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Abstract
Water homeostasis during fetal development is of crucial physiologic importance. It depends upon
maternal fetal fluid exchange at the placenta and fetal membranes, and some exchange between
fetus and amniotic fluid can occur across the skin before full keratinization. Lungs only grow and
develop normally with fluid secretion, and there is evidence that cerebral spinal fluid formation is
important in normal brain development. The aquaporins are a growing family of molecular water
channels, the ontogeny of which is starting to be explored. One question that is of particular
importance is how well does the rodent (mouse, rat) fetus serve as a model for long-gestation
mammals such as sheep and human? This is particularly important for organs such as the lung and
the kidney, whose development before birth is very much less in rodents than in the long-gestation
species.

Introduction
There are, at present, eleven known members of the mam-
malian aquaporin gene family, which encode proteins
which function as membrane channels, for water alone
(AQP0,1,2,4,5,8,10), or for water plus small molecules,
mostly glycerol and urea (AQP 3, 7, 9), or nitrate (AQP 6)
[1-5]. In some cases the aquaporin is constitutively
present in the cell membrane (e.g. AQP1,3 in red cell
membrane, AQP1 kidney). However, in other cases the
aquaporin resides in intracellular vesicles, and is trafficked
to the membrane upon appropriate stimulation e.g. AQP
2 in collecting duct cells, after vasopressin exposure [6];
AQP1 in cholangiocytes with secretin stimulation [7];
AQP 8 in hepatocytes, after glucagon treatment [8,9];
aquaporin 5 in rat parotid, with muscarinic stimulation
[10]. These aquaporins subserve the rapid transport of
fluid across epithelial and endothelial cells, but are also
found in other tissue types, such as muscle and nerve cells.
In general the water channels are 'open' but there is some

evidence that 'closure' can be induced by a specific
treatment.

During development there are some unique fluid com-
partments (amniotic, allantoic fluids, lung liquid) and the
functions of some organs, such as the kidney, differ from
the function in the adult, as discussed below. Although
some insights into the developmental roles of aquaporins
might be obtained from the study of mice with deletions
of various aquaporin genes, this is complicated by the
facts that either much of normal organ development
occurs postnatally in the rodent, rather than prenatally in
the human (e.g.kidney), chick (brain) or the ontogeny of
aquaporins differs significantly in the rodent organ
(e.g.lung) from that in long-gestation species such the
sheep [11]. In addition, the fetus contains a higher per-
centage of water than does the adult, and organs such as
the brain are more vulnerable to excess water loss which
might occur in the premature neonate, due either to
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immaturity of the skin permeability barrier, or to imma-
turity of the water-retaining functions of the kidney. The
role of aquaporins in fluid balance during fetal develop-
ment is beginning to be explored.

Placenta and fetal fluid compartments
Amniotic fluid surrounds the developing fetus and is
essential for normal morphological development. Inputs
into amniotic fluid include the dilute fetal urine and the
isotonic lung liquid, and pathways of exit of fluid include
fetal swallowing, and transmembrane fluxes [12,13]. Thus
abnormalities of amniotic fluid volume (oligo- and poly-
hydramnios) can result from abnormalities in fetal renal
function, and oligohydramnios can be corrected, to some
extent, by increase in maternal hydration [14,15]. Under
normal circumstances the fetal fluid osmolality follows
that of the mother, and fluid exchange occurs across the
placenta, as well as across the amnion/chorion [16].

Before implantation the conceptus develops into a blasto-
cyst, composed of the inner cell mass, and a fluid filled
cavity surrounded by trophoectoderm epithelium. In the
mouse aquaporins 3, 8, and 9 have been found to be
expressed at this time, AQP3 and AQP8 being predomi-
nantly in the basolateral membranes of the trophoecto-
derm, and AQP9 in the apical membrane [17]. The
trophoectoderm gives rise to the placenta and chorion;
aquaporins 1, 3, 8 and 9 are water channel genes previ-
ously reported to be in the placenta and/or chorion of the
human and sheep [18-21]. AQP1 has also been reported
to be in the chick chorioallantoic membrane [22]. AQP1
is in the vasculature and AQP3 and 9 are in the apical
membranes of human and ovine term placenta and chor-
ion. The polarity of the AQP 8 has not yet been deter-
mined [18-20]. Recently we reported that AQP8 mRNA
was also found in the ovine placenta [23].

From 45 d gestation (term is ~150 days), AQP3, function-
ing both as a water and urea channel, and expressed in the
trophoblast epithelial cells, is the major AQP, which
increases throughout gestation, and is quantitatively the
most highly expressed AQP gene in the ovine placenta.
The permeability of the ovine placenta to urea increases
markedly after ~100 days of gestation, coordinately with a
sharp increase of AQP3 expression in the placenta at this
time.

Similarly, AQP8, which is expressed in the trophoblast
epithelial cells and membrane epithelial cell [24], is also
present at significant levels from 45 d gestation.

In sheep, the placenta ceases growth close to mid-gesta-
tion, despite the dramatic increase in the fetal weight dur-
ing the last half of gestation [25]. To maintain fetal
growth, there is a requirement for increased fluid transfer

to the conceptus. The presence of substantial expression
of water channel proteins in the placenta correlates well
with the placental transfer of fluid. It was not possible to
compare expression at the protein level as large quantities
of AQP1 and AQP3 protein, in the maternal red cell mem-
branes present in the haemophagous zone of the ovine
placenta [26]. Thus comparison at the mRNA level is the
only feasible one that can be made.

Kidney function in the fetus
The fetal metanephric kidney produces a relatively large
volume of dilute urine, essential for the maintenance of
amniotic and (in some species) allantoic fluid volumes.
In the most common animal model (sheep) used for the
study of fetal renal function it has been shown that the
volume of urine production is 0.3 l/kg/d compared with
0.02 l/kg/d in the adult sheep. This occurs in spite of a
glomerular filtration rate which is approximately one
third of adult values, and is due to both a decrease in total
sodium reabsorption (95 % in the fetus vs 99% in the
adult) and to absence of significant concentration of the
urine. In the unstressed ovine fetus the urine osmolality is
always less than 200 mosmoles.kg water, and may be as
low as 60 [27].

Aquaporins in development – kidney
In the adult kidney the bulk of the filtrate (81%) is reab-
sorbed in the proximal tubule and descending limb of the
loop of Henle, where AQP 1 is expressed. AQP1 is also
expressed in the nonfenestrated descending vasa recta
which are thought to be important for the establishment
of the hypertonic environment of the medulla. In the
mouse with the AQP1 gene deleted there is a lowered
capacity to maximally concentrate urine [28]. However,
the major concentration of urine depends on the presence
of aquaporin 2 in the apical membranes of the principal
cells of the collecting duct. This water channel protein
resides in sub -membraneous vesicles in the absence of
action of circulating vasopressin. Under the stimulus of
increased vasopressin second messenger systems are acti-
vated which result in the phosphorylation of the vesicular
AQP2 and transport and insertion into the apical mem-
branes. Without this water channel it is impossible to rea-
bsorb water in the medulla, even when an adequate
osmotic gradient exists [2]. In many situations in which
polyuria/concentrating defect occurs (potassium defi-
ciency, lithium levels greater than 0.3 mmol/l, hypercal-
cemia, low protein diet among others) it can be linked to
low levels of AQP2 [2]. The water absorbed via AQP2 in
the apical membrane leaves the cell via aquaporins 3 and
4 which are constitutively expressed in the basolateral
membranes of these cells [2]. In mice lacking expression
of the AQP1 gene there is polyuria, and failure to be able
to concentrate urine normally [28], and a similar urinary
concentrating defect is seen in the rare humans who lack
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AQP1 [29]. A milder urinary concentrating defect is seen
in transgenic mice lacking AQP4 [30]. This maybe because
AQP3 is colocalised with AQP4 on the basolateral mem-
brames of collecting duct principal cells, but when AQP3
is deleted a poyuria with a severe concentrating defect
occurs [31]. AQP3 levels are regulated to some extent by
vasopressin, as are those of AQP2, but are also regulated
by aldosterone and the cystic fibrosis transmembrane
conducting factor (CFTR) [2,32-34].

Metanephric kidney development varies in different spe-
cies, being complete before birth in human and sheep, but
not until substantially after birth in pigs, mice and rats.
The ontogeny of some renal aquaporins has been exam-
ined in rats, sheep and humans. In the rat there is very lit-
tle mRNA for AQP1 detected by Northern blotting or
RNase protection, in the kidney, until a few days before
birth [35,36]. However, there is some protein detected, by
immunohistochemistry in the capillaries at the nephro-
genic zone-medullary border by day 16. From day 17 the
arcuate arteries are labeled, and, indeed the descending
vasa recta are strongly labeled as they develop fully until
21 days post partum [37]. In contrast, in the sheep and
human kidneys, AQP 1 mRNA, and protein are detected
before mid-gestation (12 /40 weeks, human; 41/150 days,
sheep) though the levels are just below 50% of adult levels
even at term [38,39]. Levels of expression can be increased
by both glucocorticoid and angiotensin II treatment of the
fetus, both probably due to maturation of the kidney and
longer proximal tubules which develop with treatment
[39]. Adult levels are achieved after 15 months in the
human, or 6 weeks in the sheep.

Aquaporin 2 (AQP2) is low at birth in the rat, but plateaus
by 4 weeks post-partum [40]. Later studies showed it was
present by Day 18 of fetal life and started increasing by
day 3 post-natally [41]. In the sheep, at the beginning of
the last third of gestation (100/150 d) the level of AQP2
mRNA is 17% of the adult, and near term it is still only
~40% of the adult [42]. This correlates with reduced sen-
sitivity of the fetal kidney to infused arginine vasopressin
– at 100 days the plasma AVP concentration has to be
raised to 16 pg/ml to achieve negative free water clear-
ance, whereas close to term a level of 2 pg.ml is effective
[43]. This is still a much higher level than required in the
adult sheep, and so the fetal kidney resembles that of a
subject with nephrogenic diabetes insidipus, due to inad-
equate expression of AQP2. The human fetal kidney also
has a low level of AQP2 during the last half of gestation,
and premature neonates produce dilute urine for many
weeks [38,44]. AQP2 protein does appear in the urine
[45], and there is a low level in the urine of premature
neonates [46]. However the concentration of AQP2 pro-
tein in the urine of premature neonates did not correlate
well with changes in urine osmolality, suggesting that it

did not serve as a good marker of AVP function in the
human premature neonate [47]. Fetal renal AQP2 levels
can be increased by angiotensin II infusion, which is a real
up-regulation of gene expression, and similar to the up-
regulation of vasopressin V2 receptor seen with angi-
otensin II infusion in adult rats [48].

There has been one study of AQP3, in fetal kidneys, sug-
gesting it is there by day 18 in the rat [41]. The level of
AQP4 protein labeling is very weak in the rat kidney 3
days after birth [36].

The low level of AQP2 expression, however, seems to be
the major factor in allowing the production of a large vol-
ume of hypotonic urine to be formed, and this is essential
for the maintenance of adequate volumes of amniotic
fluid.

Lung liquid
During fetal life, the future airways of the lung are filled
with a liquid that plays a crucial role in the growth and
development of the lungs by maintaining them in an
expanded state. Lung liquid is secreted across the pulmo-
nary epithelium into the lung lumen due to the osmotic
gradient established by the net movement of Cl- in the
same direction. It is not known exactly when lung liquid
secretion begins, but fluid is present by mid-gestation in
fetal sheep and is secreted at 2–4 ml/kg/h between 120
days of gestation and term (~150 d). Fetal lung liquid exits
the lungs via the trachea, whereby it is either swallowed
(approximately 50%) or passes directly into the amniotic
sac, where it contributes to amniotic fluid volume [49].

If the fetal trachea is obstructed, which prevents the out-
ward flow of lung liquid, the fetal lung expands with accu-
mulated liquid. This is a potent stimulus for fetal lung
growth and also greatly reduces the proportion of type-II
alveolar epithelial cells (AECs). Lung liquid drainage on
the other hand, deflates the lung, causes lung growth to
cease, but increases the proportion of type II AECs, possi-
bly via type-I to type-II cell differentiation [50]. As a result
it is now widely recognized that the degree to which the
fetal lungs are expanded by lung liquid, determines the
growth and structural development of the lung, as well as
the differentiated state of type-I and type-II AECs [49].
Despite the importance that lung liquid plays in the devel-
opment of the lung, the factors controlling the movement
of liquid across the pulmonary epithelium have not been
fully explored. Furthermore, the effective clearance of lung
liquid at birth is vital to allow the entry of air into the
lungs with the onset of respiratory gas exchange. This
process is largely dependent on the capability of the epi-
thelium to reabsorb large quantities of water.
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Aquaporins in development – lung
At least four AQPs (AQP 1, 3, 4 and 5) are expressed in the
lungs of various species, including humans, rats, mice and
rabbits, although some discrepancies exist in the specific
sites of distribution of these proteins. (Table 1 near here)
In all species described so far (human, rat, mouse), AQP1
is expressed in the apical and basolateral membrane of the
microvascular endothelium and decreased pulmonary
vascular permeability has been shown in AQP1-null
humans [3]. AQP3 is expressed in the basolateral mem-
brane of basal cells of the tracheal epithelium and in sub-
mucosal gland cell membranes in rodents, but is also
found in bronchioles (apical membrane) and type-II alve-
olar epithelial cells of adult humans [51]. AQP4 is present
in the basolateral membrane of columnar cells in bronchi
and trachea of rats but is also found in type-I AECs in
humans. AQP5 is expressed in the apical membrane of
type-I AECs and the apical plasma membranes of the
secretory epithelium in upper airway and salivary glands
[3]; it has also been detected in type-II AECs in mice [52].
These data are summarized in Table 2.

Ontogeny of lung AQPs
In mice very low levels of AQP5 mRNA were detected
before birth [53,54]. The ontogeny of the AQPs has also
been described throughout development in rats, but only
AQP1 and a small amount of AQP4 were detected before
birth [55-58]. Furthermore, little is known of the physio-

logical factors controlling AQP1 mRNA expression before
birth, although its expression (and protein levels) is
increased in the lungs of fetal and neonatal rats following
treatment with synthetic glucocorticoids [55,58]. In one
study [58], but not in another [55], AQP4 was increased
by corticosteroids. In the same study [58], β-adrenergic
agents also increased AQP4. Although AQP5 protein was
almost undetectable in lung tissue homogenates at E21
and PN1, a strong signal was detected at PN2 [55], indi-
cating that the accumulation of AQP5 protein in the rat
lung is predominantly postnatal. Indeed, AQP5 protein
levels in lung tissue increased twenty-fold to PN14 and
then increased a further ten-fold from PN14 to adult. In
contrast to AQP1, AQP5 is not influenced by corticoster-
oids in rats, which is consistent with the finding that
AQP5 protein predominantly accumulates in the lung
postnatally. Similarly, AQP3 protein levels were undetec-
table in fetal lung tissue and then were only detected in
the trachea of postnatal animals well after the time of
birth. AQP4 protein seemed to be present transiently at
PN2 in peripheral lung membranes and only appeared by
PN12 in the trachea of rats

In a recent study we have shown that the mRNAs for at
least four AQPs (1, 3, 4 and 5), as well as their respective
proteins, are present in the ovine fetal lung well before
birth [11]. For AQP1 and AQP5, the level of mRNA
expression in the fetal lung exceeded that of the adult
lung. Furthermore, we have shown that cortisol infusions
significantly up-regulated the expression of AQPs 1 and 5,
whereas increases in fetal lung expansion, induced by tra-
cheal obstruction (TO), significantly decreased AQP5
mRNA levels in fetal lung tissue. Although AQP5 protein
levels did not appear to decrease with TO, measurable
changes in AQP5 levels in whole lung tissue is likely to be
complicated by the localisation of this protein to multiple
cell types within the lung. These findings indicate that fac-
tors known to regulate fetal lung growth and maturation
as well as fluid secretion, also regulate the expression of
AQPs 1 and 5. This suggests that there are physiological
roles for some lung aquaporins before birth.

In conclusion, we have shown that the lung of a long-ges-
tation species, such as sheep, expresses both the mRNA
and protein of the four typical lung AQPs, beginning well

Table 1: Species variations in Aquaporin Distribution in Lung

Species Sheep Human Rat Mouse

Bronchus AQP1,3,4,5 AQP1,3,4,5 AQP1,3,4,5 AQP1,3,4,5
Bronchioles AQP1,3,4 AQP1,3 ? ?
Alveoli AQP1,5 AQP1,3,4,5 AQP1,3 AQP1,3

Table 2: Aquaporins in lung cell types

Bronchus
Superficial Epithelium AQP5 (Apical), AQP4 (Basolateral)
Basal Cells AQP3

Submucosal Glands AQP5 (Apical), AQP3,4 (Basolateral)

Bronchioles
Pseudostratified AQP3 (Apical), AQP4 (Basolateral)

Alveolar Cells
Type I AQP5 (Apical), AQP4 (Human only--?)
Type II AQP5 (Mouse only, apical)

AQP3 (Human only, basolateral)
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before the expected time of birth. Furthermore, we found
that the expression of some, particularly AQP5, is altered
by factors known to regulate fetal lung growth and devel-
opment and parallel changes in fetal lung liquid secretion
rates in different animal models. Our findings suggest that
gene knock-out studies in mice, in which there is little
lung expression of AQPs in fetal life, might not give a real-
istic picture of the role of AQPs during fetal life in long-
gestation species. We predict that these AQPs are also
expressed well before birth in the human fetal lung and
are also differentially regulated by factors known to influ-
ence fetal lung development. As lung liquid is secreted, at
least in part, into amniotic fluid, the lung aquaporins are
also then implicated in amniotic fluid regulation.

Skin
The skin of the adult 70 kg man normally contains about
7 l of fluid, about 50% of which is interstitial [59]. The
fluid is stored in the dermis associated with hyaluronic
acid, glycosaminoglycans and proteoglycans, and helps to
determine the turgor, distensibility and elasticity of the
skin. The major barrier to water loss from the skin is the
superficial stratum corneum – flattened dead corneocytes
[60]. Below this are the keratinocytes, which express the
gene for aquaporin 3, particularly in the basal and inter-
mediate layers [61-63]. Aquaporin 3 is a membrane pro-
tein which increases the permeability to water, urea and
glycerol. When the gene is deleted in the mouse the skin
has decreased hydration but grossly normal morphology
[62]. The reduction in skin elasticity, as well as the delay
in recovery of barrier function after tape stripping, were
thought to be related to the deficiency in glycerol trans-
port which occurred in the AQP3 deficient mice [64]. This
was further supported by the reversal of these deficits by
glycerol replacement [65].

Aquaporins in development – skin
In the human fetus there is a double layer of epidermal
cells by 4 weeks; the stratum corneum begins to develop
by 24 weeks, and is generally well developed by 34 weeks.
[60]. Barrier function, which is conferred by the stratum
corneum, of cornified cells and extracellular lipid, can be
measured by transepidermal water loss (TEWL), and gen-
erally forms late in gestation in mice, rats, rabbits and
humans [66,67]. Amniotic fluid, particularly early in preg-
nancy, is very similar in composition to fetal extracellular
fluid, and it is quite likely that here is fairly free exchange
across the fetal skin, particularly in the first half of gesta-
tion [68]. Even in species such as the sheep, which
develop substantial wool covering in the last third of ges-
tation, there is substantial exchange of fluid and electro-
lyte across the skin until relatively late in development
[69]. There is also substantial expression of AQP3 in mid-
gestation ovine fetal skin. Preterm infants are at risk of
dehydration because of very large TEWL [70]. In fetal rats

the TEWL is high at day E18, and there are higher levels of
AQP3 mRNA in the fetal than in the adult skin [71].

Aquaporins in the heart – changes with 
intrauterine growth retardation (IUGR)
Aquaporin 1 mRNA was found in rat heart [72,73]. Most
of the AQP1 expression was thought to be in the blood
vessels, although the there was a substantial amount in a
sub-sarcolemnal caveolar membrane in the rat heart, and
changes in the osmotic environment caused reversible
changes in the membrane localization of AQP1 [74].
Recently it was found that the human heart contained
both AQP1 and AQP4, but not AQP8 [75]. AQP1 co-local-
ised with vinculum, a t-tubule component, and caveolin
3, whereas AQP4 was found in the nuclear membrane of
human cardiac myocytes.

Caveolin-3 is a marker for the caveolae – the specialised
areas of cell membrane in which a number of receptors
cluster [76]. Some of these receptors are known to play a
role in the proliferation of cardiac myocytes in the embry-
onic and early post-natal life [77-80].

Based on studies in isolated rabbit hearts, it was con-
cluded that water permeabilitity values were much lower
than expected if a functioning aquaporin were present
[81]. In a more recent study of the osmotic transient
responses of isolated adult rabbit hearts [82] it was esti-
mated that 28% of the transcapillary water flux going to
form lymph was through aquaporin channels in the cap-
illaries, but they did not make any histological studies on
the cardiocytes. It would have been very interesting to
have had immunohistochemistry for AQP1, at least, on
these hearts.

During development AQP1 was found in the endocar-
dium of the sheep fetal heart at a very early stage [83].
Later in gestation one report suggested that total cardiac
AQP1 levels reflected predominantly vascular sites, and
that the total amount could be increased by fetal anemia
[84].

Using RNase protection assay only AQP1 (but not AQPs
2,3,4,5) was detected in rat heart [72], however with RT-
PCR some AQP8 mRNA was detected in mouse heart [85].
AQP 1 was reported to be present in fetal rat hearts from
day E14 with lower level present in the myocardium than
in the endothelial cushions, primordial valves, and septa
[35]. Cardiac expression of AQP1 decreased, but did not
disappear, after birth [35].

In a recent study we showed that the small hearts of late
gestation growth-retarded ovine fetuses had significantly
reduced expression of AQPs 1,3,4 but not AQP8 [86]. It
was not possible to ascertain the different contributions of
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cardiac muscle and blood vessels to this reduced expres-
sion. In the fetal sheep heart at mid-gestation, all the myo-
cytes are uninucleated and can divide, but by 135 days
more than 50% of the myocytes are binucleated, and ter-
minally differentiated [87]. When growth retardation
occurs in the fetal heart, we postulated that it might have
occurred by 'slowing down' of cell division resulting in a
greater proportion of uninucleated cells in late gestation.
In order to see whether AQP1 can be a marker of cardiac
myocyte differentiation, we measured the AQP1 mRNA
concentration in hearts from fetuses in which cardiac
myocyte counts had been performed previously. Our
results show that the level of AQP1 mRNA expression did
not change significantly at any point during gestation,
suggesting that it could not be used as a marker of cardiac
myocyte differentiation. Thus the heart is different from
vascular smooth muscle.

In conclusion, we demonstrated that the AQP1/3/4/8 are
present in the late gestational fetal heart. The low-dose
dexamethasone treatment, administered early in gesta-
tion, down regulated the expression of AQP1/3/4 in the
late gestation fetal heart. In most studies of experimen-
tally induced fetal growth retardation some organs, eg the
brain and adrenal gland are 'spared', but others, such as
the heart, are reduced in size in proportion to the overall
decrease in body size [88]. There are a number of genes
which have been implicated in cardiac myocyte growth,
including mineralocorticoid and glucocorticoid receptors,
angiotensin II receptors, and local cardiac angiotensino-
gen [89-96]. However, the mRNA for none of these was
affected in the hearts of the IUGR fetuses.

There is evidence in the literature suggesting that fetuses
suffering from severe intrauterine growth retardation
(IUGR) show a progressive impairment of cardiac func-
tion, as demonstrated by reduced peak velocities at out-
flow tracts, decreased cardiac output and abnormal
venous flow patterns [95-98]. Furthermore, in growth-
retarded human fetuses the ventricular ejection force was
equally decreased in both ventricles [95]. Studies in the
adult offspring of rats subjected to prenatal protein restric-
tion, which caused IUGR, demonstrated higher incidence
of cardiac arrhythmias and raised diastolic blood pressure
[97].

The exact function for AQP1 in cardiac muscle is
unknown. As it is a pure water channel one would suspect
that it could regulate the rate at which cells might swell in
osmotic stress, such as encountered in myocardial
ischemia [98]. Such osmotic swelling is predicted to
shorten the action potential, thus modulating the excita-
bility of the heart. It is known that cell swelling inhibits
the action of some antiarrhythmic drugs [98]. AQP 4 is
well established as a component of skeletal fast-twitch

fibres [99] and the level of AQP4 is decreased by muscle
denervation [100]. In mice which are dystrophic due to
dystrophin gene knock-out (mdx mice) AQP4 mRNA lev-
els remain the same as controls, but the protein levels
decrease by 90% [101]. However, in patients with Duch-
enne muscular dystrophy both the mRNA and protein of
AQP4 are reduced in myofibers [102]. Taken together it is
attractive to propose that AQP's play a role in the cardiac
myocyte contraction allowing therefore normal cardiac
function.

Brain-central, nervous system, eye, ear-fluid 
compartments
In the adult brain fluid balance is critical, as the inflexible
bony skull does not permit big variations in total brain
volume without risking severe damage. The extracellular
fluid of the brain is specialized as cerebrospinal fluid, with
a composition different from that of normal extracellular
fluid, as a result of the development of the 'Blood-brain
barrier'. There is now increasing evidence that cerebrospi-
nal fluid plays an important part in the correct develop-
ment of the brain [103,104]. Specialised fluid
compartments are also vital to the normal functioning of
the sensory organs – the eye and the ear [105,106]. In the
eye fluid movements are important for the regulation of
intraocular pressure, the maintenance of transparency of
the lens, and retinal signal transduction [106]. The fluids
of the inner ear, endolymph and perilymph, have at least
two roles – to transduce the signal to the cochlear and
vestibular hair cells, and to participate in the ionic
exchanges between fluid and hair cells [106]. The endol-
ymph is a potassium-rich extracellular fluid, whereas the
perilymph has a composition closer to that of
extracellular fluid [107]. It is well-known that vestibular
functions can be altered by a number of peptide e.g
arginine vasopressin, and steroid hormones [108-110],
which act by changing composition, and maybe the vol-
ume, of the endolymph.

A number of aquaporins have been found in the central
nervous system – AQPs 1,4,5,9 [111,112]. AQP1 is found
on the apical membrane of the epithelial cells of the
choroid plexus. AQP 4,5, and 9 are found on glia/astro-
cytes particularly in the region of subpial vessels and near
the ventricles. Of these it seems that AQP4 provides the
principal route for water transport in astrocytes [113].
Glial cells are indispensable for regulating ionic homeos-
tasis, particularly in aspirating the excess extracellular
potassium which occurs after neural excitation [107]. It is
of interest that in the specialized glial Muller cells of the
eye, there is a close correlation between concentrations of
the potassium channel, Kir4.1 and AQP4 levels [114], and
retinal function is mildly impaired in mice lacking AQP4
[115]. The absence of AQP4, in the brain, paradoxically,
in the genetically-engineered 'knock-out' mouse, reduces
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the swelling seen with hyponatremia [116]. The distribu-
tion of AQP4 protein is disrupted in the dystrophin-defi-
cient mdx mouse, in which a 60% reduction occurs in the
amount of AQP4 in the perivascular glial processes, which
are swollen and contain debris [101,104]. In these mice
the there is a marked reduction in the amount of AQP4 in
the astroglial feet surrounding capillaries, and at the glia-
limitans, and a significant delay in the in the development
of brain edema induced by systemic hyponatremia [117].
The protein, alpha syntrophin, is associated with the dys-
trophin, and also important for the anchoring of the
AQP4 in the cell membrane [118]. In mice lacking the
alpha-syntrophin gene the there is also a marked loss of
AQP4 from perivascular and subpial membranes, but no
decrease in other membrane domains, and brain edema
was attenuated when transient ischemia was induced
[119]. All of this evidence suggests that any inhibitor of
AQP4 expression may have therapeutic benefits in the
treatment of brain edema [111,112].

The ontogeny of AQP4 in the cerebellum coincides with
the development of the blood brain barrier in rat and
chick. [120,121]. In the rat brain there is no AQP4 before
birth [122] and only 2% of the adult level one week after
birth. The level doubles in the next week, and reaches 63%
of adult levels by nine weeks. In contrast, the chick brain,
has a much better level of AQP4 at birth and a more
mature blood-brain barrier [121]. This has not yet been
studied in the human, but one would expect that the very
premature baby would have little barrier protection.

In the ear of the adult rat mRNA for aquaporins
1,2,3,4,5,6 have been found [109], whereas AQP7 and
AQP9 were also detected in the adult mouse, but at rela-
tively low levels [122]. Aqp1 is strongly expressed in the
non-epithelial stria vascularis [123] and can be up-regu-
lated, in a dose-dependent fashion, by intra-tympanic
injections of dexamethasone [109]. AQP1 was detected at
the earliest day studied, E14, in mice but in much lower
concentrations than those found in the adult ear [122].

AQP2 mRNA, at 10% of the levels found in kidney, is
found in rat and mouse ear [124]. It is in structures bor-
dering the endolymph – Reissner's Membrane, Organ of
Corti, sulcus cells, and spiral limbus. Treatment of rats
with arginine vasopressin caused a doubling of AQP2
mRNA in the cochlea and endolymphatic sac [125,126],
and the authors suggested that overexpression of AQP2
might be involved in the formation of endolymphatic
hydrops. During development of the ear in the mouse
AQP2 was expressed diffusely in the early otocyst at
embryonic days 12,13 but the expression became more
restricted by days 15–18 [127].

Quantitatively the most important aquaporin expressed
in the ear is AQP4, and it is expressed in Hensen's cells
and inner sulcus cells and Claudius cells, which are all
supporting cells of the Organ of Corti [128]. In the vestib-
ular end organs it was in the cristae and maculae. It also
occurred in the central part of the cochlear and vestibular
nerves. In mice lacking AQP4 expression there is a moder-
ate impairment of hearing [129], but no conduction
abnormality was detected in neural signals [130]. AQP4
was detected by E14 in the developing mouse ear, and the
level was increased ~100 fold during after birth and con-
tinued to increase through post-natal day 15 and even fur-
ther in the adult [122].

AQP3 was found by one group [122] in the spiral liga-
ment of the mouse cochlea, near where the basilar mem-
brane anchors, and in cells bordering the inner spiral
tunnel. In the vestibular system it was in sub-epithelial
fibrocytes in the saccule, but not in the utricle. There was
a moderate increase in AQP3 from day E14 to adult.

All these results in rodents are tantalizing, and it will be
very interesting to see the ontogeny of brain and sensory
organ aquaporins in the primate/human. It is expected
that significant expression of these water channels will be
seen well before birth, as is the case for the lung in long-
gestation species [11].

Conclusion
Much information on the role of various members of the
mammalian aquaporin family of water channels has been
gained in the relatively short time since Peter Agre and his
colleagues described the Channel-forming integral mem-
brane protein of the red blood cell of 28 kD (CHIP28),
[1], and justifiably earned the 2003 Nobel Prize for
Chemistry. Some exciting new studies are suggesting that
AQP1 may have roles hitherto unsuspected – evidence has
been obtained supporting a role for AQP1 in angiogen-
esis, particularly in wound healing, organ regeneration
and possibly in tumour spread [131]. The limited infor-
mation that exists on the ontogeny of these proteins in
various organs and tissues suggests that there are many
more important findings to be made on their roles in the
development of the embryo and fetus.
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