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1 Introduction

During the last few years fairly concrete evidence has emerged for the idea that Vasiliev

higher spin theories [1] arise as classically consistent subtheories of string theory in the

tensionless limit, as had been anticipated many years ago [2–4]. In particular, a relation

of this kind was suggested for the case of AdS4 in [5], while for AdS3 a somewhat different

proposal was made in [6]. In the latter case, the N = 4 superconformal generalisation [7]

of the original bosonic minimal model holography of [8], relating a higher spin theory on

AdS3 [9, 10] to the large N limit of a family of minimal model CFTs, was shown to define a

subtheory of the CFT dual of string theory. More specifically, this was only shown for the

background of the form AdS3 × S3 × T4, where the CFT dual of string theory is believed

to be described by the symmetric orbifold of T4, see [11] for a review. The CFT duals of

the N = 4 higher spin theories on AdS3 are described by the so-called Wolf space cosets,

see [12–17] for some early literature on this subject; in the limit where the torus background

is approached — this is the case where the level k of the cosets is taken to infinity — these

cosets simplify to become the theory of 4(N + 1) free bosons and fermions, subject to a

U(N) singlet constraint. They then form a natural subsector of the untwisted sector of

the symmetric orbifold where the same free theory is only subjected to a singlet constraint

under the permutation group SN+1 ⊂ U(N).

It is obviously tempting to believe that this sort of relation is not just restricted to the

maximally supersymmetric setting, but that the less-supersymmetric higher spin — CFT
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dualities may also be related naturally to string theory. One particularly interesting case is

the N = 2 version of the duality [18, 19], for which the dual 2d CFTs are Kazama-Suzuki

(KS) models [20, 21] that have an additional parameter and may therefore allow for a

matrix-like construction as in [5], see [22] for an attempt in this direction. In this paper we

follow a different route by trying to imitate the analysis of [6] for the N = 2 case: following

on from our earlier work [23] (see also [24, 25]), where we showed that the large level limit

of the relevant KS models can be described as the continuous orbifold of a free theory, we

discuss how this (constrained) free theory is related to a symmetric orbifold construction.

This symmetric orbifold is quite plausibly dual to string theory on AdS3, following the

general philosophy of [26], see also [27–29] for subsequent work.

The paper is organised as follows. In section 2 we define the symmetric orbifold in

question, and explain how the large level limit of the relevant KS models describe a sub-

sector of this theory. In particular, we study the embedding in detail for the untwisted

sector, where we can give very concrete decompositions in terms of the representations of

the N = 2 sW∞ algebra. Section 3 is devoted to understanding how the twisted sector

states of the symmetric orbifold can be similarly described in terms of these representations;

we study in detail the (2)-cycle, as well as the (2)2-cycle twisted sector, for which we give

detailed decomposition formulae; we also explain how the structure of a general twisted

sector can be understood in similar terms. Finally, we undertake (in section 3.4) first steps

towards characterising the higher spin representations that are relevant for the description

of the twisted sector, generalising the recent discussion of [30] to the N = 2 case. We

end with some conclusions, and there is an appendix where a self-contained description of

the low-lying bosonic generators of the sW∞ algebra in terms of the KS cosets is given.

(This analysis is an important ingredient for the identification of the higher spin algebra

representations, but it may also be useful in other contexts.)

2 The untwisted sector of the symmetric orbifold

It was shown in [23] that the N = 2 superconformal cosets that appear in the duality to

the N = 2 supersymmetric higher spin theory on AdS3 can be expressed as a continuous

orbifold of a free field theory in the limit where the level k → ∞. More precisely, in this

limit the coset (see [19] for our conventions)

su(N + 1)
(1)
k+N+1

su(N)
(1)
k+N+1 ⊕ u(1)

(1)
κ

∼=
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
(2.1)

was shown to agree with an orbifold theory of N free bosons and fermions by the continuous

orbifold group U(N). A similar approach was applied to the N = 4 Wolf space cosets in [6],

where it was shown that the corresponding coset algebra is a natural subalgebra of the chiral

algebra of the symmetric orbifold; in turn the symmetric orbifold is believed to be dual to

string theory on AdS3, thus exhibiting how the higher spin theory is embedded into string

theory. In this paper we want to analyse how the N = 2 cosets (2.1) can be related to an

N = 2 symmetric orbifold. This should be a first step towards understanding the string

theory interpretation of the corresponding N = 2 higher spin theory.
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The continuous orbifold describes the theory of N free complex bosons and fermions

transforming in the fundamental (and anti-fundamental) representation of U(N). Thus

it can be represented as the orbifold (T2)N/U(N).1 The untwisted sector consists of the

states that are invariant under the action of U(N). The full orbifold theory includes also a

twisted sector for each conjugacy class of U(N). The conjugacy classes can be labelled by

ascending N -tuples [ξ1, . . . , ξN ] where −1/2 ≤ ξ1 ≤ · · · ≤ ξN < 1/2; the relevant conjugacy

class contains then the diagonal matrix with eigenvalues exp(2πiξl). The ξl, l = 1, . . . , N ,

can be interpreted as the twists of the N free bosons and fermions.

As in the N = 4 case one may then consider, instead of the U(N) action, the permuta-

tion action of SN+1 ⊂ U(N). To explain this, it is natural to start with a theory of N+1 free

bosons and fermions, on which SN+1 acts by permutations. This action is not irreducible

since the sum of all bosons (or fermions) is invariant under the permutation action,

N + 1 ∼= N ⊕ 1 . (2.2)

Here and in the following, normal font is used to denote representations of SN+1, while

bold font is reserved for representations of U(N). The N -dimensional representation on

the right hand side is irreducible and is called the standard representation of SN+1. In

a suitable basis this representation acts on only N copies of T2, so the orbifold of N + 1

copies decomposes in fact as

(T2)N+1/SN+1
∼= (T2)N/SN+1 ⊕ T2 . (2.3)

Since in the N = 2 case the theory in question only involves N complex bosons and

fermions, we need to remove the last factor that describes the diagonal torus (which trans-

forms as a singlet under SN+1). This is a complication relative to the N = 4 case discussed

in [6], where the large level limit of the coset theory involved 2(N + 1) complex bosons

and fermions, and hence the diagonal torus was also part of the coset theory. We shall

therefore, in the following, study the orbifold (T2)N/SN+1.

In order to see the relation to the KS models we recall that the standard representation

ρ of SN+1 acting on the N tori maps permutations to unitary (actually even orthogonal)

N × N matrices. Thus we can view ρ(SN+1) as a finite subgroup of U(N), and since

the standard representation is faithful, that subgroup is isomorphic to SN+1. Further-

more, as discussed in [6], the fundamental (and anti-fundamental) representation of U(N)

branches down to the standard representation of SN+1. Thus the U(N)-invariant states

of the free theory form a consistent subsector of the SN+1 invariant states, and hence the

untwisted sector of the continuous orbifold is a subsector of the untwisted sector of the

symmetric orbifold.

In the rest of this section we shall analyse the untwisted sector of the symmetric orbifold

from the viewpoint of the continuous orbifold. The twisted sectors of the symmetric orbifold

will be discussed in the following section.

1Strictly speaking the relevant orbifold is (R2)N/U(N), since the U(N) action is not compatible with

discrete momenta. However, we shall usually refer to it as the torus orbifold since the zero momentum

sector (which is what we shall be considering) is independent of the radius of the torus.
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2.1 Perturbative decomposition of the untwisted sector

The untwisted sector of the symmetric orbifold by SN+1 contributes to the partition func-

tion as

ZU(q, q̄, y, ȳ) = |Zvac(q, y)|2 +
∑
R

∣∣∣Z(U)
R (q, y)

∣∣∣2 , (2.4)

where Zvac denotes the vacuum character, and R labels the non-trivial irreducible repre-

sentations of SN+1. In order to avoid having to write repeatedly N + 1, we now change

notation and replace the N from (2.1), (2.2) and (2.3) by Ñ , and define N ≡ Ñ + 1; in any

case, we shall always be considering the large N (and hence large Ñ limit) for which this

distinction is immaterial. In their analysis [31], Dijkgraaf, Moore, Verlinde and Verlinde

computed the partition function of the symmetric orbifold XN/SN in the R-R sector with

insertion of (−1)F+F̄ , which reads

∞∑
N=0

pN Z̃R(SN (X)) =

∞∏
m=1

∏
∆,∆̄,`,¯̀

1(
1− pmq

∆
m q̄

∆̄
m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀) . (2.5)

Here we have indicated by the tilde that we have inserted a factor of (−1)F+F̄ , and

c(∆, ∆̄, `, ¯̀) are the expansion coefficients of the R-R partition function (with insertion

of (−1)F+F̄ ) of the base manifold X,

Z̃R(X) =
∑

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀) q∆q̄∆̄y`ȳ
¯̀
. (2.6)

In our case, X = T2 and the partition function factorises into its chiral parts, with

c(∆, ∆̄, `, ¯̀) = c(∆, `)c(∆̄, ¯̀). The chiral partition function reads (as in [6] we will be

ignoring the momentum and winding states)

Z̃
(chiral)
R (T2) = i

ϑ1 (z|τ)

η3 (τ)
= −

(
y

1
2 − y−

1
2

) ∞∏
n=1

(1− yqn)(1− y−1qn)

(1− qn)2

= −y
1
2 + y−

1
2 + q

(
y

3
2 − 3y

1
2 + 3y−

1
2 − y−

3
2

)
+ 3 q2

(
y

3
2 − 3y

1
2 + 3y−

1
2 − y−

3
2

)
+ q3

(
−y

5
2 + 9y

3
2 − 22y

1
2 + 22y−

1
2 − 9y−

3
2 + y−

5
2

)
+O

(
q4
)
, (2.7)

where

ϑ1(z|τ) = i
(
y

1
2 − y−

1
2

)
q

1
8

∞∏
n=1

(1− qn)(1− y qn)(1− y−1 qn) . (2.8)

In our analysis we will only be concerned with the NS-NS sector. The partition function

in that sector can be obtained from (2.5) by spectral flow

y → y q
1
2 , ȳ → ȳ q̄

1
2 , p→ p q

1
8 q̄

1
8 y

1
2 ȳ

1
2 . (2.9)

This leads to an overall factor of (qq̄)−
N
8 = (qq̄)−

c
24 , which we will suppress throughout this

paper for better readability. (Effectively, this is equivalent to multiplying the right-hand
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side of the last replacement in (2.9) by an additional factor of (qq̄)
1
8 .) We then obtain the

symmetric orbifold generating function in the NS-NS sector (without a (−1)F+F̄ insertion)

∞∑
N=0

pNZ
(
SN (X)

)
=
∞∏
m=1

∏
∆,∆̄
`,¯̀

1(
1− (−1)`+¯̀+1pmq

∆
m

+ `
2

+m
4 q̄

∆̄
m

+
¯̀

2
+m

4 y`+
m
2 ȳ

¯̀+m
2

)c(∆,∆̄,`,¯̀) .
(2.10)

Now the generating function of the untwisted sector corresponds to the m = 1 factor

of (2.10),

∞∑
N=0

pNZ(U)
(
SN (X)

)
=
∏
∆,∆̄
`,¯̀

1(
1− (−1)`+¯̀+1p q∆+ `

2
+ 1

4 q̄∆̄+
¯̀

2
+ 1

4 y`+
1
2 ȳ

¯̀+ 1
2

)c(∆,∆̄,`,¯̀) , (2.11)

and the chiral vacuum character (the partition function of the W algebra) of the orbifold

(T2)Ñ+1/SÑ+1 can be found from (2.11) by setting ∆̄ = 0, ¯̀ = −1
2 and taking N large

enough so that the coefficients stabilise; it is given by

Z ′vac = 1 + q
1
2 (y + y−1) + 4q + 6q

3
2 (y + y−1) + 4q2(y2 + 6 + y−2)

+ q
5
2 (y3 + 37y + 37y−1 + y−3) + 7q3(4y2 + 17 + 4y−2) +O

(
q

7
2

)
. (2.12)

In order to obtain the vacuum character of the orbifold (T2)Ñ/SÑ+1 ≡ (T2)N−1/SN , we

have to divide this by the chiral partition function of T2, which means we neglect the torus

that transforms as a singlet under SN ≡ SÑ+1 and corresponds to the trivial factor in the

permutation representation of SÑ+1, see eq. (2.2). Since this torus partition function is

given by

Z
(chiral)
NS (T2) =

∞∏
n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)

(1− qn)2
, (2.13)

where we have once more suppressed the prefactor q−
1
8 , we obtain the modified vacuum

character

Zvac(q, y) =
Z ′vac

Z
(chiral)
NS (T2)

= 1 + q + 2q
3
2 (y + y−1) + q2(y2 + 8 + y−2) + 10q

5
2 (y + y−1)

+ q3(5y2 + 32 + 5y−2) + q
7
2 (2y3 + 47y + 47y−1 + 2y−3)

+ q4(y4 + 37y2 + 142 + 37y−2 + y−4) +O
(
q

9
2

)
. (2.14)

This vacuum character counts the chiral states that transform trivially under SN , and

hence includes, in particular, the character of the N = 2 coset sW∞ algebra (in the limit

k →∞). Thus the vacuum sector should decompose into the coset characters as

Zvac(q, y) =
∑

Λ

n(Λ)χ(0;Λ)(q, y) . (2.15)
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Indeed, by comparing both sides of the equation order by order in q, we find explicitly

Zvac(q, y) = χ(0;0)(y, q) + χ(0;[2,0,...,0])(q, y) + χ(0;[0,0,...,0,2])(q, y)

+ χ(0;[3,0,...,0,0])(q, y) + χ(0;[0,0,0,...,0,3])(q, y)

+ χ(0;[2,0,...,0,1])(q, y) + χ(0;[1,0,0,...,0,2])(q, y)

+ 2 · χ(0;[4,0,...,0,0])(q, y) + 2 · χ(0;[0,0,0,...,0,4])(q, y)

+ χ(0;[0,2,0,...0,0])(q, y) + χ(0;[0,0,...0,2,0])(q, y)

+ χ(0;[3,0,...,0,1])(q, y) + χ(0;[1,0,0,...,0,3])(q, y)

+ 2 · χ(0;[2,0,0,...,0,2])(q, y)

+ χ(0;[2,1,0,...,0,1])(q, y) + χ(0;[1,0,...,0,1,2])(q, y)

+ χ(0;[0,2,0,...,0,1])(q, y) + χ(0;[1,0,...,0,2,0])(q, y)

+ 3 · χ(0;[3,0,...,0,2])(q, y) + 3 · χ(0;[2,0,...,0,3])(q, y)

+ χ(0;[1,1,0,...,0,2])(q, y) + χ(0;[2,0,...,0,1,1])(q, y)

+ χ(0;[3,1,0,...,0])(q, y) + χ(0;[0,...,0,1,3])(q, y)

+ 2 · χ(0;[4,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,4])(q, y)

+ χ(0;[2,1,0,...,0,1,0])(q, y) + χ(0;[0,1,0,...,0,1,2])(q, y)

+ χ(0;[1,1,0,...,0,1,1])(q, y) +O
(
q

9
2

)
. (2.16)

As in [6], this is precisely of the form (2.15), with n(Λ) denoting the multiplicity of the

SN singlet representation in the U(N − 1) representation Λ, where we think of Λ as a

SÑ+1 ≡ SN representation using the embedding SÑ+1 ⊂ U(Ñ).2 Although the coefficients

n(Λ) appearing in (2.16) and the analogous N = 4 decomposition, see eq. (4.10) of [6],

agree precisely, one should emphasise that the computation of this decomposition does not

directly follow from the N = 4 case since the explicit cosets are quite different. In addition,

in the case at hand, it is the modified vacuum character (2.14) (where the invariant torus

partition function is divided out) that appears on the left-hand-side, while in the N = 4

case the corresponding identity involved the full symmetric orbifold vacuum character.

Furthermore, as in [32], we can identify the single particle generators that generate

this extended W-algebra; if we had not divided out by the diagonal T2, the generating

function of the single particle generators would have been (see [32])∑
s,l

d̃(s, l)qsyl = (1− q)
[
Z

(chiral)
NS (T2)(q, y)− 1

]

= (1− q)

[ ∞∏
n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)

(1− qn)2
− 1

]
, (2.17)

where the factor of (1 − q) removes the derivatives, and d̃(s, l) are the number of single

particle generators of spin s and charge l. Dividing out by the diagonal torus removes just

the contribution coming from the two free fermions and bosons; thus the actual generating

2We thank Marco Baggio for helping us compute these multiplicities.
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function equals

∑
s,l

d(s, l)qsyl = (1− q)

[
Z

(chiral)
NS

(
T2
)

(q, y)−

(
1 +

q
1
2 (y + y−1)

(1− q)
+ 2

q1

(1− q)

)]
= q + 2q

3
2 (y + y−1) + q2(6 + y2 + y−2) + 6q

5
2 (y + y−1) + · · · . (2.18)

These single particle generators generate then the W algebra in the sense that

Zvac(q, y) =
∏
s,l

∞∏
n=0

1

(1− ylqs+n)(−1)2sd(s,l)
. (2.19)

They should sit in wedge representations of the N = 2 sW∞ algebra, and one finds,

analogously to [32], that we have the decomposition

∑
s,l

d(s, l)qsyl = (1− q)
∞∑′

m,n=0

χ
(wedge)
(0;[m,0,0,...,0,0,n])(q, y) , (2.20)

where the prime indicates that the terms with (m,n) = (0, 0), (1, 0), (0, 1) are not included

in the sum. Note that the term with m = n = 1 accounts precisely for the generators of

the original sW∞ algebra. We have checked these identities up to order q15, and it should

be straightforward to prove them using the techniques of [32].

We can similarly extract the characters corresponding to the second sum in (2.4). For

example, the representation that contains, among others, the coset states

(0; f) , (0; f̄) , (2.21)

is associated to R being the standard representation of SN . The corresponding character

Z1 is obtained from the coefficient of q̄(ȳ + ȳ−1) in Z(U), from which one has to subtract

the contribution from |Z ′vac|2 and then divide by the torus partition function again. This

character turns out to be given by

Z1 =
Z ′vac

(
Z

(chiral)
NS (T2)− 1

)
Z

(chiral)
NS (T2)

= Z ′vac −Zvac

= q
1
2 (y + y−1) + 3q + 4q

3
2 (y + y−1) + q2(3y2 + 16 + 3y−2)

+ q
5
2 (y3 + 27y + 27y−1 + y−3) + q3(23y2 + 87 + 23y−2)

+ 5q
7
2 (2y3 + 29y + 29y−1 + 2y−3) + q4(3y4 + 141y2 + 433 + 141y−2 + 3y−4)

+O
(
q

9
2

)
. (2.22)
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It can be decomposed into coset characters in the k →∞ limit according to

Z1(q, y) = χ(0;[1,0,...,0])(q, y) + χ(0;[0,...,0,1])(q, y)

+ χ(0;[2,0,...,0])(q, y) + χ(0;[0,...,0,2])(q, y)

+ χ(0;[1,0,...,0,1])(q, y)

+ 2 · χ(0;[3,0,...,0])(q, y) + 2 · χ(0;[0,...,0,3])(q, y)

+ χ(0;[1,1,0,...,0])(q, y) + χ(0;[0,...,0,1,1])(q, y)

+ 2 · χ(0;[2,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,2])(q, y)

+ 3 · χ(0;[4,0,...,0])(q, y) + 3 · χ(0;[0,...,0,4])(q, y)

+ 2 · χ(0;[2,1,0,...,0])(q, y) + 2 · χ(0;[0,...,0,1,2])(q, y)

+ χ(0;[0,2,0,...,0])(q, y) + χ(0;[0,...,0,2,0])(q, y)

+ 4 · χ(0;[3,0,...,0,1])(q, y) + 4 · χ(0;[1,0,...,0,3])(q, y)

+ 2 · χ(0;[1,1,0,...,0,1])(q, y) + 2 · χ(0;[1,0,...,0,1,1])(q, y)

+ 5 · χ(0;[2,0,...,0,2])(q, y)

+ χ(0;[2,0,...,0,1,0])(q, y) + χ(0;[0,1,0...,0,2])(q, y)

+ 4 · χ(0;[3,1,0,...,0])(q, y) + 4 · χ(0;[0,...,0,1,3])(q, y)

+ χ(0;[0,1,1,0,...,0])(q, y) + χ(0;[0,...,0,1,1,0])(q, y)

+ 7 · χ(0;[4,0,...,0,1])(q, y) + 7 · χ(0;[1,0,...,0,4])(q, y)

+ 4 · χ(0;[2,1,0,...,0,1])(q, y) + 4 · χ(0;[1,0,...,0,1,2])(q, y)

+ 3 · χ(0;[0,2,0,...,0,1])(q, y) + 3 · χ(0;[1,0,...,0,2,0])(q, y)

+ 9 · χ(0;[3,0,...,0,2])(q, y) + 9 · χ(0;[2,0,...,0,3])(q, y)

+ 2 · χ(0;[3,0,...,0,1,0])(q, y) + 2 · χ(0;[0,1,0,...,0,3])(q, y)

+ 5 · χ(0;[1,1,0,...,0,2])(q, y) + 5 · χ(0;[2,0,...,0,1,1])(q, y)

+ χ(0;[1,1,0,...,0,1,0])(q, y) + χ(0;[0,1,0,...,0,1,1])(q, y)

+ χ(0;[2,0,1,0...,0,1])(q, y) + χ(0;[1,0,...,0,1,0,2])(q, y)

+ 3 · χ(0;[2,1,0,...,0,1,0])(q, y) + 3 · χ(0;[0,1,0,...,0,1,2])(q, y)

+ χ(0;[1,0,1,0,...,0,2])(q, y) + χ(0;[2,0,...,0,1,0,1])(q, y)

+ 6 · χ(0;[1,1,0,...,0,1,1])(q, y) +O
(
q

9
2

)
. (2.23)

This time, the coefficients of the coset characters χ(0;Λ) correspond precisely to the multi-

plicity of the (N−1)-dimensional standard representation of SN inside Λ.3 This is obviously

in line with the fact that the Ñ = N − 1 boson and fermion fields (that give rise to the

representations (2.21)) transform precisely in this representation of the permutation group.

2.2 The building blocks of the untwisted sector

Having identified the lowest two representations of SN by explicitly evaluating the orbifold

partition function order by order in q, we will now turn to a more systematic analysis of

3Once more we thank Marco Baggio for helping us compute these multiplicities.
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the untwisted sector. We will show that it organises itself in terms of multi-particle powers

of the ‘minimal representation’ Z1, in parallel to what was observed in [30].

Let us first introduce the wedge character χ1 pertaining to Z1 by stripping off the

modes outside of the wedge,

Z1 = Zvac · χ1 or χ1 = Z
(chiral)
NS (T2)− 1 , (2.24)

where Zvac is the vacuum character (that counts the modes outside the wedge); explicitly,

we have

χ1(q, y) =
∑

(∆,`) 6=(0,− 1
2)

|c(∆, `)| q∆+ `
2

+ 1
4 y`+

1
2

= q
1
2
(
y + y−1

)
+ 3 q + 3 q

3
2
(
y + y−1

)
+ q2

(
y2 + 9 + y−2

)
+O

(
q

5
2

)
. (2.25)

Then we claim that the full partition function of the untwisted sector for N → ∞ can be

written as

Z(U)(q, q̄, y, ȳ) = |Zvac(q, y)|2
(

1 +
∑

Λ

|χΛ(q, y)|2
)
, (2.26)

where Λ runs over all Young diagrams, and χΛ(q, y) is the Λ-symmetrised power of χ1(q, y)

given by (see e.g. [33])

χΛ(q, y) =
1

m!

∑
ρ∈Sm

χΛ
m(ρ)

m∏
k=1

Fk−1χ1

(
qk, yk

)ak(ρ)
. (2.27)

Here m = |Λ| is the number of boxes of Λ, χΛ
m(ρ) is the character of Λ seen as an Sm-

representation, ak(ρ) is the number of k-cycles in the permutation ρ, and F is the involutive

mapping that acts on a character or partition function by insertion of (−1)F+F̄ . So denoting

Fχ1 by χ̃1, the first few characters read

χ (q, y) = χ1(q, y) ,

χ (q, y) =
1

2

(
χ1(q, y)2 + χ̃1(q2, y2)

)
,

χ (q, y) =
1

2

(
χ1(q, y)2 − χ̃1(q2, y2)

)
,

χ (q, y) =
1

6

(
χ1(q, y)3 + 3χ1(q, y)χ̃1(q2, y2) + 2χ1(q3, y3)

)
,

χ (q, y) =
1

6

(
χ1(q, y)3 − 3χ1(q, y)χ̃1(q2, y2) + 2χ1(q3, y3)

)
,

χ (q, y) =
1

3

(
χ1(q, y)3 − χ1(q3, y3)

)
. (2.28)

A proof of (2.26) will be given at the end of section 3.3. We have checked agreement of

eqs. (2.11) and (2.26) for up to three boxes and up to order O(q2)O(q̄2), which is the lowest

order to which the Young diagrams Λ with four boxes contribute.
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3 The twisted sector

The twisted sectors are labelled by conjugacy classes [g] of SN , and consist of those states

which are invariant under Cg, the centraliser of g in SN . The conjugacy classes of SN can

be labelled by cycle structures

(1)N1(2)N2(3)N3 · · · (m)Nm , where
m∑
i=1

Ni = N . (3.1)

The conjugacy class labelled by such a string consists of all elements of SN that can be

decomposed into N2 2-cycles, N3 3-cycles, etc. The centraliser of this conjugacy class

is then

C(1)N1 (2)N2 ···(m)Nm ∼= SN1 ×
(
SN2 n ZN2

2

)
× · · · ×

(
SNm n ZNm

m

)
. (3.2)

The n free fermions and bosons corresponding to an n-cycle have twists of i/n, for i =

1, . . . , n, and the corresponding Zn acts by the usual phases on them. On the other

hand, the SNn factors in the semi-direct products permute the Nn different n-cycles among

each other.

Since states are tensor products of left- and right-moving states, the action of the

centraliser on these chiral states need not be trivial (only the combined action on left- and

right-movers must be). The partition function of the [g]-twisted sector will thus have the

structure

Z [g] =
∑
R

∣∣∣Z [g]
R

∣∣∣2 , (3.3)

where R labels the different irreducible representations of the centraliser C [g]. We will see

examples of this below.

3.1 The 2-cycle twisted sector

We will start our analysis of the twisted sector with the subsector corresponding to a 2-

cycle twist, which is the simplest example. The partition function of the 2-cycle twisted

sector in the ordinary symmetric orbifold can be obtained from the generating function;

more specifically, the R-R sector expression can be extracted from the m = 1 and m = 2

factors of (2.5),

∞∑
N=0

pN Z̃
(2)
R

(
SNT2

)
= p2

∑′

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀)q
∆
2 q̄

∆̄
2 y`ȳ

¯̀ ·
∏

∆,∆̄,`,¯̀

1(
1− p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀) ,

(3.4)

where the prime at the sum indicates that ∆ − ∆̄ has to be even. Flowing to the NS-NS

sector and considering the stabilising limit of large N we find for the partition function

without (−1)F+F̄ insertion

Z(2)(SNT2) =
∑′

∆,∆̄,`,¯̀

|c(∆, ∆̄, `, ¯̀)| q
1
2

(∆+`+1)q̄
1
2

(∆̄+¯̀+1)y`+1ȳ
¯̀+1

×
∏

(∆,∆̄,`,¯̀)
6=(0,0,−1/2,−1/2)

1(
1− (−1)`+¯̀+1q∆+ `

2
+ 1

4 q̄∆̄+
¯̀

2
+ 1

4 y`+
1
2 ȳ

¯̀+ 1
2

)c(∆,∆̄,`,¯̀) . (3.5)
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We then obtain the partition function we are interested in by dividing by the left- and

right-moving torus partition function ZNS(T2) = |Z(chiral)
NS (T2)|2,

Z(2)(q, q̄, y, ȳ) =
q

1
4 q̄

1
4

y
1
2 ȳ

1
2

[
1 + yȳ + (yȳ2 + 3y + 3ȳ + ȳ−1)q̄

1
2

+ (y2ȳ + y + ȳ + y−1)q
1
2

+ 2(y2ȳ2 + 2y2 + 5yȳ + 2ȳ2 + 5 + 2yȳ−1 + 2y−1ȳ + y−1ȳ−1)q
1
2 q̄

1
2

+ · · ·
]
. (3.6)

Since the centraliser of this sector (ignoring the N − 2 sectors that are not affected by the

twist — invariance with respect to this subgroup will just guarantee that the remaining

factors give rise to a factor equal to the untwisted sector Z(U) for large N) is simply

S2
∼= Z2, there are two representations that contribute, namely

Z+(q, y) = Zvac ·
∑

∆ even,`

|c(∆, `)| q
1
2

(∆+`+1)y`+1

= y
1
2 q

1
4 +

(
y

3
2 + 3y−

1
2

)
q

3
4 +

(
10y

1
2 + 3y−

3
2

)
q

5
4

+
(

12y
3
2 + 27y−

1
2 + y−

5
2

)
q

7
4 +O

(
q

9
4

)
, (3.7)

and

Z−(q, y) = Zvac ·
∑

∆ odd,`

|c(∆, `)| q
1
2

(∆+`+1)y`+1

= y−
1
2 q

1
4 +

(
3y

1
2 + y−

3
2

)
q

3
4 +

(
3y

3
2 + 10y−

1
2

)
q

5
4

+
(
y

5
2 + 27y

1
2 + 12y−

3
2

)
q

7
4 +O

(
q

9
4

)
. (3.8)

Defining the wedge characters χ
(2)
± by

Z± = Zvac · χ(2)
± , (3.9)

the whole sector can then simply be written as

Z(2) = Z(U) ·
(
|χ(2)

+ |2 + |χ(2)
− |2

)
= |Zvac|2 ·

(
1 +

∑
Λ

|χΛ(q, y)|2
)
·
(
|χ(2)

+ |2 + |χ(2)
− |2

)
. (3.10)

The two wedge characters χ± have the same leading q behaviour, and their lowest terms

are described by the coset representations [23]

([k/2, 0, . . . , 0]; [k/2, 0, . . . , 0]) and ([k/2, 0, . . . , 0]; [k/2 + 1, 0, . . . , 0]) (3.11)

for large k, respectively, i.e., have twist ξ = [−1/2, 0, . . . , 0] in the continuous orbifold

picture. One of these states can be obtained from the other by acting on it with a fermionic
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zero-mode. In fact, both χ± can be written in terms of coset representations (for k →∞),

and we have checked that up to order q2 we have

Z+(q, y) = χ([k/2,0,...,0];[k/2+1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2−1,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2+3,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2,1,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2+1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2,1,0,...,0,1])(q, y)

+ χ([k/2,0,...,0];[k/2−2,1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+3,0,...,0,1])(q, y)

+ χ([k/2,0,...,0];[k/2−1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+2,1,0,...,0])(q, y)

+ 2 · χ([k/2,0,...,0];[k/2−1,2,0,...,0])(q, y) + 2 · χ([k/2,0,...,0];[k/2+1,0,...,0,2])(q, y)

+ 2 · χ([k/2,0,...,0];[k/2−2,1,0,...,0,1])(q, y) +O
(
q

9
4

)
,

Z−(q, y) = χ([k/2,0,...,0];[k/2,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+2,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2−1,1,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2−1,1,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+1,1,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2+2,0,...,0,1])(q, y) + χ([k/2,0,...,0];[k/2+1,1,0,...,0,1])(q, y)

+ χ([k/2,0,...,0];[k/2−2,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2+4,0,...,0])(q, y)

+ 2 · χ([k/2,0,...,0];[k/2,0,...,0,2])(q, y) + 2 · χ([k/2,0,...,0];[k/2−2,2,0,...,0])(q, y)

+ χ([k/2,0,...,0];[k/2−3,1,0,...,0])(q, y) + χ([k/2,0,...,0];[k/2−2,0,...,0,1])(q, y) +O
(
q

9
4

)
.

(3.12)

As in [6], we can understand the multiplicities in these decompositions systematically:

Z± contains all those coset representations

([k/2, 0, . . . , 0]; [k/2 + l0,Λ
′]) (3.13)

for which l0 +
∑

i Λ′i is odd or even, respectively.4 This is due to the fact that l0 +
∑

i Λ′i
counts the number of twisted modes by which the ground state

(Λ+; Λ−) = ([k/2, 0, . . . , 0]; [k/2, 0, . . . , 0]) (3.14)

has been excited. Each of these twisted modes has odd parity under the Z2 in the cen-

traliser. In addition, each state has to be invariant under the SN−2 factor of the centraliser

— the states that are not invariant are accounted for by the middle factor in (3.10). For

the boxes in the first row of Λ−, this is automatically true, so the overall multiplicity

with which (Λ+; Λ−) contributes to Z± is determined by the multiplicity of the trivial

SN−2 representation inside the SU(N − 2) representation Λ′. Using the (by now) standard

embedding SN−2 ⊂ U(N − 3) ⊂ SU(N − 2), we obtain the decompositions

(N− 2)SU(N−2) → (N−3)SN−2
⊕1SN−2

, (N− 2)SU(N−2) → (N−3)SN−2
⊕1SN−2

. (3.15)

4Here we sum only over the first few Dynkin labels of Λ′, such that anti-boxes and their tensor powers

do not contribute to the Z2 parity. Actually, we should treat Λ′ as a U(N − 2) rather than SU(N − 2)

representation, since an anti-box of U(N − 2) differs from [0, . . . , 0, 1] of SU(N − 2) by its U(1) charge,

which we have suppressed in our notation.
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Hence states with Λ′ = or Λ′ = have multiplicity 1. Moreover, the symmetric product

of two boxes contains two SN−2 singlets, whereas the antisymmetric product contains none.

This explains why states with Λ′ = do not appear in the decomposition, whereas states

with Λ′ = appear with multiplicity 2. The tensor product of a box with an antibox,

⊗ , contains two singlets, but one of them corresponds to the sW∞ generators and

hence does not give rise to a new representation; the resulting multiplicity in the coset

decomposition is therefore again 1.

3.2 The twisted sector with two 2-cycles

The next, slightly more complicated step is to study the sector whose twist corresponds

to the conjugacy class of permutations which have two 2-cycles. This means that two

of the free bosons and fermions are twisted, while all the others are untwisted. We are

interested in this sector because it contains the operators corresponding to exactly marginal

deformations of the theory, which should, in particular, allow us to study the behaviour

upon switching on the string coupling constant, compare [34]. By the same reasoning as

before, we can obtain the generating function of the partition function from (2.10)

∞∑
N=0

pNZ(2)2 (
SNT2

)
=
p4

2

[( ∑′

∆,∆̄,`,¯̀

|c(∆, ∆̄, `, ¯̀)|q
1
2

(∆+`+1)q̄
1
2

(∆̄+¯̀+1)y`+1ȳ
¯̀+1
)2

+
∑′

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀)q∆+`+1q̄∆̄+¯̀+1y2`+2ȳ2¯̀+2

]

×
∏

∆,∆̄,`,¯̀

1(
1− pq∆+ `

2
+ 1

4 q̄∆̄+
¯̀

2
+ 1

4 (−y)`+
1
2 (−ȳ)

¯̀+ 1
2

)c(∆,∆̄,`,¯̀) .
(3.16)

In the first term, a factor of (−1)`+
¯̀+1 has again been absorbed into |c(∆, ∆̄, `, ¯̀)|, whereas

the second term contains a factor of (−1)2(`+¯̀+1) = 1. As before, the partition function for

our symmetric orbifold can be obtained by taking N large, and dividing by the partition

function of the free T2 theory. We thus obtain

Z(2)2
= q

1
2 q̄

1
2 (1 + yȳ + y−1ȳ−1) + q

1
2 q̄1
(
yȳ + y−1ȳ−1 + 3(y + y−1) + 4(ȳ + ȳ−1)

)
+ q1q̄

1
2
(
yȳ + y−1ȳ−1 + 4(y + y−1) + 3(ȳ + ȳ−1)

)
+ q1q̄1

(
38 + 3(y2ȳ2 + y−2ȳ−2) + 17(y + y−1)(ȳ + ȳ−1) + 7(y2 + ȳ2 + ȳ−2 + y−2)

)
+ · · · . (3.17)

The centraliser of this sector is

C(2)2
= SN−4 × (S2 n Z2

2) . (3.18)

Again, we can ignore the action of the SN−4 part — this will only ensure that the N − 4 un-

twisted bosons and fermions from the directions that are unaffected by the twist reproduce

again the contribution from the untwisted sector. The remaining group S2 nZ2
2
∼= D8 (the
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dihedral group of order 8) has five irreducible representations, four of dimension 1, and one

of dimension 2. In order to describe them, we first note that the abelian Z2×Z2 subgroup

has 4 different one-dimensional representations that are characterised by the eigenvalues

(±,±) of the two non-trivial Z2 generators. In D8, both (+,+) and (−,−) give rise to

two one-dimensional representations each that differ by the sign under the exchange of S2

— this accounts for the 4 one-dimensional representations. The two-dimensional represen-

tation of D8 is spanned by the two states with mixed charges (±,∓) that are exchanged

under the action of S2.

The simplest way to describe the contribution of these representations to the twisted

sector is in multi-particle form. It follows from the derivation from eq. (3.16) that the (2)2

sector has the partition function

Z(U) · 1

2

[(∣∣∣ ∑
∆ even,

`

|c(∆, `)| q
1
2

(∆+`+1)y`+1
∣∣∣2 +

∣∣∣ ∑
∆ odd,

`

|c(∆, `)| q
1
2

(∆+`+1)y`+1
∣∣∣2)2

+
∣∣∣ ∑
∆ even,

`

c(∆, `)q∆+`+1y2`+2
∣∣∣2 +

∣∣∣ ∑
∆ odd,

`

c(∆, `)q∆+`+1y2`+2
∣∣∣2] . (3.19)

Since the wedge characters of the 2-cycle twisted sector, see eq. (3.9), are given by

χ
(2)
± =

∑
∆ even/odd,

`

|c(∆, `)| q
1
2

(∆+`+1)y`+1 , (3.20)

the above (2)2 sector partition function can then be written as

Z(2)2
= Z(U) ·

[∣∣∣(χ(2)
+

) ∣∣∣2+

∣∣∣∣(χ(2)
+

) ∣∣∣∣2+
∣∣∣(χ(2)

−

) ∣∣∣2+

∣∣∣∣(χ(2)
−

) ∣∣∣∣2+
∣∣∣χ(2)

+ χ
(2)
−

∣∣∣2] , (3.21)

where

(χ
(2)
± ) / (q, y) =

1

2

(
χ

(2)
± (q, y)2 ± χ̃±(q2, y2)

)

=
1

2


 ∑

∆ even/odd,
`

|c (∆, `)| q
1
2

(∆+`+1)y`+1


2

±
∑

∆ even/odd,
`

c(∆, `) q∆+`+1y2`+2

.
(3.22)

Each of the terms in (3.21) corresponds to one of the five irreducible representations of D8,

and can be organised in terms of coset representations. In order to describe this in detail,

let us start from the ground state that has the eigenvalues (+,+) with respect to the two

Z2 factors; it appears in the (χ
(2)
− ) sector,5 is an element of the coset representation(

Λ+; Λ−
)

=
(
[0, k/2, 0, . . . , 0]; [0, k/2, 0, . . . , 0]

)
, (3.23)

5Our convention for the definition of χ
(2)
± follows [6], and is motivated by the fact that ± corresponds

to even/odd in eq. (3.20); this then leads to the somewhat strange (but inevitable) conclusion that the

corresponding Z2 eigenvalue is ∓, see also eq. (7.17) and (7.18) of [6].
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and therefore has the twist ξ = [−1/2,−1/2, 0, . . . , 0]. All other states of the (2)2 twisted

sector can be obtained by adding boxes to Λ− (while leaving Λ+ invariant), yielding

Λ− = [l1, k/2 + l2,Λ
′] , (3.24)

where l1, l2 ∈ Z, and Λ′ denotes the remaining N − 4 Dynkin labels. For example, l1 = 0,

l2 = 1 contains the ground state transforming as (−,−) with respect to the two Z2 factors

— it appears in the sector (χ
(2)
+ ) — while l1 = 1, l2 = 0 contains the ground state

with eigenvalues (+,−), which appears in the sector χ
(2)
+ χ

(2)
− . The other two dihedral

representations only contribute at order q1; in terms of coset representations we have the

decompositions

Zvac ·
(
χ

(2)
+

)
= χ([0,k/2,0,...,0];[0,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1]) + 2 · χ([0,k/2,0,...,0];[0,k/2,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0,1]) +O(q2) ,

Zvac ·
(
χ

(2)
+

)
= χ([0,k/2,0,...,0];[2,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2,0,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2+1,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[0,k/2,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0,1])

+ 2 · χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1])

+O(q2) ,

Zvac ·
(
χ

(2)
−

)
= χ([0,k/2,0,...,0];[2,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2+1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,0,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2,0,...,0,1])

+ 2 · χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1])

+O(q2) ,

Zvac ·
(
χ

(2)
−

)
= χ([0,k/2,0,...,0];[0,k/2,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2,0,...,0])

+ χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0]) + χ([0,k/2,0,...,0];[0,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−2,0,...,0]) + 2 · χ([0,k/2,0,...,0];[2,k/2−1,1,0,...,0])
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+ 2 · χ([0,k/2,0,...,0];[2,k/2,0,...,0,1]) + 2 · χ([0,k/2,0,...,0];[0,k/2−1,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[2,k/2−2,1,0,...,0]) + χ([0,k/2,0,...,0];[2,k/2−1,0,...,0,1]) +O(q2) ,

Zvac · χ(2)
+ χ

(2)
− = χ([0,k/2,0,...,0];[1,k/2,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[1,k/2−1,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[1,k/2,0,...,0,1])

+ χ([0,k/2,0,...,0];[1,k/2−1,0,...,0]) + χ([0,k/2,0,...,0];[1,k/2+1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[1,k/2−2,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[1,k/2−1,0,...,0,1])

+ 4 · χ([0,k/2,0,...,0];[1,k/2−1,1,0,...,0,1])

+ χ([0,k/2,0,...,0];[1,k/2−1,0,1,0,...,0]) + χ([0,k/2,0,...,0];[1,k/2,0,...,0,1,0])

+ 2 · χ([0,k/2,0,...,0];[1,k/2,1,0,...,0]) + 2 · χ([0,k/2,0,...,0];[1,k/2+1,0,...,0,1])

+ 2 · χ([0,k/2,0,...,0];[3,k/2,0,...,0]) + 2 · χ([0,k/2,0,...,0];[3,k/2−1,0,...,0])

+ 2 · χ([0,k/2,0,...,0];[3,k/2−2,0,...,0]) +O(q2) . (3.25)

The systematics of the decompositions are analogous to the 2-cycle twist case, see

the discussion following eq. (3.14) above, but are somewhat more complicated. Each box

appended to the first two rows of Λ− of the ground state (3.23) has odd parity under one

of the two Z2’s. As a consequence, the states that appear in the mixed sector χ
(2)
+ χ

(2)
− are

precisely those that have an odd number of them, i.e., for which l1 is odd. Conversely, the

other four representations contain the states with l1 even, but the selection rules among

them are more subtle, and indeed, the same coset representation can appear in different

D8 decompositions. For example, the lowest state in the representation

Λ− = [2, k/2, 0, . . . , 0] (3.26)

can be constructed as an excitation of the twisted sector ground state with a fermionic

zero-mode and a bosonic
(
−1

2

)
-mode involving the same twisted coordinate. Then the

state has (+,+) charge under Z2
2, and we can either symmetrise or anti-symmetrise it with

respect to the S2 factor. That is why this state appears both in
(
χ

(2)
−

)
and in

(
χ

(2)
−

)
.

But we can also construct the lowest state of (3.26) by exciting the twisted sector ground

state with a fermionic zero-mode from one twisted coordinate, and a bosonic
(
−1

2

)
-mode

from the other, and symmetrise with respect to S2.6 In this case the charge is (−,−) under

Z2
2, and the state is even under the S2; thus the representation (3.26) also appears in the

decomposition of
(
χ

(2)
+

)
.

3.3 Sectors of arbitrary twist

While the detailed description of the decompositions into sW∞ characters becomes more

and more combersome, some aspects of the twisted sector can be described quite generally.

In particular, the partition function of any twisted sector can be written in ‘multiparticle’

6The antisymmetric combination is actually a supersymmetric descendant of the excitation by the two

fermionic zero-modes and is therefore part of ([0, k/2, 0, . . . , 0]; [0, k/2 + 1, 0, . . . , 0]).
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form, generalising eq. (3.21).7 Let us first explain this for the twisted sectors (2)n corre-

sponding to multiple 2-cycle twists. By the DMVV formula (2.5), the generating function

for this part of the partition function in the R-R sector equals

∞∑
N=0

pNZ
(2)n

R

(
SNT2

)
=

∏′

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣
p2n

× p2n
∏

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀) . (3.27)

We recognise the second factor as the untwisted partition function of SN−2n, which is indis-

tinguishable from the untwisted partition function of SN as N → ∞. The first factor, on

the other hand, can be expressed in terms of sums of squares of all possible symmetrisations

of the elementary characters χ
(2)
± . To see this, let us write

∏′

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣
p2n

=

= exp

−∑′

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀) log
(

1− (−1)`+
¯̀+1p2 q

∆
2 q̄

∆̄
2 y`ȳ

¯̀
)∣∣∣∣∣∣

p2n

= exp

 ∑′

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀)

∞∑
k=1

p2k

k
(−1)k(`+¯̀+1)q

k∆
2 q̄

k∆̄
2 yk`ȳk

¯̀

∣∣∣∣∣∣
p2n

.

Changing the order of summation and flowing to the NS-NS sector, this becomes

exp

 ∞∑
k=1

p2k

k

∑′

∆,∆̄,`,¯̀

c(∆, ∆̄, `, ¯̀)(−1)k(`+¯̀+1)q
k
2

(∆+`+1)q̄
k
2

(∆̄+¯̀+1)yk(`+1)ȳk(¯̀+1)

∣∣∣∣∣∣
p2n

= exp

[ ∞∑
k=1

p2k

k

(∣∣∣Fk−1χ
(2)
+ (qk, yk)

∣∣∣2 +
∣∣∣Fk−1χ

(2)
− (qk, yk)

∣∣∣2)]∣∣∣∣∣
p2n

=

n∑
m=0

exp

[
m∑
k=1

p2k

k

∣∣∣Fk−1χ
(2)
+ (qk, yk)

∣∣∣2]∣∣∣∣∣
p2m

· exp

[
n−m∑
k=1

p2k

k

∣∣∣Fk−1χ
(2)
− (qk, yk)

∣∣∣2]∣∣∣∣∣
p2(n−m)

.

7This observation was recently also made in [35], and in fact the following analysis is not specific to the

specific theory we are considering here. In particular, it also applies similarly to the N = 4 case that was

studied in [6].
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Next we note that

exp

 m∑
j=1

p2j

j

∣∣F j−1χ(qj , yj)
∣∣2∣∣∣∣∣∣

p2m

=
∑

k1,...,km≥0∑
j jkj=m

1∏m
i=1 i

kiki!

m∏
j=1

∣∣F j−1χ(qj , yj)
∣∣2kj

=
1

m!

∑
ρ∈Sm

m∏
j=1

∣∣F j−1χ(qj , yj)
∣∣2aj(ρ)

=
∑

Λ∈Ym

|χΛ(q, y)|2 . (3.28)

In the second equality, we have used that m!/
∏m
i=1 i

kiki! is the number of elements in the

conjugacy class Ck1,...,km of Sm, which consist of ki cycles of length i. On the other hand,

the last equality follows from (2.27) and the column orthogonality of Sm characters,∑
Λ∈Ym

(
χΛ
m(ρ)

)2
=

m!

|Cρ|
for any ρ ∈ Sm . (3.29)

Here the sum is over all Young diagrams of m boxes or all irreducible representations of

Sm. It follows that

Z(2)n
(
SNT2

)
= Z(U)

(
SN−2nT2

)
·
n∑
k=0

∑
Λ1∈Yk

∣∣∣(χ(2)
+ )Λ1(q, y)

∣∣∣2 ∑
Λ2∈Yn−k

∣∣∣(χ(2)
− )Λ2(q, y)

∣∣∣2 , (3.30)

thus generalising (3.21) to the case n > 2.

So far we have only dealt with multiple 2-cycles, but the analysis is fairly analogous

for the twist (m)n consisting of n non-overlapping m-cycles. The analogue of eq. (3.27) for

m ≥ 2 is now

∞∑
N=0

pNZ
(m)n

R

(
SNT2

)
=

∏
∆,∆̄,`,¯̀

m|(∆−∆̄)

1(
1− (−1)`+¯̀+1pm q

∆
m q̄

∆̄
m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣∣∣
pmn

× pmn
∏

∆,∆̄,`,¯̀

1(
1− (−1)`+¯̀+1p q∆q̄∆̄y`ȳ ¯̀)c(∆,∆̄,`,¯̀) . (3.31)

The analysis goes through essentially unmodified, and we find that we can express the

partition function of this sector in terms of the elementary characters

χ
(m)
i (q, y) =

∑
∆,`

∆≡i (mod m)

|c(∆, `)| q
∆
m

+ `
2

+m
4 y`+

m
2 for i = 1, . . . ,m (3.32)

as

Z(m)n
(
SNT2

)
= Z(U)

(
SN−mnT2

)
·

∑
k1,...,km≥0∑

j kj=n

m∏
i=1

∑
Λ∈Yki

∣∣∣(χ(m)
i )Λ(q, y)

∣∣∣2 . (3.33)
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In particular, in the sector whose twist is just one cycle of length m, we have n = 1 and thus

Z(m)
(
SNT2

)
= Z(U)

(
SN−mT2

)
·
m∑
i=1

∣∣∣χ(m)
i (q, y)

∣∣∣2 . (3.34)

It remains to combine these statements to cover the general case of a twist with cycle

structure (1)N1(2)N2 · · · (n)Nn , i.e., Ni cycles of length i for i = 1, . . . , n, where
∑

i iNi = N .

By the DMVV formula (2.5), the R-R partition function factorises into n components

pertaining to the different cycle lengths

Z
(1)N1 ···(n)Nn

R (SNT2) =
n∏

m=1

∏
∆,∆̄,`,¯̀

m|(∆−∆̄)

1(
1− (−1)`+¯̀+1pm q

∆
m q̄

∆̄
m y`ȳ ¯̀

)c(∆,∆̄,`,¯̀)
∣∣∣∣∣∣∣∣∣
pmNm

,

(3.35)

and correspondingly for the NS-NS sector. Plugging in our results from above, we obtain

Z(1)N1 ···(n)Nn (
SNT2

)
=

n∏
m=1

∑
k1,...,km≥0∑

j kj=Nm

m∏
i=1

∑
Λ∈Yki

∣∣∣(χ(m)
i )Λ(q, y)

∣∣∣2

= Z(U)
(
SN1T2

)
·

n∏
m=2

∑
k1,...,km≥0∑

j kj=Nm

m∏
i=1

∑
Λ∈Yki

∣∣∣(χ(m)
i )Λ(q, y)

∣∣∣2 . (3.36)

Thus we can think of the entire twisted sector as consisting of the ‘multiparticle’ contribu-

tions of the fundamental building blocks (3.32).

As was already alluded to before, essentially the same techniques also allow us to

prove the identity eq. (2.26) for the untwisted sector partition function. Since χ
(1)
1 (q, y) =

Z
(chiral)
NS (T2)(q, y) = 1 + χ1(q, y) and

Z ′vac(q, y) =
∏

(∆,`)

6=(0,− 1
2

)

1(
1− q∆+ `

2
+ 1

4 (−y)`+
1
2

)c(∆,`) , (3.37)

we get, for N →∞,

Z(U)(SNT2)(q, q̄, y, ȳ) =
∏

(∆,∆̄,`,¯̀)

6=(0,0,− 1
2
,− 1

2
)

1(
1− q∆+ `

2
+ 1

4 q̄∆̄+
¯̀

2
+ 1

4 (−y)`+
1
2 (−ȳ)

¯̀+ 1
2

)c(∆,∆̄,`,¯̀)
= |Z ′vac(q, y)|2 · exp

∞∑
k=1

1

k

∣∣∣Fk−1χ1(qk, yk)
∣∣∣2

= |Z ′vac(q, y)|2
∞∑
m=0

∑
Λ∈Ym

|χΛ(q, y)|2 , (3.38)

which reproduces (2.26) upon dividing by ZNS(T2), see eq. (2.14).
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3.4 Twisted representations of the wedge algebra

Given the multiparticle structure of the entire twisted sector, see eq. (3.36), it only remains

to understand the structure of the building blocks χ
(m)
i (that account for the individual

‘particles’). These wedge characters count states that sit in representations of the wedge

subalgebra shs[µ] of sW∞[µ]. In this section we undertake first steps to understand the

structure of these higher spin representations. This should shed light on the ‘particle’

structure of the stringy extension of the higher spin theory; in [30] the relevant analysis

was done for the bosonic toy model consisting of a single boson, here we explain the N = 2

generalisation.

As was explained at the beginning of this section, the m-cycle twisted sector is gener-

ated by complex fermions and bosons of twist ξi = i
m , where i = 1, . . . ,m. Since the sW∞

generators are neutral bilinears in the currents (and since their mode numbers continue

to be integers or half-integers depending on the statistics), the contribution coming from

the individual twisted (complex) bosons and fermions decouple from one another, and we

can think of the representation as consisting of an m-fold tensor product of the individual

twist ξi contributions. Apart from one untwisted component corresponding to i = m —

this does not contribute to the wedge character — the other (m− 1) components all lead

to representations whose wedge character is of the form (see also [30])

χξ(q, y) = qh
∞∏
n=1

(1 + zyqn−
1
2
−ξ)(1 + z−1y−1qn−

1
2

+ξ)

(1− zqn−ξ)(1− z−1qn−1+ξ)

∣∣∣∣∣
zp

. (3.39)

Here we have assumed that 0 < ξ < 1
2 , and z keeps track of the twist, i.e., the terms with a

given power of zp pick up the same phase under the cyclic group Zm in the centraliser. In

the following, we shall concentrate on the z0 case, for which the states transforms trivially

under Zm. The q-expansion of this character is

χξ(q, y) = qh
(

1 + yq
1
2 + 2q + (3y + y−1)q

3
2 + (y2 + 6)q2 + (8y + 3y−1)q

5
2 + . . .

)
. (3.40)

For ξ < 1
2 < 1 there is a similar answer where y is replaced by y 7→ y−1; the case ξ = 1

2 is

a bit special since there are then fermionic zero modes.

Each such representation has a single descendant at level 1/2, and is therefore a special

case of what one may like to call a ‘level-1/2 representation’, compare the terminology

of [30]. Thus we can learn about the structure of the twisted sector by studying general

level-1/2 representations, and this is what we shall be doing in the following.

Suppose φ is the ground state of a level-1/2 representation. Let us assume for defi-

niteness that φ is annihilated by G−−1/2 (rather than G+
−1/2), i.e.,

G−−1/2φ = 0 , (3.41)

as well as by all the other negative charge fermionic spin s supercharges, i.e.,

W s−
−1/2φ = 0 for s = 2, 3, . . . . (3.42)
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(This is the situation that is relevant for (3.40); the conjugate solution arises for 1
2 < ξ < 1.)

Here we have denoted the generators of the spin s multiplet by (see e.g., [36])

W s0 , W s± , W s1 (3.43)

of spin s, s + 1
2 , and s + 1, respectively. The corresponding modes then transform in a

representation of the superconformal algebra

[G±r ,W
s0
n ] = ∓W s±

r+n

{G±r ,W s±
r } = 0

{G±r ,W s∓
r } = ±

(
(2s− 1)r − t

)
W s0
r+t + 2W s1

r+t

[G±r ,W
s1
n ] =

(
sr − 1

2 n
)
W s±
r+n . (3.44)

Let us denote the eigenvalues of the zero-modes W s0
0 and W s1

0 on the ground state φ

by ws0 and ws1, respectively. Then it follows from (3.42) that

0 = G+
1/2W

s−
−1/2 φ =

(
sws0 + 2ws1

)
φ (3.45)

and hence

ws1 = −1

2
sws0 . (3.46)

Note that for s = 1 this reduces to the familiar chiral primary condition, namely that

h = −1
2q, where q = w10 is the U(1) charge with respect to the spin 1 field in the N = 2

supermultiplet, and h = w11 is the conformal dimension.

The other condition that follows from the level-1/2 condition is that all the states

generated by the W s+
−1/2 modes from the ground state are proportional to G+

−1/2φ, i.e.,

W s+
−1/2φ = α(s)G+

−1/2φ . (3.47)

Applying G−1/2 to this relation and using the above commutation relations, we find that

α(s) = −sw
s0

2h
, (3.48)

where we have used (3.46).

In order to obtain a relation between the different quantum numbers α(s), we finally

apply the W 20
0 mode to both sides of eq. (3.47). For example, for the case where s = 2 and

using the [W 20
m ,W 2+

r ] commutation relation, we conclude that

α(3) = −
8q3

(
5ν2 − 8

√
3να(2)− 15(8α(2)2 + 3)

)
9(ν − 5)

, (3.49)

where ν = 2µ − 1 and q3 is a normalisation constant of W 30. This determines α(3) as a

function of α(2). Continuing in this manner, we obtain a recursion relation for all α(s).

This shows that all higher quantum numbers ws0 and ws1 are recursively determined.

Thus the assumption that there is a single state at level 1/2 implies that the most general

level-1/2 representation is characterised by only two quantum numbers

h ≡ w11 and α(2) ≡ −w
20

h
. (3.50)
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3.5 A relation between the parameters

As in the bosonic analysis of [30], it seems that the actual ξ-twisted representation is a

special type of level-1/2 representation, and has in fact one fewer state at level 3/2 than a

generic level-1/2 representation.8 One should therefore expect that it is characterised by

a special relation between the two eigenvalues in (3.50). In order to work out what this

relation should be, we can use that the ξ-twisted representation is described, in the coset

language, by the large k limit of the coset representation ([ξk, 0, . . . , 0]; [ξk, 0, . . . , 0]) [23].

In order to evaluate the eigenvalues of L and W 20 on this coset state, we have worked out

the form of the spin 2 fields in the coset; this is dicussed, in some detail, in the appendix.

With the notation of the appendix, in particular, (A.19), (A.21), (A.23) and (A.26), we

find that in the (large c and ν = −1) ’t Hooft limit

L = Lb + Lf +
3

2c
J2 ,

W 20 =
1√
3

(−Lb + 2Lf) . (3.51)

The mode expansions of the stress tensor of a single free boson and fermion are given by

(the fermion has NS boundary conditions)

(Lb)m =
∞∑
n∈Z

: ᾱm−nαn : ,

(Lf)m =
1

2

∞∑
r∈Z+1/2

(2r −m) : ψ̄m−rψr : . (3.52)

Here the bosonic and fermionic modes satisfy the usual commutation relations

[αm, αn] = 0 = [ᾱm, ᾱn] , [αm, ᾱn] = mδm,−n ,

{ψr, ψs} = 0 = {ψ̄r, ψ̄s} , {ψr, ψ̄s} = δr,−s . (3.53)

In the ξ-twisted sector, the boson and fermion mode numbers get shifted, and the zero

mode of the stress tensor picks up a normal-ordering contribution

(Lb)0 =
∑
r∈Z+ξ

: ᾱ−rαr : +
1

2
ξ (1− ξ) ,

(Lf)0 =
∑

s∈Z+ 1
2

+ξ

s : ψ̄−sψs : +
ξ2

2
. (3.54)

For large c we then find for the eigenvalues of L0 and W 20
0

h =
ξ

2
, w20 =

1

2
√

3
ξ(3ξ − 1) . (3.55)

8This will be discussed in more detail in [37].
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Eliminating ξ from the above equations yields

α(2) = −w
20

h
= − 1√

3
(3ξ − 1) = − 6h− 1√

3
. (3.56)

This is therefore the additional relation which characterises the special level-1/2 represen-

tations that arise in the twisted sector.

4 Conclusions

In this paper we have analysed the embedding of the N = 2 cosets that appear in the

duality with the N = 2 supersymmetric higher spin theory on AdS3 into the symmetric

orbifold of T2. This is the N = 2 analogue of the N = 4 construction of [6] where the

relevant symmetric orbifold is known to be dual to string theory on AdS3 × S3 × T4. It is

therefore tempting to believe, in particular given the recent discussions of [26–29], that also

the symmetric orbifold of T2 should be dual to some string theory on AdS3. For example,

a candidate background could be the (warped) product of the form

AdS3 × S3 ×
(
T2 × T2

)
/S2 , (4.1)

where the S2 exchanges the two T2’s — this is not too dissimilar to the background with

(4, 2) superconformal symmetry found in [38].9 Alternatively, one may want to replace the

symmetric orbifold with an orbifold with respect to a smaller group, e.g.,(
T2
)2N

/(SN2 o SN ) , (4.2)

where SN2 oSN is the so-called wreath product, i.e., the semidirect product which contains

SN2 as a subgroup on which SN acts in the obvious manner. Since the wreath product is

a subgroup of the full permutation group, SN2 o SN ⊂ S2N , the corresponding conformal

field theory defines an even further extension of the symmetric orbifold we have considered

above. In particular, it therefore contains the N = 2 Kazama-Suzuki models that are dual

to the higher spin theory on AdS3.

Part of the motivation for studying theN = 2 version of the duality is that the Kazama-

Suzuki models that appear in the dual of the higher spin theory [18, 19] correspond to the

special family of N = 2 cosets

su(N +M)
(1)
k+N+M

su(N)
(1)
k+N+M ⊕ su(M)

(1)
k+N+M ⊕ u(1)

(1)
κ

(4.3)

with M = 1. The cosets therefore allow for a ‘matrix-like’ extension (M > 1), similar

to what was considered for the case of AdS4 in [5], and it would be very interesting to

understand the correct AdS3 description of this construction. First steps in this direction

were already undertaken in [22], but it would be very instructive to repeat the analysis of

9As far as we are aware, no supergravity background with (2, 2) superconformal symmtry is explicitly

known, although such backgrounds probably exist. We thank Jerome Gauntlett for a correspondence about

this point.
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the present paper for these more general cosets, and see how the results fit together with

permutation orbifold theories that may have a fairly direct stringy interpretation.

We have also analysed the representations of the higher spin algebra that arise in the

twisted sector; a good understanding of these representations will be key for characterising

the stringy extension from a higher spin viewpoint. While some aspects of the description

were rather similar to the bosonic analysis of [30], it seems that there are also interesting

and subtle differences; these will be explored further in [37].
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A The coset analysis

In this appendix we explain in some detail the construction of the spin 1 and 2 currents of

the coset
su(N + 1)

(1)
k+N+1

su(N)
(1)
k+N+1 ⊕ u(1)

(1)
κ

(A.1)

with κ = N(N +1)(N +k+1). We will closely follow the analysis of [39] in the N = 4 case

and [40]. The numerator consists of N(N + 2) bosonic currents J A and free fermions ψA

transforming in the adjoint representation of su(N + 1). Given a hermitian orthonormal

basis tAij of su(N + 1) satisfying

[tA, tB] = ifABCtC and Tr(tA tB) = δAB , (A.2)

which we order in such a way that ta for a = 1, . . . , N2 − 1 form a hermitian orthonormal

basis of su(N), the numerator fields satisfy the commutation relations

[J Am ,J Bn ] = ifABCJ Cm+n + (k +N + 1)δABδm,−n ,

[J Am , ψBr ] = ifABCψCm+r ,

{ψAr , ψBs } = δABδr,−s . (A.3)

Restricting the adjoint representation to the denominator subalgebra, it decomposes as

su(N + 1)→ su(N)⊕ u(1)⊕N⊕ N̄ . (A.4)

We can decouple the currents from the fermions by defining

JA = J A +
i

2
fABC(ψBψC) (A.5)
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in the numerator or

J̃a = J a +
i

2
fabc(ψbψc) (A.6)

in the denominator, where again lower-case indices from the beginning of the alphabet

range from 1 to N2 − 1 only. These currents and the fermion bilinears give rise to the

bosonic coset
su(N + 1)k ⊕ so(2N)1

su(N)k+1 ⊕ u(1)κ
. (A.7)

From the N(N + 2) fermions in the numerator we subtract the N2 fermions in the denom-

inator. The 2N surviving fermions can be defined by

ψi = tAN+1,iψ
A , ψ̄i = tAi,N+1ψ

A , (A.8)

satisfying

{ψir, ψ̄js} = δijδr,−s ,

{ψir, ψjs} = {ψ̄ir, ψ̄js} = 0 . (A.9)

The bosonic currents in the numerator can be split up in Ja for a = 1, . . . , N2 − 1, J i and

J̄ i, for i = 1, . . . , N , and K, where we define

J i = tAN+1,iJ
A , J̄ i = tAi,N+1J

A , K = (N + 1) tAN+1,N+1J
A . (A.10)

Here, J̄ i and J i correspond to the N and N̄ of su(N), respectively, while K is the u(1)

current embedded into su(N + 1). The u(1) embedding into so(2N) can be written as

j = −(N + 1)(ψiψ̄i) . (A.11)

The total u(1) current is then equal to K + j. It will be useful to express the decoupled

su(N)k+1 currents in terms of the decoupled su(N + 1)k currents:

J̃a = Ja + taij(ψ
iψ̄j) , (A.12)

where we have assumed, without loss of generality, that the matrices tA for A =

N2, . . . , N(N + 2)− 1 are of the form

tA =

 0N ∗

∗ 0

 , A = N2, . . . , N(N + 2)− 1 , (A.13)

and that tN(N+2) is diagonal. We also define the unique spin-1 primary of the coset, which

is also the lowest field in the superconformal algebra, as

J =
1

N + k + 1

(
K − k

N + 1
j

)
. (A.14)
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Then the stress-energy tensor of the coset theory is given by the difference of the numerator

and denominator Sugawara tensors:

L = Lsu(N+1) − Lsu(N) − Lu(1) + Lfree fermions

=
1

2(N + k + 1)

(
(J iJ̄ i) + (J̄ iJ i) + k

(
(∂ψiψ̄i)− (ψi∂ψ̄i)

)
− 2 taij

(
Ja(ψiψ̄j)

)
− 2

N(N + 1)
(Kj)

)
, (A.15)

where we have used that

(JAJA) = (JaJa) + (J iJ̄ i) + (J̄ iJ i) +
1

N(N + 1)
(KK) . (A.16)

We can split up the stress-energy tensor into three mutually commuting stress-energy

tensors given by

Lb =
1

2(N + k + 1)

(
(J iJ̄ i) + (J̄ iJ i)− 1

N + k
(JaJa)− 1

Nk
(KK)

)
,

Lf =
k

2(N + k + 1)

(
(∂ψiψ̄i)− (ψi∂ψ̄i)− 2

k
taij
(
Ja(ψiψ̄j)

)
+

1

k(N + k)
(JaJa)

− 1

N(N + 1)2
(jj)

)
,

L(JJ) =
N + k + 1

2Nk
(JJ) , (A.17)

with central charges

cb =
N(k − 1)(N + 2k + 1)

(N + k)(N + k + 1)
,

cf =
k(N − 1)(k + 2N + 1)

(N + k)(N + k + 1)
,

c(JJ) = 1 , (A.18)

such that the total stress energy tensor reads

L = Lb + Lf + L(JJ) (A.19)

with total central charge

c = cb + cf + c(JJ) =
3Nk

N + k + 1
. (A.20)

There is another elementary primary field of conformal dimension 2, which was called W 20

in [36]. We can make an ansatz

W 20 = αLb + β Lf + γ L(JJ) . (A.21)
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From the analysis in [36], we know that W 20 satisfies the OPE

W 20 ? W 20 ∼ n2 1 + c22,2W
20 +

4n2

c− 1

(
L− 3

2c
(JJ)

)
. (A.22)

Demanding this as well as a vanishing central term in the OPE L ?W 20, we obtain

α = −

√
2k(N − 1)(2N + k + 1)(N + k + 1)n2

N(k − 1)(N + 2k + 1)(3Nk − (N + k + 1))
,

β = −N(k − 1)(N + 2k + 1)

k(N − 1)(k + 2N + 1)
α

=

√
2N(k − 1)(N + 2k + 1)(N + k + 1)n2

k(N − 1)(2N + k + 1)(3Nk − (N + k + 1))
,

γ = 0 . (A.23)

This then also reproduces correctly the form of (c22,2)2 as predicted by eq. (3.27) of [36].

For the normalisation of W 20 we choose the convention

n2 = − c
6

(ν + 3)(ν − 3) , (A.24)

where

ν = 2µ− 1 =
N − k − 1

N + k + 1
,

c =
3Nk

N + k + 1
. (A.25)

In the c→∞ limit, the parameters then become

α→ −ν + 3

2
√

3
, β → −ν − 3

2
√

3
. (A.26)
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