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Potential probiotic-associated traits
revealed from completed high quality
genome sequence of Lactobacillus
fermentum 3872
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Abstract

The article provides an overview of the genomic features of Lactobacillus fermentum strain 3872. The genomic
sequence reported here is one of three L. fermentum genome sequences completed to date. Comparative genomic
analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain.
In particular, the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin, as
well as exopolysaccharide and prophage-related genes were identified. Genes related to bacterial aggregation and
survival under harsh conditions in the gastrointestinal tract, along with the genes required for vitamin production
were also found.
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Introduction
Probiotics are widely used for treatment of auto-
immune conditions including allergic reactions, as well
as metabolic disorders and are being applied as alterna-
tives or additives to antibiotic treatment [1–3]. Probio-
tics may provide a beneficial effect by modulating the
host immune system, via the release of antimicrobial
substances, or through competitive exclusion of patho-
genic bacteria [4]. Various bacteria belonging to the
Lactobacillus genus (including L. fermentum) are
commonly used as probiotics [5]. The efficacy of these
bacteria is not only species-specific, but also varies
between the strains of the same species. Lactobacillus
bacteria have a generally accepted as safe status. They
are commonly found in various food products and are a
part of the normal flora in animals and humans [6].
However, some lactobacilli have been found to lower the
intestinal barrier in vitro [7]. L. fermentum 3872 has
been patented in Russia along with a consortium of
other Lactobacilli relating to their antimicrobial and
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probiotic uses [8]. L. fermentum 3872 was sequenced in
order to determine molecular modes of actions that may
potentially be used against pathogenic bacteria that live
in the same habitat as strain 3872, along with genes re-
lating to its ability to survive harsh conditions of the
GIT. Genomic data relating to the microflora of humans
are also important for better understanding the role
these bacteria play within its natural environment. With
more high quality genomic data being made available a
consortium of probiotics with similar modes of action
may be utilised to effectively combat pathogenic bac-
teria. Currently, the genome sequence of L. fermentum
strain 3872 reported here is one of only three complete
genome sequences deposited in GenBank, with genome
sequences of 16 more strains either being incomplete
(draft) or containing ambiguities. For example, the gen-
ome of strain CECT 5716 (GenBank accession number
CP002033) is shown in the GenBank as ‘complete’ and
circular despite having a large number of ambiguities in
the sequence. The aim of this study was to determine
and characterise a complete genome sequence of this
microorganism and to identify its specific genetic
features.
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Organism information
Classification and features
Lactobacillus fermentum 3872 is a Gram-positive, rod-
shaped (Fig. 1), facultative anaerobic bacteria [9]
(Table 1). The strain is deposited under accession num-
ber VKM B-2793D at the All-Russian Collection of Mi-
croorganisms, Pushchino, Moscow Regions, Russia.
Isolated from milk of a healthy woman. Identified as
Lactobacillus fermentum in 2011 at the Institute of En-
gineering Immunology, Lyubuchany, Chekhov District,
Moscow Regions, Russia. When grown in MRS agar L.
fermentum 3872 forms medium sized, white colonies,
that are round, smooth, and convex [8]. L. fermentum
3872 was isolated from the milk of a healthy human fe-
male and has been found in infant and mother fecal
matter along with vaginal secretions, indicating the
strains ability to be present in different human ecological
habitats [8]. The bacterium has shown to be resistant to
gastric and intestinal stresses, have high adhesion to hu-
man HeLa and buccal cells and has the ability to pro-
duce hydrogen peroxide and lactic acid, the release of
which can be damaging to pathogenic bacteria [8]. L. fer-
mentum 3872 when present with a mixture of probiotics
has been found to be a promising tool for the treatment
of mastitis [8]. L. fermentum 3872 belongs to the phylum
firmicutes, among the circular genome sequences of L.
fermentum the genome of strain 3872 appears to be
most closely related to L. fermentum F6 (Fig. 2).

Genome sequencing information
Genome project history
Determination of a draft genome sequence of L. fermen-
tum 3872 allowed the identification of a number of
genes that may potentially be involved in probiotic activ-
ity, including a gene encoding a collagen-binding protein
[9]. The latter was subsequently found to be located on
plasmid pLF3872, the sequence of which was reported in
2015 [10]. In addition to the cbp gene, this plasmid, also
contained a number of conjugation-related genes, as well
Fig. 1 Photomicrograph of L. fermentum 3872 the bacteria was grown
overnight at 37 °C using MRS agar and gram stained. The image was
taken using an optical microscope with magnification 100 ×
as two toxin-antitoxin gene pairs required for stable
maintenance of the plasmid within the bacterial cell
[10]. The current article conducts a detailed analysis of
the recently completed chromosomal sequence of L. fer-
mentum 3872, the assembly is of high quality due to the
use of a hybrid sequencing approach along with a phys-
ical map of the genome described below. The article also
conducts comparative analysis with other completed
genome sequences belonging to the same species in
order to determine targets for future probiotic
experiments.

Growth conditions and genomic DNA preparation
L. fermentum 3872 was grown at 37 °C overnight on
MRS agar plates under anaerobic conditions. DNA was
isolated using Gentra Puregene Yeast/Bact Kit (Qiagen).
For IonTorrent sequencing the NanoView photometer
result indicated DNA concentration of 347ug/ul with
DNA quality of A260/A280: 1.922 and A260/A230:
1.881. For Pacbio sequencing the NanoView photometer
result for the extracted DNA was 314 ng/ul, A260/A280:
1.78 and A260/A230: 1.43, the Qubit DNA concentra-
tion result was 318 ng/ul. The DNA quality was also
assessed by using agarose gel electrophoresis which
indicated high concentration and good quality DNA
(data not shown).

Genome sequencing and assembly
The complete circular genome sequence of L. fermen-
tum 3872 was determined by employing a hybrid se-
quencing approach, including PacBio and IonTorrent
PGM sequencing, as well as OpGen optical mapping.
Long but high error and low coverage reads generated
by PacBio were used as a scaffolding tool. PacBio se-
quencing was conducted using an RSII sequencing ma-
chine with P6/C4 sequencing chemistry and a single
SMRT cell. HGAP and CELERA bioinformatics tools
were used for the removal of low quality reads and gen-
eration of one large contig representing a circular
2.3 Mb chromosomal sequence of L. fermentum 3872.
Short, but low error and high coverage reads produced
by IonTorrent PGM using 314v2 chip and 400 bp kit
were used for sequence verification and correction,
which was essential for the low coverage areas. Three
runs of IonTorrent sequencing were conducted produ-
cing 1,290,864 reads. Genome coverage by PacBio was
19.6 fold, as estimated by mapping of 4,902 reads be-
tween 500 and 21,671 bases long, with 4,871 of reads
(99.37%) representing 99.07% nucleotides mapped.
When combined with IonTorrent data, read mapping re-
sulted in 413,661,861 bases (99.57%) mapped onto the
assembly (2,330,492 nt) corresponding to 177.5 fold
coverage (173.9 and 293.8 for chromosome and plasmid
respectively). An optical map generated by OpGen
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Table 1 Classification and general features of Lactobacillus fermentum 3872T [38]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [39]

Phylum Firmicutes TAS [40]

Class Bacilli TAS [41, 42]

Order Lactobacillales TAS [41, 42]

Family Lactobacillaceae TAS [43, 44]

Genus Lactobacillus TAS [44, 45]

Species Lactobacillus fermentum TAS [44, 45]

(Type) strain: 3872T

Gram stain Positive IDA

Cell shape Rod IDA

Motility Not known

Sporulation Not known

Temperature range 30-42 °C TAS [8]

Optimum temperature 37 ± 2 °C TAS [8]

pH range; Optimum not known; 5.5-6.0 TAS [8]

Carbon source D-Ribose, D-Galactose, D-Glucose, D-Fructose, D-Maltose,
D-Lactose, D-Melibiose, D-Sucrose, D-Trehalose, D-Raffinose

TAS [8]

MIGS-6 Habitat Homo sapiens; milk TAS [8]

MIGS-6.3 Salinity Not known

MIGS-22 Oxygen requirement Facultative anaerobe TAS [8]

MIGS-15 Biotic relationship commensal TAS [8]

MIGS-14 Pathogenicity None known NAS

MIGS-4 Geographic location Russia/Moscow region TAS [8]

MIGS-5 Sample collection 2011 TAS [8]

MIGS-4.1 Latitude Not known

MIGS-4.2 Longitude Not known

MIGS-4.4 Altitude Not known
aEvidence codes - IDA inferred from direct assay, TAS traceable author statement (i.e., a direct report exists in the literature), NAS non-traceable author statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [46]
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technology was used for validation of the assembly, as
well as for trimming and circularisation of the genome
sequence. The genome information is summarised in
Table 2 and Additional file 1: Table S1.

Genome annotation
The genome sequence was annotated using PROKKA
[11], BASys [12] and RAST [13] tools. In addition, the
genome was annotated by NCBI GenBank annotation
pipeline [14]. Some annotation irregularities (such as e.g.
truncated coding sequences) produced by these four an-
notation tools were identified and corrected using
Geneious software [15].

Genome properties
The size of the L. fermentum 3872 genome (including
the plasmid) is 2,330,492 bp. The G + C content of the
circular chromosome (2,297,851 bp) is 55.6%. It contains
2328 genes, 2127 of which encode proteins and 128 are
pseudogenes. There are 15 genes encoding rRNAs (23S,
16S and 5S) and 58 genes encoding tRNAs. The genome
summary is presented in Tables 3, 4, 5.

Insights from the genome sequence
The circular view of the chromosome of L. fermentum
3872 was generated by using BRIGS software [16]. The
diagram indicates the leading (high G and low C region)
and lagging (low G and high C region) strands of the L.
fermentum 3872 chromosomal sequence (Fig. 3). Local
GC skew deviations within the leading or lagging strand
may indicate newly incorporated DNA, inversion or
translocations [17]. The diagram shows comparison of
the genomic sequence of L. fermentum 3872 with those
of L. fermentum CECT 5716, IFO 3956 and F6 strains.
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Fig. 2 Phylogenetic tree based on comparative analysis of 16S rRNA genes. The sequences were aligned using the MUSCLE alignment tool [47].
The numbers above the tree nodes represent Bayesian posterior percentage probabilities computed using MrBayes 3.2.2 [48]. The tool used the
HKY85 substitution model. A Markov Chain Monte Carlo chain length of 1,100,000 of a burn in length of 100,000, heated chains of 4 and a
heated chain temperature of 0.2. Lactobacillus_reuteri_DSM_20016_NZ_AZDD00000000.1 was used as an out-group. The tree generated was
further modified using Geneious tree builder [15]

Lehri et al. Standards in Genomic Sciences  (2017) 12:19 Page 4 of 9
L. fermentum 3872 contains genes required for the
synthesis of such vitamins as B1, B2, B5, B7 and B9.
These genes may play a crucial role in providing the nat-
ural hosts with essential vitamins. There are symporter
encoding genes that allow the bacteria to survive acidic
conditions of the stomach and thrive within the gastro-
intestinal tract. Among such genes are those encoding
Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Completed high quality

MIGS-28 Libraries used IonTorrent OT2 400 sequencing kit,
PacBio P6/C4

MIGS 29 Sequencing platforms Ion Torrent Personal Genome
Machine, PacBio RSII sequencing
Machine

MIGS 31.2 Fold coverage 19.7 (PacBio), 49.6 (Ion Torrent
run1), 60.1 (Ion Torrent run 2),
47.9 (Ion Torrent run 3)

MIGS 30 Assemblers CELERA, MIRA

MIGS 32 Gene calling method NCBI PGAP, PROKKA, RAST, BASys

Locus Tag NZ_CP011536

Genbank ID CP011536.1

GenBank Date of Release 28/5/2015

GOLD ID Ga0099330

BIOPROJECT PRJNA224116, PRJNA213970

MIGS 13 Source Material Identifier VKM:B-2793D

Project relevance biotechnological, antimicrobial,
probiotic
Na+/H+ (four copies), as well as gluconate/H+, sugar/H+,
amino acid/H+, and glutamate/H+ symporters.
Survival of lactic acid bacteria within the gut is

dependent on sugar metabolism and amino acid decarb-
oxylation/deamination assisting in maintaining optimal
pH levels [18]. Among relevant genes of L. fermentum
3872 are those involved in arginine and proline metabol-
ism (27 genes). There are also 14 genes involved in
glutathione metabolism, which in Lactobacillus salivar-
ius was found to be required for acid stress response
[19]. There is a gene encoding dTDP-glucose 4,6-dehy-
dratase (Locus tag: N573_RS00605). In Lactobacillus
plantarum this protein was found to be associated with
gastric acid tolerance [20]. There is a gene encoding
Undecaprenyl-diphosphatase (EC 3.6.1.27) (Locus tag:
N573_RS09665) with a possible role in bacitracin resist-
ance by similarity to E. coli producing a similar protein
[21]. In other bacteria, such as Lactobacillus rhamnosus
[22], the genes encoding DnaK (L. ferementum 3872
Locus tag: N573_RS04975) and GroEL (L. ferementum
3872 Locus tag: N573_RS01895) are known to play a
role in heat and hyperosmotic shock tolerance. In
addition, in Lactobacillus plantarum both genes are also
Table 3 Summary of the genome: one chromosome and one
plasmid

Label Size
(Mb)

Topology INSDC
identifier

RefSeq ID

Chromosome 1 2297851 bp Circular CP011536.1 NZ_CP011536.1

Plasmid 1 32641 bp Circular CP011537.1 NZ_CP011537.1

http://doi.org/10.1601/nm.5365
http://doi.org/10.1601/nm.5365
http://doi.org/10.1601/nm.10813
http://doi.org/10.1601/nm.10813
http://doi.org/10.1601/nm.5420
http://doi.org/10.1601/nm.5420
http://doi.org/10.1601/nm.5424
http://doi.org/10.1601/nm.5420


Table 4 Genome statistics

Attribute Value Percent

Genome size (bp) 2,330,492 100.00

DNA coding (bp) 2,028,095 87.02

DNA G + C (bp) 1,179,376 50.56

DNA scaffolds 2 100.00

Total genes 2,328 100.00

Protein coding genes 2127 91.37

RNA genes 73 3.14

Pseudo genes 128 0.05

Genes in internal clusters 481 20.66

Genes with function prediction 1824 78.35

Genes assigned to COGs 1563 67.14

Genes with Pfam domains 1898 81.53

Genes with signal peptides 37 1.59

Genes with transmembrane helices 507 21.78

CRISPR repeats 3 0.13

Table 5 Number of genes associated with general COG
functional categories

Code Value Percenta Description

J 179 8.42 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 108 5.08 Transcription

L 97 4.56 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 26 1.22 Cell cycle control, Cell division, chromosome
partitioning

V 34 1.60 Defense mechanisms

T 58 2.72 Signal transduction mechanisms

M 83 3.90 Cell wall/membrane biogenesis

N 11 0.52 Cell motility

U 13 0.61 Intracellular trafficking and secretion

O 52 0.02 Posttranslational modification, protein turnover,
chaperones

C 72 3.39 Energy production and conversion

G 91 4.28 Carbohydrate transport and metabolism

E 148 6.96 Amino acid transport and metabolism

F 96 4.51 Nucleotide transport and metabolism

H 95 4.47 Coenzyme transport and metabolism

I 63 2.96 Lipid transport and metabolism

P 81 3.80 Inorganic ion transport and metabolism

Q 21 0.99 Secondary metabolites biosynthesis, transport
and catabolism

R 134 6.30 General function prediction only

S 6.30 3.76 Function unknown

- 766 36.01 Not in COGs
aBased on the total number of protein encoding genes
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implicated in mucin binding [23] potentially inhibiting
adherence of pathogenic bacteria to the mucus layer.
Furthermore, the GroEL of Lactobacillus johnsonii La1
was found to be a cell surface located protein capable of
inducing aggregation of a gastric pathogen Helicobacter
pylori in vitro [24]. A gene (Locus tag: N573_RS03470)
encoding a protein similar to Lactobacillus johnsonii La1
Translational Elongation Factor involved in bacterial ad-
hesion to host cells [25], was also found. By similarity to
function of similar genes found in Lactobacillus plan-
tarum [23], L. fermentum 3872 genes encoding D-
Lactate dehydrogenase (Locus tag: N573_RS11010) and
6-phosphogluconate dehydrogenase (Locus tag: N5
73_RS10960) are likely to promote bacterial adhesion to
mucin and intestinal epithelial cells. There is a number
of genes (e.g. loci N573_RS00495, N573_RS00500 and
N573_RS00505, located to the same gene cluster) poten-
tially involved in the biosynthesis of exopolysaccharides,
which in other lactic acid bacteria were found to be im-
portant for bacterial survival and protection from toxic
compounds [18].

Comparative genomics
Comparison of the complete chromosomal sequences of
L. fermentum using LASTZ software [26] revealed a
unique region of the L. fermentum 3872 genome (be-
tween positions 748,875 bp and 919,330 bp) (Fig. 4) This
region contains genes encoding hypothetical proteins,
enterolysin A (835,633 bp-836,847 bp) and ‘CAAX
amino terminal protease self-immunity’ (838,683 bp-
839,366 bp) protein, suggesting the bacterial ability to
produce a bacteriocin. This was confirmed by running
BAGEL3 bacteriocin prediction software [27], which
identified a region (830,634 bp-840,633 bp) responsible
for the biosynthesis of class III bacteriocin (Fig. 5d). No
similarities were found for this region when using NCBI
BlastN and the non-redundant database.
The region between 1,564,375 bp and 1,603,857 bp of

the L. fermentum 3872 genome sequence contains inver-
sions of respective parts of the genomes of L. fermentum
strains F6, CECT 5716 and IFO 3956. This region also
contains some prophage-related genes not found in the
genomes of strains used for comparison. The region be-
tween 1,829,274 bp and 1,857,186 bp has a counterpart
in L. gasseri ATCC 33323 (GenBank accession: CP0
00413) genome and may have been acquired via hori-
zontal gene transfer (data not shown). The region be-
tween 2,212,692 bp and 2,237,160 bp has no matching
sequences in the genomes of L. fermentum strains F6,
CECT 5716 and IFO 3956, and contains conjugation
and peptidoglycan hydrolase genes. NCBI BlastN
analysis using the non-redundant database revealed high
similarities to plasmid sequences, particularly with plas-
mid pPECL-5 from Pediococcus claussenii ATCC BAA-
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Fig. 3 L. fermentum 3872 genome representation showing GC skew. Leading and lagging strands are shown in green and purple. BlastN
comparison of the genome of L. fermentum 3872 against those IFO 3956, CECT 5716, and F6, are indicated by the colour coded key. The intensity
of each colour indicates nucleotide percentage identity. The diagram was generated using BRIGS software [16] using an upper identity threshold
of 70% and a lower identity threshold of 50%
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344 (e-value 0.0, query cover 55%). The other parts of
this region contain the genes encoding transposases and
an internalin J-like protein (InlJ, locus tag: N573_0
11130), containing an MucBP (mucin binding protein)
domain [28, 29].
The genome of L. fermentum 3872 contains putative

mucus binding protein-encoding gene also present in
the genomes of strains F6, IFO 3956 and CECT 5716,
but not in any other Lactobacillus genomes sequenced
to date. Moreover, a gene, encoding a partial collagen-
binding protein (Locus tag: N573_000435) is also found.
This protein contains an LPXTG_anchor domain and a
single B domain, but lacks the collagen-binding A
domain [30]. The gene encoding this protein was not
found in any other L. fermentum strain.
The L. fermentum 3872 genome also contains an ag-

gregation substance precursor protein encoding gene
(Locus tag: N573_004020). The gene may potentially
contribute to bacterial adhesion and aggregation [31].
There are a number of exopolysaccharide production-
related genes. In particular, epsH (Locus tag: N573_0
08790) predicted to be involved in biofilm formation,
and may also contribute to protection against colitis
[32]. Remarkably, neither of these two genes (Locus tags:
N573_004020, N573_008790) are present in the ge-
nomes of the strains used for comparison. An enolase
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Fig. 4 Comparison of the genomes of L. fermentum strains 3872, F6, 5716 and IFO 3956 using LASTZ program with a step length of 20 and a
seed pattern of 12 of 19 [26]. Similar direct and inverted regions are shown in blue and red respectively
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encoding gene (Locus tag: N573_002185) present in L.
fermentum 3872 may promote bacterial adhesion to col-
lagen [33].
Comparative analysis of the genomes of L. fermentum

strains 3872, F6 and IFO 3956 using Spine/AGent Pan-
Fig. 5 Comparison of the genomes of L. fermentum strains 3872, F6, CECT
a seed pattern of 12 of 19 [26] with close-up of regions containing bacterio
Core genome analysis tools with default parameters [34]
allowed the identification of 428 unique ORFs of the L.
fermentum 3872 genome with further 1650 ORFs repre-
senting core genes. One hundred and forty eight of the
unique ORFs encode hypothetical proteins, with the
5716 and IFO 3956 using LASTZ program with a step length of 20 and
cin and prophages
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other genes representing mobile elements, CRISPR-
related and those involved in conjugal transfer. Among
other genes were those encoding ABC transporters and
those involved in bacteriocin biosynthesis, heavy metal
resistance, and prophage-related genes.

Prophages
PHAST software [35] allowed the identification of four
prophage related regions (Fig. 5), each containing a
phage attachment (ATT) site. A 34.5 kb region between
550,236 bp and 584,763 bp includes a number of genes
encoding phage tail proteins, as well as transposases and
integrases (Fig. 5a). Another 32 kb region (886,091 bp -
918,126 bp) also contains transposase, terminase and
integrase encoding genes (Fig. 5d). A 39.4 kb region be-
tween 1,564,361 bp and 1,603,857 bp contains genes re-
lated to the biosynthesis of tail and head proteins, a
protease, portal protein, terminase and integrase
(Fig. 5b). A 30.2 kb region between 1,826,924 bp and
1,857,190 bp contains genes encoding a transposase, ter-
minase, portal protein, capsid, head and recombinase.
This region also contains an additional gene annotated
as mucBP (Locus tag: N573_RS03620), which encodes
amino acid protein containing 17 MucBP binding do-
main repeats. However, because of the absence of a cell
wall anchor domain required for attachment, it is un-
likely that this protein plays a role in adhesion (Fig. 5c).
In addition, there are prophage-related genes (not identi-
fied by PHAST) adjacent to the bacteriocin encoding re-
gion. The prophage-related regions 550,236 bp -
584,763 bp, 1,564,361 bp - 1,603,857 bp and 1,826,924
bp - 1,857,190 have similarities in completely sequenced
genomes of the species (Fig. 5a-b), whilst region
749,875 bp - 919,330 bp (containing prophage-related
genes between 826,924 bp and 857,190 bp) is unique for
strain 3872 (Fig. 5d).

Conclusion
Completion of the genome sequence of L. fermentum
3872 allowed the identification of various features that
may contribute to probiotic properties of this bacterium,
in addition to the already described CBP-encoding gene
carried by the pLF3872 plasmid [9, 10]. Among these is
a novel putative bacteriocin-encoding gene not found in
any other genomes sequenced to date. Since a gene en-
coding a putative mucus-binding protein (Locus tag:
N573_RS03620) suggests leucine as start codon, it
remains to be verified whether the protein is actually
expressed. There is a number of other genes (shared
with other lactic acid bacteria) potentially required for
bacterial attachment to host cells, survival in unfavour-
able conditions and resistance to toxic compounds. Des-
pite the presence of some conserved features shared by
all L. fermentum genomes, and a very high similarity
between their sequences, the genome of strain 3872 has
a large number of unique genes such as epsH, and a pu-
tative adhesion gene, inlJ. A gene that may promote bac-
terial aggregation has also been found. These genes
could be a subject of further investigation. Conservation
within the genome of as many as four large prophage-
related gene clusters may also contribute to the lifestyle
and probiotic properties of this microorganism. In par-
ticular, some bacteriocins produced by other bacteria re-
semble components of bacteriophages, and are encoded
by prophage regions of the chromosomes [36]. The
bacteriophage-related gene products are being studied as
alternatives to antibiotics due to their high potency and
specificity, and thus may be of interest for further inves-
tigation [35, 37]. As L. fermentum 3872 was isolated
from the milk of a healthy human female, the presence
of multiple vitamin synthesising genes, along with the
genes allowing the bacterium to thrive in the gut envir-
onment, would make L. fermentum an ideal candidate
for probiotic studies. The ability of these bacteria to pro-
duce various adhesins may allow competitive exclusion
of pathogenic microorganisms employing similar mecha-
nisms of adhesion and interacting with the same host
cell receptors. The presence of a novel bacteriocin-
encoding gene may also contribute to beneficial proper-
ties of this strain.
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