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Abstract We review some results on analytical compu-
tations of the measures for quantum entanglement:
entanglement of formation and concurrence. We intro-
duce some estimations of the lower bounds for the
entanglement of formation in bipartite mixed states,
and of lower bounds for the concurrence in bipartite
and tripartite systems. The results on lower bounds for
the concurrence are also generalized to arbitrary mul-
tipartite systems.
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1 Introduction

Quantum entanglement plays a crucial role in the rapidly
developing theory of quantum information [1], since they
constitute the most important resource for quantum
information processing. An important theoretical challenge
in the theory of quantum entanglement is to give a proper
description and quantification of quantum entanglement of
multipartite quantum systems. Entanglement of formation
(EOF) [2,3-5] and concurrence [6-8] are two well-defined
quantitative measures of entanglement. For the two-qubit
case, EOF is a monotonically increasing function of the
concurrence and an elegant formula for the concurrence
was derived analytically by Wootters in Refs. [9,10]. It plays
an essential role in describing quantum phase transitions in
various interacting quantum many-body systems [11-14]
and can be experimentally measured [15].

In the higher dimensional case, due to the extremiza-
tions involved in the calculation, only a few explicit ana-
lytic formulae for EOF and concurrence have been found
for some special symmetric states [16-20]. Some progress,
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in particular in the form of practical algorithms, has been
obtained on possible lower bounds of the EOF and con-
currence for qubit-qudit systems [21-23] and for bipartite
systems in arbitrary dimensions [24-26] using numerical
optimization over a large number of free parameters. In
Refs. [27,28], analytic lower bounds on EOF and concur-
rence for any dimensional mixed bipartite quantum states
have been presented, which have further been shown to be
exact for some special classes of states and detect many
bound entangled states. In Ref. [29], another lower bound
on EOF for bipartite states has been presented from a new
separability criterion [30]. A lower bound on concurrence
based on a local uncertainty relations (LURS) criterion is
obtained in Ref. [31] and this bound is furthermore opti-
mized in Ref. [32].

Although the EOF is only well defined for bipartite
systems, the concurrence is well defined even for mul-
tipartite states. The lower bound of concurrence for tri-
partite states has been studied in Ref. [33]. In this review,
we first summarize the results related to the analytic for-
mulae and the lower bounds on EOF for bipartite sys-
tems, as well as to the lower bounds on concurrence for
bipartite and tripartite systems, and then we generalize
them to arbitrary multipartite systems.

2 Entanglement of formation for bipartite
systems

Let H,, H, be Ny, N>-dimensional complex Hilbert spaces
with orthonormal basis ef, i=1,..., Ny, k=1,2, respect-
ively. A pure quantum state on H; ® H; is generally of the
form,

N N>

W>=>"> ajel®e. azeC (1)

i=1j=1

with normalization
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N, N>
> a1 g
i=1j=1

The EOF Eis defined as the partial entropy with respect
to the subsystems [34],

E(|y)=—Tr(p, log, py)
—Tr(p, log, p,),

(3)
where p; (resp. p,) is the reduced density matrix obtained
by tracing |y ><{y/| (the orthogonal projector onto |/ )) over
the second (resp. first) Hilbert space of H| ®Ho.

It is evident that E(Jyy») vanishes only for product
states. This definition can be extended to mixed states p
by the convex roof,

= mm ; 4
{pilyi>} Zp (W:2), )

for all possible ensemble realizations
p=>_ Pl =0, Y pi=l. (5

Consequently, a state p is separable if and only if
E(p) =0 and hence can be represented as a convex com-
bination of product states as p= Y pip!®p?, where
pland p? are pure state density matrices associated to
the subsystems H; and H,, respectively [35]. The measure
(4) satisfies all the essential requirements of a good entan-
glement measure: convexity, no increase under local
quantum operations and classical communications on
average, no increase under local measurements, asymp-
totic continuity and other properties [2,3-5].

It is a challenge to calculate Eq. (4) for general mixed
states due to the extremizations involved in the calcula-
tion. Till now explicit formulae of E(p) have been
obtained only for a few special cases.

2.1 EOF for 2-qubits
In this case, Eq. (3) can be written as E(|y)) = ¢ (C(|/))),
where the function ¢ is defined by

dQ:%C+g—@>

H,(x)=—xlogy, x—(1—x)log,(1—x).

C is called concurrence [9]:

C(lYy) =<y | | =2lanan —ana|, (6)

where ‘l}} =0,®a,[y"), [y is the complex conjugate of

o)

. . . 0
>, oy is the Pauli matrix, ¢, = ( ;
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As E is a monotonically increasing function of C, C can
be also taken as a kind of measure of entanglement.
Calculating the minimum in Eq. (4) is reduced to calculat-
ing the corresponding minimum of

mln
{pild; >}Zp’ (W22).

(7)

which simplifies the computation.

The formula for the entanglement of a pair of qubits in
any mixed states p is given in Ref. [10]: E(p) = &(C(p)),
with C(p) = max(0, A} — i — 43 — A4), here the As are
the square roots of the eigenvalues of p(s, ® a,)

p’(6, ® 0,) in descending order. The concurrence is itself
a measure of entanglement that provides an analytic for-
mula for the EOF for a pair of qubits.

The direct experimental measurement of C(J/)) is not
possible due to the unphysical operation of the complex
conjugation in Eq. (6). Nevertheless, it has been shown that
any m-th degree polynomial function of a density matrix p
can be measured on an m-fold copy of p [36]. By consider-
ing a twofold copy of the state in question, the concurrence
C of an arbitrary state /> can be defined as C=2/P,,
where P, = Y| ® Y|Aly> ® > is the probability of
observing the two copies of the first subsystem in an anti-
symmetric state, that is, a state that acquires a phase shift of
7 upon exchange of the constituents, and A is the corres-
ponding measurement operator [15].

2.2 EOF for isotropic states

The EOF for a class of mixed states in arbitrary dimension
N, = N, = N, the isotropic states, was presented by Terhal
and Vollbrecht [16]. The isotropic states are invariant
under the transformations U ® U", for any unitary trans-
formation U. They have the form

1-F
N2—1

where W)= /1/NY Y i),

F={VpAY*), 0 < F< 1, is the fidelity of pg It is
shown that for F=1/N, the EOF for isotropic states is
E(pr) = co[R(F)], where R(F) is a simple function of F,
and “co” stands for the convex hull. That is the largest
convex function bounded above by the given function.
For N =2, 3, the EOF for pris given by

pr= (I=[PTHCFTN+FIPTHCET (8)

0, F< v
1 4N-1)
E(pp)={ Rin-1(F), FE(ﬁ, 2 )
N log,(N—1) AN—1)
T(F—l)-i—logzN Fe N2 ,1 5



116

where

Rin—1(F)=Hy(y(F))+ (1—=y(F))logy(N—1),  (10)

with

)P = (VE+VIN-D-F) . ()

For general N, the correctness of this formula is proved
in Ref. [38].

2.3 EOF for Werner states

Werner states are a class of mixed states for N x N sys-
tems which are invariant under the transformations
U ® U for any unitary transformation U [35,39]. The den-
sity matrix of these states can be expressed as

b=y VNN =P, (12)

where P is the flip operator (or swap operator) defined
by P(¢ ® )=y ® ¢. In the computational basis |ij>, P
is of the form P= Zf\; ij><ji|]. Here, f is a constant
[f=LP>=Tr(Ppy satisfying —1 < f'< 1. Werner states
are separable if and only if f=0, as shown in Refs.
[35,39].

The EOF of Werner states has been derived from an
extremization procedure [39],

E(pf)=H2<%(l—M)>.

Since E(p,) is a monotonically increasing function of
—f, as seen from Eq. (13), it is expected [40] that —f plays
the role of concurrence, similarly as in the two qubits case
[10].

Instead of Eq. (6), the generalized concurrence for a
pure state |/ in the tensor space H;®H, is defined by

Refs. [6-8],
C(jy>)=1/2(1—Trp),

where p; is the reduced density matrix. The concurrence
(7) of Werner states is given by Ref. [41]

(fl=—f, forf<0,
Cloy) = { 0, for £ =0.

(13)

(14)

(15)

This shows that the EOF of Werner states is a mono-
tonically increasing function of the concurrence. Namely,
the conjecture [40] that —f plays exactly the role of con-
currence is verified. Furthermore, it is shown that the
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concurrence and EOF of Werner states have the same
optimal decomposition [41].

2.4 EOF for a special class of mixed states

For Ny = N, = N =3, there is no such concurrence C that
entanglement of formation E as given by Eq. (4) is a
monotonically increasing function of C. The concurrences
discussed in Ref. [6-8] can be only used to judge whether a
pure state is separable (or maximally entangled) or not
[42,43]. The EOF is no longer a monotonically increasing
function of these concurrences. Nevertheless, if one con-
siders special classes of quantum states, certain quantities
(generalized concurrence) can be found to simplify the
calculation of the corresponding EOF [17].

Let A denote the matrix with entries given by a; in
Eq. (1), i, j=1, ..., N. The reduced density matrix p,
can be expressed as

py=AA". (16)

If AA" has only two non-zero eigenvalues 1; (resp. 4,)
with degeneracy n (resp. m), n+m < N, we denote D the
maximal non-zero diagonal determinant

D=7 (17)
From the normalization of |/ >, one has Tr(4A4") = 1, i.e.,

(18)

L)). In this case

> m

ni+miy=1.

/1 (resp. ) takes values (0, 1) (resp. (0

the EOF of |/} is given by
E(|lﬁ>)= —ni log2 A —miy log2 Aa. (19)

According to (17) and (18), one has

OE mil =" 1—na\'"™™ 1—ni
ok _ logy— L (20
oD l—n/ll—m/ll< m g7~ (20

which is positive for ;e (0, 1). Therefore, E()) is a
monotonically increasing function of D. D is a generalized
concurrence and can be taken as a kind of measure of
entanglement in this case.

From Egs. (18) and (19), the quantum states with the
measure of entanglement characterized by D are gen-
erally entangled. They are separated when n=1, 1, —1
(lb—0)orm=1, ,—1 (4, —0). For the case n=m > 1,
all the pure states in this class are non-separable. In this
case,

E(|lp>)=n<—xlog2 x— (% —x) log, (% —x)), (21)
where x=;<,11+\/nlz(l—d2)> and



Front. Comput. Sci.

dE2nDﬁ=2n\/},liz.

The generalized concurrence d takes values in [0, 1].
From (21) one can show that E(d) is a convex function.
Instead of calculating E(p) directly, one may calculate the
minimum decomposition of D(p) or d(p) to simplify the
calculations.

Consider a class of pure states (1) with the matrix 4
given by

(22)

0 b a b1
—-b 0 d
A= oA (23)
a ¢ 0 —e
bl d] e 0

ai, by, c1, di, b, e C. The matrix AA" has two eigenvalues
with degeneracy two, ie., n=m=2 and |44%=
|bicy — aid; + be|*. The generalized concurrence d is given
by d=4|bic| — ad, + be|.

Let p be a 16 x 16 matrix with only non-zero entries
P16 =P2,15= —P3,14 = P4a10 = P5,12 = Pe,11 — P7,13 = P88
= 7P99 = P104 = P11,6 = P125 = P13,7= — P143 = P152 = Pi6,1

= 1. d can be further written as
d=|<y | py™)l. (24)
Let ¥ denote the set of pure states (1) with 4 of form

(23). Consider all mixed states with density matrix p such
that its decompositions are of the form

M M
p= Zpillpi><!//i" Zp,-zl, yie¥. (25
i=1 i=1

All other kind of decompositions, (say decomposition
with respect to [y;>#[y>) [}, can be obtained from a
unitary linear combination of |i/;» [9,17]. As linear com-
binations of |[};,> do not change the form of the corres-
ponding matrices (23), once p has a decomposition with
respect to |y;» € ¥, all other decompositions [/, includ-
ing the minimum decomposition of the EOF, also satisfy
|1//§-> € ¥. Then the minimum decomposition of the gener-
alized concurrence is Ref. [17]

d(p)=A1— ZAi, (26)

where A;, in decreasing order, are the eigenvalues of the

Hermitian matrix R=//ppp*p+/p, or, alternatively, the
square roots of the eigenvalues of the non-Hermitian
matrix ppp’p.

An important fact used in the derivation of (26) is that
the generalized concurrence d is a quadratic form of the
entries of the matrix 4, so that d can be expressed in the
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form of (24) in terms of a suitable matrix p. An N-dimen-
sional pure state (1) is called d-computable if A satisfies
the following relations:

|44t = ([4)[4)"", (27)
7
|44 — 2Ldy| = (22 — | Al| 2+ (4],

where [4] and ||4|| are quadratic forms of a;;, and Idy is the
N x N identity matrix. Let 4 be the set of matrices sat-
isfying (27), which implies that for 4 € A, AA" has at most
two different eigenvalues, each one of which has order N/
2. d is a quadratic form of the entries of the matrix 4.

N-dimensional, N =2*% 2<keN, d-computable states
can be constructed as follows [18]. Set A, = (Cz —dc>’
where a, ¢, de C. For any by, ¢; €C, a4 x 4 matrix 44€ A
can be constructed in the following way,

B A>
!
_A2 CZ

0 1
By=b1Jy, Cy=ciJs, J2=( i O)’

(28)

where

where ¢ stands for transpose. It is straightforward to verify
that A4 satisfies the relations in (27).

For general construction of high dimensional matrices
Ax+1€ A, 2<keN, one has

sz Azk

Apesr = K1) ) (29)
(_ 1) : Aék CEA
0 Jok

Jorr1 = (- 1)(A»+1>2<k+z)J£k o | (30)

where By =byJox, Cor = ok, by, cx €C. Jon are called
multipliers.

For all N* x N? density matrices with decompositions
on these N-dimensional d-computable pure states, their
EOF can be calculated by formulae similar to (26).

The results can be generalized to the case that 44" has
n = 3 different non-zero eigenvalues [19]. Let Ay, 25, ..., 4,
each with degeneracy m, mn < N, be the non-zero eigen-
values of AAT. J;= A(u,v),i=1,2, ..., n, are differentiable
functions of two real variables u# and v. Define
D=mn\/ A1y Ap. f ;= 2w, v), i=1, 2, ..., n, satisfy

04
—log, 4; <0, (31)

oD

then D is a measure of entanglement in the sense that the
EOF of the corresponding pure state is a monotonically
increasing function of D.
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As an example, consider the non-zero eigenvalues of
AATto be Ay =u, /o =u+v, A3 =u+2v, each with degen-
eracy m, u and ve R taking values in (0, m) The general-
ized concurrence is given by D=3m/u(u+v)(u+2v). Itis
straightforward to verify that E is a monotonically
increasing function of D, since

1—3mv<
21+ 3mv

1 1/2
=——— (1-9m*?) "lo
3mvx/3m( ' ) &

Due to the relation

_J:\ap) Tap2 "

1—-3my 0
1+ 3mv> =
E is also a convex function of D.
As E(|ys>) is a monotonically increasing and convex func-
tion of D, instead of calculating E(p), one may calculate the
minimum decomposition (in the sense of Eq. (4)),

1
= m (6mv+ ln

D(p)=miny 3L 1paD(¥,)).

to simplify the calculations, as long as p has all decomposi-
tions on pure states with their eigenvalues of 44" satisfying
(31). Nevertheless, like E(Jyr>), generally the expression of
D(|y>)=mn\/212, - - - A, can still be quite complicated.

If the generalized concurrence D=mn+/A1/; -+ - 4, sat-
isfying (31) can be further expressed as

p="""Jr_1p.

§ :al] 1/’
E alpa,qajqa/p,

ij.p.g=1

where

Iy —Tr AA

=Tr[ (44"’

the calculation of the corresponding EOF is then greatly
simplified.

Let W denote the set of all pure states of the form (1)
such that

1) (31) is satisfied;
i) the EOF 1is a convex function of D,
> L)+ Siin <0

i) D=mn\/J 2y dy= = —1.
A mixed state p given by (5) is called D-computable if all

i.e.,

the decompositions of p into pure states belong to V.
Due to the conditions i) and ii), for a D-computable
state p, calculating E(p) is then reduced to the calculation
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of the corresponding minimum of
D(p)=min Y} p.D(Y,)),

which simplifies the calculation if D(]y,>) has a simpler
expression than E(Jyr,>). The condition iii) guarantees that
D is a quadratic form of the entries of the matrix 4 and
can be expressed as D = |{|SY" | in terms of a suitable
matrix S, which allows one to find an explicit analytical
expression of the EOF in a way similar to the one used in
Refs. [9] and [17].

Let S be a symmetric N*> x N* matrix whose elements
are all zero except for

Syt N(i—1).g+NG—1) =Sq+Nj—1)p+NGi-1) =L,

S+ N—1)p+NG—1) =Sp+NG—1).q+Ni—1)=— 1,
wherei, j,p,q=1,...,N. Let Ai{’j", A;””, A;”jq and Af{’j", in
decreasing order, be the ecigenvalues of the rank four
Hermitian matrix \/\/pS®4p*SPi. /p.

For a D-computable state p, the minimum decomposition
of the generalized concurrence D(p), i.e., the average gener-
alized concurrence of the pure states of the decomposition,
minimized over all decompositions of p, is given by

mn N . . . N2
mn ( AP NP \PI AZ’M)
4 Z

ij.p.g=1

Due to the convex relation between E(|yy>) and D(|y)),
the EOF of p is given by E(D(p)).

1/2
(32)

3 Lower bounds of EOF and concurrence for
mixed states

It is generally difficult to calculate the minimum (4) for
arbitrarily given (5). Instead of finding the exact min-
imum, one may also try to find the lower bound of EOF
or concurrence.

3.1 Lower bounds of EOF for bipartite mixed states

Let H;, H, be N;, N>-dimensional (N; < N,) Hilbert
spaces, respectively. A pure state [yy> in H;®H, has a
standard Schmidt form

N,
Wy=">_ Vilaib). (33)
where /i, i =1, ..., Ny, are the Schmidt coefficients, |a;)

and |b;> are orthonormal basis in H; and H,, respectively.
From (3), the EOF for |y) is given by
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E([y))=

Z Hi lOgZ Hi= ﬁ)a (34)

where ji is the Schmidt vector (u1, p, ..., iy,)-
Let ||G|| denote the trace norm of a matrix G defined by
|Gl = Tr(GG)'"2. Set p =) (). Tt is easy to see that

Ny 2
!M“H=|Ru»r=<§:vmﬁ =,

where p™ is the partial transposed matrix of p with respect
to the first subsystem, R(p) is the realigned matrix of p
defined by R(p);; 4 = pir 1> where i and j are the row and

(35)

column indices with respect to the first subsystem respect-
ively, while k& and / are the corresponding indices for the
second subsystem [44-46].

Assume that one has already found an optimal
decomposition Zp,p’ for p to achieve the infimum of
E(p), where p’ are pure state density matrices. Then E
(p) = Zjp:E(p") by definition. For a given 4, H(}i) in (34)
has a minimum [16],

Ni 2
R(i)=mjn{H(u> (Z\/:“—k) =ﬂ»}
. =1
= HLoly(A)]+ [1=y(2)]logy (M = 1), (36)
where
yu)=NL12[ﬁ+ (N1—1)(N1—i)r. (37)

Moreover, co[R(1)] is a monotonously increasing, con-
vex function and satisfies co[R(4)] < H(f) for a given A.
Set £(1) =co[R(2)], then one thus has

= ZP:‘E(P!) = ZP:‘H i
> pie(Z) >S<Zpiii>
N { e([lo™ )

e(IR(P)I))-
where the monotonicity and convexity properties of &,
and convexity of the trace norm

o™l 32| (o)
IR@II< 3, 2R

have been used. Setting A= max|[||p”
obtains

(38)

>

(p)II]. one
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E(p)=e(A)=co[R(A))]. (39)

If the function R(A) has only one reflection point,
co[R(A)] can be obtained explicitly from R(A) [16]. One
has then

> =1,
4N1—1)

E(p)> Ho[y(A)]+[1—=7(A)]logy (N1 — 1), { ]

M(A N1)+ log, Ny, {4N1_1) }

(40)

For isotropic states, this lower bound is exact.

It is direct to verify that the function R(A) has only one
reflection point for Ny =2, 3. One can also easily verify
this fact by plotting R(A) for Ny =4. To show that the
second derivative of R with respect to A has only one zero
point for general Ny, for simplicity we replace log, in (36)
by the natural log. Without confusion, the notion R(A)
below is still used, which, in fact, differs a positive factor
log,e from the R(A) above.

First, it can be shown that there is one and only one
point Ay between 1 and N; — 1 such that R"(Ay) =0 for
N, =5. The second derivative of R with respect to A is

/" . 1 _V(A) _ 1
RW=rWleey —nm ~am-n 4
where
=YL —ay @)

Hence, R"(1) = lin(l) R"(1+¢)= + c0. On the other hand,
E—

! lo Ny —2 +1
N1\ %) )

R'(Nj—1)=

which is less than 0 for N; = 5. Therefore, for Ny =5 there
exists Age (1, Ny — 1) such that R"(Ag) = 0. From Egs. (41)
and (42) Ay is the solution of g(A) = f{A), where

_ 1—y(A)
8= loe 1Ay

A=A
JN==21 =51

As g'(A) >0, g(A) is a monotonically increasing func-
tion taking values from g(1) = —< to
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-2
—1)=210gL>—2.

g(Ny AN —T)

On the other hand, f(1) = AN, — 1) = =2, f"(A)>0,1i.c.,
fis convex. Therefore, there is one and only one solution
A to the equation g(A) = f(A) for Ae(1, Ny —1).

Next, one can show that there are no solutions to
R'(A)=0 for Ae(N;—1, Ny), ie. R'(N;—1+0)#0,
V 6€(0, 1). From (37), (41) and (42) this is equivalent to
show F(8)= 1 B(d)log A(5)# —1, where,

N1 —1
B<5):\/(N1—141r5)(1—5)’

(NiC(9))°~1
N —1 ’

A(9)=

5)= <\/N1—1+5+\/(N1—1)(1—5))7

It is straightforward to verify that 4(0) > 0. As the deriv-
ative C'(0) of C(d) with respect to 9, is strictly positive, one
has A'(0) > 0. Hence, logA(d) increases as ¢ increases.
Similarly, as the derivative of (N — 1)/((N; — 1+)(1 — 9))
with respect to ¢ is positive, B(J) also increases as o
increases. Therefore, F(J) is an increasing function of d.
Moreover, F(0)=log(N; — 2)/(2(N; — 1)) =1og3/8 > —1.
It is seen that F(6)=F0)>—1,V 6€(0, 1) and N, =5.
Thus, R"(A) =0 has no solutions for Ae(N; — 1, Ny) [38].

From the proof above, one has that both EOF (9) for
isotropic states and the tight lower bound of EOF (40) are
valid for arbitrary dimensions.

Another lower bound of EOF for bipartite states on
even dimensional Hilbert spaces N has been presented
[29] from a new separability criterion [30]. On even dimen-
sional spaces there exist antisymmetric unitary operations
V"= —V. The corresponding antiunitary maps V(:)"V,
map any pure state to some state that is orthogonal to
it. This leads to the conclusion that the map

O(p)=Tr(p)I—p—V(p)" V" (43)

is a positive but not completely positive map. It is non-
decomposable.

The corresponding entanglement witness W has the
form:

Wo=N(IQ®)P,, (44)
where the factor N is introduced for convenience, P, repre-
sents the one-dimensional projection onto the maximally
entangled singlet state. This criterion can detect some of
the PPT entangled states. From this separability criterion
a lower bound of EOF can be similarly obtained, E(p)=

co[R(A)], here A= max{|[p” .| R(p)||, 1 =Tr(Wap)}.
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3.2 Lower bounds of concurrence for bipartite mixed states

The lower bound of the concurrence (7) for bipartite
2 ® N mixed states p has been discussed in Refs. [21-
23]. Define the set of N(N — 1)/2 symmetric 2N x 2N
square matrices S7, 1 <i < N — 1,/ >, to be the matrices

whose elements S7 are all zero except for

ij
S1+N,/

ij
SJI+N

_ Q¥
S]+NI ’

Y —1.

ij+N

Then one has

Clo)= (43)

ZZ

j>i i=

where C,-j(p)zmax(O, WSt ) 2 1=1,2,3,4are

the square roots, in decreasing order, of the four largest
eigenvalues of the matrix \/pS”p*S?,/p. This bound also
gives rise to a corresponding lower bound for EOF,

where ¢[x] is a monotonically increasing convex function of
xinitsrange 0 < x < 1.

In fact for general bipartite states in N; x N,, the
squared concurrence has the form [47]:

iilcmnl

m=1n=

Cl)*

N1 N,

=4 § § |a1ka]1 _azla]k

i<j k<l

>

where Dy = Ny(Vy = /2, Dy = NoN> — 1)/2 Com = | Yy,
V> = (L ®Ly)|[Y*>, and L, m=1, -, NN, = D12, L,
n=1, -, Ny(N>,—1)2 are the generators of group SO
(Ny) and SO(N,), respectively.

From (46) it is evident that the Ny ® N, dimensional
Hilbert space is decomposed into N(N; — 1)N»(N, — 1)/4
2 ® 2 dimensional subspaces, such that the squared con-
currence is just the sum of all squared two-qubit’s concur-
rences. A pure state is separable iff all these “two qubits”
are separable.

Set |&;> = \/pi|¥;>. The concurrence (7) takes the form:

C p)=minz<

|<¢,~|Lm®Ln|é:f>|2> ,

(47)

Nl—l /2N2 Ny — 1

IO

m=
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Xij
subjected to the constraints z; = X;x;; with x;; real and non-
negative, the inequality Y, 7 < F* holds and the proced-
ure of extremization adopted in Refs. [10,25,26], one can
prove that for an arbitrary Ny ® N, state (5), the concur-
rence C(p) satisfies

12
by using the fact that any function F= )", (Z 2)

Ni{(Ny —1)/2 Ny(N, —1)/2

()= > Z Cu<Cip), (48
m=1
where 1 is the lower bound,
Con=max{0, ) =20 =30 =20t (49)

20 %) are the square roots of the four nonzero eigen-
values, in decreasing order, of the non-Hermitian matrix
ppmn’ where p P = (L ®L ) (LWI@Ln)

The lower bound 7 provides not only an effective sepa-
rability criterion and an easy evaluation of entanglement,
but also helps to classify mixed-state entanglement. It can
be shown that a bipartite quantum state p is distillable if
(p®*) >0 for some number M. For any pure tripartite
state |#>1o3 in arbitrary N; ® N>, ® N3 dimensional
spaces, the bound t satisfies

t(p12) +1(p13) <T(p123) (50)

where pi> = Tr3(|¢123<e)), p13 = Tra(|p>123¢¢]), and py.o3 =

Tros(|¢123<¢)-
Similar to the case of EOF, the separability criteria

positive partial transpose (PPT) and realignment can also
be used to obtain lower bounds of concurrence [27]. From
(33) and (14) one has

Clyy)=2 > .
i<j

which varies smoothly from 0 for separable states to 2
(N1 — 1)/N; for maximally entangled states.

By summing over all of the arithmetic mean inequalities
Wil + by =2, /TG for i< jand k </, one gets

SO (it + o) =2> > Sty

(51)

i<j k<l i<j k<l
2
=2(Z \/,Ui.“j> : (52)
i<j

There are Nj(N| — 1) terms of y;z; on the left hand side
of (52). Therefore
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42/1#//

i<j

SO (Z \/—>

8

TN (V1) (; m) .

From (53) one gets
C(p") =2/ NN = 1) (| (o)

)

C(p)=V2/(Ni(Ni =) (|[R(p)||-1),

for any pure state p’, as from (35) one has

=)™ | = (Zvim)

where /1y are the Schmidt coefficients for the pure state p'.

Now assume Xp;p’ is an optimal decomposition for p to
achieve the infimum of C(p), where p’ are pure state den-
sity matrices. Then C(p)=ZXp;,C(p’) by definition.
Noticing that [|p"]|< 32, pil| ()" IR(p)]| <
>ipillR(p")|| due to the convexity property of the trace

norm, one can prove that for any Ny ® N, (N; < N»)
mixed quantum state p, the concurrence C(p) satisfies

=

and

C(p) =

(o)) —1).

max (||p” (54)

2
Nl(Nl—l)(

For the U® U" invariant mixed isotropic states with
Ny = N, = N[39,40], the bound (54) gives the exact value
of the concurrence derived in Ref. [20].

If one takes the separability criterion (44) into account,
the above bound can be improved [29]. Set fyn(p) =
o™l =1, freatien(P)=[R(p)|| =1, fw,(p) = —Tr(Wap),
where Wy is defined in Eq. (44). Then

C(p)>\lmmax(fppt freahgn( )’qu)(p)),

holds for any Ny ® N, (N; < N;) mixed quantum state p.
An interesting separability criterion called local uncer-
tainty relations (LURS) criterion is based on uncertainty
relations [50]. It can detect some of the PPT entangled states
[51,52]. It says that if {4;} and {B;} are observables acting on
‘H; and H, respectively, fulfilling the uncertainty relations
S AY(A;)>Cyand Y, A% (B;) = Cp(Ca, Cp=0), then,

> A (A4:@I+I®B;)>Cy+Cp (55)

holds for separable states [50]. The variance A? is given by
AIZJ(M) =(M?*),— (M, where {M),=Tr(pM) is the
expectation value of the observable M. A particularly inter-
esting choice of the observables is the local orthogonal
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observables (LOOs) [53], that is, the orthonormal bases of
B(H,) and B(H>), denoted by {G{l}ﬁl and {Gf}f.vjl. Since
N?
(G =N 1.
i=1
in this case (55) reads [52]
N3
> A(G'RI+IRGE) =N+ Ny—2.
i=1
For any set of LOOs {G{} and {G?} and any N| x N,
(N7 < N») pure state [y> with Schmidt decomposition
(33), using (56), one can obtain that

ZA@(G,?‘@IH@GF) >N +N,—2

N?
A (GP)=N,—1, (56)
i=1

(57)

+2) (KG'@GE, <G, <GP, ).
Furthermore, due to the fact that

Zi <<G;A®GIB>1//7<G;A>pA<GIB>pB>272 j<k 'V 'uj’uk’

one has

N3
S A(GIRI+I®GCP) =N+ N1—2—4> " /i1 (58)
i=1

j<k

Let 2,p,lV,.>{y¥,| be the decomposition of p for which
the minimum in (7) is attained, so that, C(p) = Z,p,,C({/,,).
From (51) and (58), a lower bound of concurrence based
on LURs criterion is obtained [31]: For any N; x N,
(N < N,) quantum state p,

' Ni+N—2— 3 A (G QI +1RGPF)

2Ni(N1—1) )

Clp

for any set of LOOs {G{'} and {G?}.

The bound (59) depends on the choice of the local
orthonormal observables. In Ref. [32], this bound is opti-
mized. For a given state p, one can choose an arbi-
trary complete set of LOOs {G{}, {GF}. The other
orthonormal normalized basis of the local orthonormal
observable space can be obtained from {G{!} and {GF}

by unitary transformations U and V-
Gi= Y, UaGt GE= Y, VinG,

Select Uand V'so that t = U'AV is the singular value decom-
position of thematrix tdefined by v, = (G @ GB > — (G @I >

m
{I®GB . Then the new observables can be written as

Gi=> UG}, GE=->"v; {Ga).
] m

One has
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S A (Gler+1eGE)
k

=N =Trp+ Na+Trpp—2) k(D). (60)
k

where (1) stands for the kth singular value of 7.

Since the entanglement criterion based on local uncer-
tainty relations is strictly stronger than the realignment
criterion [52], one has the following inequality [32]:

C(p)>\/m(max(|}p“ : Lmax(p)) = 1), (61)

for any Ny ® N, (N; < N») mixed quantum state p, where
Linax = 0%(7)+ (Trpi1 +Trp%) /2.

In Ref. [54], a separability criterion based on the Bloch
representation of density matrices has been presented.
This correlation matrix criterion says that for bipartite
separable states p,

NiN»(N;—1)(N,—1)
7y . ,
where Tisan (N — 1) x (N3 — 1) matrix with 7; = Ny N, /4-
Tr (p/lf ®)f > , /i and 27 are the generators of SU(N,) and
SU(N-) respectively, satisfying Tr)v,iA/ B) AEA/ B _ 204.

Based on the correlation matrix criterion a lower bound

of concurrence is obtained in Ref. [31]. For any Ny x N,
(N1 < N;) quantum state p, one has

8
C(p) >\IW(HT” —Knn,), (63)

where I(/\/IN2 = \/N]Nz(Nl —1)(N2—1)/2.

(62)

Example 1 Consider the 3 x 3 bound entangled state [55],

1 4
p=7 (19— 2 |f,-><é,~>,

where Iy is the 9 x 9 identity matrix,

(64)

&> =50 (0= 1),
> == 1),
&Y== 12),
&y = (1 =-12))10%
£ =3(105+ 11>+ 22)(105 +]1>+12).

Choose the local orthonormal observables to be the normal-
ized generators of SU(3). (63) gives C(p) = 0.0205. (54) gives
C(p) = 0.050. (59) gives C(p) = 0.052 [31], while (61) yields a
better lower bound C(p) = 0.055.
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Example 2 Consider the 4 x 4 bound entangled states [56],

? 0O 0 0 0 0 0 0
o 2 0 0 -f£ 0o 0 o
8
0 0 % 0 0 0 0 0
O 0 0 0 0 0 0 0
0 -2 0 o0 g 0 0 0
0 0 0 0 0 ? 0 0
O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 g
p= e
0 0 —£0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 —
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0

1
where 0<8<§. Equations (54), (61), (63) give the same

result: C(p) = 0. This result shows that the realignment,
LURs and correlation matrix criteria fail to detect this
bound entangled state.

3.3 Lower bounds of concurrence for tripartite systems

Let Hi, Ha, -+, Hy be M(=2) Ny, N, ..., Ny~dimen-
sional Hilbert spaces respectively. The concurrence for a
general pure multipartite state [y ) e HIQH2® - QHu
is defined by

m
Cy) =y [m=_ Trpl, (66)

oa=1
where m = 27! — 1 is the number of all possible bipartite
separations of an M-partite system, the reduced density
matrix p,, o =1, ..., m, is obtained by tracing over one

part of the subsystems associated with the a-th bipartite
separation.

For the multipartite case, a Schmidt expression like (33)
does not exist. To get a lower bound of the multipartite
concurrence, one needs the operations of generalized partial
transpose and realignment. Let us first recall some nota-
tions used in various matrix operations [57,58]. A generic

ool ™

123
00 0 0 0 0 0 0
00 0 0 0 0 0 0
—g 0O 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 —g 0 0
. , (65)
s 00 00 0 0 0
0O 0 0 0 0 0 0 0
0 0 % O 0 0 0 0
0 0 0 g 0 0 -2 o
00 0 0 0 0 0 0
00 0 0 0 g 0 0
00 0 —290 o0 g 0
00 0 0 0 0 0 ?

matrix G can always be written as G= ) _ a; {j|®|i), where

l)
|i>, |j> are vectors of a suitably selectejd normalized real
orthogonal basis. The operations 7 ,(resp. 7 .) are defined
to be the row transposition (resp. column transposition) of
G which transposes the second (resp. first) vector in the
above tensor product expression of G:

T.(G)="_ a; |®<il,
ij

' (67)
T(G)=> a|j»®i>.
i,

It is easily verified that 7.7,(G)=7,7.G)=GT,
where T denotes matrix transposition.

In the following, 7,, (resp. 7., ) are defined to be the
row (resp. column) transpositions with respect to the sub-
system k. For instance, 7 ,,, stands for the row transposi-
tions with respect to the subsystems 1 and 2. Let
Y={x1, x2, ...} be a set of such operations on a density
m;itrix p. Set pTr=Ty(p)=T T, ...(p), eg
p i =Ty Ty T iy (0)-

The concurrence for a general pure tripartite state
[V>eH I ®Hr®Hs is defined by

C(l>)=1/3=Tr(p} +p3+03). (68)
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where the reduced density matrix p; (resp. p,, p3) is
obtained by tracing over the subsystems 2 and 3 (resp. 1
and 3, 1 and 2). In Ref. [33] a special class of ) is discussed:
Vi={c,ri},i=1,2,3,  Ya={c1, 3},  Vs={cn,r},
Ve={c13,m}. As pTvi=pTi i=1,2,3, where T; stands
for the partial transposition with respect to the subsystem
i, the operations Yy, ), and )5 correspond to the partial
transpositions of p.

For the most simple tripartite system, the three qubits
case, a state |¥) can be written in terms of the generalized
Schmidt decomposition [59],

P> = 20]000) + 11€ 100> + 2,|101 )

+73[110) + J4|111) (69)

with normalization condition 4,=0,0 < ¢ <, >, /1,2 =1.
The corresponding density matrix p = |V ><'¥| has the fol-
lowing properties:

Trp%=1—2,uo(l—,u0—,u1),
Trps =1—2u0(1 — g — g — i) — 24,
Trp3=1—2p0(1— o — py —p13) =24,

where A=|l4e? — adaf, =722, i=0, 1, .., 4.
Therefore, from (68) one has
C*(p) =2u0(3 =3 =3 — oy —pi3) + 44, (70)

which varies smoothly from 0, for pure product states, to
3/2 for maximally entangled pure states.

On the other hand, under the operations of );,
i=1,2, 3, one gets

67 || = 1420/ 1 (o + 13 + 1)

0722 || =142/ A+ o (113 + pg) (71)

HPTy-‘H=1+2\/A+H0(M2+M4)-
Combining (70) and (71) one can obtain

Cp)=(||p™ ] -1), j=1.2.3. (72)

A three-qubit (2 ® 2 ® 2) system can be viewed as three
different bipartite (2 ® 4 or 4 ® 2) systems. From the
results for bipartite systems in Section 3.2, these three
bipartite separations give rise to, respectively

1 T 2
1—Tr(p%)>§( o ferm) _1> ,
1 T 2
1 —Tr(p%) > E ( 0 {ezn} || — 1) ,
1 T 2
1—Tr(p§)>§( o fen) _1> ,
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Therefore,

1 Ty,
> — Yj
Clp)> ﬁmax{Hp

Hence, if one assumes that Xp;p’ is the optimal decom-
position of p such that C(p) = Z;p;C(p’), where p’ are pure
state density matrices, taking into account that
07| < Zipi"(pi)Ty l, from (72) and (73) one gets that
for any three-qubit mixed quantum state p, the concur-

rence C(p) satisfies
1) } (74)
wherei=1,2,3;j=4,5,6.

For higher dimensional tripartite systems, an express-
ion like (69) does not exist. The related lower bound of
concurrence will be discussed in the next section for arbit-
rary multipartite systems.

—1}, j=4,5,6. (73)

Clp)= max{||p7y;’|_1’ %(pr},j

3.4 Lower bounds of concurrence for multipartite
systems

3.4.1 Generalized Greenberger-Horne-Zeilinger state

Concerning multipartite (M > 3) systems, let us first con-
sider the M-partite generalized Greenberger-Horne-
Zeilinger (GHZ) state,

|®>=cos 0]00---0)+ sin O]11---1). (75)

For p=|0){®|, one gets p;=Try i—1i1anp=

cos?0[0»<0|+sin?0|1>(1|.  Therefore,  Trp?= cos* 0+
sin* 0=1—2sin? 0 cos® 0,i=1,2, ..., M. In fact, one
can prove that Trp?, , =1-2 sin? 0 cos? 0 for all

hW#b# - #i,e{l, 2, ..., M}, 1 <m < M. Hence, from
(66) one has

C(p)=V2d sin® 0 cos? 0.

On the other hand, the partial transpose of p with
respect to the ith qubit space gives rise to

(76)

pr=0052 0]0---0;---0%0---0;---0|
+cosOsin 0)0---1;---0p(1---0;---1]
+cos Osin O|1---0;---1>¢0---1;---0]
+ sin® O1 -1 1)L 1 1,

i=1,2,+, M. As p™is Hermitian, its singular values are
simply given by the square root of the eigenvalues of (p”)>.
The trace norm of p” takes the form |p”||=

142+/sin* 0 cos? 6. The trace norms of partial trans-
posed p with respect to the other sub-qubit spaces can
be similarly calculated. All together one gets
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[|[pTam || = 142V sin® 0 cos? 0, (77)
where iy #Z i, # - #i,€{l,2, ... M}, 1 <m< M.

Now consider the norm of p under bipartite realign-
ment. If a bipartite realignment with respect to the sub-
systems i and j, | < i#j < M is made, while leaving the
other subsystems untouched, one has

Ri;(p)
= cos> (9|0...01 0><0---0;---0; ..0|
+cos 0sin 0]0---0;- 101+ 0; -1+ 1]
+cosHsin0|1--~li---Oj-~-1><0-~-1i---0] --O|
+ sin? 9|1... EEES FERRD DTS EERS FERRS FRS 1|
Ol =1+2V/sin? 0 cos? 0. Let ©, and

®, be two different subsystems. One can similarly verify that

|[Reyje,(p)]|=1+2V sin® 0 cos? 0.

From (76), (77) and (78) one can prove that for any M-
qubit mixed state with decomposition p = Z;p |V, >V}, if
|¥;> can be written in the form (75) for all i, then the
concurrence C(p) satisfies

(78)

C(p)= max{[[p"||, (79)

p)||}—1,

where ©, ®;, ®, are subsets of the indices {1, 2, ..., M},
such that ®; U ®, = (7.

Remark Once a density matrix has a decomposition with
all the pure states of the form (75), then all other possible
decompositions of it will also have the form (75), since other
decompositions can be obtained from the unitarily linear
combinations of this decomposition, and any linear combi-
nations of the type (75) still have the form (75).

3.4.2 Generalized W-state

We consider now another M-qubit state, the generalized
W-state,

Yy—a 100>+ a0l --- 05+
| +|aM|00--- 1. | (80)
Let p = |¥){¥|, then
i = Tro s p = a1 AHE < a)]05<0].
Therefore, Trp?=|a;|* + (Zj# |aj’2)2, i=1,2, ..., M.

Generally, one can prove that

2
2 _ 2 2 2
Trpj .., = (|ai1| +a, |+ +aim| )

2
2
+ (Zk;ﬁ{il, ia, ey i} x| )
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for all i1 # i, # - #1i,€{l, 2, ...,
from (66),

M}, 1<

C(p)= [2M-1 Z ’a,—a]—|2.
\ i<

From a direct calculation, the trace norm of the partial
transposed matrix p” of p with respect to the ith qubit

space is given by [[pT||=1424/>,; |a,-aj|2. The trace

norms of the partial transposed p with respect to the other
sub-qubit spaces can also be similarly calculated,

m < M. Hence

(81)

Im

I f=1+2, ) > > laal,  (82)
l;ﬁ{il, i, -, im} k=i
where i # iy # -+ £ i€ (1,2, .., M}, 1 <m < M.

An M-qubit W state can be viewed as m different
bipartite systems. Let '}, T? denote two subsets of the
indices {1, 2, .., M}, TIN[L=g IUL=
{,2, ..., M}, =1, ---, m. From the results for bipart-
ite systems, these m bipartite separations give rise to,
respectively,

=1e() 2 5 ([Rege 0] 1)’

a=1, ---, m.

Hence,

m
e 3T
a=1 *

1
Z—maX{HR ) F?(p)H_l’ a=1, ---

V2
Therefore, for any M-qubit mixed state with decom-
position with respect to the generalized W states,
p =Zp|¥. >V}, such that |'¥';> can be written in the form
(80) for all i, the concurrence C(p) satisfies

Clp) =

max {

From (79) and (84), it is seen that the lower bound for
the class of mixed states with decompositions with respect
to the generalized GHZ states is weaker than the one for
the class of mixed states with decompositions with respect
to the generalized W states, in the sense that in (79) the
realignment is associated with two arbitrary subsystems
®; and O, such that ®; N ®, = ¢J, but not necessary
®,UB,={l1, 2, ..., M}. While in (84) we simply treat
the realignment associated with bipartite separations, so

cmb. (83)

1 (R 1), =t ’"}

(84)
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that the two subsystems 1"1 and l"i satisfy both
r'Ne2=gand TLUurt={1,2, ..., M}.

3.4.3 Schmidt-correlated state

The Schmidt-correlated (SC) states are the mixtures of
pure states, sharing the same Schmidt bases. For any clas-
sical measurement related to the SC states, two observers
will always obtain the same result [60]. Such SC states
naturally appear in a bipartite system dynamics with
additive integrals of motion [61].

An M-partite state pin C"® C"® -+ ® C" is called a
Schmidt-correlated state if it can be expressed as

N-1

p= Z amn|m"'

m,n=0

my{n---nl, (85)
where ZZ ;é a,m=1. The SC state (85) can and can only
be realized by an ensemble {p;, |D)}, |D;>=

S Ay [m - - - m, with @, given in (85) [62].
Let GHZ(M, N) denote the M-partite maximally
entangled state

GHZ(M, N)=——(]0---0>+|1--- 1)

1
VN
Fo A [N=1, -, N=1)).

Then |®;> is equivalent to either a fully separable state
or GHZ(M, t) (0 <t < N) under stochastic local opera-
tion and classical communication (SLOCC) [63,64].

For a multipartite SC state p,

N1

p=">_ mlm---m)n---n|=> " pi ¥Vl (86)
m,n=0 i
where |¥;> takes the form |‘I’,~>=Zm Dm---m),
2
>om c,(f) =L am=>; p,cm c,,) . It is easily seen that

the concurrences of |¥;> are the same for all reduced den-
sity matrices in bipartite decompositions. Due to the fact

= Trzk(|qjl><qll|) = Zm

Ol%
Cm ’ |m>{m|, one has

).

4
= min 1— i)
{p’ ‘\P’>} Zpl < ; m

that P1

C(|¥:5)= 2<1—Z\cm

012
=2 min Di e,
(i w»z ’ n; "
)2

Taking into account that ) ¢?1"=1, one has

0<C(p)<4/2(1—%). For the state GHZ(M, N),

Xiuhong GAO, et al., Entanglement of formation and concurrence for mixed states

C(GHZ(M, N)) = \/2<1 -y ]\12) - \/2(1 - ]17)

Instead of bipartite decompositions, one may also
directly use the concurrence formula Eq. (66) for mul-
tipartite states. Similarly, one can get 0<C(p)

(1 — —) from the Lagrange multipliers method.
Applylng this to the state GHZ(M, N), one has similarly

C(GHZ(M, N))=/m(1— ).

For general multipartite systems, one can deal with them
as bipartite separations 1"; and Fi, which give rise to

l—Tr((pFl>2>;mma){{(“pql _1)2’
(HRrurz(P)H—l)z}, y=1, -

where D,=min(dimI'}, dimI%), dimI'}(resp. dimT3)
is the dimension associated with the subsystems con-
tained in T} (resp. I'2).

Therefore, for any Ny ®@ N> ® -+ ® Ny, M-partite
mixed quantum state p, the concurrence C(p) satisfies

Reye (o)) =1, a=1.....m},

(87)

5m9

C(P)>K{maX(HpTr5 :

where K=1/1/D,(D,—1).

Here, for general mixed states, it is difficult to find the
relation between the concurrence of a pure state and the
corresponding norm of the partial transposed state with
respect to certain subsystems, like the one between (76)
and (77). The bound (87) is obtained by bipartite separa-
tions of the system, and there is an extra factor K, which
makes this bound weaker than (84), when it is applied to
the special class of mixed states with decompositions with
respect to the generalized W states.

4 Summary and conclusions

We have given a review on the measures of quantum
entanglement: entanglement of formation and concur-
rence. As it is difficult to calculate the EOF and concur-
rence for general mixed states due to the extremization
involved in the calculation, analytic formulae for the
EOF and concurrence are only obtained for a few special
classes of mixed states. Fortunately, many strong separab-
ility criteria have been found. From these separability cri-
teria many tight lower bounds of the EOF and
concurrence have been obtained, which can detect, in par-
ticular, some bound entangled states.
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