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Nanodiamonds protect skin from ultraviolet
B-induced damage in mice
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Abstract

Background: Solar ultraviolet (UV) radiation causes various deleterious effects, and UV blockage is recommended
for avoiding sunburn. Nanosized titanium dioxide and zinc oxide offer effective protection and enhance cosmetic
appearance but entail health concerns regarding their photocatalytic activity, which generates reactive oxygen
species. These concerns are absent in nanodiamonds (NDs). Among the UV wavelengths in sunlight, UVB irradiation
primarily threatens human health.

Results: The efficacy and safety of NDs in UVB protection were evaluated using cell cultures and mouse models.
We determined that 2 mg/cm2 of NDs efficiently reduced over 95% of UVB radiation. Direct UVB exposure caused
cell death of cultured keratinocyte, fibroblasts and skin damage in mice. By contrast, ND-shielding significantly
protected the aforementioned pathogenic alterations in both cell cultures and mouse models.

Conclusions: NDs are feasible and safe materials for preventing UVB-induced skin damage.
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Background
All life forms on Earth are greatly influenced by solar
energy (electromagnetic radiation), which includes ultra-
violet (UV; 200–400 nm), visible (400–700 nm), and in-
frared radiation. UV radiation is classified as UVC
(200–290 nm), UVB (290–320 nm), and UVA (320–
400 nm), and these high-energy radiation can damage
cells [1]. The ozone layer absorbs almost all UVC and a
part of the UVB wavelengths, thus protecting against
severe UV damage. UVA is less harmful, and UVB is
the primary threat to human health, causing acute sun-
burn, photoaging, immunosuppression, and skin cancers
[2,3]. Even brief exposure to UV can induce DNA damage,
such as pyrimidine dimers [cyclobutane pyrimidine dimer
and the (6–4) photoproducts], which can be carcinogenic
in the absence of adequate reparative processes [4].
Moreover, in 1985, Farman et al. reported springtime
ozone depletion (ozone hole) over the Antarctic region
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[5]. The World Health Organization (WHO) developed
the UV Index (UVI) to quantify UV radiation; its daily
forecasts are currently used in several countries for
people to adopt adequate protective measures [6,7].
Using sunscreens to block UV and avoiding excessive

solar exposure are recommended for preventing sunburns
[8]. Macro-sized titanium dioxide (TiO2) and zinc oxide
(ZnO) are conventional and safe sunscreen ingredients
but have the disadvantages of uneven coverage and an
opaque white appearance [9]. By contrast, nanosized TiO2

and ZnO provide more effective protection and acceptable
cosmetic appearance and have been widely used in
commercial sunscreens since the late 1990s [10]. How-
ever, health concerns regarding systemic absorption
and reactive oxygen species (ROS) gradually increased
[11]. Studies have shown no increased penetration of
these nanoparticles (NPs) in intact skin [12,13], but it
remains a concern in sunburned skin [14]. Moreover,
minor contamination with anatase crystals of rutile
nanosized TiO2 can elicit photocatalysis and induce
cellular damage [15].
Currently, nanodiamonds (NDs) are widely investigated

nanomaterials. Because of their nontoxicity and biocom-
patibility, they are especially suitable for biomedical
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applications such as drug delivery and bioimaging [16]. In
addition, NDs attenuate UV radiation through absorption
and scattering, a phenomena dependent on factors such as
ND particle size and nitrogen defects [17]. Although NDs
are theoretical sunscreen candidates according to absorp-
tion spectral studies, few studies have assessed their prac-
tical protective effects. Therefore, we investigate the
efficiency and safety of NDs as a UV filter in both animal
and cell culture models and compare the results with
those of nanosized TiO2 and ZnO.

Results
UVB attenuation by nanosized ND-, TiO2-, and ZnO-coated
films
The UVB attenuation abilities of 5- and 100-nm NDs,
nanosized TiO2, and ZnO and the association between
nanomaterial concentration and UVB intensity were
tested (Figure 1A, experiment setting). All four nanoma-
terials significantly reduced UVB intensity to a safe
range (UVI < 2, Figure 1B-E) defined by WHO [6,7] even
under the extreme UVB exposure of UVI 11 (Figure 1E).
Figure 1 UVB attenuation by ND- and nanosized TiO2- and ZnO-coated films.
films at various nanomaterial concentrations. UVB at UVIs of 4 (100 mW/m
11 (275 mW/m2 UVEry) (E) were analyzed. The dashed line indicates a UV
(B–E). n = 3, *P < 0.05, **P < 0.01. Data are mean ± SD.
At a nanomaterial concentration of 2 mg/cm2, TiO2,
ND, and ZnO exhibited approximately 99%, 94%, and
90% of UVB-blocking efficiencies, respectively. The effi-
ciency of TiO2 was significantly higher than that of ZnO
at all tested doses but higher than that of ND only at
lower concentrations (1 and 2 mg/cm2) (Additional file 1:
Figure S1). This experiment demonstrated ND efficiency
in UVB attenuation.

NDs protect cells from UVB damage
The protective efficiency of NDs was further investigated
using a cell culture model. All four nanomaterials at
medium–high concentrations (≥2 mg/cm2) protected hu-
man immortalized HaCaT keratinocytes and mouse em-
bryonic fibroblasts (MEFs) from UVB damage (Figure 2).
After UVB irradiation at a UVI of 6 for 10 min, all four
tested nanomaterials (ZnO, TiO2, and 5- and 100 nm-
NDs) offered considerable protection at all tested
doses in HaCaT cell group, and the 100-nm NDs were
the optimal materials for UVB irradiation shielding
(Figure 2A, experiment setting; Figure 2B). By contrast,
Experiment setting (A). Detected UVB UVI levels of the tested nanomaterial
2 UVEry) (B), 6 (150 mW/m2 UVEry) (C), 9 (225 mW/m2 UVEry) (D), and

I of 2 (50 mW/m2 UVEry), and UVB below this level is considered safe



Figure 2 NDs protect cultured cells from UVB damage. Experiment setting (A). Dose dependent (B, C) (UVI 6 for 10 min [68 mJ/cm2] at 1, 2,
and 3 mg/cm2 density) and time-dependent (D, E) (UVI 6 for 5 and 10 min [34 and 68 mJ/cm2] at 2 mg/cm2 density) responses of nanomaterials in
UVB protection of HaCaT (B, D) and MEF (C, E) cells were measured using the WST-1 assay. n = 6 (three experiments repeated twice). Groups without
UVB exposure [UVB (−) control] was normalized to 100%. n = 6 (three experiments repeated twice); *P < 0.05, **P < 0.01, significantly better as compared
with UVB (+) groups; #P < 0.05, ##P < 0.01, significantly worse as compared with Film + 100-nm NDs” groups. Data are mean ± SD. The 10-min groups in
(D) and (E) are adoptive from 2 mg/cm2 groups in (B) and (C), respectively.
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MEFs were more sensitive to UVB under the same condi-
tions [Figure 2B–C; UVB (+) group survival in MEFs was
lower than that in HaCaT cells]. All tested materials did
not offer adequate protection at low concentrations
(1 mg/cm2) (Figure 2C). The protective efficiency of all
materials increased (TiO2 >NDs > ZnO) on increasing the
concentration to 2 mg/cm2. No significant differences
were observed between 5-nm and 100-nm ND groups,
whose cell viability averaged 73% and 82%, respectively
(Figure 2C). At 3 mg/cm2, the cell viability of ND groups
increased and did not differ significantly from that of the
TiO2 group. However, no clear improvement was noted in
the ZnO group (Figure 2C). Untreated MEF cells attached
normally and displayed fusiform appearance. By contrast,
after direct UVB exposure with and without shielding
with transparent plastic films, fewer cells attached and
were surrounded by cellular debris (Additional file 1:
Figure S2).
Next, the influence of irradiation time on cell viability

was examined. In agreement with the dose experiments of
the shielding materials, HaCaT keratinocytes displayed
relatively higher resistance against UVB irradiation; at a
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concentration of 2 mg/cm2, all tested materials offered
considerable protection after 5-, 10-, and 20-min UVB
irradiations (Figure 2D). Because the protective efficiency
of 100-nm ND was significantly higher than those of all
other materials in the 20-min group (Figure 2D), it is the
optimal material. By contrast, in MEF experiments,
complete protection was observed only in the 5-min
group; the efficiency of ZnO continued to be lower than
those of the others (Figure 2E). The mechanism under-
lying 100-nm ND and TiO2 being optimal for HaCaT cell
and MEF survival, respectively, is unclear. A possible ex-
planation is the differential sensitivity of these two cells
types in response to wavelengths after differential UVB ab-
sorption, penetration, and emission; this mechanism is
worthy of further investigation. These results collectively
indicate the protective efficiency of ND against UVB
irradiation. In addition, 100-nm NDs exhibit enhanced
performance compared with 5-nm NDs (Figure 2D–E,
20-min group). Consequently, we focused on 100-nm
NDs in the subsequent in vivo experiments.

NDs do not exhibit photocatalytic activity
Both ZnO and anatase form TiO2 exhibit UV-induced
photocatalytic activities [18-20], which induces ROS and
damages human cells. In addition, impurity doping leads
to anatase TiO2 exhibiting photocatalytic activity under
visible light irradiation [21-27]. Although rutile TiO2 is
used in cosmetic applications, minor anatase crystal con-
tamination may elicit photocatalysis and induce cellular
damage. Therefore, the photocatalytic activities of the
four tested materials were analyzed using methylene blue
(MB) degradation experiments. Both 5- and 10-nm NDs
exhibited no obvious photocatalytic activity compared
with the negative control MB group (Additional file 1:
Figure S3). By contrast, rutile and anatase TiO2 samples
considerably degraded MB (Additional file 1: Figure S3;
anatase TiO2 was the positive control). These results
suggested that NDs do not exhibit UVB-inducible
photocatalytic activities.

NDs protect C57BL/6J mouse skin from UVB-induced
inflammation
The outermost strata of normal human skin are composed
of multiple layers of dead corneocytes. Because the afore-
mentioned cell culture model may not comprehensively
reflect the complexity of human skin, an animal model
was designed for studying the UVB-blocking efficiency of
NDs. C57BL/6J mice were subjected to 20-min UVB
irradiation at a UVI of 6 daily for three consecutive
days; skin damage developed from the third day. An
enzyme-linked immunosorbent assay (ELISA) detected
elevation of both tumor necrosis factor-α (TNF-α) and
interleukin-1β (IL-1β), two proinflammatory cytokines
(Figure 3A, experiment setting; Figure 3B). The
preliminary analysis showed that IL-1β increased earlier
than TNF-α did and peaked 24 h after the second
irradiation (Additional file 1: Figure S4A–S4B). Circu-
lating TNF-α increased abruptly 24 h after the third
irradiation, with the level corresponding to the severity of
skin damage (Additional file 1: Figure S4B–S4D). To pre-
vent skin damage outside the tested area (Additional file 1:
Figure S4D), aluminum foil covered the nontested regions
in subsequent experiments (Figure 3A). In placebo groups,
materials such as vehicle, TiO2, and 100-nm NDs (2 mg/
cm2) applied without UVB exposure were safe. By con-
trast, in mice receiving the aforementioned materials
under the same conditions but irradiated with UVB at a
UVI of 6, those covered with TiO2 and NDs showed only
milder injuries compared with those covered with vehicle
(Figure 3A-2). To further analyze the protective role of
NDs in epidermal barrier functions, a dye exclusion ex-
periment was employed, following methods modified from
previous reports [28,29]. UVB irradiation damaged the
epidermal barrier function of the experimental mice, thus
causing higher levels of dye retention in the skin tissues
(Additional file 1: Figure S5, vehicle groups). By contrast,
TiO2- and 100-nm-ND-shielded skin samples tended to
maintain a relatively undamaged epidermal barrier
function, as indicated by the dye retention levels, which
were lower than those in vehicle-shielded control
groups (Additional file 1: Figure S5). Cytokine level
changes were consistent with the skin damage results.
In the experiment without UVB irradiation, nanosized
TiO2 and 100-nm NDs did not induce TNF-α and IL-1β
elevation (Figure 3B), suggesting that these materials are
safe on mouse skin. After UVB exposure, both TNF-α and
IL-1β in TiO2 and ND groups were significantly lower
than those in vehicle groups, and no differences were ob-
served between those of TiO2 and NDs. These results sug-
gested that 100-nm NDs protect mouse skin from UVB
damage at an efficiency comparable with that of nanosized
TiO2 (Figure 3B).
NDs ameliorate UVB-induced skin hyperplasia and
leukocyte infiltration
Previous reports have indicated that hyperplasia of the
strata granulosum and spinosum and increased leukocyte
infiltration are involved in histological changes of UVB-
irradiated skin [30,31]. In our study, considerable hyper-
plastic epidermis alterations were observed after UVB
exposure of vehicle-applied mouse skin (Figure 4A vs.
B). By contrast, the alterations in the TiO2 and 100-nm
ND groups were much milder (Figure 4C and D vs. B;
4I, quantified results). The number of infiltrated leukocytes
in the dermis was significantly higher in vehicle-treated
groups than in the control groups (Figure 4E vs. F),
clearly indicating an inflammatory response, but not in



Figure 3 NDs protect C57BL/6J mouse skin from UVB-induced inflammation. Experiment setting (A) and the typical appearance of hair-removed
mouse skin before (A1) and three days after UVB irradiation [UVI 6, 20 min per day, 3 cycles; (135.9 mJ/cm2/day × 3 days)], with or without protection at
2 mg/cm2 nanomaterial density (A2). Bare skin surrounding the experimental area was protected using aluminum foil. Each material was applied
to the anterior, middle, and posterior position three times on three mice (A). TNF-α and IL-1β in mouse skin are reported as pg per mg of protein
(B). n = 9 (three experiments repeated three times). *P < 0.05, **P< 0.01, ***P< 0.001; significant amelioration versus respective UVB vehicle groups. Data
are mean ± SD.
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the nanosized TiO2 and 100-nm ND groups (Figure 4G
and H vs. F; J, quantified results).
Detections of 100-nm NDs on UVB-irradiated mouse skin
and ND emission spectra
NDs are biocompatible materials [32]. However, their
long-term effects remain unclear, and their accumulation
and retention in the body should be avoided. To investi-
gate whether 100-nm NDs can penetrate through the
skin, particularly after sunburns, the skin of experimen-
tal mice were examined. We found 100-nm NDs only in
the stratum granulosum and not in the deeper layers,
even after intensive UVB irradiation (Figure 5). The
epidermis, including the stratum granulosum, is grad-
ually replacing by newly produced cells, and these NDs
should theoretically along with the dead skin cells.
Notably, on excitation with 266 nm UV, 5-nm but not
100-nm NDs displayed a unique emission pattern at
approximately 320–400 nm in the UVA range (Fig-
ure 6A), which is harmful to the skin.
Furthermore, 100-nm but not 5-nm NDs elicited
higher emissions in the infrared range on excitation with
both 266- and 325-nm UV (Figure 6; 800–900-nm infra-
red). More UV energy can be transformed into relatively
noncytotoxic infrared energy without eliciting harmful
UVA, and this is likely part of the mechanism underlying
100-nm NDs exhibiting superior UV protection com-
pared with 5-nm NDs (Figure 2C, 20-min group). These
results collectively suggested that 100-nm NDs are a
suitable sunscreen material.
Discussion
UV-induced skin damage, such as acute sunburn, photo-
aging, and skin cancers, have been widely investigated
through cell, animal, and human studies. However, few
studies have studied the potential of NDs as UV filters.
Our study found that NDs can attenuate UVB intensity,
increase HaCaT and MEF cell viability, and ameliorate in-
flammatory responses of C57BL/6J mouse skin under
UVB exposure. Moreover, their efficiency was comparable



Figure 4 NDs ameliorate UVB-induced skin hyperplasia and leukocyte infiltration. Histological examinations of the epidermis (A–D) and dermis
(E–H) revealed the alterations before (A, E) and 3 days after UVB irradiation [UVI 6, 20 min per day, three cycles; (135.9 mJ/cm2/day × 3 days)], with
and without protection using 2 mg/cm2 TiO2 and 100-nm ND nanomaterials (B–D, F–H; H&E stain, × 400, scale bars in A and C–H = 20 μm and in
B = 40 μm). The epidermal thickness was quantified as indicated (I). The infiltrated leukocytes (indicated by arrows) were found in the dermis, especially
in the vehicle group (F–H); quantified results are presented in (J). n = 9, **P < 0.01, significant amelioration versus vehicle groups. Data are mean ± SD.
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Figure 5 Detecting 100-nm NDs on UVB-irradiated mouse skin. An
H&E-stained mouse skin section was used as a sample to illustrate
the relative positions and morphology of the epidermis, dermis
(A), stratum corneum, and stratum granulosum (S.G.) (B). The area
indicated by the black box in (A) is magnified in (B). Differential
interference contrast (C) and confocal microscopy (D) images of a
100-nm-ND-shielded UVB-irradiated mouse skin. Dosages of UVB
irradiation and 100-nm NDs are the same as those in Figure 4. White
arrows indicate the fluorescent signals (501–511 nm; green labels)
emitted by the 100-nm NDs, which did not penetrate beyond the S.G.
(D). Stratum corneum (S.C.), S.G., stratum spinosum (S.S.), and stratum
basale (S.B.) are indicated. Blue arrows indicate keratin autofluorescence.
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with those of nanosized TiO2 and ZnO, which are cur-
rently extensively utilized in sunscreens.
Irradiance (in W/cm2) is usually used to express UV in-

tensity [1]. However, because the deleterious effects of UV
are associated with UV wavelength, irradiance cannot re-
flect the true damaging ability. Erythemally weighted UV
radiation (UVEry) calculated according to the erythema
reference action spectrum of the International Commis-
sion of Illumination more accurately estimates the harmful
effects of UV on the skin [33]. This study adopted the UVI
because it is based on UVEry and is the standard of UV
reporting recommended by WHO, making our results ap-
plicable to everyday life [6]. Minimal erythema dose
Figure 6 Photoluminescence of NDs. The photoluminescence properties o
(A) and 325 nm UV (B) (i.e., the wavelengths approximately at the edges o
patterns of 100-nm NDs in the 800–900-nm (infrared) range (A, B). A bla
320–400-nm (UVA) range (A).
(MED) is another common measure of UV radiation
[34,35]. However, because of the variance in individual
sensitivity to UV radiation, MED is more appropriate for
observational studies [1,36].
According to the regulations of the Food and Drug

Administration of the United States, the sun protection
factor of sunscreen ingredients are determined at a con-
centration of 2 mg/cm2 [37]. Therefore, we adopted the
same concentration in our animal study. However, be-
cause most people apply insufficient sunscreen amounts,
we further examined the protective ability of NDs at
lower concentrations in UVB attenuation and cell viability
tests.
Keratinocytes are a major cell type used in UV-related

experiments because they are a major component of the
epidermis, the outmost skin layer directly absorbing UV
irradiation [15,38]. NDs, nanosized TiO2, and ZnO suc-
cessfully attenuated extreme UVB (UVI = 11) to safe
levels (UVI < 2). Additionally, these nanomaterials, par-
ticularly the 100-nm NDs, efficiently protected human
HaCaT keratinocytes at 1 mg/cm2. Apart from kerati-
nocytes, we used fibroblasts for in vitro analysis for the
following three reasons. First, fibroblasts are the main
cell type in the dermis, which constitutes a large percent-
age of the skin. UV with longer wavelengths penetrates
deep into the dermal layer. Second, the UV-induced
photodamage response and signaling pathways in humans
and mice are not identical. Cutaneous IL-1β after UV
irradiation arises from keratinocytes in humans but
from infiltrating bone marrow-derived cells and Langerhans
cells in mice [39]. Third, dermal fibroblasts are involved in
photoaging and skin cancer [40,41]. Although MEFs are
more sensitive to UVB irradiation than HaCaT cells, all the
aforementioned nanomaterials efficiently protect MEFs at
2 mg/cm2.
Animal models are useful and essential in UV-induced

skin damage studies. Because hairless mice develop
squamous cell carcinoma after chronic UV exposure and
f 5 and 100-nm NDs were characterized under excitation by 266 nm
f UVB range), respectively. Gray arrows indicate the unique emission
ck arrow indicates the unique emission pattern of 5-nm NDs in the
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support easy manipulation and skin observations [42],
they have been widely utilized in skin-related research,
especially SKH-1 mice [43,44]. We examined C57BL/6J
mice because a previous study compared three strains of
mice, C57BL/6J, SKH-1, and Balb/c, and concluded that
C57BL/6J mice were the most similar to humans in
photodamage, including in thickening of the epidermis,
infiltration of inflammatory cells in the dermis, induc-
tion of TNF-α mRNA, and accumulation of glycosami-
noglycans [45], whereas hairless SKH-1 mice lacked
TNF-α mRNA induction. The histological findings were
the same as those in the previous report, and a TNF-α
assay correlated well with gross skin damage. Therefore,
the C57BL/6J mouse model used in this study is effective
for evaluating UV-induced injury.
The mechanism of nanosized TiO2 as a UV filter, which

depends mainly on reflection, scattering, and absorption,
has been studied extensively [9,46]. By contrast, ND–UV
interaction has received little attention. The nitrogen-
vacancy center in NDs absorbs strongly at approximately
560 nm and fluoresces efficiently at approximately 700 nm
[47]. Moreover, ND optical properties can be altered
through surface modification. For example, NDs cova-
lently attached with octadecylamine emit bright blue light
when irradiated with UV light [16]. Additionally, in this
study, on excitation with UVB, 100-nm NDs elicited emis-
sions not only in the visible-light range but also in the in-
frared range (Figure 6; 800–900 nm). These evidences
collectively suggest that in addition to UVB shielding and
scattering, NDs attenuate UVB energy by transformation
it to safe visible and infrared light.
UV attenuation of nanomaterials depends largely on

particle size. Primary nanosized TiO2 and ZnO particles
cluster and form tightly bound aggregates with sizes be-
tween 30 and 150 nm. Subsequently, the aggregates loosen
to form agglomerates with sizes over 1 μm. Nanosized
TiO2 with an average size of 100 nm efficiently blocks
both UVA and UVB. At an average size of 50 nm, UVB at-
tenuation increases but UVA attenuation decreases. On
reducing the average size to 20 nm, nanosized TiO2 offers
significantly lower protection against both UVA and UVB
[10]. Smaller, stabilized, and nonagglomerated TiO2 nano-
particles have superior UV attenuation [48]. NDs of vari-
ous particle sizes have been studied and 100 nm NDs
were suggested to be potentially useful in sunscreen for-
mulations because of visual transparency and remarkable
UVA, UVB, and UVC shielding [17].

Conclusions
This study demonstrated for the first time that NDs
attenuate UVB and efficiently protect keratinocytes, fibro-
blasts, and C57BL/6J mouse skin from UVB-induced dam-
age. The 100-nm NDs exhibit superior UVB attenuation
compared with nanosized TiO2, ZnO, and 5-nm NDs in
the HaCaT keratinocyte model, and both 5 and 100-nm
NDs exhibit superior UVB attenuation compared with
nanosized ZnO in the MEF model. The protective effi-
ciency of 100-nm NDs is comparable to that of nano-
sized rutile TiO2 in the animal model. Additionally, NDs
are safe materials without considering the elicitation of
ROS during UV irradiation. These results collectively sug-
gest that NDs can be a “diamond-class” sunscreen
ingredient.

Methods
UV related equipment and nanomaterials
UVB radiation was generated using a UVB lamp
(G25T8E, Sankyo Denki Co., Kanagawa, Japan) with peak
emission at 306 nm. UV intensity, reported as the UVI,
was measured using a UVI meter (ARCS Precision Co.,
Taichung, Taiwan). Using previously reported methods
[33,35], the conversion of UV-irradiation dose versus the
UVI is as follows: 1 UVI = 25 mW/m2 UVEry (erythemally
weighted UV radiation). Irradiation at a UVI of 6 for
20 min, used in our mouse experiments, were equivalent
to 6 × 25 mW/m2 UVEry × 1200 s (=180 J/m2 UVEry; =
1359 J/m2 UVB; = 135.9 mJ/cm2; = 3.775 MED; for B6
mice, 1 MED= 36 mJ/cm2 [35]). Rutile nanosized TiO2

was purchased from Advanced Ceramics Nanotech Co.,
Ltd (Tainan, Taiwan). A UV cut-off filter was fabricated by
depositing the nanomaterials on a commercial food wrap
film. A lubricating jelly (PDI, Orangeburg, NY, USA)
composed of water and glycerin served as the vehicle
for mixing the nanomaterials; it facilitated even dispersion
of nanomaterials and its adherence to the film and skin.

MEF and HaCaT keratinocyte cell cultures
MEFs were obtained using previously described methods
[49,50]. Human immortalized HaCaT keratinocytes were
maintained using previously described methods [51].
After thawing the frozen MEF and HaCaT cells, they
were cultured with Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS), L-
glutamine, and penicillin–streptomycin and grown in a
37°C, 5% CO2 incubator. The medium was changed after
the first day and every two days thereafter. On confluence,
the cells were trypsinized for passage.

Animal study
Male C57BL/6J mice were purchased from the National
Laboratory Animal Center and housed in the Laboratory
Animal Center, Tzu-Chi University, until they were 8–9
weeks old. The hair on the backs of the mice was removed
using commercial hair removal creams containing thiogly-
colate trihydrate (approximately 250 μL/mouse) 2–3 days
before the experiments. The mice underwent the proce-
dures under anesthesia with an intraperitoneal injection
of ketamine : xylazine (80 : 10 mg/kg body weight). The
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research methods were approved by the Animal Care
and Use Committee of Tzu-Chi University (approval ID
99047).

Measurement of UV attenuation by nanoparticle-coated
films
The attenuation efficiencies of four nanomaterials—5-
nm NDs, 10-nm NDs, nanosized rutile TiO2, and
ZnO—in attenuating UV radiation were tested. Each
nanomaterial was mixed thoroughly with the vehicle
(lubricating jelly) and applied to a thin plastic film at
concentration of 1, 2, and 3 mg/cm2 for use as a UV fil-
ter. The UV intensity was measured using a UVI meter,
and UVB at UVIs of 4, 6, 9, and 11, which respectively
correspond to moderate, high, very high, and extreme
exposure categories, were determined. The degree of
attenuation was determined by comparing the UVI
values with and without the UV filters.

MB degradation
MB analyses for analyzing photocatalytic performance
of TiO2 were conducted according to previously re-
ported methods [52-54]. Photocatalytic efficiency was
measured through the decomposition of 100 ppm
(0.1 mg/mL) MB (Koch-Light Laboratories, Colnbrook,
Bucks., England) at a nanomaterial concentration of
1.5 mg/mL. MB concentration intensity was monitored
in the light absorption peak at a 663-nm wavelength by
using a UV–Vis spectrometer. UV irradiation was per-
formed using a UVB lamp (G25T8E, Sankyo Denki)
with an average power density of 150 mW/m2 UVEry

and 15 cm of spacing between the UV source and the
sample. Anatase TiO2 (UV100, Sachtleben, Germany),
which exhibits photocatalysis only when irradiated with
UV light [24,55], served as the positive control in
photocatalytic MB.

Cell viability analyses
We used the cell culture model for evaluating the protect-
ive effects of the four nanomaterials. Cultured MEFs were
seeded in a 96-well microplate (105 cells/well) containing
200 μL/well of DMEM and 10% FBS, and grown in a
37°C, 5% CO2 incubator. On the second day, the MEFs
were irradiated with UVB at a UVI of 6 for 5, 10, and
20 min with and without the UV filter containing 2 mg/
cm2 of each nanomaterial. In addition, the cells were irra-
diated for 10 min with UV filters containing 1, 2 and
3 mg/cm2 of the nanomaterials. The culture medium was
replaced by no-phenol-red medium during UVB irradi-
ation. On the third day, the cultured cells were water-
soluble tetrazolium (WST-1) assayed (Roche Diagnostics
GmbH, Mannheim, Germany) [56,57]. The culture
medium was removed and 100 μL of WST-1 reagent di-
luted with RPMI-1640 medium (1:19) was added to each
well. After incubating at 37°C for 30 min, the WST-1 solu-
tions were pipetted to a new microplate, and absorbance
at 450 nm was measured using an ELISA reader. The cells
not subjected to UVB irradiation were considered to have
100% cell survival, and the viability of the other study
groups was calculated by comparing the WST-1 assay
results.

Cytokine analyses
We established an animal model to examine the effi-
ciency of these nanomaterials in blocking UVB radiation.
After irradiating the mice, TNF-α and IL-1β levels in the
skin, which represents the degree of injury, were mea-
sured using ELISA (BioLegend, San Diego, CA, USA).
The bare back skin of the mice was marked with four
1 cm × 1 cm areas on which were applied nothing, ve-
hicle (jelly), 2 mg/cm2 100-nm NDs, and nanosized
TiO2. The mice were not subjected to UVB irradiation,
and these materials were removed after 20 min. This
procedure was repeated on three consecutive days. On
the fourth day, the mice were sacrificed by CO2 inhal-
ation and the skins were processed for a cytokine assay.
In another group of mice, vehicle (jelly), 2 mg/cm2 100-
nm NDs, and nanosized TiO2 were applied in three longi-
tudinally adjacent 1 cm× 1 cm areas on the back midline.
The bare skin around the experimental area was protected
with aluminum foil. The mice were irradiated with UVB
at a UVI of 6 for 20 min, after which these materials were
removed. This procedure was repeated on three consecu-
tive days. The mice were sacrificed on the fourth day, and
skin sections with a diameter of 0.7 cm containing the
marked areas were excised for analysis. The skin samples
were cut into small pieces and preserved in a 2-mL
Eppendorf tube containing 700 μL of phosphate buffered
saline (PBS) and 5 mM phenylmethanesulfonyl fluoride
(PMSF), which decreased cytokine degradation [58]. The
skin samples were homogenized and centrifuged at 4°C
and 16,000 × g for 20 min. The supernatant was aspirated
for additional quantification analyses of the protein and
cytokine concentrations. The samples were placed on ice
during processing [59,60].

Enzyme-linked immunosorbent assay
TNF-α and IL-1β were quantified using commercial
equipment (ELISA MAX™ Deluxe Sets, BioLegend, San
Diego, CA, USA). One day prior to skin sample prepar-
ation, 100 μL of capture antibody solution was added to
each well of a 96-well microplate and incubated over-
night at 4°C. On the second day, after irradiation block-
ing, the solution was discarded and the microplate
washed three times with 200 μL of PBS containing
0.05% Tween-20 per well. Two hundred microliters of
assay diluent was added to the wells and then incubated
at 37°C for 2 h. The microplate was washed again three
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times; and 100 μL/well solutions of serially diluted stan-
dards or processed skin samples were added to each well
and then incubated overnight at 4°C. On the third day,
the plate was washed three times and incubated at 37°C
for 1 h after adding 100 μL of detection antibody to each
well. Subsequently, 100 μL of avidin-horseradish perox-
idase solution was added to each well and incubated at
37°C for 30 min. The plate was washed, 100 μL of tetra-
methylbenzidine substrate solution added to each well,
and incubated at 37°C for 15 min. The reaction was
stopped by adding 50 μL of 2 N hydrogen chloride solu-
tion to each well. Absorbance was measured at 450 nm
by using an ELISA reader, and the standard curve was
generated with a software program by using a four-
parameter logistics curve-fitting algorithm. The cytokine
levels in the skin samples were calculated from the
standard curve. Because the UVB-damaged skin shrank
and the skin sample may have been damaged during
homogenization, the cytokine levels were normalized to
the protein content for comparison. Dye reagent con-
centrate (Bio-Rad Laboratories, Hercules, CA, USA) was
prepared by diluting (1:4) with distilled, deionized water.
Bovine serum albumin with concentrations of 2, 1, 0.5,
and 0.25 mg/mL were prepared and used as the protein
standard. After thoroughly mixing 10 μL of each
standard and sample solution with 190 μL of diluted
dye reagent and incubating at room temperature for
5 min, the absorbance at 595 nm was measured using
an ELISA reader.

Histology examination
After the mice were sacrificed, the skin tissues were cut
into three strips, preserved in 4% formaldehyde solution,
dehydrated, and embedded in paraffin wax. Tissue sec-
tioning and hematoxylin-eosin (H&E) staining were per-
formed according to previously reported methods [57].
Thickness from the stratum granulosum to the stratum
basale and neutrophil content within the dermis were
measured at three random sites on each tissue strip.

Confocal microscopy
Skin-tissue sections were obtained using protocols de-
scribed in the aforementioned histology examinations.
Fluorescence images of the skin sections were obtained
using a confocal laser-scanning fluorescence microscope
(TCS SP5, Leica, Germany; 63 × oil immersion). UV
(405 nm) and argon lasers (458/476/488/514 nm) were
employed for analyzing ND distribution in skin sections.
ND fluorescence signals were excited at 405 nm and the
resulting emissions were collected at 501–511 nm, as
shown in green in Figure 5D. The fluorescence signals of
the skin sections were excited at 488 nm and the result-
ing emissions were collected at 498–584 nm, as showed
in red in Figure 5D.
Photoluminescence
Different sizes of NDs (5- and 10-nm; Kay Diamond,
USA) were used. For characterization, the obtained nano-
particle powders (NPs) was separately dispersed in deion-
ized water at a concentration of 2 mg/mL. From each
suspension, 20 μL was dropped onto a single crystal Si
(100) wafer and dried. Photoluminescence (PL) of NPs
were measured using a confocal microspectrometer (Jobin
Yvon, T64000, France) equipped with a 325-nm liquid-N2

cooled charge-coupled detector (He–Cd gas phase laser,
Kimmon Koha, Japan). The laser power supplied through
the objective lens was estimated to be 20 mW (325-nm
excitation, measured from the laser output). For macro-PL
spectrometer (Horiba, HR-550, Japan) with a laser excita-
tion wavelength of 266 nm (Nd–YAG, Laser-Export,
USA), the laser power was 2 mW.
Statistical analyses
The experimental results were analyzed using Microsoft
Office Excel 2003 and SPSS 17, and the results reported as
mean ± standard deviation (SD). Statistical significance of
the obtained results was examined using a one-way
analysis of variance the probability of type 1 error α = 0.05
was considered the threshold of statistical significance.
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