set of results using a docking program over the

DUD dataset [23]. Even though typical ROC curves from this

study are very ‘non-ideal’, the correspondence is strikingly

good. In fact, the two points that disagree most are for systems

for which there are fewest actives (only eight and sixteen), i.e.

where the expected error in error from the Delong estimation

should be large and where the result from an analytic formula

might be better behaved than the direct result, i.e. from the

primary data. This possibility is considered in more depth

when we examine the concept of bootstrapped estimates.

It is worth noting that this is not the first time the

accuracy of the Hanley approach has been examined.

Cortez et al. [24] compare their exhaustive enumeration of

ROC curves with the Hanley result and that from Delong’s

formula and found any improvement was marginal.

But what about the t-statistic, the ‘‘1.96’’ value we use to

determine the 95 % confidence intervals? From Gossett we

know that for small samples we have to use his tables. Do

we use Nactive, the number of actives, or Ninactive, the

number of inactives? When there are multiple contributions

to an error a widely used approach is the Welch–Satt-

erthwaite formula [25, 26]:

meffective �
Pm

i¼1 Vari=Ni

� �2

Pm
i¼1

Vari=Nið Þ2
mi

ð26Þ

Here there are m different sources of error adding to the

total variance, Vari is the variance (standard deviation

squared) of each contribution to the error and Ni the

number of data points associated with that error and mi the

number degree of freedom, typically (Ni - 1). We know

all these quantities from either the Delong and Hanley

formulae. Using the latter we can eventually arrive at:

tAUC
effective

¼ aNinactive þ bNactiveð Þ2

ðaNinactiveÞ2=ðNactive � 1Þ þ ðbNactiveÞ2=ðNinactive � 1Þ
ð27Þ

where,

a ¼ AUC

1þ AUC
; b ¼ 1� AUC

2� AUC

Given that the variances from the actives and decoys are

roughly equal, if the number of decoys is much larger than

the number of actives Welch–Satterthwaite would give

meffective close to (Nactive - 1). If the number of actives is

roughly equal to the number of inactives the number of

degrees of freedom will be closer to the sum of both.
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Fig. 6 The expected standard error in the AUC for forty systems

from the DUD dataset using the docking program FRED v1.2, as

calculated by the Hanley and Delong formulae. The drawn line is

X = Y. The Hanley result used only the AUC value while Delong

used the actual form of the ROC curve, i.e. the primary data
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Virtual screening enrichment

A common complaint against the use of the AUC curve is that

it does not measure the quantity of interest, i.e. the segregation

of actives to the very top of the list, the ‘early’ enrichment.

Such claims are misinformed, as the AUC is a reliable esti-

mate of early performance; in fact, averaged over many sys-

tems it is a better estimate of early enrichment than artificial

measures that have been ‘designed’ to reflect this quantity

[27]. This is because the AUC uses all the data and so it is more

statistically reliable (HN is larger). For instance, it can be

shown that the AUC is more robust to the inclusion of ‘‘false

false positives’’, i.e. compounds that are assumed inactive but

are actually active [27]. The second reason is that although a

single AUC value may mislead as to early performance, e.g.

the ROC curve might have a sigmoidal shape where the early

enrichment is poor but some less relevant middle enrichment

makes the AUC look good, averaged sets of ROC curves tend

to look very ‘canonical’, i.e. have Hanley shapes [27]. Such

averages of AUC correlate very well with measures of early

enrichment, but with much better statistical properties.

Despite the above observation, the field is attracted to

measures of early enrichment, typically defined as the ratio

of the percent actives recovered when a given percent of the

database has been screened to the expected percent of actives

if they were indistinguishable from inactives. For instance, if

10 % of the database has been screened and 20 % of all

actives have been found then the enrichment is 2.0. This

deceptively simple formula has a flaw that makes it unde-

sirable as a metric—it depends on the ratio of inactives to

actives [28]. It makes little sense to choose a metric that

depends on an arbitrary, extrinsic aspect of the system, e.g.

the relative numbers of active and decoys. Metrics should be

intrinsic, e.g. how well does this docking program work, not

how well does this docking program work given this ratio of

actives to inactives—something that will clearly not be

known in advance in a prospective application.

To illustrate this, suppose we have ten actives and 990

inactives and we look at the enrichment at 10 %. We would

expect (at random) one active in that top 10 %, i.e. top 100, by

chance. If we see all ten actives we would claim an expected

maximum enrichment of ten, i.e. the reciprocal of 10 %. If we

have 90 inactives, we would similarly expect one active in the

top 10 %, i.e. ten compounds, and again if all the top ten were

actives we would achieve the maximal expected enrichment.

If we have forty inactives, however, while we would expect

only one active at random in the top five, i.e. top 10 %, even if

all the top five are actives the enrichment is now only five, not

ten. In general, if R is the ratio of inactives to actives.

Maximum Enrichment¼min
1

Enrichment Fraction
;1þR

	 


ð28Þ

Note this saturation effect has nothing to do with the

total number of actives and inactives, just their ratio and it

clearly gets worse at smaller enrichment percentages. At

1 % enrichment you need R [ 99, for 0.1 %, R [ 999 and

so on. And, of course, this saturation effect is noticed

before the enrichment limit is reached. One approach

would be to simply make sure inactives are always in great

excess. Better, though, is to redefine the enrichment as the

fraction of actives found when a given fraction of inactives

have been found. This metric, which we will call the ROC

enrichment [28], is essentially the ratio of Y to X of a point

on the AUC curve. It is independent of R and is an intrinsic

property of the method. It also allows for straightforward

calculation of the expected error because both the fraction

of actives and the fraction of inactives can be looked upon

as probabilities, for which we can calculate variances.

Suppose we set:

A = total number of actives

I = total number of inactives

f = fraction of inactives observed at a threshold T

g = fraction of actives observed at the same threshold

e = ROC enrichment

S = dg/df = slope of the ROC curve at point (f, g)

By our definitions,

eðf Þ ¼ g=f ð29Þ

Now, the finite number of actives and inactives means that

there can be error in e(f) due to variance in g, the fraction

of actives, and also from the ‘error’ in f, the fraction of

inactives. To see this, imagine we keep the actives constant

but introduce a different set of inactives. Then the fraction

g of actives at fraction f of inactives will likely change, i.e.

the expected error in the AUC needs to include terms that

involve both the number of actives, A, and the number of

inactives, I.

Next, rather than considering the variance of e, the

enrichment, consider the ratio of e to the maximum pos-

sible enrichment, i.e. 1/f. This number, ef, must run from

zero (no actives found) to one (all actives found) and hence

is like a probability. In fact, it is a probability, the proba-

bility an active is found before a fraction f of inactives is

found. As such, we expect the variances of the contribu-

tions from f and g will look like the variances for proba-

bilities, i.e.

varðgÞ ¼ g 1� gð Þ
A

ð30aÞ

varðf Þ ¼ f 1� fð Þ
I

ð30bÞ

To see how these ought to be combined we need to know

how the variance of a function of a variable depends on the

variance of that underlying variable—i.e. how f depends on
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g. The standard result, which we illustrate in ‘‘Appendix

3’’, is that for a function H of random variable x, we have:

var HðxÞð Þ � r2
x

oH

ox

	 
2

ð31Þ

i.e. the variance of the function of x is scaled by the square

of the rate of change of the function with respect to x. For

our case, the rate of change of g, the fraction of actives,

with f, the fraction of inactives, is simply the slope, S, of

the ROC curve at f. So we have:

varðef Þ ¼ varðgÞ þ S2varðf Þ

varðef Þ ¼ g 1� gð Þ
A

þ S2 f 1� fð Þ
I

ð32Þ

We can approximate S from the values of g at (f ± d).

Alternatively, we can look to the Hanley formula for a

typical ROC curve. If we do this we arrive at a simple

formula for S:

S ¼ g

f
1þ logðeÞ

logðf Þ

	 

ð33Þ

As such, the total variance of enrichment is:

varðeÞ ¼ 1

f 2

g 1� gð Þ
A

þ g

f
1þ logðeÞ

logðf Þ

	 
	 
2
f 1� fð Þ

I

 !

ð34aÞ

and the expected 95 % error bars on an enrichment value

are:

enrichmentðf Þ

¼ e� t95%
1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 1� gð Þ

A
þ g

f
1þ logðeÞ

logðf Þ

	 
	 
2
f 1� fð Þ

I

s

ð34bÞ

However, this formula uses the variables of the ROC

Enrichment. Most published enrichments are in the less

preferable form of ‘‘enrichment as a fraction of the data-

base’’. It is possible to translate from one form to the other.

The details are presented in ‘‘Appendix 4’’. If R is the ratio

of inactives to actives:

var Eð Þ ¼ var eð Þ 1þ R� Eð Þ4

1þ Rð Þ2R2
ð35aÞ

E ¼ E � t95 %
1þ R� Eð Þ2

1þ Rð ÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðeÞ

p
ð35bÞ

It is shown in ‘‘Appendix 4’’ how to derive the variance of

the ROC Enrichment purely in terms of the quantities of

traditional enrichment. As with AUC, the degrees of free-

dom necessary to calculate the t-statistics can be derived

from the Welch–Satterthwaite formula (Eq. 26), with the

variances of the active and inactive fractions in the place of

the variances for the actives and inactives. As with the

AUC it is likely that inactives are in excess and so meffective

is approximately (Nactive - 1).

Linear regression (straight-line fit) properties

Although there are obvious drawbacks in assuming a linear

relationship between predictor and predicted, it can also

make a lot of sense. It is often the simplest model beyond the

average of a set of experimental values (a ‘‘null’’ model that

itself ought to be applied more often). In addition, although

we deal with complex systems, we often assume that while

one variable cannot explain an effect entirely, everything left

out in the explanation might be proportional to what is left in,

i.e. that our key variable merely needs to be scaled. Examples

of this are simplified molecular polarization models wherein

the induced field is assumed linearly proportional to the field

from the static molecular charges, i.e. the assumption is made

that subsequent induction caused by this ‘first order’ induc-

tion can be captured by a scaling factor. Methods such as

Generalized Born [29] use this ansatz. The scaling of charges

to mimic polarization in force fields is a similar example (it is

presumed polarization energies are proportional to the

increase in Coulombic interaction between molecules with

scaled dipole moments). The approach is widely used in

other sciences; for example in simulating the properties of

stellar bodies it is sometimes easier to model the electrody-

namics than the magnetohydrodynamics [30]. Similar ansatz

occur in nuclear physics (e.g. the Bethe–Weizaecker formula

of the liquid drop model), quantum mechanics (e.g. func-

tional construction in Density Functional Theory), statistical

mechanics (e.g. liquid theory virial expansion cutoffs) and

solid-state physics (e.g. effective interaction potentials of

quasi-particles).

Even though models are not necessarily linear, it is typical

that linear regression quality is often used as a measure of

model quality. Given the widespread use of linear regression,

it is surprising that straightforward estimates of the likely

errors in the slope and intercept are seldom published.

Suppose:

y ¼ aþ bx

Here the variable y represents our estimation of some

property using x. The estimate of b that minimizes the

mean-square error is:

b ¼ rxy

rx

ð36Þ

Where,

rxy ¼
1

N � 1

XN

i¼1

ðxi � �xÞðyi � �yÞ ð37Þ
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The term rxy is called the ‘covariance’ since it measures

the degree to which x and y vary similarly, ‘‘co-vary’’, from

their respective means. The covariance is intimately related

to the concept of correlation, e.g. Pearson’s correlation

coefficient, which will be considered in the next section. It

can be shown that if the error in the estimation of y by x is

distributed as a Gaussian and is independent of x, then the

variation of the slope will also be a Gaussian, and that its

variance will be:

varðbÞ ¼
PN

i¼1 yi � ŷið Þ2=ðN � 2Þ
PN

i¼1 xi � �xð Þ2
ð38Þ

The accent on y means it is the linear prediction of y for a

given x. As such the numerator in this equation is just the

mean square error of the linear fit, but where we are

dividing by N - 2 instead of N. The reason for this, as

might be anticipated, is that there are two degrees of

freedom in the prediction, i.e. the slope and the intercept.

The 95 % confidence interval for the slope, b, is then:

b ¼ b̂� t95 %

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbÞ

p
ð39Þ

Here the t-statistic uses N - 2 as the degrees of freedom.

The variance of the intercept is simply a scaled version of

the variance of the slope:

varðaÞ ¼ varðbÞ
XN

i¼1

x2
i =N ð40Þ

And:

a ¼ â� t95 %

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaÞ

p
ð41Þ

Of course, the same ‘‘small numbers’’ conditions apply to

averages from Gaussian samples (such as a and b), i.e.

more extreme variation should be expected as per the

Student t-distribution if N is small.

An obvious question to ask is whether the variability of

slope and intercept are independent of each other, because

if the slope changes then we would expect the offset to

alter, and if the offset changes the slope will have to adjust

so that the best fit line goes through the middle of the data.

This has some very real consequences for applying a linear

regression model. For instance, if both the slope and

intercept are used in a formula we cannot assume the

combined error comes from independent sources. Consider

predictions made with the linear model. When a point is

further away from the center of the data it will be more

sensitive to the slope and when near the center more sen-

sitive to the offset. There is a relatively simple formula that

accounts for both, i.e. accounts for their covariance, to give

95 % confidence interval as a function of x, the predictor

value. The classical formula that includes the variance of

both and their covariance is:

yðxÞ ¼ ŷ� t95 %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� �xÞ2VarðbÞ þ 1

N

XN

i¼1

yi � ŷið Þ2=ðN � 2Þ

vuut

ð42Þ

An approximation to this formula that brings out its

essential features is:

yðxÞ ¼ ŷ� t95%
RMSEffiffiffiffi

N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 12ðx� �xÞ2

L2

s

ð43Þ

Here, the RMSE is the root mean square error of the linear

fit over all N points, and L is the range of x, i.e. the

maximum x minus the minimum x.

There are three items to notice in this formula:

(i) At the center of the data range the expected error

in y is the average error divided by HN, as if all

N points were variations the mean x value.

(ii) Away from the center the error is magnified by a

hyperbolic term

(iii) This magnification is scaled by the inverse of the

range of the data.

Figure 7 illustrates these points, in particular the dra-

matic effect of the range on the expected error.

A real-world example of this occurs in the estimation of

vacuum-water transfer energies. These estimations are very

useful in testing theories of solvation but the direct mea-

surement of these energies is difficult. Indirectly one can

use the combination of vapor pressure and solubility,

whether from the liquid or solid form, i.e. the transference

from vacuum to water can be thought of as a two stage

process: (1) from vapor to solid or liquid form (minus the

vapor pressure), then (2) from solid or liquid form to sol-

vated form (solubility).

Vapor pressure depends on temperature via the Clau-

sius–Clapeyron equation:

ln Pð Þ ¼ �DHvap

RT
þ C ð44Þ

Typically this equation is used to extrapolate for vapor

pressure P to a temperature of interest. As such, errors in

the slope and the intercept can both play a role in the

estimation of the vapor pressure that goes into estimation

of the solvation energy [31]. de Levie [32] has a similar

example for the estimation of room temperature rate con-

stants, along with more in-depth analysis of this common

problem.

Pearson’s correlation coefficient, r

Perhaps the most common metric seen in papers is the

correlation coefficient between two variables. Introduced

by Pearson [33], r, or more usually r2, is a measure of how
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closely two variables follow a linear relationship. The

formula for r is very simple:

r ¼ rxy=ðrxryÞ ð45Þ

Where rxy is the covariance as defined above (Eq. 37). If

x and y vary independently then rxy is equal to zero. If x, or

x plus an offset, is directly proportional to y then r is equal

to ±1, depending on the sign of proportionality.

The square of r can be interpreted as the ‘‘fraction of

variance explained by the predictor variable’’. i.e.

r2 ¼
P

i ŷi � �yð Þ2
P

i yi � �yð Þ2
ð46Þ

In this equation the numerator is the variance of the linear

fit, while the denominator is just the variance of the ori-

ginal y.

With r in hand, calculating the slope and intercept of the

best-fit line is simply:

b ¼ r
ry

rx

; ð47aÞ

a ¼ �y� b�x ð47bÞ

Another nice result is:

ðy� �yÞ
ry

¼ r
ðx� �xÞ

rx

ð48Þ

I.e., if we center both x and y by their mean values and then

‘normalize’ each by their standard deviations, there is no

offset just a slope between them that is just r!

However, when we try to estimate var(r) we face a

problem. Pearson’s r has a range (-1, ?1), not (-?,

??). So how can we talk about a Gaussian distribution for

r if this extends to plus and minus infinity? In fact, this is a

common problem for any measures that are limited,

including ones considered above. Figure 8 shows what a

distribution looks like of correlation coefficients of 0.8 and

0.9, produced by adding noise into a correspondence. As

can be seen, the distributions are asymmetric, particularly

for 0.9 as the upper bound of 1.0 exerts its effect.

One solution to this problem is to transform variables.

As we saw above, there is a simple, if approximate, method

to calculate the variances of functions of random variables.

If a transformation is not bounded, the CLT guarantees that

the distribution of the average of that transformed variable

will (in the limit of many samples) be a Gaussian. Consider

the function:

F rð Þ ¼ 1

2
ln

1þ r

1� r
ð49Þ

This is known as the Fisher transform and it transforms the

range [-1, 1] to [-?, ??]. Fisher used it to show that the

transformed correlation coefficient, F, has a Gaussian dis-

tribution with a standard deviation close to one, making its

confidence limits simple to calculate [34].

The procedure to calculate confidence intervals for r is

then to take the values that represent the confidence limits

for F and back-transform them to obtain limits for r. Fisher

also showed that the standard error decreases with respect

to H(N - 3), rather than HN. As such, the prescription for

error bars for r is:

Fig. 7 A graph showing the expected 95 % confidence limits for

predictions from a linear fit. The central line is ‘‘X = Y’’ and

represents the achieved fit to twenty data points (N = 20). The two

lines bracketing ‘‘X = Y’’ show the 95 % confidence limits for

predictions made from this line when the net RMSE = 1.0 across a

data range of 6.0 U, about a median of x = -6.0. The two outer lines

represent the same limits but for a data range of 3.0, about a median

of x = -6.0 again

Fig. 8 Distributions of r-values with most likely values of 0.8 and

0.9, produced by random sampling of the correlation coefficient of 50

points pairs of x and y, evenly spaced between 0.0 and 4.0
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1. Calculate r

2. Calculate the value of F(r)

3. Add and subtract {t-statistic/H(N-3)} to obtain con-

fident limits for F.

4. Back-transform these confidence limits into r-values.

These are the r-value confidence limits, and will be

asymmetric.

The back-transform function is:

rðFÞ ¼ e2F � 1

e2F þ 1
ð50Þ

As an example, suppose we have calculated r = 0.9

(r2 = 0.81) for ten points.

r ¼ 0:9! FðrÞ ¼ 0:5 ln 1þ 0:9=1� 0:9ð Þ ¼ 1:472

var Fð0:9Þð Þ ¼ 1

N � 3
¼ 1

7
¼ 0:143

F ¼ 1:472�
ffiffiffiffiffiffiffiffiffiffiffi
0:143
p

t95 % ¼ ½0:617; 2:327�

rðFÞ ¼ e2�0:617 � 1

e2�0:617 þ 1
;
e2�2:327 � 1

e2�2:327 þ 1

� �

rðFÞ ¼ ½0:55; 0:98�

r2 ¼ ½0:30; 0:96�

This range is probably much larger than many people

would expect for what seems, on the face of it, to be a

pretty good correlation!

Another simple statistical feature of r is its significance

level, i.e. what is the probability that, for this number of

points, we should see an r equal to this value or greater by

random chance? If we follow the prescription above we

could find the confidence interval for r = 0.0 and see if our

r-value lies within it:

r 2 e
2t95 %ffiffiffiffiffi

N�3
p � 1

e
2t95 %ffiffiffiffiffi

N�3
p þ 1

;
e
�2t95 %ffiffiffiffiffi

N�3
p � 1

e
�2t95 %ffiffiffiffiffi

N�3
p þ 1

2
4

3
5 ð51Þ

Note that the range for r = 0.0 is symmetric. If N is large

this approximates to:

r 2 �t95 %=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

; t95 %=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
ph i

ð52Þ

i.e.

rsignificant

  ¼ t95 %=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p

; ð53Þ

A more accurate formula can be arrived at by considering

the exact distribution for r = 0. This leads to:

rsignificant ¼
t95 %ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 2þ t2
95 %

q ð54Þ

As N gets larger so does this threshold r, meaning we can

be more confident a result is not random if we have more

points. For the example above with so few points we have a

larger t95 % of 2.262 leading to

rsignificant ¼
2:262ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ 2:2622
p ¼ 0:62

This, again, may be a surprise, i.e. if there are only ten data

points even an r of, say 0.6 (\0.62) is not statistically

significant at the 95 % level.

Finally, researchers should be aware of the difference

between the sample and the population versions of r. As we

saw earlier, there can be a bias in a statistical quantity, such

as the standard deviation, for finite sampling size. This

happens to be true for Pearson’s r. If we let the population

(e.g. infinite sampling size) r be q then an unbiased esti-

mator (bias of order 1/N - 1) for large N is:

hqi ¼ r 1� 1� r2

2 N � 1ð Þ

	 

ð55Þ

This equation tells us the expected value of the population

r is smaller (absolute sense) than the sample correlation

coefficient r. In the above example, where r = 0.9 and

N = 10, this formula suggests a small correction of r to

0.89. The correction is larger if r or N are smaller.

Pearson’s r is central to many disciplines; it has become

the sine qua non of ‘‘discovery’’, i.e. is there an effect or

not. As such it is important to understand its limitations, for

instance the expected error, the sensitivity to outliers, and

what it tells us about the underlying causes of the corre-

lation. This topic will be explored further in the follow-on

article in which we consider the comparison of r-values.

It should be noted that there are at least two other

popular measures of correlation, namely the Kendall’s tau

and Spearman’s rho. Tau measures the preponderance of

correct orderings within a list, e.g. what proportion of list

pairs do we see ranked in the correct order, whereas the

Spearman’s rho is a rank order facsimile of Pearson’s r, i.e.

values X and Y are replaced with ranks of each variable,

i.e.

qxy ¼
PN

i¼1ðrnk:xi � av � rnkÞðrnk � yi � av � rnkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðrnk � xi � av � rnkÞðrnk � xi � av � rnkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðrnk � yi � av � rnkÞðrnk � yi � av � rnkÞ

q ð56Þ
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If the distributions of errors are roughly Gaussian, and

the relationship is linear, then there are formulae that can

interconvert between r and s and q and provide error

estimates for each [35]. Notably, simply dividing the (N -

3) term in equations dealing with the confidence intervals

for r by the constant 1.06 gives equivalent significance

values for q. Also, s and q are much more robust (outliers

can rearrange at most 1/N of the total number of rank

comparisons) and they can find any monotonic relation-

ship, not just linear correspondences.

There also exist a wide range of ‘‘pseudo’’ r-squared

quantities that can be used for categorical variables, such as

McFadden’s, Efron’s, Cox and Snell’s, and the Nagelkerke

or Cragg and Uhler’s [36]. These feature as analogs of

Pearson’s r but for logistic regression, i.e. when what we

want to predict is essentially binary, e.g. active or inactive.

The process of logistic regression is appropriate to many

aspects of computational chemistry; however, there are few

applicable insights into its error analysis from classical

statistics and so it falls outside the scope of this article.

Another class of r-values attempts to account for the

number of parameters in the model, for instance the

‘‘adjusted’’ r-squared of Theil [37]:

R2 ¼ 1� ð1� R2Þ N � 1

N � 1�#parameters
ð57Þ

Similarly, there is a variant of McFadden’s pseudo r-

squared that penalizes parameters. Such variants are purposed

towards model comparison and not estimating quality of

correlation. Furthermore, there are reasons to prefer other tests

for comparing parameterized models, such as Fisher’s F-test

[38], or tests that include parameter penalties from informa-

tion theory, e.g. Akaike’s Information Content (AIC) or

Schwarz’s Bayes Information Criteria (BIC) [39, 40].

Asymmetric error bars

As we saw for Pearson’s r, error bars can be asymmetric

when there are fundamental bounds to the confidence

limits. The way forward in such cases is to transform to a

variable that is unlimited, and hopefully with an error

distribution that is more symmetric and Gaussian. We then

calculate error bars for this new variable, and finish by

transforming these error limits back to the original vari-

able. In this section this process is examined for the

quantities of interest considered above.

Probabilities

Probabilities can only range from zero to one. The trans-

formation typically applied is the well-known logit

function:

f ðpÞ ¼ log
p

1� p
ð58Þ

As required, the range of this function is (-?, ??) for an

input that is (0,1). To use this to calculate effective error

bars we need two addition formulae, the derivative of this

function with respect to x and its inverse.

df

dp
¼ 1

pð1� pÞ ð59aÞ

f�1ðpÞ ¼ 1

1þ expð�f Þ ð59bÞ

Thus the prescription is as follows:

1. Calculate the standard error of the input p, SE(p), i.e.

sqrt(p(1 - p)/N)

2. Calculate f(p)

3. Multiply SE(p) by (df/dp) to get the standard error

SE(f).

4. Calculate f ± t95 % * SE(f).

5. Back-transform these two values to obtain the confi-

dence interval in p

This process can be put into a single, succinct formula:

p95 % ¼
p

pþ k 1� pð Þ ;
p

pþ k�1ð1� pÞ

� �
ð60Þ

Where,

k ¼ et95 %=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1�pð ÞN
p

ð61Þ

In the limit of large N this reproduces the expected

‘‘Gaussian’’ limits.

The Area Under the (ROC) Curve (AUC)

As stated previously, an AUC for an ROC curve can be

interpreted as the probability a randomly chosen active has

a higher score than a randomly chosen inactive. As such,

we simply follow the same multi-step procedure as above

for probabilities, but where we substitute the formula for

the standard error of the AUC, i.e. Eq. 25c, rather than the

standard error for the probability. As such, there isn’t such

a nice analytic formula as for probability but the procedure

is straightforward, i.e. we have to follow the prescription of

transformation, calculate the transformed limits, and then

back transform to obtain the limits in terms of a

probability.

As an example, suppose we have an AUC of 0.9 with

many inactives yet only ten active compounds. First we

transform the AUC with the logit equation:

f ¼ log
p

1� p

	 

¼ log

0:9

0:1

	 

¼ 2:20 ð62Þ
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Equation 25c gives the standard error:

SEAUC 0:9ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:92 1� 0:9ð Þ= 1þ 0:9ð Þ

Nactive

s

¼ 0:065 ð63Þ

If we were to build a confidence limit of two standard

deviations we would obtain: [0.9 – 2 * 0.065,

0.9 ? 2 * 0.065], i.e. [0.77,1.03]. Thus the upper limit

would exceed one! So instead, we multiply the standard

error by the formula in Eq. 59a, i.e.

SEf ð2:20Þ ¼ 0:065 � 1

p 1� pð Þ

¼ 0:065 � 1

0:9 1� 0:9ð Þ ¼ 0:72

ð64Þ

The limits, assuming a t-statistic of 2.0, are [2.20 –

2 * 0.72, 2.20 ? 2 * 0.72], i.e. [0.76, 3.64]. Transforming

these values back with Eq. 59b, we arrive at:

AUC 2 1

1þ exp �0:76ð Þ ;
1

1þ exp �3:64ð Þ

� �
¼ ½0:68; 0:97�

ð65Þ

We note that the lower limit of 0.68 is substantially lower

than the untransformed limits of [0.77, 1.03], but con-

versely the upper limit of 0.97 is lower and now sensible.

The actual width of the confidence interval is almost the

same, i.e. 0.26 untransformed and 0.29 transformed; it has

just swung from higher to lower. We see similar behavior

in Fig. 8 for the distribution of Pearson’s r-value of 0.9,

where the upper 95 % confidence bound is only half the

width of the lower 95 % confidence bound.

Virtual Screening Enrichment

As described above, one can define an enrichment quantity

that is bounded by zero and one, i.e. the ROC Enrichment

scaled by the percent of inactives. This can also be treated as a

probability; it is the probability that an active is seen before a

given percent of inactives. As such, this quantity can be treated

by the standard procedure, i.e. transform the scaled measure,

scale the variance using the derivative of the logit function,

calculate the confidence limits in the transformed space, back

transform and finally scale to a ROC Enrichment by dividing

by the percent of inactives. The question of the number of

effective degrees of freedom follows a similar treatment as

with AUC, i.e. the Welch–Satterthwaite formula, Eq. 26,

whose elements are the individual variances of actives and

inactives and their respective counts. If the number of decoys

is much larger than the number of actives then the latter is used

as the effective number of degrees of freedom.

If the more traditional definition of enrichment is being

used then we should first transform to the equivalent ROC

enrichment numbers. This is important because we cannot

extract a simple probability from the traditional enrichment

value because of saturation. Saturation means that the

apparent probability we see, i.e. the probability an active is

found in a given percent of the database, is dependent on

other factors, such as the ratio of actives to inactives.

Transforming to the ROC enrichment gives a pure proba-

bility for which confidence limits can be established. These

can then be transformed to traditional enrichment numbers.

The formulae for these transformations can be found in

‘‘Appendix 4’’.

RMSE

We return, now, to the problem of how to calculate the

confidence limits of a variance-related quantity, for

instance an RMSE. As was shown earlier, the standard

deviation of a variance has a very simple expression,

namely the variance multiplied by the square root of 2.0.

However, as with many of the properties above, there is a

natural boundary to the variance, i.e. since it is a squared

quantity it cannot be less than zero. This means that the

distribution of the variance about its expected value cannot

be Gaussian. In the examples above this was tackled by a

transformation of variables into a form in which the vari-

ance was once again Gaussian. Here it is easier to simply

use the properties of the actual distribution, i.e. the sum of

the squares of differences from a set of values. That dis-

tribution is known as the Chi squared distribution (v-

squared). Just like the Student t-function its shape depends

on the sample number. Equation 66 gives the definition of

the function and Fig. 9 provides some example

distributions:

vðx; tÞ ¼ 1

2
m
2C m

2

� � x
t
2
�1e�

x
2 ð66Þ

The v-squared function is the distribution of the sum of

squares of random numbers chosen from a unit Gaussian

(i.e. centered at zero with standard deviation of 1.0). The

average of the square of a random number is just the

standard deviation, i.e. here set to 1.0; so the average of the

v-squared function for N Gaussians is just N. When N is

high it also resembles a Gaussian function, which is why

the naı̈ve application of the ‘‘variance of the variance’’

works well when N is large; see, for example the right most

curve in Fig. 9.

The v-squared function has many uses in statistics. It is

used in assessing the quality of fit of an observed distri-

bution to a theoretical prediction, as in the classic Chi

squared test, in assessing if classification criteria are

independent, in non-parametric tests such as Friedman’s

Test for distinguishing ranked quantities, in the derivation

of Fisher’s F-test (basically a ratio of two v-squared
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functions), which can be used to see if the addition of

parameters sufficiently improves a model. Here all we need

are ranges for 95 % confidence limits. In the examples

from the Basics section we had an RMSE of 2.0 kcal/mol

for some affinity prediction based first on fifty samples and

then on eight.

Example 1: Fifty samples

s50 ¼
P50

i¼1 xi � �xð Þ2

49
ð67Þ

49s50 ¼
X50

i¼1

xi � �xð Þ2 ð68Þ

i.e. the right hand side is equal to the sum of fifty randomly

distributed square numbers. If these were drawn from a unit

Gaussian the 95 % range of this sum would be from 32.36

to 71.42 (from table look-up of v-squared values for the

95 % range for N = 50). Therefore we know:

32:36r2\49s50\71:42r2 ð69Þ

Here r2 provides the appropriate scaling since the numbers

are not drawn from a unit Gaussian. This can be rearranged

to give:

49s50

71:42
\r2\

49s50

32:36

i.e. substituting s50 = 2.02 we get:

49 � 4:0

71:42
\r2\

49 � 4:0

32:36
ð70Þ

Finally:

1:67\r\2:46 ð71Þ

These compare to the error bars from a Gaussian distri-

bution of [1.54, 2.37], i.e. the error from the Gaussian-

based Eq. 14 is slightly too conservative.

Example 2: Eight samples By table lookup for the 95 %

range for v-squared for eight variables we obtain 2.18 and

17.56. Therefore:

7 � 4:0

17:56
\r2\

7 � 4:0

2:18
ð72Þ

Leading to:

1:26\r\3:58 ð73Þ

Notice that the lower error bound is now much closer to the

estimation of 2.0 because it is being ‘‘forced’’ away from

the lower bound of 0.0, whereas the upper bound has

moved up considerably.

The general formula for these error bounds is simply:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þr2

vhigher

s
\r\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þr2

vlower

s

ð74Þ

Where the upper and lower v bounds are from table lookup.

Combining errors from different sources

General formulae and examples

As we have seen in the case of the total error for AUC or

Enrichment, there can be multiple sources of error that

have to be combined to arrive at the total error. We have

also seen that when we have a function of a random vari-

able we can scale the expected contribution to the variance

by the square of the rate of change of that function with

respect to the noisy variable. These two observations can

be joined to give a single statement as to how multiple

sources of independent variability add to give the total

variability. Given a function X such that:

X x1; x2; x3; . . .; xnð Þ

varðXÞ ¼
XN

i¼1

oX

oxi

	 
2

varðxiÞ ð75Þ

A typical proof can be found in ‘‘Appendix 3’’ along with its

extension to the case in which the variables are not independent:

var Xð Þ ¼
XN

i¼1

oX

oxi

	 
2

var xið Þ

þ
XN

i¼1

XN

j6¼i

oX

oxi

	 

oX

oxj

	 

covðxi; xjÞ ð76Þ

Fig. 9 Illustrating the v-squared function in Eq. 66, for m = 1, 2, 4, 6

and 10. Curves are in order of their average from left to right. Note

that the functions with m[ 2 peak at around m-2 but the average of all

functions is actually m
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Here the covariance of variables is as defined previously

(Eq. 37).

To arrive at the total error we take the square root of the

sum of the component variances, each weighted by the

square of how quickly the composite variable changes with

respect to the component. In the simplest case where X is a

sum of equal terms:

varðXÞ ¼
XN

i¼1

varðxiÞ ð77Þ

For example, if we want to know the variance of a sum of

AUCs for a set of docking experiments, we simply add the

variances. If we are estimating the binding energy of a

ligand and have several independent components then the

variance of the total energy is the sum of the variance of

the parts.

The same formula is used for the difference between

properties, i.e. if:

X ¼ x2 � x1

var Xð Þ ¼ var x1ð Þ þ var x2ð Þ ð78Þ

In either case we are using the fact that:

oX

ox1

	 
2

¼ oX

ox2

	 
2

¼ 1 ð79Þ

More generally, if the formula for X is:

X ¼
XN

i¼1

aixi ð80Þ

Then:

varðXÞ ¼
XN

i¼1

a2
i varðxiÞ ð81Þ

Sometimes it is important to find the right function of X,

the composite variable, in which to assess how errors can

compound. Consider selectivity, i.e. the ratio of two

binding affinities, Kd.

SAB ¼
KA

d

KB
d

ð82Þ

Suppose there is some natural error in the experimental

binding of affinity such that Kd is potentially off by a

factor of 10. The first thing we note is that we do not

mean:

Kd ¼ Kd � 10;Kd þ 10
� �

We mean:

Kd ¼ 0:1Kd; 10Kd

� �
ð83Þ

As such, the correct variable to express variances is the

logarithm (base 10) of the binding constant:

logðKdÞ ¼ log Kd

� �
� 1; log Kd

� �
þ 1

� �
ð84Þ

Similarly,

log SABð Þ ¼ log KA
d

� �
� log KB

d

� �
ð85Þ

Now the variance of log(S) can be simply calculated:

var log SABð Þð Þ ¼ var log KA
d

� �� �
þ var log KB

d

� �� �

¼ 2 � logð10Þ ¼ 2 ð86Þ

Therefore,

log SABð Þ ¼ hlog SABð Þi � t95 %

ffiffiffi
2
p

If we set the t statistic to 2.0 we get:

SAB ¼ SAB=673:6; 673:6 � SAB½ � ð87Þ

Needless to say, this is a very wide range, and comes about,

in part from the addition of errors. The problem of

expected errors in selectivity estimation is analyzed in

practical detail in [41].

In the above example the ratio was really a log-differ-

ence. In the case of the actual ratio of two quantities,

perhaps the ratio of two permeability values, we have:

R ¼ Y

Z
ð88Þ

varðRÞ ¼ 1

Z2
varðYÞ þ Y2

Z4

	 

varðZÞ ð89Þ

For instance, if a Caco2 permeability value of Y is

15.0 ± 2.0 * 10-6 cm/s and Z is 5.0 ± 1.0 * 10-6 cm/s,

then the error on the ratio R is:

R ¼3� t95 %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

25
þ 225

625

r

R ¼3� 0:72t95 % ð90Þ

Another application to ratios concerns two commonly used

measures of merit, Cohen’s ‘‘effect size’’, d:

d ¼ �x2 � �x1d e
r

ð91Þ

And the coefficient of variation:

cv ¼
r
l

ð92Þ

Cohen’s d is more usually a measure of the difference

between two properties, a topic explored in detail in the

second article. Here we will consider that second value to

be that of a ‘‘NULL’’ model, i.e. zero, in which case:

d ¼ l
r

ð93Þ

I.e. the inverse of Cv. Cohen’s d is used as a measure of

importance of an effect, i.e. given the noisiness of a factor,

how much does the effect stand out from that noise. Unlike
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the t statistic, it does not have a dependence on the sample

size, which means it is an intrinsic property of the effect. It

is equivalent to the ‘‘oomph’’ described by Ziliak and

McCloskey [7]. The coefficient of variation is typically

used as a measure of assay accuracy and requires an

absolute scale for l, the mean, e.g. a measure of perme-

ability plus or minus 10 % would have a coefficient of

variation of 0.1. It is also an intrinsic property, but intrinsic

to the assay.

As we know the variance of a mean and also the vari-

ance of a variance we can apply the above formula for the

variance of a ratio:

varðdÞ ¼ 1

r2
r2 þ

ffiffiffi
2
p l2

r4

	 

r2

	 


¼ 1þ
ffiffiffi
2
p l2

r2

	 
	 


¼ 1þ
ffiffiffi
2
p

d2
� �

SEðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
2
p

d2

N

s

ð94Þ

var cVð Þ ¼
1

l2

ffiffiffi
2
p

r2 þ r2

l4

	 

r2

	 


¼
ffiffiffi
2
p r2

l2

	 

þ r4

l4

	 
	 


¼ r4

l4
1þ

ffiffiffi
2
p l2

r2

	 
	 


¼ c4
V 1þ

ffiffiffi
2
p

d2
� �

SE cVð Þ ¼ c2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
2
p

d2

N

s

¼ c2
V SE dð Þ ð95Þ

The question arises as to whether we need to worry about a

covariance component, i.e. is:

covðl; rÞ ¼ 0?

It is a remarkable fact that this is both a necessary and

sufficient condition for normality! I.e. if the variance and

mean are independent then the distribution is Gaussian, and

vice versa [42].

The general error formula

Often we will not know what the derivative of the com-

posite is with respect to the component. For instance,

perhaps we know that several factors are important but not

exactly how. Variation in any of these parameters can give

rise to variation in the effect we care about. In this case the

general statement is typically in terms of the net and

component errors,

Errtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

Err2
i

s
ð96Þ

This is how error propagation is presented in engineering

texts. They simply combine the variance of each compo-

nent via the error it introduces. Here the error is, in effect,

the product of the standard deviation of each ‘factor’,

multiplied by the sensitivity of the composite variable, i.e.

the rate of change with respect to the component variable.

Take, for example, the error in the pKa estimation of a

functional group. This might involve the error in the

measurement of the pKa of a model compound, the

expected error in moving from the model to the actual

compound, the error in the estimation of the influence of an

external potential from some distal group, etc. Each term is

introduced, perhaps empirically, as adding its own contri-

bution to the variance of the composite variable, in this

case pKa. If the thermodynamics of a process are hard to

measure but there are several ‘‘canonical’’ steps in the

process, each step will add its own contribution to the total

error. For example, solubility can be looked upon as a two-

step process: sublimation from the crystal form and sol-

vation of the free species into water (or other solvent).

Each step has its own energy component and error. Reac-

tion rates often involve several steps, each of which can be

measured, perhaps, to good precision, however the total

rate may be inaccurate due to accumulation of error.

What is important here is to remember that there may be

multiple sources of error. If they can be estimated indi-

vidually they can be combined in an appropriate manner,

e.g. as in the general equations above.

Estimating unknown contributions to error

The general formula can also be used in ‘‘reverse’’. Sup-

pose we have empirically measured the total error and

believe we know all but one of the contributions to that

error, m, then:

Errm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Err2
observed �

Xm�1

i¼1

Err2
i

vuut ð97Þ

To paraphrase Sherlock Holmes [43], when all other

sources of error have been removed, what remains must be

the missing error.

As an example, suppose we have a computational

technique, say docking, and a test set of structures. We

diligently apply our docking program to the test set,

recording the range of performance statistics across this set.

Now we give out both the test set and the software to the

community to perform their own validations. To our sur-

prise the results that are returned are not the same as ours
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but vary considerably depending on who used the program.

For instance, it has been demonstrated that some programs

with stochastic components behave quite differently on

different platforms [6], or it could be because different

program presets were used. Overall, the variance of per-

formance is a reflection of user variability. If we know all

other sources of error, for instance the limited number of

systems, the limited number of actives and decoys and so

on, then the remaining error is simply user variability.

Alternatively, we could look at our own evaluation in

more detail. Some variability will arise because of the

range of aptitude of the technique for different protein

systems and some will arise because of the finite number of

actives and decoys used for each system. As we can esti-

mate the expected error for the latter, we can calculate a

more accurate estimate of the intrinsic performance across

different systems, i.e. we can estimate what our variability

would have been if we had an infinite number of actives

and decoys.

To examine this further, the equation for the total error

in a property that is averaged over N systems is:

Errobserved ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Err2
intrinsic þ

XN

i¼1

Err2
i = N N � 1ð Þð Þ

vuut ð98Þ

Here Erri is the error in ith system. For example, suppose

we were using the DUD dataset to evaluate a docking

program. We would like to know what the error in our

evaluation of the average AUC across all forty systems

might be. To do this we would evaluate the standard error

as:

SEDUD ¼
ffiffiffiffiffiffiffiffiffiffi
r2

AUC

N

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 AUCi � AUC
� �2

NðN � 1Þ

s

ð99Þ

Where N = 40. Now, each system has a finite number of

actives and decoys and so each AUCi in the above equation

has some error, which will add to the total error. It would

be nice if we knew the standard error as if there were no

additional error from each system, i.e. if all that was left

was the true variance between systems. But we know the

error of each system is independent of every other system

and so we can rewrite the equation for the standard error as:

SEDUD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼N
i¼1 AUC1i þ Erri � AUC
� �2

NðN � 1Þ

s

SEDUD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE1DUDð Þ2þ
PN

i¼1 Errið Þ2

NðN � 1Þ

s

ð100Þ

Here the infinity symbol is used to imply the value we

would expect if there were an infinite number of actives

and decoys for each system, whereas Erri is the error in the

ith system because their number is finite. Therefore:

SE1DUD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEDUDð Þ2�
Pi¼N

i¼1 Errið Þ2

NðN � 1Þ

s

ð101Þ

I.e. we can estimate what the ‘‘true’’ standard error might

be.

Here is an example for a virtual screening program using

DUD as its dataset and AUC as the performance metric.

The average AUC was 0.75.

rDUD;Observed ¼ 0:136

SEDUD ¼
0:136ffiffiffiffiffi

40
p ¼ 0:022 ð102aÞ

r2
system ¼

Pi¼N
i¼1 Errið Þ2

N � 1
¼ 0:0038

Here the Erri are calculated using the Hanley formula

assuming an excess of decoys to actives. Therefore:

SE1DUD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:022ð Þ2�ð0:0038=40Þ

q
¼ 0:0165 ð102bÞ

I.e. we have improved the error bound in Eq. 102a by

removing the effect of the expected error over the systems

within DUD.

Assessing adding noisy systems to test sets

Now, suppose we are considering adding a new system to

our set of test systems, but we know this new system is

going to be noisy, i.e. perhaps there are relatively few

active compounds for this protein to use as exemplars. Is it

worth adding the new system? If we add it there would be

more systems, so the average performance should now be

more accurate. However, we know that improvement in the

mean comes slowly, i.e. because of the HN effect. Will the

noise in this new system overcome the advantages of

N increasing to N ? 1? Is more data actually better? As

derived in ‘‘Appendix 5’’, there is a simple criterion for

this:

rintrinsic
2 þ 2r2

system [ Err2
Nþ1 ð103Þ

Where:

rintrinsic
2 ¼ N � SE1DUD

� �2 ð104Þ

And:

r2
system ¼

Pi¼N
i¼1 Errið Þ2

N � 1
ð105Þ

In situations such as docking evaluations the first term

tends to dominate, i.e. the variance between systems is

much larger than the noise within any one system. As such

this condition can be approximated with:

r2
intrinsic [ Err2

Nþ1 ð106Þ
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This makes intuitive sense, i.e. if the intrinsic noise is

larger than that of the system being added then that system

can only help.

Notice that this is not ‘‘cherry-picking’’. Cherry-picking

is when systems are removed from the tally to make the

average AUC look better. What we are doing is looking to

see if we can reduce the noise in the estimation of the mean

AUC. Suppose we return to the DUD dataset and the actual

data from a docking evaluation. The smallest number of

actives in DUD is for the catechol methyl-transferase

protein, for which there are only eight. The expected sys-

tem error for this protein, given that the virtual screening

program achieved an AUC of 0.63, is:

Err2
Nþ1 �

AUC2 1� AUCð Þ
1þ AUCð ÞNactives

¼ 0:632 � 0:37

1þ 0:63ð Þ � 8
¼ 0:0113

ð107Þ

The intrinsic variance of the system, assuming we

started with 39 systems, i.e. had not included catechol

methyl-transferase, is:

r2
intrinsic ¼ N � SE1DUD

� �2¼ 39 � 0:0165ð Þ2¼ 0:0106

ð108Þ

The system variance was:

r2
system ¼

Pi¼N
i¼1 Errið Þ2

N � 1
¼ 0:0017 ð109Þ

Therefore:

rintrinsic
2 þ 2r2

system ¼ 0:0123 [ Err2
Nþ1 ¼ 0:0113 ð110Þ

As such the decision to include the likely noisy system of

catechol methyl-transferase was justified, but it is not

adding much signal! It should be noted that our derivation

required the AUC for this system as a part of the estimation

of the expected error. This is a limitation of the method,

which could be abrogated by using an expected AUC, e.g.

the average over all systems. This would have made little

difference to the conclusion.

Finally, we have assumed the noise in the system as

coming from the intrinsic variance of the method, i.e. if we

had an infinite number of actives and decoys, plus the

expected variance from the systems. There could be other

sources of noise, for instance we mentioned above the

potential contribution from different users applying the

program. These terms would become a part of what we would

see as the intrinsic variance.

Variance-weighted averages with examples

The second major consideration for modelers combining

information is different measurements of the same thing,

i.e. perhaps we measure a property N different ways. This

is different from calculating an average metric over N sys-

tems. In the first case the N measurements, in the limit of

perfect accuracy, are all the same. In the second, in the

limit of perfect accuracy we expect an average over dif-

ferent numbers. We are considering cases such as when we

want to combine several different LogP values, each

measured using a different experimental technique. Here

the underlying value is the same, it is the inaccuracy of

experiments that leads to different values. The difference is

important because not only is the formula for the combined

error different, but that for the mean is different! In fact, the

formula for the expected mean that will give the lowest,

unbiased, expected root-mean square error is:

�X ¼
PN

i¼1 Xi=Err2
iPN

i¼1 1=Err2
i

ð111Þ

I.e. the most accurate mean we can obtain is a weighted

average, where the weights are the reciprocals of the error

(squared) for each measurement. Measurements that are

inaccurate (larger errors) are down-weighted compared to

those that are more accurate. If one measurement is very

accurate compared to the others it dominates the sum.

One way to clarify when this formula should be used is

to ask what would happen if one measurement was

exceedingly accurate. In the case of combining different

systems this would mean that the value associated with this

one system would dominate the average—clearly not what

we would want. However, if we are presented with several

estimates of a LogP we would clearly be satisfied if one

measurement was very accurate and would intuitively use

it rather than combine it with other, less accurate values.

The formula for the expected error for combining

measurements is just the harmonic average of the squares

of the individual errors:

Err2
total ¼

1
PN

i¼1 1=Err2
i

ð112Þ

Hence, errors add but only via the reciprocal of the sum of

their reciprocals. The effect, then, is that a single small

error dominates the denominator and hence the total error.

If errors are all roughly equal we retrieve the expected

observation that the total error goes down by HN.

It should be noted that all terms in the denominator add,

i.e. all measurements reduce the total error, even the noisy

ones. It does not matter how bad a measurement is as long

as we know how bad, i.e. the important caveat here is to

actually know the error of a particular measurement. A

more typical situation is that a computational chemist is

presented with a set of measurements without associated

error bars and then has to combine all values. In this sit-

uation more data can be worse. We illustrate this by con-

sidering the following situation. Suppose we have three
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measurements of a pKa as in Table 2 with associated errors

shown.

We consider three cases:

Case 1 Use all three measurements with the associated

standard errors.

pKa ¼
4:2
�
0:22þ4:4

�
0:22þ4:9

�
0:52

1=0:22þ1=0:22þ1=0:52
¼ 4:34

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1=0:22þ1=0:22þ1=0:52

s
¼ 0:13

Case 2 Use all three measurements but assume the

standard error of the third measurement is the same as that

of the other two measurements.

pKa ¼ 4:2þ 4:4þ 4:9

3
¼ 4:50

SE ¼
ffiffiffiffiffiffiffiffiffi
0:22

3

r
¼ 0:12

Case 3 Decide the third measurement is unreliable and

only use the first two measurements.

pKa ¼ 4:2þ 4:4

2
¼ 4:30

SE ¼
ffiffiffiffiffiffiffiffiffi
0:22

2

r
¼ 0:14

The most accurate result is from Case 1 with the correct

variance weighting of data. Adding the third result without

taking into account its expected error actually made things

worse compared to leaving it out entirely. This illustrates

the importance in knowing the accuracy of independent

measurements. In addition, it can be used to assess the

potential consequences of including a measurement of

unknown accuracy.

This leads into the area of outlier removal that is beyond

the scope of this article, but the concept is straightforward.

Suppose we are suspicious of the third measurement, and

of its uncertainty estimate. Using just the first two values

we obtain an estimate of 4.30, plus an uncertainty of 0.14.

This makes the third value of 4.9 appear unlikely unless it

has a large variance. Pierce’s criterion [44] is to calculate

the likelihood of all three observations, compared to the

likelihood of two good measurements and one being in

error. It is also similar in spirit to the discussion above as to

whether adding a new, noisy system to a set improves or

degrades the expected accuracy.

The variance-weighted formula is typically used in the

field of meta-analysis, i.e. where an effect size is esti-

mated by combining different studies of different inher-

ent accuracy. However, there is no reason it cannot also

be applied to problems in computational chemistry when

results of widely different provenance and accuracy are

involved.

Weighted averages of variances

Sometimes the average we want is of the same property,

i.e. as in the preceding example, but where we assign

weights for some other reason to each property, i.e.

hxi ¼
PN

i¼1 WixiPN
i¼1 Wi

ð113Þ

In this case an unbiased estimator of the standard deviation

is:

r2 ¼
PN

i¼1 Wi
PN

i¼1 Wi

� �2�
PN

i¼1 W2
i

� �
XN

i¼1

Wi xi � hxið Þ2 ð114Þ

Here the sum is exactly what one might expect, i.e.

weighted sum of the deviations from the average, but the

prefactor represents the bias-correction. In the case all

weights are equal this prefactor becomes (1/N - 1) as

expected. See ‘‘Appendix 1’’, part (ii), for a proof of this

form.

Bootstrapping error bars

Introduction

In recent years computing power has made it possible to

estimate many statistical quantities without the need for

analytic formulae. Put simply, the data at hand is resampled

‘‘with replacement’’ and each time the metric of interest is

recalculated. The distribution of this set of recalculated

numbers is then used to derive statistics of interest. The

phrase ‘‘with replacement’’ just means that if you start with

N observations, the new ‘‘random’’ set of N observations

can contain (almost certainly will contain) repeated

instances. E.g. if your dataset is {1, 4, 3, 2, 5} a boot-

strapped sample might be {1, 1, 5, 3, 3}, i.e. same number

of data points but drawn randomly from the original. As a

rule of thumb, about one quarter of the data points will be

used more than once. To get a 95 % confidence limit from

bootstrapping you observe the range around the mean that

contains 95 % of the resampled quantity of interest.

Table 2 Table showing example pKa values for three measurements

with associated SD for each experimental measurement

pKa1 pKa2 pKa3

Value 4.2 4.4 4.9

SD 0.2 0.2 0.5
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Because our bounds are drawn from the calculated distri-

bution they cannot exceed ‘natural’ limits, e.g. [0,1] for

probabilities. Neither do we have to worry about small

sample size effects, or effective degrees of freedom. No

mathematics required! Just resample many times (typically

thousands) until the statistics you desire seem stable. As

computational time is these days cheap, this is feasible for

nearly any application in the field of molecular simulation.

It can be tempting to assume that bootstrapping is all

that is ever needed, but this is incorrect. An obvious

obstacle is if the primary data is not available, or difficult to

extract from its deposited form, e.g. embedded in a PDF

file. It is surprising how often journals allow the deposition

of hard-to-use data to count as ‘submission of data’. One

wonders how far structural biology would have got if PDB

files were only available as PDF files! With classical sta-

tistics a researcher can come up with on-the-fly estimate of

confidence limits of a proposed finding. Such checks with

reality are often useful at scientific meetings.

Having an analytic formula allows a scientist to think

about the character of the error—e.g. what the dominant

terms will be, how they will behave with respect to size. This

should be a natural part of how scientists think about

experiments and can get lost if everything is just simulated.

When Schrödinger was presented with the result of an early

computer-derived numerical solution to his famous equation

he is supposed to have commented, ‘‘I know it (the computer)

understands the answer; however, I’d like to understand it

too’’. Sometimes a result is all you need and at other times an

understanding of the result is more important.

Limitations

There are times when bootstrapping is not appropriate.

Some of these circumstances are germane to computational

chemistry:

(i) Bootstrapping may be problematic for calculating

the mode of a set of observations, i.e. the most

common occurrence. As you are introducing multi-

ple copies of observations you can end up measuring

how often you oversample a single observation [45].

(ii) Calculating the maximum or minimum of a function

is also not natural for this procedure. Any resampling

that leaves out the maximum or minimum can only

underestimate these extrema, i.e. bootstrapping can-

not help but average to a lower value than it should.

This has relevance in the calculation of enrichment

in virtual screening when the percent of inactives

screened is so small essentially you are measuring

the extreme values of the scores for actives.

(iii) A significant limitation of bootstrapping is the

calculation of correlation coefficients. This makes

intuitive sense from the character of a correlation. If

we replace one of our data points with a duplicate of

another then the correlation is likely (but not

guaranteed) to increase, meaning that the average

correlation of a sampled population may appear

higher than the true correlation. Note this is not true

for the distribution of the slope from linear regres-

sion, which is normally distributed.

(iv) Confidence limits far from the mean. The problem

here is one of sampling. To get reliable confidence

limits we need a sufficient number of examples that lie

outside of these limits. This may be difficult or even

impossible from resampling. ‘‘Difficult’’ because the

number of resamplings may become prohibitive in

order to see enough rare events. ‘‘Impossible’’

because if the sample set is small even the exhaustive

evaluation of all possible samplings may not sample

the extrema possible for this data set. E.g. imagine

calculating the mean of the small set from the

introduction to this section; no resamplings can give

an average less than 1 or greater than 5, probability

p = (0.2)5 = 0.00032 for each. Therefore, a signifi-

cance level of 0.0001 can never be established.

There are clever ways around all these problems. For

instance, you can combine the parametric approach (i.e.

classical statistics) with bootstrapping, i.e. estimating the best

parametric form with resampled data. There is the bias-cor-

rected bootstrap method and the bias-corrected and acceler-

ated method [46] that address some of the issues raised above

in (i–iv) concerning the bias that can arise in bootstrapping.

There is also ‘‘smooth’’ bootstrapping where a small amount

of noise is added to each resampled observation, Bayesian

bootstrapping where weights on the original data are resam-

pled to give different posterior distributions, ‘‘wild’’ boot-

strapping, block bootstrapping etc. In other words, although

bootstrapping can address most issues if care is taken, it is no

different from classical statistics in that experience is required

to choose the right approach. Effron, who is largely respon-

sible for the modern bootstrapping method puts it well [47]:

‘‘A good way to think of bootstrap intervals is as a

cautious improvement over standard intervals, using

large amounts of computation to overcome certain

deficiencies of the standard methods, for example its

lack of transformation invariance. The bootstrap is

not intended to be a substitute for precise parametric

results but rather a way to reasonably proceed when

such results are unavailable.’’ (p. 295)

Advantages

However, there are real advantages. As bootstrapping is

non-parametric, it can be very appropriate if the actual
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distribution is unusual. As an example, let’s briefly

reconsider the very concept of the confidence interval.

Traditional methods give such a range as half of the con-

fidence interval above the mean and half below. As we

have seen the upper and lower ranges don’t have to be

symmetric. Useful tricks such the Fisher transform can

sometimes get us estimates of ranges about the mean

anyway, but perhaps the distribution of the value we are

interested in looks nothing like a Gaussian, or a Student-t

function, or any other parametric form. Then bootstrapping

comes into its own. A good example of this type of dis-

tribution can be seen in Shalizi [48] where, in a very

readable article, he looks at the day-to-day returns of the

stock market.

Conclusions

We have presented here the first part of a description of how

confidence intervals for quantities frequently found in com-

putational chemistry may be assessed. Issues such as asym-

metrical error bars, small sample sizes and combining sources

of error have been addressed, and a survey of analytic results,

some old and some new. The importance of the latter as a

method of thinking about the expected error has been

emphasized, although certainly modern methods such as

bootstrapping do offer alternatives to ‘‘back of the envelope’’

estimates. It would be impossible for such an article to cover

all the clever formulae and techniques applicable to modeling

even in just classical, parametric statistics; both modeling and

statistics are too large a subject matter for that. Nor was it

possible to cover much in the way of applicable non-para-

metric statistics, even though they are an attractive alternative

when data is not normally distributed or where more robust

measures are required. Not that those classical techniques

cannot be made robust, but there was little room to describe

these techniques either! Most regretfully, more could not be

introduced concerning the Bayesian formalism, a path, which

once started upon is hard to turn from, so general and powerful

is the approach. However, there are many excellent textbooks

that cover these and other aspects of statistics that may be

useful to a computer modeler [49–52].

The follow-on paper to this will address the comparison

of two or more quantities with associated error estimates.

This involves the calculation of ‘‘mutual’’ error bars, i.e.

confidence internals on the difference in properties. Here

attention must be paid to the covariance aspect of variation,

i.e. if the noisiness we hope to quantify for one property is

correlated with the noise in another we have to exercise

care in how this mutual difference is assessed. In our

opinion this second paper contains more novel and research

oriented material, simply because of the dearth of material

even in the statistical literature on some topics, such as the

effects of correlation on Pearson’s r-value. The effects of

correlation can be subtle and it is hoped the results pre-

sented will prevent others from making the same mistakes

as the author has made when first presented with the issues

that arise.

In terms of affecting the standards of statistics displayed

in the literature there is only so much that can be done

without the coordinated efforts of journals and scientists. It

requires standards to both be set and adhered to if com-

putational chemistry is to improve in this way. Fortunately

there seems to be a more general consensus that statistics

should be taken more seriously in the sciences [53, 54],

perhaps as a result of the number of retracted studies or

papers illustrating how often reports are later contradicted

by more thorough studies [55]. There should be no illusions

that statistical standards will solve the many problems of

our field. Our datasets are usually poorly constructed and

limited in extent. Problems are selected because they give

the results we want, not to reflect an accurate sampling of

real world application. Poor or negative results are not

published [56]. In addition, there is nothing to stop the

inappropriate use of statistics, whether inadvertent or with

intent to mislead. Many regrettable habits will not be

affected.

It is not this author’s intent or purpose to set or even

suggest such standards. Rather, this paper and the one that

follows are attempts to communicate the potential richness

and productive character of statistics as applied to our very

empirical field. As an aid to the adoption of the methods

presented here it is intended to develop a website, cadd-

stat.eyesopen.com that will provide on-line forms for sta-

tistical calculation relevant to computational chemistry.

This site will be described in a subsequent publication.

For any field to progress it must be able to assess its

current state, and statistics provides the tools for that

assessment. Used honestly and consistently statistical

techniques allow a realistic perspective to emerge of our

field’s problems and successes. As drug discovery becomes

harder and more expensive, it is ever more important that

the application of computation methods actually deliver

their original promise of speeding and improving phar-

maceutical design. A more statistically informed field

should be a part of that future.
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Appendix 1: Unbiased estimates of variance

Equally weighted average

We have a quantity x and we want to know its standard

deviation. If we know the average of this property, l, then

the formula for this is:

r2 ¼ 1

N

XN

i¼1

ðxi � lÞ2 ð115Þ

However, if we have to estimate the average, l0, i.e. by

using the mean of the observed x value, then the formula is:

r2 ¼ 1

N � 1

XN

i¼1

ðxi � l0Þ
2 ð116Þ

Where,

l0 ¼
1

N

XN

i¼1

xi ð117Þ

This is called the ‘sample’ standard deviation, because N is

finite and because we do not have the true mean, i.e. there

is one less degree of freedom than there seems.

The following reasoning can be used to arrive at this

unbiased estimator: Assume that the true average, l, is

zero. There is no loss of generality, here, as we can always

shift each x by l to make this so. This does not mean that

l0 is also zero, just the actual mean. In this case, as we

have set the true mean to zero:

r2 ¼ 1

N

XN

i¼1

x2
i ¼ hx2i ð118Þ

Consider the formula in this case for the unbiased estimator:

r2 ¼ 1

N� 1

XN

i¼1

ðxi�l0Þ2

r2 ¼ 1

N� 1

XN

i¼1

xi�
1

N

XN

i¼1

xi

 !2

r2 ¼ 1

N� 1

XN

i¼1

N� 1

N
xi�

1

N

XN

j 6¼i

xj

 !2

r2 ¼ 1

N� 1

XN

i¼1

N� 1

N

	 
2

x2
i �

NðN� 1Þ
N2

XN

j6¼i

xixjþ
1

N

XN

j6¼i

xj

 !2
2

4

3

5

ð119Þ

Now, the key observation is that quantities such as

(xi * xj) must average to zero because we have assumed the

true mean is equal to zero, and we assume the xi are

independent. Given this, the above simplifies to:

r2 ¼ 1

N � 1

XN

i¼1

N � 1

N

	 
2

x2
i þ

1

N

	 
2XN

j 6¼i

x2
j

" #

r2 ¼ 1

N � 1

XN

i¼1

N � 1

N

	 
2

x2
i þ

N � 1

N2
x2

i

" #

r2 ¼ 1

N � 1

XN

i¼1

N � 1ð Þ2þðN � 1Þ
N2

x2
i

" #

r2 ¼ 1

N � 1

XN

i¼1

ðN � 1Þ
N

x2
i

� �

r2 ¼ 1

N

XN

i¼1

x2
i ¼

1

N

XN

i¼1

xi � 0ð Þ2 ð120Þ

Which is the correct formula for the standard deviation

when the true mean is equal to zero. Therefore, the 1/

(N - 1) term shifts us from the variance calculated using

the assumed mean to that of the variance with the actual

mean.

Weighted average

Now consider a weighted average. Consider the quantity:

s2 ¼
XN

i¼1

wi xi � l0ð Þ2 ð121Þ

Where the wi are weights. We assume, for the moment that

the weights add up to one. Then, we have:

s2 ¼
XN

i¼1

wix
2
i � 2l0

XN

i¼1

wixi þ l2
0

XN

i¼1

wi

s2 ¼
XN

i¼1

wix
2
i � l2

0

s2 ¼
XN

i¼1

wix
2
i �

XN

i¼1

w2
i x2

i ð122Þ

Where we have used the same trick as above, i.e. that

(xi * xj) must average to zero. The final step is to realize

that all the xi
2 terms in the last equation are independent and

are assumed to have the same variance. So:

s2 ¼ hx2i
XN

i¼1

wi � hx2i
XN

i¼1

w2
i

s2 ¼ hx2i 1�
XN

i¼1

w2
i

 ! ð123Þ

Therefore:

r2 ¼ hx2i ¼ 1

1�
PN

i¼1 w2
i

� �
XN

i¼1

wi xi � l0ð Þ2 ð124Þ
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If the original weights did not sum to one, we would have

normalized them thus:

wi ¼
WiPN
i¼1 Wi

ð125Þ

As such, transforming back to the original weights gives:

r2 ¼ 1

1�
PN

i¼1 W2
i =
PN

i¼1 Wi

� �2
� �

XN

i¼1

WiPN
i¼1 Wi

xi � l0ð Þ2

r2 ¼
PN

i¼1 Wi

� �2

PN
i¼1 Wi

� �2�
PN

i¼1 W2
i

� � 1
PN

i¼1 Wi

XN

i¼1

Wi xi � l0ð Þ2

ð126Þ

Equation 126 is the desired result.

Appendix 2: The variance of the variance

We want to know the expected error in the standard deviation or,

equivalently, the variance. Therefore, the quantity we want is:

var varðxÞð Þ ¼
PN

i¼1 x2 � x2
� �2

N � 1
ð127Þ

As in the calculation of the sample variance, N - 1 is included

to correct for the bias introduced by using the sample estimate

of the average value of x2. This can be expanded to:

var varðxÞð Þ ¼
PN

i¼1 x4 � x2
� �2

N � 1
ð128Þ

Now, if the errors are normal, then by definition:

x2 ¼ ð2pr2Þ�1=2
r
þ1

�1
x2e�

x2

2r2 ¼ r2 ð129Þ

And:

x4 ¼ ð2pr2Þ�1=2
r
þ1

�1
x4e�

x2

2r2 ¼ 3r4 ð130Þ

Therefore:

var varðxÞð Þ ¼ 3r4 � r2
� �2

var varðxÞð Þ ¼ 2r4
ð131Þ

Hence, the standard deviation of the variance is:

SD varðxÞð Þ ¼
ffiffiffi
2
p

r2 ð132Þ

And the standard error is:

SE varðxÞð Þ ¼
ffiffiffi
2
p

r2=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

ð133Þ

Appendix 3: Transforming Variance

A single variable

Suppose we have a function H of variable x, and we know

the standard deviation of x. What is the variance of H? By

definition we have

Var HðxÞð Þ ¼
Z

HðxÞ � HðxÞ
� �2

pðxÞ � dx ð134Þ

Where p(x) is the probability distribution function for x. So

to calculate the variance we also need to know the average

value of H. This we can obtain from:

H xð Þ ¼
Z

HðxÞpðxÞdx ð135Þ

Suppose we make a Taylor expansion of H(x) around the

mean of x inside of the integral:

HðxÞ ¼
Z

Hð�xÞ þ oH

ox


x¼�x

x� �xð Þ
	

:

þ 1

2

o2H

ox2


x¼�x

	 

x� �xð Þ2þ � � �



pðxÞdx

ð136Þ

The integral of the second term is zero, leaving:

HðxÞ ¼ H �xð Þ þ 1

2

o2H

ox2


x¼�x

	 
Z
x� �x2pðxÞdx

þ higher order terms

HðxÞ ¼ H �xð Þ þ 1

2

o2H

ox2


x¼�x

	 

r2

x þ higher order terms

ð137Þ

Returning to Eq. 134 but expanding H(x) around the mean

of x in a similar way, and substituting the first two terms on

the right hand side of Eq. 137 for the average value of

H we obtain:

Var HðxÞð Þ ¼
Z

Hð�xÞ þ oH

ox


x¼�x

	 

x� �xð Þ

	

þ 1

2

o2H

ox2


x¼�x

	 

x� �xð Þ2þhigher order terms

�Hð�xÞ � 1

2

o2H

ox2


x¼�x

	 

r2

x


2

pðxÞdx

Var HðxÞð Þ ¼
Z

oH

ox


x¼�x

	 

x� �xð Þ

	

þ 1

2

o2H

ox2


x¼�x

	 

x� �xð Þ2�r2

x

� �

þhigher order termsÞ2pðxÞdx

ð138Þ
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If the bracket on the right hand side is multiplied out the

lowest order term is quadratic and so leads to the variance.

Third order terms are small if p(x) is symmetric. The fourth

order term corresponds to the variance of the variance.

Therefore to second order we have:

Var HðxÞð Þ ¼ oH

ox


x¼�x

	 
2Z
ðx� �xÞ2pðxÞ � dx

þ 4th order and higher terms ð139Þ

Formally, the next order terms, assuming symmetry around

the mean of x, look like:

1

4

o2H

ox2


x¼�x

	 
2

l4 � r4
� �

þ 1

6

oH

ox


x¼�x

	 

o3H

ox3


x¼�x

	 

l4

ð140Þ

Here l4 is the fourth moment of the variation from the

average. Neglecting these higher order terms we have:

Var HðxÞð Þ � r2
x

oH

ox


x¼�x

	 
2

ð141Þ

This is the desired result. Note that this result is only true near

the mean but that this approximation improves as the sample

number, N, becomes larger. When N is small the actual form

of the variance may be quite asymmetric and non-normal.

Multiple variables

Suppose we have a function H of variables x and y, and we

know the standard deviation of both x and y. As above we have:

Var Hðx; yÞð Þ ¼
Z

Hðx; yÞ � H x; yð Þ
� �2

pðx; yÞ � dx ð142Þ

If the variables x and y are independent then p(x,

y) = p(x)p(y). Futhermore, following the same prescription

as above for a single variable and keeping first order terms

we arrive at:

Var Hðx;yÞð Þ ¼
Z

oH

ox


x¼�x

	 

x� �xð Þþ oH

oy


y¼�y

 !
y� �yð Þ

 

þhigher order termsÞ2pðxÞpðyÞ � dx

Var Hðx;yÞð Þ � r2
x

oH

ox


x¼x

	 
2

þr2
y

oH

oy


y¼�y

 !2

ð143Þ

If the variables are not independent then this first order

approximation leads to:

Var H x; yð Þð Þ �r2
x

oH

ox


x¼�x

	 
2

þ2covðx; yÞ oH

ox


x¼�x

	 


oH

oy


y¼�y

 !
þ r2

y

oH

oy


y¼�y

 !2

ð144Þ

The generalization to more variables is straightforward,

e.g. for independent variables we have:

Var Hðx; y; zÞð Þ � r2
x

oH

ox


x¼�x

	 
2

þr2
y

oH

oy


y¼�y

 !2

þr2
z

oH

oz


z¼�z

	 
2

� � �

ð145Þ

And for dependent variables:

Var Hðx; y; zÞð Þ � r2
x

oH

ox


x¼�x

	 
2

þr2
y

oH

oy


y¼�y

 !2

þ r2
z

oH

oz


z¼�z

	 
2

þ2covðx; yÞ oH

ox


x¼�x

	 

oH

oy


y¼�y

 !

þ 2covðx; zÞ oH

ox


x¼�x

	 

oH

oz


z¼�z

	 


þ 2covðy; zÞ oH

oy


y¼�y

 !
oH

oz


z¼�z

	 


ð146Þ

Note that these expressions are approximations and depend

on the nature of the probability distribution function for

their applicability. However, they are in common use. The

simplest case is when H is a sum of independent variables,

in which case we retrieve the usual formula for the prop-

agation of error, i.e.

Var Hðx; y; zÞð Þ � r2
x þ r2

y þ r2
z � � � ð147Þ

In the case of dependent variables we have:

Var Hðx; y; zÞð Þ � r2
x þ r2

y þ r2
z þ 2cov x; yð Þ þ 2cov x; zð Þ

þ 2covðy; zÞ
ð148Þ

Appendix 4: Enrichment

Denote:

A = total number of actives

I = total number of inactives

a = number of actives observed

i = number of inactives observed

f = fraction of inactives observed = i/I

g = fraction of actives observed = a/A

e = ROC enrichment

E = traditional enrichment

F = fraction of the database tested

s = dg/df = slope of the ROC curve at point (f, g)

By the definition of the ROC Enrichment,

e ¼ g

f
ð149Þ

The definition of the traditional enrichment, E is:

E ¼ g

F
ð150Þ
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Using Eq. 127:

E ¼ ef

F
ð151Þ

We also have:

F ¼ aþ i

Aþ I
; ð152Þ

Using Equation the definition of i, the fraction of inactives

observed:

F ¼ aþ If

Aþ I

F ¼
a
A

� �
þ Rf

1þ R
¼ ef þ Rf

1þ R

F ¼ f
eþ R

1þ R

	 

ð153Þ

Where R is, again, the ratio of inactives to actives. Using

Eq. 151 and rearranging leads to:

E ¼ e
1þ R

eþ R

	 

ð154Þ

This formula is useful because it gives E as a function of

e. From ‘‘Appendix 3’’:

varðEÞ ¼ varðeÞ oE

oe

	 
2

Using Eq. 154, we have:

oE

oe

	 

¼ Rð1þ RÞ

eþ Rð Þ2
ð155Þ

We would like this formula in the in terms of E, rather than

e. If we rearrange Eq. 154 we see that:

e ¼ RE

1þ R� E
ð156Þ

Substituting 156 into 155 we obtain:

oE

oe

	 

¼ 1þ R� Eð Þ2

Rð1þ RÞ ð157Þ

Thus we arrive at:

varðEÞ ¼ varðeÞ 1þ R� Eð Þ4

1þ Rð Þ2R2
ð158Þ

Equation 158 still uses the variance of the ROC Enrich-

ment, which depends on e, the ROC Enrichment, and f, the

fraction of inactives, which differs from F the fraction in

the traditional enrichment:

varðeÞ ¼ 1

f

g 1� gð Þ
A

þ g

f
1þ logðeÞ

logðf Þ

	 
	 
2
f 1� fð Þ

I

 !

ð159Þ

However, both e and f can be calculated from the tradi-

tional enrichment terms, E and F, namely Eq. 156 for e in

terms of E and R. Equation 151 can be rearranged to give:

f ¼ EF

e
ð160Þ

Substituting from 156 for e, we obtain:

f ¼ F
ð1þ R� EÞ

R
ð161Þ

Thus, Eqs. 159 and 161 provide all that is necessary to

convert Eq. 158 into an equation containing only quantities

provided by traditional enrichment, i.e. E, the enrichment,

F, the fraction of the total database, A and I, the number of

actives and inactives, and the fraction of actives found,

(common to both), g.

Appendix 5: Whether or not to add a noisy system

From Eq. 98 we have:

Errobserved; N systems ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Err2
intrinsic þ

XN

i¼1

Err2
i = NðN � 1Þð Þ

vuut

ð162Þ

Where,

Err2
intrinsic ¼

r2
intrinsic

N
ð163Þ

Suppose we add another system. The question, then, is

whether the following statement is true:

Errobserved;Nþ1systems\Errobserved;Nsystems ð164Þ

This is equivalent to:

r2
intrinsic

N þ 1
þ
XNþ1

i¼1

Err2
i = NðN þ 1Þð Þ\ r2

intrinsic

N

þ
XN

i¼1

Err2
i = NðN � 1Þð Þ ð165Þ

We have made the assumption here that rintrinsic is constant

on either side of the equation, i.e. adding a new system

does not alter the standard deviation. If N is sufficiently

large this ought to be a good approximation because the
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standard deviation is an intrinsic property and because we

are using an unbiased estimator for it (i.e. by dividing by

N - 1, not N).

Rearranging gives:

Err2
Nþ1

N N þ 1ð Þ þ
XN

i¼1

Err2
i = N N þ 1ð Þð Þ

�
XN

i¼1

Err2
i = N N � 1ð Þð Þ\ r2

intrinsic

N
� r2

intrinsic

N þ 1
ð166Þ

Err2
Nþ1

NðN þ 1Þ � 2
XN

i¼1

Err2
i = ðN � 1ÞNðN þ 1Þð Þ\ r2

intrinsic

NðN þ 1Þ
ð167Þ

Err2
Nþ1

NðN þ 1Þ � 2
r2

system

NðN þ 1Þ\
r2

intrinsic

NðN þ 1Þ ð168Þ

Here, rsystem is the standard deviation of the error across all

systems. Given that the average of the error ought to be

close to zero we have:

r2
system ¼

1

N � 1

XN

i¼1

Erri � Err
� �2� 1

N � 1

XN

i¼1

Err2
i ð169Þ

So the condition that adding the new system reduces the

total error in the estimation of the property of interest is:

r2
intrinsic þ 2r2

system [ Err2
Nþ1 ð170Þ

Appendix 6: Key equations

As there are many equations in this article, this appendix

provides a summary of the important formulae. Some are

standard in the statistical field, some have been reworked

here to apply to our field in ways the author has not seen in

print, and some are new, such as the work on the error bars of

virtual screening enrichment. As such the list below will also

detail the provenance of each equation.

Equation 6: 95 % confidence limits. Basic definition of a

confidence range for a symmetric error, where the t statistic

is its ‘canonical’ value of 1.96, representing a 95 % con-

fidence interval for large sample size.

Equation 12: The error of the error. General formula for

the uncertainty in a variance, i.e. a standard deviation squared.

This can be used to estimate the error in quantities such as an

RMSE, a coefficient of variation, or Cohen’s effect size; any

property that depends explicitly on the sample variation.

Equations 18 and 20: The error in a probability or

fractional count. Standard formula for the standard devia-

tion of a probability (18), and for an integer count, i.e. a

fraction of a total count (20).

Equation 21: ‘‘Scale’’-free form of the expected range of

an integer count.

Equations 22, 23a, 23b: DeLong formula for AUC var-

iance. Intended for use when you have primary data, i.e.

the complete list of actives and inactives. As per the ori-

ginal paper [19]

Equation 24: Parametric form of an AUC curve.

Implicit in the work of Hanley, but which the author has

made explicit.

Equations 25a, 25b and 25c: Hanley formula for the

variance of an AUC. Only requiring the AUC, not the

primary data. As per the original paper [21]

Equation 26: Welch–Satterthwaite formula for degrees

of freedom. How to calculate the degrees of freedom when

there are several sources of variance. As from their papers

[25, 26]

Equation 27: Welch–Satterthwaite applied to AUC. The

author’s derivation of a compact form of the Welch–Satt-

erthwaite, using only the AUC and the number of active

and inactives.

Equation 28: Maximum enrichment with saturation. A

simple formula to bear in mind when using the traditional

form of enrichment, i.e. as a fraction of the total database.

Author’s form.

Equations 34b and 35b: Confidence intervals of ROC

and traditional enrichment. To the author’s knowledge

these are novel equations for the expected error bounds of

both types of enrichment.

Equations 36 and 37: Definition of covariance and for

the best-fit slope in linear regression. Textbook form.

Equations 38, 49: Variance of best-fit slope and inter-

cept. Textbook form.

Equation 42: Confidence interval of best-fit straight-line

predictions. Form that gives the classic ‘‘hyperbolic’’ error

bars to prediction, which are small near the center of the

data, then grow outside the range of the data. Textbook

form.

Equation 45: Pearson’s r coefficient. Textbook form.

Equations 49 and 50: Forward and reverse F transform

for Pearson’s r. Key to calculating confidence ranges for

r. Transform r to F(r), add and subtract standard variance.

Transform back to r values. Textbook form.

Equation 55: Population value of r. Formula to adjust

likely bias in the sample version of Pearson’s r. Textbook

form.

Equations 58, 59a and 59b. Logit transforms for prob-

ability ranges. Similar to Pearson’s r, except that the var-

iance is calculated from that of the probability (Eq. 18) and

the derivative of the logit function (Eq. 59a). Textbook

form.

Equation 60: Analytic form for probability error bars.

Derived by the author, possibly known before but not

obviously so.

Equation 74: Chi squared range for standard deviation.

Improved form of estimating asymmetric ranges of a sum
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of squares that avoids ranges that are less than zero.

Requires look-up tables. Textbook form.

Equations 75 and 76: Variance of compound variables.

Textbook form of how to calculate the variance of a

function of one or more variables.

Equations 80 and 81: Application of Equation 75 to a

weighted sum.

Equation 89: Variance of a ratio of variables.

Equations 94 and 95: Application of 89 to Cohen’s d

and the Coefficient of Variation.

Equation 96: General formula for the addition of known,

independent, errors. Textbook form.

Equation 98: Total observed error in terms of intrinsic

error and ‘system’ error. A formula that can be used to

sharpen the observed error bounds by subtracting out

known, ‘‘system’’ errors; for instance, the expected error in

the AUC of each system in a test suite. The author’s form.

Equation 101. Assessment of adding the N ? 1 system.

Determination as to whether adding a new system will

increase or decrease the total error of a test suite. The

author’s form.

Equation 111 and 112. Variance-weighted mean and

variance. How to combine data of the same quantity (not

an average of different quantities), where the data pos-

sesses different variances, for both the mean and the

combined variance. Textbook form.

Equation 114. Variance of a weighted average (of the

same quantity). Textbook form.

Equation 153. Transforming the ROC Enrichment frac-

tion to the traditional enrichment fraction. Author’s form.

Equation 154: Transforming the ROC enrichment into

traditional enrichment. Author’s form.

Equation 156: Transforming the traditional enrichment

into ROC enrichment. Author’s form.

Equation 161: Transform the traditional fraction into

the ROC fraction. Author’s form.
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