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ABSTRACT

The lung is an important open organ and the primary site
of respiration. Many life-threatening diseases develop in
the lung, e.g., pneumonia, asthma, chronic obstructive
pulmonary diseases (COPDs), pulmonary fibrosis, and
lung cancer. In the lung, innate immunity serves as the
frontline in both anti-irritant response and anti-tumor
defense and is also critical for mucosal homeostasis;
thus, it plays an important role in containing these pul-
monary diseases. Innate lymphoid cells (ILCs), charac-
terized by their strict tissue residence and distinct
function in the mucosa, are attracting increased atten-
tion in innate immunity. Upon sensing the danger sig-
nals from damaged epithelium, ILCs activate, proliferate,
and release numerous cytokines with specific local
functions; they also participate in mucosal immune-
surveillance, immune-regulation, and homeostasis.
However, when their functions become uncontrolled,
ILCs can enhance pathological states and induce dis-
eases. In this review, we discuss the physiological and
pathological functions of ILC subsets 1 to 3 in the lung,
and how the pathogenic environment affects the func-
tion and plasticity of ILCs.
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INTRODUCTION

Regional immunity greatly differs from the conventional
immune organ or system. Because human diseases are

tightly connected with regional immunity, researchers have
recently begun to focus on the regional immunity of organs
such as the lung, intestine, liver, and skin. The lung is an open
organ that is involved in gas conduction and exchange.
Approximately 8,000 to 9,000 liters of air are breathed into the
lung every day. Compared with the gut and the skin, the lung
has a wider surface area, up to 90 m2. A single layer of pul-
monary epithelial cells covers the alveoli (Kopf et al., 2015).
Because of these characteristics, the lung is constantly
exposed to environmental stressors, such as pathogens,
allergens, and airborne toxins, e.g., cigarette smoke. In the
battle between the mucosal immune cells and the invaders,
the innate immune cells are the first line of defense, fortifying
the trenches. The innate immune cells in the lung mainly
comprise lung-resident macrophages, lung-resident dendritic
cells (DCs) (Holt et al., 2008; Kopf et al., 2015), and emerging
sets of innate lymphoid cells (ILCs) (Spits and Di Santo, 2011;
Spits and Cupedo, 2012; Eberl et al., 2015).

ILCs are important tissue-resident innate immune cells.
They are promptly activated by danger signals from injured
mucosa and produce an array of effective cytokines to repel
pathogens and tumor cells, thereby maintaining mucosal
integrity. However, if they are excessively activated, they
may cause pathologic tissue damage, e.g., asthma, Crohn’s
disease, or psoriasis (Buonocore et al., 2010; Spits and
Cupedo, 2012; Spits et al., 2013; Karta et al., 2016).
Research into ILCs in the lung is only now in its infancy but it
is known that there are three groups of ILCs in the lung,
namely ILC1s, ILC2s, and ILC3s. Recently Lai et al.
reviewed the origin, development, heterogeneity, and inter-
action of ILCs with other cells in the lung (Lai et al., 2016),
however the roles of ILCs in lung pathologies have not been
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extensively reviewed, especially with respect to ILC1s and
ILC3s. With this in mind, here we describe the general
characteristics, functions, and phenotypic plasticity of ILCs,
focusing especially on the roles of all three groups of ILCs in
diseases of the lung.

CLASSIFICATION AND GENERAL
CHARACTERISTICS OF ILCS

Lymphoid tissue inducer (LTi) cells and NK cells are proto-
typic ILCs, which require the common γ chain of the inter-
leukin-2 receptor (IL-2Rγ) and transcriptional repressor
inhibitor of DNA binding 2 (Id2) for their development (Kelly
and Scollay, 1992; Held et al., 2011; Hesslein and Lanier,
2011). Over the last ten years, numerous cells have been
identified whose development is also IL-2Rγ and Id2-de-
pendent; these cells are referred to as “innate lymphoid
cells” (ILCs). ILCs have three main characteristics: a lym-
phoid morphology, the absence of rearranged antigen-
specific receptors, and a lack of myeloid dendritic cell phe-
notypical markers; ILCs also do not express antigen recep-
tors or undergo clonal selection (Spits and Cupedo, 2012;
Spits et al., 2013). In 2013, Spits et al. classified the ILCs
into three groups according to their cytokine secretion ability,
mirroring CD4+ T helper (Th) cells: group 1 ILCs (ILC1s),
comprising conventional NK cells and ILCs that produce
interferon-γ (IFN-γ); group 2 ILCs (ILC2s), which are ILCs
that secrete type 2 cytokines, such as IL-5 and IL-13; and
group 3 ILCs (ILC3s), that produce IL-17 and/or IL-22 (Spits
and Cupedo, 2012; Spits et al., 2013).

ILCs mirror Th cells but also differ from them. Although
ILCs and Th cells both arise from a common lymphoid pro-
genitor (CLP), the development of ILCs is unique. It is gen-
erally believed that ILCs initially develop in fetal liver,
whereas after birth they develop in the bone marrow
(Vosshenrich et al., 2005; Sawa et al., 2010; Klose et al.,
2014), and are then subsequently recruited into other tissues
(Eberl et al., 2015; Gasteiger et al., 2015). Migration into
tissues is likely mediated by the co-ordinated action of
adhesion molecules and chemokines (Eberl et al., 2015).
Interestingly, some researchers found that ILC progenitors
seed themselves in tissues in the embryonic and adult
phases, and in these tissue micro-environments they
undergo development and differentiation (Montaldo et al.,
2014; Bando et al., 2015). It should be noted that, in contrast
to Th cells, ILCs remain tissue-resident; they are maintained
locally in one organ and do not re-enter the circulation or
migrate to other organs (Gasteiger et al., 2015; Fan and
Rudensky, 2016). Following acute environmental challenges
tissue-resident ILCs expand locally and in this way the pool
of cells is renewed, although phenotypic transformation can
also occur. Hematogenously derived ILC precursors or
mature ILCs can also partially supply the local tissue ILC
pool (Gasteiger et al., 2015). In addition, ILCs lack recom-
bination-activating gene (RAG), meaning that unlike B and T

cells, ILCs can be activated directly (Spits and Cupedo,
2012; Spits et al., 2013). When the mucosa is invaded by
pathogens, allergens, or tumor cells, damaged epithelial
cells secrete cytokines to directly stimulate ILCs. ILCs then
become promptly activated, proliferate, and produce copious
amounts of cytokines to repel the invaders and maintain
mucosal homeostasis; this response, however, may also
lead to pathological damage (Spits and Di Santo, 2011;
Scanlon and McKenzie, 2012; Philip and Artis, 2013; Salimi
and Ogg, 2014). Thus, ILCs become activated by sensing
danger signals from the tissue milieu rather than by antigen
presentation with antigen-presenting cells (APCs) (Drake
and Kita, 2014; Eberl et al., 2015). Compared with the few
days or weeks required by Th cells (Hansen et al., 1999),
ILCs can therefore be activated more quickly (Spits and
Cupedo, 2012; Fan and Rudensky, 2016) (Table 1).

ILC PLASTICITY

The phenotype of ILCs is not stable; these cells are highly
plastic and can change phenotypes under the influence of
the environment. IL-2 and IL-12 drive human natural cyto-
toxicity receptor (NCR)-positive ILC3s (NCR+ILC3s) to
transform into ILC1s (Cella et al., 2010; Bernink et al., 2013;
Bernink et al., 2015). In response to the tissue environment
in vivo, ILC3s down-regulate the expression of RORγt (reti-
noic acid receptor-related orphan receptor γt) and produce
IFN-γ (Vonarbourg et al., 2010a). IL-1β and IL-12 induce
ILC2s to express T-bet and to produce IFN-γ while down-
regulating ST2 and GATA3, and losing the ability to produce
IL-5 and IL-13 (Bal et al., 2016; Kim et al., 2016; Lim et al.,
2016). IL-23 and IL-1β cause CD127+ ILC1s to differentiate
into IL-22-producing ILC3s (Bernink et al., 2015). Enhanced
GATA3 expression by ILC1s results in their conversion to
ILC2s with the capacity to produce greater amounts of type 2
cytokines (Mjosberg et al., 2012; KleinJan et al., 2014). Such
plasticity occurs not only between ILC groups, but also
between ILC subgroups. For example, mouse NKp46−

RORγt+ LTi-like cells may transform into NKp46+RORγt+

cells either in vivo or in vitro (Vonarbourg et al., 2010a; Klose
et al., 2013; Rankin et al., 2013; Rankin et al., 2016). Human
NKp44−ILC3s undergo a profound shift toward NKp44+

ILC3s upon culture in the presence of IL-2, IL-1β, and IL-23,
and they display pro-inflammatory properties (Bernink et al.,
2013; Glatzer et al., 2013). Plasticity is one of the important
characteristics of ILCs, and this property is especially
important in the lung; the shift of ILC2s to ILC3s and the
plasticity within ILC2 subgroups will be discussed below in
detail (Table 2) (Fig. 1).

IDENTIFICATION AND CHARACTERIZATION
OF ILC1S

Compared with the other ILC groups, ILC1s are the least
studied. Their characteristics are not yet well defined, and
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indeed there is even still debate concerning their classifica-
tion. As of now, the ILCs nomenclature introduced by Spits
et al. (2013) is widely accepted, with NK cells and ILC1s
belonging to group 1 ILCs. Group 1 ILCs are defined by their
ability to produce IFN-γ and inability to produce IL-4, IL-13,
IL-22, and IL-17. They require transcription factor T-bet for
their development (Spits et al., 2013). NK cells have been
reviewed elsewhere, and thereforewewill only focus on ILC1s
in this review.

The original report concerning mouse ILC1s described
them as RORγt−NKR−LTi, capable of releasing IFN-γ, and as
being potent inducers of experimental colitis (Vonarbourg
et al., 2010b). Another group of mouse ILC1s was then
described as NKp46+NKp1.1+Eomes−T-bet+, with the ability
to produce IFN-γ (Klose et al., 2014). In humans, ILC1s can
be divided into CD127low ILC1s and CD127high ILC1s, based
on the expression of CD127. CD127low ILC1s are defined as
CD3−CD56+NKp44+CD103+ and CD3−CD56+NKp44−CD103−;
the former have an intraepithelial localization (Fuchs et al.,
2013). CD127high ILC1s were first identified in human tonsil
and intestine, and they are defined as Lineage
(Lin)−CD127+CRTH2+CD117−NKp44− (Bernink et al., 2013).
Although the markers that define ILC1s in mouse and human
are somewhat different, the two are generally defined as lin-
eage negative, T-bet positive, and both are capable of pro-
ducing IFN-γ.

CD127high and CD127low ILC1s have also been identified
in the human lung. CD127high ILC1s are identified as
Lin−CD127+CD117−NKp44−; they express T-bet but do not
express C-C motif chemokine receptor 6 (CCR6), CD103, or
CD25. CD127low ILC1s are defined as Lin−CD127−NKp46+,
and express T-bet. Similar to CD127high ILC1s in the tonsil

and the intestine, most Lin−CD127−NKp46+NKp44+cells
express CD103 (Carrega et al., 2015). Another group iden-
tified non-toxic ILC1s in the human lung was
Lin−CD56−IL12Rβ2+ (De Grove et al., 2016). In mouse lung,
ILC1s are defined by the Lin−CD90+T-bet+ phenotype, and
they express IL-12Rβ2 and IL-18Rα; furthermore, IL-12 and
IL-18 enhance ILC1 expansion in vivo, and they produce
copious amounts of IFN-γ (Silver et al., 2016a) (Table 2).

ILC1S IN THE LUNG

ILC1s and infection

ILC1s produce large amounts of IFN-γ and protect the
organism against pathogens as first reported in mouse
models of intracellular infection, e.g., infections caused by
the parasite Toxoplasma gondii and by Clostridium difficile in
the intestine (Klose et al., 2014; Abt et al., 2015). Silver et al.
(2016a, b) found that during lung infection in mice caused by
either influenza A, Haemophilus influenzae, respiratory
syncytial virus (RSV), or Staphylococcus aureus, GATA3
expression in the resident ILC2s was rapidly down-regulated
(within two days after infection), and this was accompanied
by decreased expression of ST2, CD25 (IL-2Rα), IL-7Rα,
inducible costimulator (ICOS), and the stem cell factor
receptor c-kit (CD117). Meanwhile, the T-bet+ ILC1 number
in the lung increased and the expression of IL-12 and IL-18
receptors (IL-12Rβ2 and IL-18Rα) in ILC1s was up-regu-
lated. The down-regulation of GATA3 expression was neg-
atively correlated with IL-18Rα up-regulation. These results
indicate that during infection of the lung, ILC2s may lose their
properties and phenotypically convert into ILC1s. To confirm

Table 1. Comparison of ILC and Th cell characteristics

ILCs TH cells

TF ILC1s: T-bet
ILC2s: Gata3
ILC3s: RORγt

Th1: T-bet
Th2: Gata3
Th17: RORγt

Principal effector cytokines ILC1s: IFN-γ
ILC2s: IL-3, IL-4, IL-9, IL-13
ILC3s: IL-17, IL-22

Th1: IFN-γ
Th2: IL-3, IL-4, IL-9, IL-13
Th17: IL-17, IL-22

Genesis CLP CLP

Innate/Adaptive system Innate immune cells Adaptive immune cells

RAG Absent Present

Response time Hours∼days Days∼weeks

Activated pathway APC-independent
Directly activated

APC-dependent
Indirectly activated

Tissue residency Yes No

Extension/Activation Tissue Lymph node

Recruitment (Back to circulation) Seldom Frequently

Memory-property Antigen non-specific memory-property Antigen specific memory-property

APC, antigen-presenting cell; CLP, common lymphoid progenitor; ILCs, innate lymphoid cells; SLO, secondary lymph organ; TF, transcription

factor.
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these findings, Silver et al. used a reporter mouse that
expressed ST2 labeled with green fluorescent protein (GFP),
they found that upon stimulation with IL-12, IL-18, and IL-33,
the number of IL-18Rα+ ILC1 cells increased, and 50% of
these cells expressed ST2-GFP. Collectively, these data
suggest that lung ILC1s are derived from ILC2s that are
resident in the lung rather than from ILC1 proliferation.

In the same study, GFP+ ILC2s (GFP-labeled ILC2s) were
transferred to Rag2−/−/Il2rg−/− mice with mature lymphocyte
deficiency, and then the mice were infected with influenza A
virus. GFP+ ILC2s infiltrated into the lungs of host mice 7 d
after infection. GATA3 expression in these cells was signifi-
cantly down-regulated and accompanied by a striking up-
regulation of both IL-18Rα and IL-12Rβ2 expression. Double
IHC (immunohistochemistry) revealed that ILCs were local-
ized to the influenza virus-infected airways. IHC combined
with hybridization in situ revealed that Il-12 and Il-18 mRNAs

produced by myeloid-derived cells were present near
GFP+ ILC2s in the inflamed region. GATA3highILCs were
predominantly localized in uninfected tissue regions,
whereas GATA3low ILCs were enriched in virus-associated
areas (Silver et al., 2016a).

In summary, these data demonstrate that during infection,
ILC2s migrate to the inflamed regions, where the myeloid-
derived pro-inflammatory cytokines IL-12 and IL-18 drive
ILC2 conversion into ILC1s, enabling their participation in the
anti-pathogen response (Fig. 2).

ILC1s and chronic obstructive pulmonary disease
(COPD)

COPD is widely regarded as a heterogeneous disease
associated with increased numbers of alveolar macro-
phages, T lymphocytes (predominantly Tc1, Th1, and Th17

Table 2. Characteristics of lung ILCs

ILC1s ILC2s ILC3s

Development-
dependent TF

T-bet Gata3, RORα, EST1,
Bcl11b, G9a, Gfi1

RORγt

Surface marker
(Human)

CD127highILC1s:
Lin−

CD127+

CD117−

NKp44−

CD25−

CD103−

CCR6−

CD127lowILC1s:
Lin−

CD127−

NKp44−

NKp46+

CD103+

Lin−

CD127+

CRTH2+

CD117−/+

CD161+

CD25+

ICOS+

ST2+

Lin−

CD127+

CD117+

CD161+

CD25+

NKp44−/+

NKp46−/+

NKp30−/+

CD56−/+

CCR6−/+

CXCR5+

Surface marker
(Mouse)

Lin−

CD90+

IL-12R2+

IL-18Rα+

Lin−

CD90+

CD127+

ST2+

Sca-1+

KLRG1+

CD25+

IL-7RB+

CD44+

IL-9R+

Lin−

CD90+

CD127+

NKp46−/+

NKp30−/+

CD56−/+

CCR6−/+

Active factors IL-12, IL-18 IL-25, IL-33, TSLP, PGD2, TGF-β, Spred1, Arginase 1,
TL1A, RAGE, SP-D, IRF4
CysLT1, IL-1β

IL-1β, IL-23

Inhibitory factors - IFN-γ, IL-27, Lipoxin4
Corticosteroid, TSA, PGI2, HES

-

Effective
cytokines

IFN-γ IL-4, IL-5, IL-6, IL-13, IL-9 IL-17, IL-22, TNF-α, IL-8, IL-2,
GM-CSF, lymphotoxin

NCR, natural cytotoxicity receptor; TF, transcription factor; Bcl11b, B cell leukemia/lymphoma 11b; Gfi1, growth factor independence-1; Lin,

lineage; G9a, lysine methyltransferase G9a; HES, Heligmosomoides polygyrus excretory/secretory products; TSLP, thymic stromal lym-

phopoietin; PGD2, prostaglandin D2; TL1A, tumor necrosis factor like cytokine 1A; RAGE, receptor for advanced glycation end-products; SP-D,

surfactant protein D; IRF4, interferon regulatory factor 4; TSA, trichostatin A; PGI2, prostaglandin I2; CysLT1, cysteinyl leukotriene receptor 1.
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cells), B lymphocytes, and neutrophils (Barnes, 2009;
Kearley et al., 2015). Recently, two groups almost simulta-
neously reported a relationship between ILC1s and COPD
(Bal et al., 2016; Silver et al., 2016a). The percentage of
ILC1s is much higher in patients with COPD than in healthy
controls, and is accompanied by a lower occurrence of
ILC2s, either in the lung or in the circulation (Bal et al., 2016;
Silver et al., 2016a). According to the classification of the
Global Initiative for Chronic Obstructive Lung Disease
(GOLD), ILC1s occur more frequently in severe COPD
(GOLD III–IV) than in milder COPD (GOLD I–II). A strong
negative correlation exists between the occurrence of ILC1s
in the blood and lung function, with a higher proportion of
ILC1s associated with worse lung function. The numbers of
circulating ILC1s are higher in patients with two or more
exacerbations of COPD per year than in patients with one
exacerbation per year (Bal et al., 2016; Silver et al., 2016a).

The development and exacerbation of COPD are asso-
ciated with cigarette smoke and viral and bacterial infection.
Silver et al. (2016a, b) reported that the occurrence of
GATA3+ ILC2s declines promptly and that the fraction of

T-bet+IL-18Rα+ ILC1s is increased in response to cigarette
smoke or viral and bacterial infections in mouse models
(Silver et al., 2016b). When ILC2s from human fetal lung are
cultured with IL-2, IL-1β, and IL-12, CRTH2 and c-kit in
ILC2s are down-regulated, and the cells produce IFN-γ but
not IL-5. These results indicate that ILC2s have the potential
to transform into ILC1s when exposed to a type 1 inflam-
matory environment, such as cigarette smoke or infection,
and participate in the development of COPD (Bal et al.,
2016) (Fig. 2).

ILC1s and tumors

Recently, Dadi et al. (2016) discovered that unconventional
type 1-like innate lymphoid cells and type 1 innate-like Tcells
play a role in tumor-elicited immune surveillance in murine
cancer models (Dadi et al., 2016). This suggests that ILC1s
may possess an anti-tumor function; however, no data on the
function of ILC1s in lung tumors are available, and future
studies should thus be performed to further elucidate this
issue.

Tissue

?
? ?

Danger signals

IL-25, IL-33

IL-2, IL-1β
IL-23

IL
-1

2,
 IL

-1
β IL-23, IL-1β

IL-12, IL-2

TGF-β, IL-6

Allergen

Tumor
Pathogen

iILC2s

IL-2, IL-7
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Figure 1. ILC plasticity. ILCs recruit into the lung and become resident in the mucous epithelium. When the tissue is exposed to

danger signals elicited by pathogens, allergens or tumor cells, the epithelium or other innate immune cells produce many cytokines. In

response to these cytokines, ILCs may alter their phenotype to respond to the environment. IL-2 and IL-12 drive the transformation of

ILC3s to ILC1s. ILC1s convert to ILC3s under the influence of IL-1β and IL-23; ILC2s also transform to ILC1s when cultured with IL-12

and IL-1β. Upon increased GATA3 expression, ILC1s gain ILC2s characteristics; when cultured with TGF-β and IL-6, ILC2s become

ILC3-like. Whether ILC3s convert into ILC2s is still unclear. In the ILC2 and ILC3 sub-groups, iILC2 cells give rise to cells with nILC2

phenotype when cultured in the presence of IL-2, IL-7, IL-25, and IL-33 in vitro or in vivo. Under the influence of IL-2, IL-1β, and IL-23,

NCR−ILC3s express NCR+. The hypothesis that nILC2s convert to iILC2s and NCR+ILC3s convert to NCR−ILC3s should be

confirmed in the future. See text for details.
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IDENTIFICATION AND CHARACTERIZATION
OF ILC2S

In 2001, Fort et al. were the first to report that non-T/non-B T
cells in Rag2−/−mice could produce IL-5 and IL-13, leading to
a type 2 response (Fort et al., 2001). Ten years later, these
cells were observed by different researchers and were dif-
ferently named as nuocytes, natural helper cells, or innate
helper type 2 cells (Moro et al., 2010; Neill et al., 2010; Price
et al., 2010). These three groups of cells share similar
molecular surface markers and function, and finally they
were collectively named as group 2 innate lymphoid cells. In
addition to Id2 and IL-2Rγ, the development and function of
ILC2s depend on GATA3, Notch, and RORα (Halim et al.,
2012b; Mjosberg et al., 2012; Gentek et al., 2013).
Growth factor independence-1 (Gfi1), B cell leukemia/lym-
phoma 11b (Bcl11b), lysine methyltransferase G9a, and
ETS1 are also essential for the development of ILC2s
(Spooner et al., 2013; Walker et al., 2015; Yu et al., 2015;
Zook et al., 2016).

ILC2s can be activated by IL-25, IL-33, and thymic stro-
mal lymphopoietin (TSLP), which are produced by epithelial
cells and certain immune cells. Other ILC2 activators were
later identified, namely, tumor necrosis factor (TNF)-family

cytokine TL1A, prostaglandin D2, cysteinyl leukotriene
receptor 1 (CysLT1), arginase 1, receptor for advanced
glycation end-products, and surfactant protein D (Barnig
et al., 2013; Doherty et al., 2013; Meylan et al., 2014; Yu
et al., 2014; Tait Wojno et al., 2015; Taniguchi et al., 2015;
Monticelli et al., 2016; Thawer et al., 2016). IL-1β has been
considered to be an activator of ILC3s, but a recent study
demonstrated that IL-1β may also activate ILC2s (Bal et al.,
2016). These cells can also produce amphiregulin to
enhance the recovery of the mucosa during viral infection
(Monticelli et al., 2011). ILC2 inhibitors were recently identi-
fied and include prostaglandin I2, IFN-γ, IL-27, and lipoxin
A4. Because these molecules inhibit ILC2 proliferation and
cytokine production (McHedlidze et al., 2016; Moro et al.,
2016; Zhou et al., 2016), they may be used to control ILC2-
related diseases (See below). Activated ILC2s predomi-
nantly produce type 2 cytokines such as IL-5, IL-13, and
IL-4, and also IL-9 (Moro, 2010; Mjosberg et al., 2011; Wil-
helm et al., 2011; Kim et al., 2013).

In the mouse lung, ILC2s are defined as Lin−CD90+

ICOS+CD25+ST2+CD127+. They also express CD44 and
IL-17BR, and 20% of nuocytes (ILC2s) express c-kit
(CD117) (Monticelli et al., 2011; Barlow et al., 2012;

?

IL-12/IL-18

Anti-tumor

COPD

Myeloid-drived cell

Repelling pathogen

Tumor
Pathogen

s1CLIs2CLI

Airway epithelium
Danger signals

Figure 2. ILC1 functions in the lung. When pathogens, such as viruses or bacteria, or tumor cells invade the airway epithelium, the

myeloid cells receive danger signals from the epithelium and produce IL-12 and IL-18. These pro-inflammatory cytokines down-

regulate GATA3 expression of ILC2s and then drive the conversion of ILC2s into ILC1s. IL-12 and IL-18 also enhance the activation

and expansion of ILC1s. After activation, ILC1s produce copious amounts of IFN-γ. IFN-γ plays potentially important roles in clearing

both pathogens and tumors, and also in the development of chronic obstructive pulmonary disease (COPD). See text for details.
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Bartemes et al., 2012). Based on their killer cell lectin-like
receptor G1 (KLRG1) expression, mouse lung ILC2s can be
divided into two groups: nILC2s, designated as Lin−ST2+

KLRG1int cells, and iILC2s, designated as Lin−ST2−KLRG1hi

(Huang et al., 2015). ILC2s are also found in the fetal and adult
lung, and in the bronchoalveolar lavage fluid (BLF) in human.
They are defined as Lin−CD127+CD161+CRTH2+ and also
express ICOS, CD25 and ST2; they also partially express
CD117 (Mjosberg et al., 2011; Monticelli et al., 2011). ILC2s in
mouse and humanhave similarmarkers and function, although
CRHT2 is specific for human since mouse ILC2s do not
express this marker (Table 2).

ILC2S IN THE LUNG

ILC2s were the first ILC group identified in lung (Monticelli
et al., 2011). ILC2-related diseases in the lung involve
pathogen infections (virus and helminth parasites), asthma,
pulmonary fibrosis, and eosinophilic pleural effusion in
primary spontaneous pneumothorax.

ILC2s and viral infection

During viral infection, ILC2smay exert a dual effect in the lung:
on the one hand, ILC2s play a protective role in repelling the
virus; on the other hand, if ILC2 function is not tightly con-
trolled, these cells may induce airway hyperactivity (Fig. 3).

Maintenance of epithelial integrity

During the early phase of respiratory infection caused by
influenza A virus subtype H1N1, no significant differences
were observed between wild-type mice and Rag−/− mice that
lack adaptive immunity with respect to the decline in lung
function and pathology of the lung. Because ILC2s accu-
mulated in the lung, it was inferred that lung ILC2s play a key
role in the regulation of lung innate immunity and tissue
homeostasis (Monticelli et al., 2011). Depletion of ILCs led to
substantial lung epithelial degeneration and necrosis, as a
result of significantly impaired epithelial integrity. Adoptive
transfer of ILCs to ILC-depleted mice effectively restored
epithelial integrity (Monticelli et al., 2011). In the same study
it was found that IL-33/IL-33R signaling was essential for the
accumulation of ILC2s in H1N1 virus infected lungs whereas
IL-13 and IL-22 appeared to be dispensable for tissue
homeostasis (Monticelli et al., 2011). Data from genome-
wide transcriptional profiling has suggested that ILC2s in the
lung express wound healing-associated genes at higher
levels. In vivo, lung ILC2s have the ability to produce high
levels of amphiregulin, a molecule that regulates tissue
remodeling and repair during acute epithelial injury and
asthma (Dolinay et al., 2006; Enomoto et al., 2009; Fuku-
moto et al., 2010; Monticelli et al., 2011). In summary, lung
ILC2s play an important role in maintaining the integrity of
the respiratory epithelium and restoring lung function by
producing amphiregulin during H1N1 infection.

Induction of lung inflammation and airway hyper-reactivity

Chang et al. (2011) observed that BALB/c mice infected with
H3N1 virus rapidly develop AHR (airway hyper-responsive-
ness) that peaked on day 5 of infection. Because the sen-
sitization of Th2 cells and enrollment of adaptive immunity
during allergen-induced AHR required 7∼14 d to develop
(Hansen et al., 1999), based on the speed with which H3N1

induced AHR, it was hypothesized that this response was
mediated by innate immune mechanisms. The authors pro-
vided evidence that indeed H3N1-induced AHR development
did involve the innate immune pathway and did not require T,
B, or NKT cells (Chang et al., 2011). Depletion of natural
helper cells suppressed the AHR response, and furthermore
only the transfer of IL-13-producing ILC2s, but no other
IL-13-producing cells (such as mast cells or basophils), was
sufficient for the development of H3N1-induced AHR. Fur-
thermore, H3N1-induced AHR was tightly correlated with the
presence of ILC2s, IL-33, and IL-13. IL-33 derived from
alveolar macrophages likely plays an essential role in the
activation of ILC2s (Chang et al., 2011). These data confirm
that ILC2s are essential for the development of AHR during
H3N1 infection.

During RSV infection, the number of IL-13-producing
ILC2s triples compared with basal levels, and the IL-13
levels increase simultaneously. This increase contributes to
airway hyper-reactivity and airway mucus accumulation in a
TSLP-dependent manner (Stier et al., 2016). ILC2s have
also been shown to produce IL-13 in order to recruit eosi-
nophils and induce AHR through the IL-33/ST2 pathway
during RSV infection (Liu et al., 2015b). Similarly, neonatal
rhinovirus induces AHR and mucus metaplasia through
IL-25 and ILC2s (Hong et al., 2014).

ILC2s and helminth parasites

Upon infection with helminthic parasites, the host undergoes
a strong type 2 response to clear the pathogens (Paul and
Zhu, 2010; Maizels et al., 2012). During Strongyloides
venezuelensis infection of the lung, IL-33 levels increase,
activating ILC2s to release the effector cytokines IL-5 and
IL-13 that, in turn, can recruit eosinophils to fight the infec-
tion. IL-33−/− mice are unable to recruit eosinophils to the
lungs or expel S. venezuelensis (Yasuda et al., 2012). Dur-
ing lung inflammation induced by Nippostrongylus
brasiliensis, epithelial cells produce TSLP and IL-33, syn-
ergistically stimulating ILC2s to produce IL-5 and IL-13.
Furthermore, IL-9, which is produced by ILC2s in an auto-
crine manner, stimulates IL-5 and IL-13 production by ILC2s.
In IL-9 receptor-deficient mice infected with N. brasiliensis,
ILC2s numbers are reduced and IL-5, IL-13, and amphireg-
ulin levels are decreased, whereas the numbers of Th2 cells
remain unchanged. As a result, helminth clearance is
strongly impaired (Turner et al., 2013). The IL-9 signal plays
an important role in the activation of ILC2s, especially in the
early phase of helminth infection. This process also requires
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interferon regulatory factor 4 (IRF4) (Turner et al., 2013;
Mohapatra et al., 2016).

During N. brasiliensis infection, the ILC2 subgroup iILC2
can convert into nILC2. N. brasiliensis-infected Il17rb−/− mice
lack iILC2 cells and, interestingly, nILC2 cell numbers are
significantly decreased in these mouse models. This sug-
gests that iILC2s contribute to the nILC2 population during
N. brasiliensis infection. Researchers simultaneously
transferred CD45.1+ nILC2s and CD45.2+ iILC2s into
Rag2−/−Il2rg−/− mice infected with N. brasiliensis, and 14 d
later found that all iILC2 cells had developed into nILC2-like
cells. iILC2s may thus comprise a transient progenitor pop-
ulation of cells that can transform into nILC2-like cells and be

involved in the clearance of N. brasiliensis (Huang et al.,
2015) (Fig. 1).

Interestingly, another natural mouse parasite, Heligmo-
somoides polygyrus, that causes parasitic infections sup-
presses inflammatory responses in models of asthma, food
allergy, diabetes, and colitis (McSorley and Maizels, 2012).
H. polygyrus excretory/secretory (HES) products can sup-
press both Treg (Grainger et al., 2010) and dendritic cells
(Massacand et al., 2009). McSorley et al. found that HES
products inhibit the allergic reaction in the ovalbumin (OVA)-
induced mouse asthma model by suppressing the release of
IL-33 and inhibiting the activation of ILC2s (McSorley et al.,
2014; McSorley et al., 2015).
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Figure 3. ILC2 functions in the lung. Following interaction with pathogens or allergens, the airway epithelium secretes IL-25, IL-33,

TSLP, and TGF-β. Upon a molecular cue from the damaged epithelium, activated macrophages and DCs also release IL-33. All of

these cytokines activate ILC2s. After activation, ILC2s proliferate and produce copious amounts of IL-4, IL-5, IL-9, IL-13, and

amphiregulin. IL-4 stimulates B cells and also activates DCs and enhances Th2 cell maturation and activation. IL-5 and IL-13

stimulate the proliferation and recruitment of eosinophils, which are involved in parasite clearance and airway hyper-responsiveness

(AHR). IL-5 also enhances B1 cell self-renewal and antibody production by B cells. ILC2s produce IL-9, and the autocrine effect of

IL-9 stimulates secretion of effector cytokines by ILC2s. IL-13 induces smooth muscle contractility and airway remodeling that leads to

AHR. Additionally, IL-9 plays an essential role in mast cell differentiation and also can induce mast cells to secrete IL-6; IL-9 can also

promote both the proliferation of eosinophils and induce their migration into the lung. IL-13 can also induce collagen deposition and

the development of pulmonary fibrosis. Furthermore, IL-13 enhances eosinophil recruitment and alternative macrophage activation.

Finally, ILC2s also play an important role in airway remodeling by secreting amphiregulin. See text for details.
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ILC2s and asthma

Asthma is a heterogeneous disease that occurs worldwide
and whose pathology involves chronic airway inflamma-
tion. The type 2 response is regarded as a central
mechanism for allergic asthma (Deckers et al., 2013;
Licona-Limon et al., 2013). Conventionally, Th2 cells have
been regarded as the main source of type 2 cytokines, but
this notion has now been challenged by the emergence of
ILC2 cells.

In mouse asthma models that use ovalbumin (Kim et al.,
2012), house dust mite (HDM) (Wilhelm et al., 2011; Halim
et al., 2012a; Klein Wolterink et al., 2012), papain (Halim
et al., 2012a), and fungal allergens, ILC2s uniformly increase
in number and are the major source of IL-5 or/and IL-13,
especially in the early phases of the disease. In mouse
models that lack adaptive immune cells, i.e., T and B cells,
allergens can also induce significant AHR, a high level of
type 2 cytokines, and increased numbers of ILC2s in the
lung (Bartemes et al., 2012; Halim et al., 2012a). In these
allergen-induced asthma models, the pulmonary epithelium,
macrophages, and DCs release IL-33; in addition, the pul-
monary epithelium also produces IL-25, TSLP, and trans-
forming growth factor-β (TGF-β). All of these cytokines can
activate ILC2s (Halim et al., 2012a; Kim et al., 2012; Iijima
et al., 2014; Denney et al., 2015). In vitro, IL-25 and IL-33
enhance the proliferation of ILC2s and stimulate them to
produce IL-4, IL-5, IL-13, and/or IL-9 (Wilhelm et al., 2011;
Barlow et al., 2012; Bartemes et al., 2012; Halim et al.,
2012a; Kim et al., 2012; Klein Wolterink et al., 2012). This is
important because, IL-4 stimulates B cells to produce IgE,
IL-5 recruits and activates eosinophils and also enhances B
cell antibody production and B1 cell self-renewal, and IL-13
enhances smooth muscle contraction, epithelial mucous
production, airway remodeling, and eosinophil recruitment.
IL-9 plays an essential role in mast cell differentiation and
can also induce mast cells to secrete IL-6; IL-9 promotes
both the proliferation of eosinophils and their migration into
the lung (Renauld, 2001). Otherwise, the IL-9 production of
ILC2s depends on IL-2 secreted by adaptive immune cells.
IL-9 also stimulates ILC2s to produce IL-13 and IL-5
(Wilhelm et al., 2011). All of these cytokines play an impor-
tant role in the development of AHR (Fig. 3).

During AHR development, ILC2s crosstalk with DCs,
CD4+ Th2 cells, B cells, and Th9 cells, thereby potentiating
the pathology. ILC2s produce IL-13, which directly activates
DCs to express CCL17, enhancing CD4+ Th2 cell activation;
ILC2s also activate Th2 cells directly by producing IL-4 and
OX40L. ILC2s and CD4+ Th2 cells thereby exert a syner-
gistic effect on the development of AHR (Drake et al., 2014;
Gold et al., 2014; Halim et al., 2014; Halim et al., 2015; Liu
et al., 2015a). Mouse lung ILC2s enhance the proliferation of
B1- and B2-type B cells and stimulate their production of
IgM, IgG1, IgA, and IgE in vitro. Specifically, ILC2-derived
IL-5 is critically involved in increased IgM production (Drake
et al., 2016). Polarized ILC2s and Th9 cells also stimulate

each other in mouse models of asthma in the lung (Ying
et al., 2016).

Researchers have recently observed that similar to Th2
cells, ILC2s gain memory-like properties upon allergen
challenge. ILC2s stimulated by inhalation of either IL-33 or
papain persist for a long time; even after resolution of the
inflammatory response; in fact, some ILC2s persist for more
than 4 weeks. Furthermore, ‘allergen-experienced’ ILC2s
responded better to unrelated allergen than naïve ILC2s,
mediating a more severe allergic inflammation (Martinez-
Gonzalez et al., 2016). Allergen-experienced ILC2s are also
more responsive and produce higher amounts of the same
cytokines than unexperienced ILC2s. Compared with mem-
ory lymphocytes, ILC2s are activated by cytokines, while
memory lymphocytes are activated by specific antigens, thus
the memory-like ILC2s are antigen non-specific. This means
that memory-like ILC2s can be activated by unrelated aller-
gens but produce a stronger response than naïve ILC2s.
Memory-like ILC2s can also enhance Th2 cell-mediated
adaptive type 2 lung inflammation. These two important
characteristics may explain the phenomena that some
asthma patients react against multiple allergens, while some
do not (Martinez-Gonzalez et al., 2016).

In comparison with mouse, far fewer studies describing the
role of ILC2s in human asthma have been published. The
occurrence of ILC2s is more frequent in the blood of subjects
with allergic asthma than in healthy individuals and allergic
donors. When stimulated with IL-25 or IL-33, peripheral blood
mononuclear cells from patients with allergic asthma pro-
duced significantly greater amounts of IL-5 and IL-13 than
those frompatients with allergic rhinitis and those fromhealthy
donors (Bartemes et al., 2014; Jia et al., 2016). Recently,
ILC2s were found in the bronchoalvoelar lavage (BAL) and
sputum of patients with asthma, and the proportion of
IL-5+IL-13+ ILC2s in the sputum of patients with severe
asthma was higher than that in corresponding samples from
patients with mild asthma (Smith et al., 2016). ILC2 levels are
also increased in the sputum from severe asthmatic children
(Nagakumar et al., 2016). Other researchers have also com-
pared the relationship between ILC2s and asthma control
status, and the results indicate a positive correlation between
IL-13-producing ILC2s and asthma control status (Jia et al.,
2016).

Based on the above studies of examining ILC2s in human
asthma, the number of ILC2s is increased in asthmatic
patients’ blood, these ILC2s are activated, and the number of
IL-13-producing ILC2s negatively correlates with asthma
control status. These results might suggest that level of
ILC2s in the blood maybe partially indicate asthma status.
However, ILCs are generally tissue-resident cells and the
characteristics of ILCs in tissue are very different from ILCs
in the circulation since tissue-resident ILCs are affected by
the tissue microenvironment, which can cause changes of
biomarker profile as well as function. Therefore, the blood
ILC profile and function does not absolutely represent ILC2s
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resident in the lungs of asthmatics; blood ILC2s therefore
only partially indicates the status of the disease. In the future,
it will be important to study the function of human tissue-
resident ILC2s, for example ILC2s from BAL and sputum,
and even from lung tissue itself.

ILC2s and pulmonary fibrosis

Pulmonary fibrosis is a heterogeneous disease that is
prevalent worldwide, and that is typically regarded as a
chronic progressive disease, with high morbidity and mor-
tality (Hutchinson et al., 2015). The key pathogenic mecha-
nism involves extracellular matrix deposition in the lung. The
pro-inflammatory cytokines TGF-β, IL-13, IL-1β, and IL-17A
all play an important role in the fibrotic process (Kolb et al.,
2001; Wynn, 2011).

In the mouse model of pulmonary fibrosis that uses
injection of S. mansoni eggs, IL-25 has been shown to be the
key cytokine in the development of fibrosis. IL-25 induces a
dramatic increase in both IL-13 and TGF-β in the lungs. In
humans, increased levels of IL-25 and ILC2s are found in the
BAL and lung tissue of patients with idiopathic pulmonary
fibrosis (Hams et al., 2014). Compared with wild-type mice,
pulmonary collagen deposition is impaired in ILC2-deficient
mice after S. mansoni egg injection (Hams et al., 2014).
Furthermore, ILC2s induce pulmonary collagen deposition in
an IL-13-dependent manner (Hams et al., 2014). Li et al.
(2014) have suggested that the IL-33-ST2 axis is essential
for the initiation and progression of pulmonary fibrosis. In this
model IL-33 activates M2 macrophages to produce IL-13
and TGF-β1, and then further induces the expansion of
ILC2s to produce IL-13, ultimately resulting in the develop-
ment of pulmonary fibrosis (Li et al., 2014).

Dermal and circulating ILC2 counts correlate closely with
the occurrence of pulmonary fibrosis in systemic sclerosis
patients. This implies that ILC2smay aggravate the pulmonary
fibrosis in these patients (Wohlfahrt et al., 2016) (Fig. 3).

ILC2s and eosinophilic pleural effusion (EPE) in primary
spontaneous pneumothorax (PSP)

EPE is defined as > 10% eosinophilia in the pleural fluid and
is frequently associated with the presence of blood and/or air
in the pleural space (Kalomenidis and Light, 2003). PSP is a
common complication, with a high rate of recurrence in EPE
(Kalomenidis and Light, 2003).

The levels of IL-4, IL-5, IL-13, and Eotaxin-3, as well as
TSLP and IL-33, have been shown to be increased in the
pleural fluid of PSP patients. These cytokines are type 2
immune response-related, and it therefore appears that Th2
cells and ILC2s might play an essential role in this pathology;
however, CD4+ and CD8+ T cells are known not to be
involved in the pathogenesis of PSP (Kwon et al., 2013).
IL-33 directly stimulates ILC2s to produce increased
amounts of IL-5, which then recruits eosinophils into the

pleural space, resulting in EPE; Th2 cells are not involved in
this process. This indicates that the type 2 immune response
is associated with the development of EPE in PSP through
an ILC2-dependent but Th2-independent manner (Kwon
et al., 2013).

IDENTIFICATION AND CHARACTERIZATION
OF ILC3S

ILC3s can be classified into two main groups according to
the host developmental stage when they mature: fetal LTi
cells and post-natal (adult) ILC3s. Fetal LTi cells, the proto-
typical ILC3s, were originally reported two decades ago. In
mice, LTi cells are identified as CD127+CD3−CD4+. Their
development is RORγt-dependent, they originate in the fetal
liver, and they are found in fetal lymphoid nodes and the
intestine (Kelly and Scollay, 1992; Mebius et al., 1997;
Yoshida et al., 1999; Eberl et al., 2004; Finke, 2005). In
humans, fetal LTi cells were first found in 2009 and recog-
nized as Lin−RORγt+CD127+CD4−; they play a role similar to
that of mouse LTi cells (Cupedo et al., 2009).

In mice, adult ILC3s are defined as CD45+Lin−Thy1+

RORγt+, and they partially express CCR6 and NKp46 (Sanos
et al., 2009; Takatori et al., 2009; Vonarbourg et al., 2010b;
Song et al., 2015). RORγt, AHR, GATA3, and T-bet are
required for their development (Luci et al., 2009; Klose et al.,
2013; Hughes et al., 2014; Serafini et al., 2014). In humans,
adult ILC3s are defined as Lin−CD127+CRTH2−CD117+; they
also heterogeneously express NKp44, NKp46, CD56, and
NKp30 (Crellin et al., 2010;Hoorweget al., 2012;Glatzer et al.,
2013). Upon stimulation with IL-1β and IL-23, ILC3s express
IL-17, IL-22, and granulocyte-macrophage colony-stimulating
factor (GM-CSF) (Takatori et al., 2009; Crellin et al., 2010;
Hoorweg et al., 2012; Song et al., 2015).

Adult ILC3s are the most heterogeneous ILCs. Depend-
ing on the level of the expressed NK receptor, e.g., NKp44,
NKp46, or NKp30, ILC3s can be divided into NCR−ILC3s
and NCR+ILC3s. ILC3s can also be divided according to the
level of expression of CCR6 into CCR6− ILC3s and CCR6+

ILC3s. Recently, it was shown that NCR engagement
enables ILC3s to play a pro-inflammatory role (Glatzer et al.,
2013); based on this an increasing numbers of researchers
use the NCR status to classify the function of adult ILC3s.
Similar markers and functions are found in both mouse and
human ILC3s with the exception that mice do not express
NKp44 (Killig et al., 2014).

In the mouse lung, ILC3s were initially reported by Centre
et al. (2015), who found that 30% of ILCs were ILC3s,
defined as Lin−CD90+CD127+RORγt+; almost 70% of ILC3s
also co-express CCR6. IL-1β and IL-23 have been shown to
activate these cells. ILC3s were also identified as a major
source of IL-22 produced in response to IL-23 stimulation
(Van Maele et al., 2014). In the human lung, ILC3s are
identified as Lin−CD127+CRTH2−CD117+, and are NCR− or
NCR+. NCR+ILC3s produce IL-22, TNF-α, IL-8, IL-2, and
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GM-CSF upon stimulation (Carrega et al., 2015; De Grove
et al., 2016) (Table 2).

ILC3S IN THE LUNG

ILC3s and infection

ILC3s play an essential role in the maintenance of mucosal
barrier function because they produce effector cytokines,
especially IL-22 and IL-17. IL-22 and IL-17 activate epi-
dermal cells to produce antimicrobial molecules and protect
the host from extracellular bacteria and fungi (Liang et al.,
2006). IL-22 can also enhance the epithelial production of
mucus-associated molecules (McAleer and Kolls, 2014). A
protective role of ILC3s against infections in the digestive
system has also been reported. During an intestinal infec-
tion with Citrobacter rodentium, the number of IL-22-pro-
ducing ILC3s increased in the intestinal lamina propria
(Cella et al., 2009; Sanos et al., 2009). Gladiator et al.
found that ILC3s can also produce IL-17 that helps elimi-
nate pathogens during fungal infection in mice, especially in
the early phase of infection. (Gladiator et al., 2013). In
2014, Van Maele et al. reported the function of ILC3s in the
lung. During Streptococcus pneumoniae infection, ILC3s
rapidly accumulate in the lung tissue to produce IL-22 in a
DC- and MyD88-dependent manner (Van Maele et al.,
2014). Boosting lung ILC3 numbers might therefore repre-
sent an interesting strategy for fighting respiratory bacterial
infections.

One study suggested that Toll-like receptor 5 (TLR5)
signaling could activate ILCs (CD3−CD127+) and enhance
the production of IL-17 and IL-22, which are crucial for anti-
pathogen defenses in the mucous membrane of the intestine
and the lung (Van Maele et al., 2010). This raises the inter-
esting notion that TLR5 may activate ILC3s to reject the
pathogen in the lung. Later, Van Maele et al. found that
during S. pneumoniae infection, the TLR5 agonist flagellin
accelerates and over-stimulates lung ILC3s to produce more
IL-22 (Van Maele et al., 2014).

Klebsiella pneumoniae is a gram-negative bacterium that
is highly resistant to antibiotics and is a common pathogen in
pneumonia (Doorduijn et al., 2016). In 2014, Xu et al. found
that IL-22-producing NK cells are required for optimal host
defense in mouse models of K. pneumoniae infection (Xu
et al., 2014). Recently, another group reported that following
infection with K. pneumoniae in mice, inflammatory mono-
cytes are immediately recruited to the lungs, where they
produce TNF, which then increases the number of IL-17-
producing ILC3s. IL-17A-dependent clearance of K. pneu-
moniae is impaired in monocyte- or TNF-depleted mouse
models, whereas IL-17-producing ILC3s enhance monocyte-
mediated bacterial clearance. These results indicate that
ILC3s and monocytes participate in a positive feedback
cycle that promotes the clearance of highly antibiotic-resis-
tant bacterial pathogens from the lung (Xiong et al., 2016)
(Fig. 4).

iILC2-derived ILC3-like cells also play a role in Candida
albicans infections. iILC2s express an intermediate amount
of RORγt, i.e., one that is significantly different from nILC2s
but lower than that in ILC3 cells. A small proportion of freshly
isolated iILC2s produces IL-17 upon stimulation with PMA
and ionomycin (Huang et al., 2015). When cultured with
TGF-β and IL-6, iILC2s become ILC3-like, produce IL-17,
and lose the ability to produce IL-13. During C. albicans
infection, iILC2 cells aid in the clearance of this pathogen. In
the lungs of mice infected with C. albicans, transferred iILC2
cells become ILC3-like cells after 5 d; these ILC3-like cells
produce IL-17 but not IL-13 (Huang et al., 2015). Thus, iILC2
cells can transform into ILC3-like cells in vitro and in vivo,
and gain the ability to protect the host against C. albicans
(Huang et al., 2015) (Fig. 1).

ILC3s and asthma

In addition to ILC2s, ILC3s are also involved in asthma. In an
OVA-induced asthma murine model, Taube et al. found that
IL-22 expression increased, and the IL-22 was mainly pro-
duced by innate lymphoid cells in the lungs, rather than by
TH cells. OVA challenged IL-22-deficient mice suffered from
much higher AHR. In contrast mice treated with IL-22 before
OVA challenge displayed significantly reduced allergic air-
way inflammation. Based on these data, IL-22-producing
ILC3s may participate in reducing allergic asthma pathology
(Taube et al., 2011).

Obesity is a risk factor associated with asthma, and obese
asthma patients respond poorly to typical anti-asthma medi-
cations, including corticosteroids (Sutherland et al.,
2009); therefore, a distinct immune mechanism must be at
play in obese asthmatics. Mice fed a high-fat diet become
obese and exhibit AHR through an IL-17A and NKRP3-de-
pendent pathway, and this AHR also occurs in obese Rag1−/−

mice (Kim et al., 2014). In this model, the number of CCR6+

IL-17A-producing ILC3s is elevated in the lung and macro-
phage-derived IL-1 directly causes AHR by stimulating this
IL-17-producing ILC3 population (Kim et al., 2014).

Everaere et al. found a similar result where, compared
with lean mice, the number of ILCs was increased in the lung
of obese mice, and this effect was accompanied by eosi-
nophil infiltration. Following an HDM challenge, the counts of
ILC2s and ILC3s in the lung further increased, as did IL-33
and IL-1β levels, whereas ILC markers in visceral adipose
tissue decreased. In an obese mouse model with ILC
depletion, the HDM-induced inflammatory profile of the air-
way was profoundly decreased, including reduced Th2 and
Th17 infiltration (Everaere et al., 2016) (Fig. 4).

In humans, IL-17-producing ILCs are found in BAL fluid
samples from asthma patients; their levels are increased in
severe asthma patients compared with those in patients with
mild asthma or control donors (Kim et al., 2014).

These results indicate that IL-22-producing-ILC3s may
have an anti-asthma effect, whereas IL-17-producing ILC3s
participate in the pathology of asthma, possibly providing a
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link between obesity and asthma. Further studies should be
performed to help illuminate these potential connections.

ILC3s and COPD

IL-17A plays an essential role in the development of COPD.
Since ILC3s have the ability to produce IL-17A it is therefore
possible that ILC3s are linked with COPD. De Grove et al.
(2016) found that in patients with COPD, the population of
NCR−ILC3s comprises the largest subset of ILCs (De Grove
et al., 2016). Bal et al. (2016) also found that NKp44−ILC3
levels were increased, whereas the numbers of ILC2s and
NKp44+ ILC3s were significantly diminished in lung tissue
from patients with severe COPD (Bal et al., 2016). This
supports our hypothesis that IL-17-producing ILC3s may
play a role in COPD; however, the authors suggested that
the accumulation of NCR−ILC3s in COPD could be associ-
ated with the protective immunity of the host in response to
bacterial respiratory tract infections that occur frequently in

patients with COPD. The involvement of ILC3s in COPD
therefore requires further study (Fig. 4).

ILC3s and tumors

A dual effect of ILC3s on tumor immunity was suggested for
intestinal tumors. On the one hand, IL-22 produced by ILC3s
maintains mucosal integrity and clearance of pathogens and
transformed cells. On the other hand, IL-22 activates the
STAT3 cascade to enhance tumor generation (Kirchberger
et al., 2013). Carrega et al. (2015) observed that NCR+ILC3s
were enriched in non-small cell lung cancer (NSCLC) and
that the proportion of NCR+ILC3s was positively associated
with tumor stage. NCR+ILC3s were present in significantly
higher amounts in stage I/II NSCLC tumors than in more
tumors from more advanced stages. When stimulated,
NCR+ILC3s, which had been freshly isolated from NSCLC
tissues, produced IL-22, TNF-α, IL-8, and IL-2, but did not
secrete IL-17. IL-22 maintains the integrity of epithelial cells
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effects, whereas IL-17-producing ILC3s may participate in the pathology of asthma, especially in obesity-related asthma. IL-2 and IL-8

recruit neutrophils to the lung. LTα1β2 stimulates mesenchymal stem cells (MSCs) to express ICAM-1 and VCAM-1. These

molecules participate in the formation of a tertiary lymphoid organ in the tumor. See text for details.
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(Dudakov et al., 2015); TNF-α is a pro-inflammatory cytokine
that exerts anti-tumor and anti-pathogen effects, and IL-8
and IL-2 enhance leukocyte recruitment and proliferation
(Waugh and Wilson, 2008; Boyman and Sprent, 2012).
Based on the characteristics of the cytokines produced by
NCR+ILC3s, it was concluded that these cells might play a
role in anti-tumor defenses (Carrega et al., 2015).

As stated above, LTi is the prototype for ILC3s. LTi cells
produce lymphotoxin α, lymphotoxin β, and TNF-α. They
also stimulate stromal cells to produce vascular cell adhe-
sion molecule 1 (VCAM-1) and intercellular adhesion mole-
cule 1 (ICAM-1), which recruit the immune cells and form the
fetal lymphoid node and Peyer’s patches (Kelly and Scollay,
1992; Mebius et al., 1997; Yoshida et al., 1999; Eberl et al.,
2004; Finke, 2005; Cupedo et al., 2009). Lung cancer-
derived NCR+ILC3s express more lymphotoxin mRNA than
their tonsil counterparts. Furthermore, lung cancer-derived
NCR+ILC3s elicit significant up-regulation of ICAM-1 and
VCAM-1 in mesenchymal stem cells in a lymphotoxin α,
lymphotoxin β, and TNF-α dependent manner. Additionally,
NCR+ILC3s preferentially reside at the edge of lymphoid
structures associated with NSCLC, and the percentage of
NCR+ILC3s is correlated with the density of tertiary lymphoid
structures in the tumor region. These observations suggest
that NCR+ILC3s might play a role in the formation and
maintenance of these structures as well as lymphoid
aggregates in tumor tissue (Carrega et al., 2015). Otherwise,
NCR−ILC3s can gain pro-inflammatory properties by
engaging NKp44, as the number of NCR+ILC3s is increased
in the lung tumor region (Fig. 4). Whether the conversion of
NCR−ILC3 to NCR+ILC3 cells contributes to this increased
number and how the tumor microenvironment influences this
conversion are questions that should be answered in future
studies. Additionally, the question of whether IL-22-produc-
ing ILC3s enhance or inhibit tumors in the lung remains
unresolved and should be studied further.

CONCLUSIONS

ILCs are attracting increasing attention on account of their
distinct tissue-resident properties. Although it is known that
ILCs are involved in pulmonary infection, asthma, COPD,
fibrosis, and tumors in the lung, in-depth studies are still only
in their infancy. The mechanisms of ILC activation, prolifer-
ation, and regulation in the lung are not clear; how exactly
the pathological environment affects ILC function and how
ILCs respond to the environment also remain unknown.
Elucidation of these mechanisms is therefore an urgent
matter, especially in pulmonary diseases. Answers to these
questions will hopefully provide new clues for the treatment
of these serious human diseases.
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