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Regularized estimation of Euler pole parameters
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(Received December 5, 2011; Revised September 29, 2012; Accepted October 20, 2012; Online published August 23, 2013)

Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through
various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several
relatively small plates have been determined through the velocities derived from the space geodesy observations.
However, the available data are usually insufficient in number and quality to estimate both the Euler vector
components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered
Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually
results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the
situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation
rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler
vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored
for estimating the Euler vector is presented. The results show that the proposed method outperforms the least
squares estimation in terms of the mean squared error.
Key words: Tectonics, Euler parameters, multicollinearity, GNSS velocities.

1. Introduction
The motion of tectonic plates is usually parameterized on

a sphere through an Euler vector or an Euler pole (DeMets
et al., 1990; Altamimi et al., 2002; Sella et al., 2002).
Such a parameterization is also useful to compare the es-
timates from different sources such as space geodetic mea-
surements, hot-spots tracks, transform fault azimuths, the
spreading rates of ocean ridges, and earthquake slip vec-
tors (Gripp and Gordon, 1990, 2002; Argus and Gordon,
1991; DeMets et al., 1994, 2010). However, all the non-
geodetic methods give, in fact, only a relative measure of
the plate motions. Even the direct geodetic measurements
of plate motions depend on the underlying reference frame
(Altamimi et al., 2002; Kreemer et al., 2003; Prawirodirdjo
and Bock, 2004). Since only the relative motion of the
plates can be directly observed, they are often referenced
with respect to either a specific plate or a global plate cir-
cuit, called no-net-rotation. Thus, the Euler vectors are nec-
essary to compute the global plate circuit closure and to
quantify the relative motions of tectonic plates.

The Euler parameterization of tectonic plate motions pro-
vides an indispensible tool for modeling the rigid plates
where the deformation along the plate boundaries are ne-
glected or assumed comparatively small (McClusky et al.,
2000; Nocquet et al., 2001; Aktuğ et al., 2009a, b). Even
in those models which take the deformation along plate
boundaries into consideration, the Euler parameterization
is still employed with the compensation of the deformation
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along plate boundaries through elastic back-slip modeling
(McCaffrey, 1996, 2002; Meade and Hager, 2005). In this
respect, a reliable estimation of the Euler vector is impor-
tant in many studies ranging from the estimation of slips
along plate boundaries and paleomagnetic studies to the re-
construction of the plate tectonics. It is common to esti-
mate an Euler vector for a plate motion through the velocity
vectors obtained from the geodetic measurements. On the
other hand, since quantifying the motion of tectonic plates
requires a rigidity assumption, the geometrical coverage of
the available velocity vectors is limited to the rigid parts
of the plate in question. This results in a weakly multi-
collinear estimation problem, especially for smaller plates.
Such multicollinearity can be observed in the high correla-
tion between the Euler vector components, as well as be-
tween the Euler pole and its angular velocity. The corre-
lations can be to such an extent that the Euler pole posi-
tion and its angular rotation rate cannot be estimated di-
rectly. This is chiefly due to the matrix singularity of the
normal equation matrix, which arises from the collinearity
of the rotation rate with either latitude or longitude of the
Euler pole. One common solution is to estimate the Euler
vector and then transform it to the Euler pole parameters.
However, the correlations between the Euler vector compo-
nents are still close to unity, which still presents a weakly
multicollinear problem. The multicollinearity in the esti-
mation of Euler vectors is often coupled with errors which
come from the non-rigid behavior of the sites. Up to 3–4
mm/yr residuals are common after removing the Euler ro-
tation from the site velocities (Qiang et al., 1999; Nocquet
et al., 2001; Aktuğ et al., 2009b). The multicollinearity in
the estimation problems is often handled with Tykhonov-
Phillips regularization (Tykhonov, 1963; Phillips, 1962).
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While the required Tykhonov matrix is obvious in many ap-
plications, due to geometrical or physical relations such as
the smoothness of the geophysical signal over a spatial or
temporal domain, the components of the Euler vector are
discrete and no such simple relations between parameters
are available for Euler vector components. For instance,
no direct assumption can be made about any smoothness or
closeness between Euler vector components.

Another common choice for the Tykhonov matrix is the
identity matrix. This approach is useful to stabilize a singu-
lar problem numerically and leads to a minimum norm solu-
tion, but it has no physical or geometrical meaning for Euler
vector components. Consequently, the necessary Tykhonov
matrix, which can be used in the regularized estimation of
the Euler vector, is not available and has to be developed
analytically as implemented in this study.

In this study, the concept of an ideal distribution of the
velocity vectors is introduced, the necessary Tykhonov ma-
trix was derived analytically, and the multicollinearity be-
tween Euler parameters was handled with regularization.
The results show that the suggested methodology outper-
forms the standard least squares in terms of the Mean
Squared Error (MSE) and decreases the correlation among
the Euler vector components.

2. Regularized Estimation of the Euler Vector
Since the derivation of the necessary regularization ma-

trix for the Euler vector and the associated equations will
be based on the least-squares, the estimation model will be
given very briefly for completeness rather than a complete
summary. The estimation of the Euler vector from a set of
velocities can be formulated in a Gauss-Markov model as:

e = Aξξξ + W, e ∼ N (0, �e), (1)

where e is the error vector of the velocities, A is the matrix
of coefficients, ξξξ is the unknown Euler vector (ω̇x , ω̇y , ω̇z),
and W is the misclosure vector defined as:

W = Aξξξ 0 − v, (2)

where ξξξ 0 is the a priori values vector of the parameters (ω̇x ,
ω̇y , ω̇z), and v is the observation vector which consists of
the Cartesian velocity components. The coefficients matrix
A is a function of the mathematical relation between the
observed velocity vector and the Euler vector, and can be
expressed in tensor notation as:

vk = ξi r jεi jk (3)

where εi jk is the permutation tensor and r is the position
vector in Cartesian frame. After rearranging Eq. (3) in a
matrix form according to the model in Eq. (1), three rows
of the matrix A corresponding to the velocity vector at site
i can be obtained as;

vi =
⎡
⎣ 0 zi −yi

−zi 0 xi

yi −xi 0

⎤
⎦

⎡
⎣ω̇x

ω̇y

ω̇z

⎤
⎦ . (4)

The whole coefficient matrix A is formed by stacking (4)
for each site. In a standard least squares estimation, the a

posteriori covariance of the Euler vector components can
be obtained as:

�
ξ̂ξξ

= (AT �−1
e A)−1, (5)

where the subscript ξ̂ξξ is the vector of the estimated parame-
ters. Hereafter, in this paper, the hat symbol is used to refer
to estimated quantities. Assuming �e = σ 2I for an ideal
network configuration, where σ 2 is the variance factor and
I is the identity matrix, the inverse cofactor matrix of the pa-
rameters in Eq. (5) for n sites can be written in an expanded
form as:

�−1
ξ̂

= σ−2

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

(y2
i + z2

i ) −
n∑

i=1
xi yi −

n∑
i=1

xi zi

−
n∑

i=1
xi yi

n∑
i=1

(x2
i + z2

i ) −
n∑

i=1
yi zi

−
n∑

i=1
xi zi −

n∑
i=1

yi zi

n∑
i=1

(x2
i + y2

i )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(6)

A regularized estimation for the model Eq. (1) can be for-
mulated by imposing a linear stochastic constraint equation
���(ξξξ − ξξξ 0) = e��� , with e��� ∼ N (0, κ−2I), on the parameters
and the estimates can be obtained as:

ξ̂ξξ = ξξξ 0 − (AT �−1
e A + κ2���T���)−1AT �−1

e W, (7)

where ��� is the Tykhonov matrix, κ is the regularization
constant which controls the relative weight between the
weighted sum of the residual squares and a priori con-
straints, and W is the misclosure vector given in Eq. (2).
The derivation of Eq. (7) can be found in many textbooks
of inverse problems (e.g., Tarantola, 2005; Hansen, 2010).
Equation (7) can be interpreted in a regularization frame-
work as well as in a Bayesian point of view, and it is also
known as the Tykhonov-Phillips regularization (Tykhonov,
1963; Phillips, 1962) or ridge regression (Hoerl and Ken-
nard, 1970). The regularization is a mathematical tool
which provides additional constraints on the parameters.
In this way, many ill-posed problems can be solved or can
be made stable. In particular, when the number of param-
eters exceeds the number of observations, the regulariza-
tion is indispensible and makes the ill-posed problem solv-
able. Many examples can be found in the literature for
the application of the regularization, such as determining
the slip distribution of fault systems (Aktuğ et al., 2010),
ionospheric tomography (Howe et al., 1998), and tropo-
spheric tomography (Flores et al., 2000). The benefit of
the regularized estimation is two-fold: (1) to provide a pri-
ori external information to strengthen the solution, and (2)
to stabilize the solution numerically when the solution is
ill-conditioned (Tarantola, 2005). For many problems, the
Tykhonov matrix ��� is taken as an identity matrix, which is
just sufficient to stabilize the solution. In many other geo-
physical problems, the Tykhonov matrix is obvious due to
some physical relations between the parameters, such as the
smoothness of a parameter group or their gradients within
the neighborhood. For instance, Aktuğ et al. (2010) has
employed the Laplacian matrix for the Tykhonov matrix to
estimate the slip distribution from coseismic GPS displace-
ments. Similarly, Aktuğ (2012) derived a necessary specific
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Tykhonov matrix to estimate the datum transformation pa-
rameters from a set of distorted terrestrial network coordi-
nates. For the case of Euler vector components, an analyt-
ical derivation based on the intrinsic geometrical relations
between the components of an Euler vector is needed. The
regularization can be applied with respect to the inverse co-
factor matrix of an ideal network configuration by choosing
the quadratic Tykhonov matrix as (Tarantola, 2005):

���T��� = �−1
ξ̂

. (8)

Assuming that an ideal regional network contains all the
theoretically-possible points within a region bounded by the
latitudes ϕa and ϕb, and longitudes λa and λb, the individ-
ual summation terms in Eq. (6) can be expressed as surface
integrals over the region. Since the region is defined in ge-
ographic coordinates, it is more convenient to apply the in-
tegration over the geodetic coordinates instead of Cartesian
coordinates. For the purpose of the following derivation,
a spherical approximation to the transformation between
Cartesian and the geodetic coordinate system is sufficient:

xi = R cos ϕi cos λi , (9)

yi = R cos ϕi sin λi , (10)

zi = R sin ϕi , (11)

where R is the approximate Earth’s radius. The individual
summation terms in the inverse cofactor matrix in (6) can
equivalently be expressed as the product of the number
of points and the mean values of the functions, and, thus,
can be obtained analytically using the integral mean value
theorem. The summation terms in (6) can be written as
double integrals over the domain �ϕ = ϕb − ϕa and �λ =
λb − λa . Denoting the mean latitude and mean longitude
as ϕm and λm , respectively, the individual summation terms
for a number of points (n) can be written as:

−
n∑

i=1

xi yi = −n R2

�ϕ �λ

∫ ϕb

ϕa

∫ λb

λa

cos2 ϕ cos λ sin λ dλdϕ

= −n R2 sin 2λm sin �λ

4�ϕ �λ
(�ϕ + cos 2ϕm sin �ϕ), (12)

−
n∑

i=1

xi zi = −n R2

�ϕ �λ

∫ ϕb

ϕa

∫ λb

λa

cos ϕ sin ϕ cos λ dλdϕ

= −n R2 cos λm sin(�λ/2) cos 2ϕm sin �ϕ

�ϕ �λ
, (13)

−
n∑

i=1

yi zi = −n R2

�ϕ �λ

∫ ϕb

ϕa

∫ λb

λa

cos ϕ sin ϕ sin λ dλdϕ

= −n R2 sin λm sin(�λ/2) sin ϕm sin(�ϕ/2)

�ϕ �λ
, (14)

n∑
i=1

(x2
i + y2

i ) = n R2

�ϕ �λ

∫ ϕb

ϕa

∫ λb

λa

cos2 ϕ dλdϕ

= n R2

2�ϕ

(
�ϕ + sin 2ϕb − sin 2ϕa

2

)

= n R2

2�ϕ
(�ϕ + cos 2ϕm sin �ϕ), (15)

n∑
i=1

(x2
i + z2

i ) = n R2

�ϕ �λ

×
∫ ϕb

ϕa

∫ λb

λa

(cos2 ϕ cos2 λ + sin2 ϕ) dλdϕ

= n R2

�ϕ �λ

{
1

4

(
�λ + sin 2λb − sin 2λa

2

)

×
(

�ϕ + sin 2ϕb − sin 2ϕa

2

)

+�λ

2

(
�ϕ + sin 2ϕb − sin 2ϕa

2

)}

= n R2

�ϕ �λ

{
1

4
(�λ + cos 2λm sin �λ)

× (�ϕ + cos 2ϕm sin �ϕ)

+�λ

2
(�ϕ − cos 2ϕm sin �ϕ)

}
, (16)

n∑
i=1

(y2
i + z2

i ) = n R2

�ϕ �λ

×
∫ ϕb

ϕa

∫ λb

λa

(cos2 ϕ sin2 λ + sin2 ϕ) dλdϕ

= n R2

�ϕ �λ

{
1

4

(
�λ − sin 2λb − sin 2λa

2

)

×
(

�ϕ + sin 2ϕb − sin 2ϕa

2

)

+�λ

2

(
�ϕ + sin 2ϕb − sin 2ϕa

2

)}

= n R2

�ϕ �λ

{
1

4
(�λ − cos 2λm sin �λ)

× (�ϕ + cos 2ϕm sin �ϕ)

+�λ

2
(�ϕ − cos 2ϕm sin �ϕ)

}
. (17)

Consequently, the Tykhonov matrix in Eq. (7) can be
obtained with respect to an ideal network configuration
through Eqs. (12)–(17). The regularization constant is
usually obtained through an ad-hoc method (Tarantola,
2005). Various methods such as the L-Curve, generalized
cross-validation, maximum likelihood, Morozov’s discrep-
ancy principle, quasi-optimality criterion, and the Cp-Plot,
have been developed in different contexts (Mallows, 1973;
Hansen, 1992; Golub and von Matt, 1997). However, the
success of each method to determine the regularization con-
stant depends on the specific application (Hoerl and Ken-
nard, 1970). One suitable method for one specific problem
could have an over-smoothing or under-smoothing effect on
another. In general, all the methods employ the variation of
the Weighted Residuals Sum of Squares (WRSS) with re-
spect to the regularization constant. The chosen constant
should balance the WRSS and the constraints. The empiri-
cal determination of the regularization constant from WRSS
plots is also very common and has been shown to be a suffi-
cient method in many geophysical problems (Bürgmann et
al., 2002; Wright et al., 2003; Aktuğ et al., 2010).

Equation (7) can also be interpreted from a Bayesian
point of view, where a priori constraints are applied over
the parameters through the Tykhonov matrix. Since the
Tykhonov matrix was derived by using an ideal network
distribution, the covariance constructed upon such an ideal
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Fig. 1. Three synthetic networks (net #1 = black, net #2 = white, net #3 = gray arrows) and the estimated positions of Euler poles. The ellipses
for velocities and the Euler poles are at 95% confidence level. The area with dashed borders represents the borders of an ideal regional network
distribution.

distribution is too perfect. Such a non-realistic covariance
matrix has also too optimistic error estimates. Using such
a covariance matrix corresponds to putting too tight con-
straints on the a priori parameters. However, the a priori
values of the Euler parameters are obtained from many dif-
ferent observations of varying accuracy. Therefore, the a
priori values are generally less accurate than implied by
the covariance matrix of a perfect network distribution. To
be able to use less accurate a priori constraints while pre-
serving the intrinsic correlations of constraints, the cofactor
matrix obtained in Eq. (5) can be transformed into a corre-
lation matrix and a new inverse cofactor matrix with loose
constraints can be formed as:

E = D−1/2�
ξ̂ξξ

D−1/2, (18)

���T��� = (
C1/2

x0
E C1/2

x0

)−1
, (19)

where E is the correlation matrix, D is the diagonal matrix
formed by using the computed covariance as D = diag(�

ξ̂ξξ
),

Cx0 is the diagonal matrix of loose a priori constraints for a
priori values of the parameters (x0). Cx0 is constructed by
putting the variances of the parameters in the diagonals.

3. Numerical Application
To demonstrate the efficiency of the regularized estima-

tion of Euler vector components, three synthetic velocity
fields were formed using a pre-defined Euler vector. The

Table 1. True and a priori Euler pole parameters.

ϕp λp ω

(◦) (◦) (◦/Myr)

True 32.0000 32.0000 1.4000

A priori 30.0000 31.0000 2.0000

Table 2. Estimated Euler pole parameters with standard least squares.

Net # ϕp λp ω MSE

(◦) (◦) (◦/Myr) (◦/Myr)

1 31.1836 30.8270 1.0812 0.3200

2 30.9492 31.0188 1.1277 0.2739

3 31.6771 31.2491 1.2739 0.1272

three different velocity field configurations are shown in
Fig. 1. Since the relative performance of the regularized
estimation with respect to the standard least squares will
be shown in terms of MSE, it is necessary to use synthetic
networks with the known Euler vector components. The
known Euler parameters and the a priori values used in the
estimation are given in Table 1. Each velocity field of the
three networks was obtained using the same set of Euler pa-
rameters given in Table 1, and random noise sampled from a
normal distribution with a standard deviation of ±1 mm/yr
was then added to the velocity components, which is typi-
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Fig. 2. Weighted residual sum of the squares as a function of regularization
constant (a) net #1 (b) net #2 (c) net #3.

Fig. 3. Mean squared error as a function of regularization constant (a) net
#1 (b) net #2 (c) net #3.
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Table 3. Estimated Euler pole parameters with regularized method.

Net # ϕp λp ω MSE

(◦) (◦) (◦/Myr) (◦/Myr)

1 31.9541 31.2776 1.2550 0.1457

2 31.7478 31.3165 1.2982 0.1029

3 31.7042 31.3392 1.3141 0.0872

Table 4. MSE values with different a priori values.

Net # ϕp λp ω 1/λ MSE

(◦) (◦) (◦/Myr) (◦/Myr)

1 33 33 1 0.1 0.2226

1 33 33 2 0.1 0.2036

1 33 31 1 0.1 0.2443

1 33 31 2 0.1 0.1677

1 31 33 1 0.1 0.3473

1 31 33 2 0.2 0.1394

1 31 31 1 0.1 0.3556

1 31 31 2 0.2 0.1461

2 33 33 1 0.1 0.1808

2 33 33 2 0.1 0.2482

2 33 31 1 0.1 0.1939

2 33 31 2 0.1 0.2286

2 31 33 1 0.1 0.3085

2 31 33 2 0.2 0.1273

2 31 31 1 0.1 0.3116

2 31 31 2 0.2 0.1283

3 33 33 1 0.1 0.1143

3 33 33 2 0.2 0.0641

3 33 31 1 0.2 0.1298

3 33 31 2 0.2 0.0502

3 31 33 1 0.2 0.1956

3 31 33 2 0.2 0.0430

3 31 31 1 0.2 0.2029

3 31 31 2 0.2 0.0505

cal for GNSS observations (Aktuğ et al., 2009b). To suf-
ficiently account for the non-rigid behavior of the sites, as
well as the possible unmodelled observation errors, a non-
rigid deformation of 1–2 mm/yr was also randomly added
to the velocities. Such non-rigid behavior is very common
in GNNS networks and usually observed in residual veloci-
ties with respect to a plate-fixed reference frame (McClusky
et al., 2000; Nocquet et al., 2001). The velocities shown in
Fig. 1 include the added noise.

The standard least-squares solutions for the three net-
works are given in Table 2. As is clear in Table 2, the Euler
vector is highly sensitive to the geometry of the sites. The
magnitude of rotation varies up to 0.3◦/Myr, which makes it
difficult to compare the results with the results of the stud-
ies. In the regularized estimation, the Tykhonov matrix was
constructed with loose constraints of 2◦, 2◦ and 1◦/Myr for
the latitude, longitude and the rotation rate, respectively.
Such very loose constraints are compatible with the a pri-
ori values which were deliberately chosen to be imprecise.
The regularization constants were determined empirically
as 0.10 for all three networks using the WRSS plots of the
networks given in Fig. 2, similar to that given in Aktuğ et al.
(2010). The necessary geographical bounds for construct-

ing the Tykhonov matrix were chosen as shown in Fig. 1
by a dashed line. Finally, the Mean Squared errors of both
least squares and the proposed method was computed as:

tr(MSE(x̂)) = tr
(

E
{(

x − x̂
) (

x − x̂
)T

})
, (20)

where E{·}, x and x̂ are the expectation operatör, the true
values vector, and the estimated values vector of the pa-
rameters, respectively. The results of regularized estimation
are given in Table 3. The MSE plots of both standard least
squares and regularized estimation are given in Fig. 3.

To investigate the effect of different a priori values, the
numerical study was repeated with different sets of a priori
values. The regularization constant was chosen separately
for each set. The different sets of a priori values, and the
MSE of each trial, are given in Table 4.

4. Results and Conclusion
The Euler vector has been an indispensible tool for mod-

eling plate tectonics, as well as for approximating the rigid
motion of sites. However, the number of sites located in the
rigid parts of the plates is often limited. Such a limitation is
often coupled with uncertainty about the rigid behavior of a
site represented in the residuals of the velocities defined in
plate-fixed frames. Considering that the estimation model
of Euler vectors is in an Earth-centered Cartesian frame,
the velocity vectors on a small plate provides a limited ge-
ographic coverage, presenting a multicollinear problem.

It has been shown that a very similar network configura-
tion can make a huge difference in the estimated parame-
ters. For many regional networks, either the latitude or the
longitude of the Euler pole is nearly collinear with the mag-
nitude of the rotation rate, such that an iterative solution
does not converge in the direct estimation of the Euler pole
parameters. In the given example, the latitude of the Euler
pole is highly correlated with the rotation rate since the Eu-
ler pole is almost in the south of the Anatolian plate. The
normal equation matrix is a function of the geometry of the
distribution of the network, and the condition number of the
normal equation matrix is an indication of how well-posed
the problem is. Ill-posed problems are generally identified
by the high condition numbers of the normal equation ma-
trix (Hansen, 2010). For instance in the given examples,
while the condition number of the normal equation matrix
in a direct estimation of the Euler pole parameters is about
∼1014, it decreases to ∼103 in estimating the Cartesian Eu-
ler vector, which is still very large and poses a weakly multi-
collinear problem. The contribution of the proposed method
depends on the quality of the network distribution and the a
priori values. For a nearly ideal network, the contribution
could be negligible. The distribution of errors for the sites,
and the geometry of the sites, determine the performance
of the proposed method. The performance of the proposed
method, when using different a priori values, is also depen-
dent on the network geometry. The same a priori values
used in three networks affected the performance differently
due to the different network configurations and error dis-
tribution. However, using the regularization constant, the
proposed method can always be tuned to give better MSE,
or at least, the same MSE with the standard least-squares.
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The smaller is the regularization constant, the closer will
be the estimate to the standard least-squares. Regardless of
the MSE performance, the proposed method also provides a
homogenous framework to compare the results of different
studies.
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