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1 Introduction and summary

Two-dimensional conformal field theories (2d CFTs) and their celebrated Cardy formula

play a central role in our attempt at understanding the microscopic degrees of freedom

responsible for black hole entropy. Strominger and Vafa’s seminal derivation [1] of the en-

tropy of the three-charges extremal D1-D5 black hole revealed that the low energy effective

field theory governing the excitations of the system flows in the infrared to a 2d CFT,

whose asymptotic number of states counted by the Cardy formula exactly accounts for the

Bekenstein-Hawking entropy. This result was eventually generalized to a variety of other

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
4

setups, including both extremal and near-extremal higher-dimensional black holes [2–9],

and generic BTZ black holes [10, 11] in three dimensions [12]. The matching between

black hole and Cardy entropies could be traced back to the presence of an AdS3 factor (in

the near-horizon region for the higher-dimensional cases) of the corresponding geometries.

The result followed as a consequence of the work of Brown and Henneaux [13] who showed

that the classical phase space of AdS3 gravity is endowed with the action of the 2d local

conformal group, implying that states of the corresponding quantum gravity theory should

organize into representations of a 2d CFT [12].

More precisely, the Cardy formula is a well-known universal property of unitary and

modular invariant 2d CFTs encapsulating the asymptotic degeneracy of states at large

charges/temperatures for fixed central charges:

SCardy = 2π

√
c+L+

0

6
+ 2π

√
c−L−0

6
(1.1)

=
π2

3
(c+T

+ + c−T
−). (1.2)

Remarkably, this formula matches the Bekenstein-Hawking entropy of the BTZ black holes

for all values of the charges/potentials (and not only L±0 →∞ or T± →∞). The reason for

this seemingly unreasonable effectiveness was clarified in [14] (see also [15–17] for related

earlier works): for CFTs with a large central charge (corresponding to the semi-classical

limit on the gravity side) and a sparse light spectrum, the Cardy regime extends all the

way down to where the condition L+
0 +L−0 ≥ c

12 is satisfied. This behavior puts constraints

on the precise nature of 2d CFTs potentially dual to AdS3 theories of gravity, examples

of which include symmetric orbifolds [14, 17–21] and extremal CFTs [22, 23]. Other CFTs

potentially dual to AdS3 gravity have recently been discussed in [24] The key property

responsible for the existence of a simple and elegant formula like (1.1) is modular invariance.

For a partition function at inverse temperature β, it is expressed by the equality

Z(β) = Z

(
4π2

β

)
. (1.3)

It is the latter expression that allows to express the high temperature partition function

using only minimal data about the vacuum of the theory. The universal character of the

asymptotic growth of the number of states in 2d CFTs, as captured by the Cardy formula,

is a consequence of the peculiar UV/IR connection in 2d CFTs embodied in (1.3), relating

high/low-temperature regimes of the theory. A similar behaviour is expected to explain the

universality of the area-entropy law in gravity theories. On the one hand, the Bekenstein-

Hawking entropy SBH = Area/4GN captures to leading order in 1/GN the UV density of

states of a quantum gravity theory governed by the Einstein action in the IR. On the other

hand, it is a reasonable expectation that, beyond its mere existence, the specific details of

a UV-complete gravity theory are actually not needed to understand the area law, much

like the actual quantum theory of atoms was not needed to derive the universal laws of

thermodynamics for gases from statistical reasoning [25].

– 2 –
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In any sensible approach to quantum gravity, the Einstein-Hilbert action will only

provide the leading low-energy effective action. At high energies, it is expected to be

corrected by higher-curvature terms suppressed by a dimensionful scale. Typically in string

theories, the coupling would correspond to the inverse string tension α′. In that case, the

entropy-area law is no longer expected to hold, and is modified in order for the first law of

black hole mechanics to hold [26–28]. Interestingly, the match between Cardy and black

hole entropies still persists [9, 29–40]. The effect of higher-curvature corrections in AdS3

gravity boils down to a global multiplicative renormalization of all the charges of the theory.

Of course, AdS3 spaces and asymptotically AdS boundary conditions are believed to

be part of just one (although possibly the simplest) among many manifestations of the

holographic principle, and intensive work has been devoted to depart from the AdS/CFT

paradigm. This includes for instance dS/CFT [41], AdS/Condensed Matter Theory [42, 43],

Non-relativistic Schrödinger and Lifshitz Holography [44], Hyperscaling geometries [45],

Flat Space Holography [46] and Kerr/CFT [25, 47] (references are by no means meant to

be extensive, and point most of the time at reviews on the subjects).

In this work, we will focus on one particular example of non-AdS Holography: warped

AdS3 spaces (WAdS3) and Warped Conformal field Theories (WCFTs) [48–52]. The former

have appeared in various contexts, in relation to Kerr/CFT and Schrödinger holography,

as UV deformations of AdS3 spaces. They are parameterized by two constants which are

usually taken as `, the original AdS3 radius, and (ν2−1) characterizing the departure from

AdS3. They were observed to display an Asymptotic Symmetry Group (ASG) different

from the Brown-Henneaux conformal symmetry group, consisting instead in the semi-direct

product of a Virasoro algebra and a u(1) affine Kac-Moody algebra [53–57]. WCFTs are

defined as two-dimensional field theories with precisely these symmetries. Interestingly,

these theories possess an infinite-dimensional symmetry group as well as a notion of mod-

ular invariance allowing the derivation of a Cardy-type formula for the density of states

given by [51]

SWCFT = −4πi
P0P

vac
0

k
+ 2π

√
c

6

(
L0 −

P 2
0

k

)
(1.4)

=
2πi

Ω
P vac

0 − 8π2

βΩ

(
(P vac

0 )2

k
− c

24

)
(1.5)

where L0 and P0 are the zero-modes of the Virasoro and Kac-Moody (KM) current gener-

ators respectively, β the inverse temperature and Ω the angular velocity, c is the Virasoro

central charge and k the u(1) level. P vac
0 is the charge of the vacuum state on the cylinder

which is not fixed by the symmetries of the theory through a plane-to-cylinder map like

in 2d CFTs.1 Further properties of these new classes of field theories have been explored

e.g. in [58, 59]. Remarkably, the horizon entropy of the black hole solutions belonging

to the WAdS3 phase space was seen to exactly match the field theory expression (1.4).

Note that similar counting formulas and matchings have been observed in Lifshitz [60, 61],

1Eq. (1.1) also implicitly contains the vacuum charges on the cylinder, but in a unitary CFT these are

given by L±,vac0 = − c
±

24
. In WCFTs, only Lvac

0 is constrained by unitarity bounds to be Lvac
0 =

(Pvac
0 )2

k
− c

24
.
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Flat Space [62, 63], Hyperscaling [64] and Rindler [64, 65] holography in 2+1 space-time

dimensions, but also in higher dimensions [66].

So far, the matching between Bekenstein-Hawking and field theory entropies for WAdS3

black holes has been performed on a case-by-case basis in specific theories admitting WAdS3

spaces as a solution — these backgrounds do not solve the vacuum Einstein’s equation,

so they require including matter fields or higher curvature corrections (see e.g. [51] for

Topologically Massive Gravity [67, 68] and string theory embeddings, [69, 70] for New

Massive Gravity [71–73] for Born-Infeld extensions of NMG). The goal of the present work

will be to extend this to a completely arbitrary higher-curvature gravity theory admitting

WAdS3 as a solution. We will indeed show that the black hole entropy is always repro-

duced by (1.4) or (1.5). The result is comparable in spirit to the analogous statement

for BTZ black holes that their entropy is always reproduced by a Cardy formula [29, 39],

and similarly in Kerr/CFT where the original derivation of [74] could be extended to an

arbitrary higher-curvature theory [75]. We will closely follow the philosophy of the latter

work. On the one hand, we will compute the black hole entropy of the WAdS3 black holes

given a general gravity theory with a Lagrangian L. It is known that in the presence of

higher-derivative corrections, the entropy is no longer given by the horizon area, but rather

by Wald formula [26–28, 76] which in 3d reads as

SWald = −2π

∫ 2π

0
Zαβµνεαβεµν

√
gφφ|r=r+ , (1.6)

where Zαβµν is constructed out of curvature invariants of the metric and possesses the

symmetries of the Riemann tensor and εαβ is the binormal at the horizon r+. In the case

where the Lagrangian is only a function of the Riemann (without covariant derivatives),

then symbolically Z ∼ ∂L/∂Riemann. In general, the expression is more complicated (see

section 3 for details).

Applying eq. (1.6) to the WAdS3 black holes, since all these black holes have a local

SL(2,R) × U(1) isometry, this will allow us to rewrite the Wald entropy in a very simple

form as

SWald = − 64π2ν2

(−3 + 5ν2)

A

Ω
(1.7)

where A is a constant depending only on (ν, `) and the couplings of the theory (in particular,

they do not depend on the black hole parameters).2 Then, exploiting again the symmetries

and using the Covariant Phase Formalism [26, 27, 75, 77–80] we will be able to compute the

charges and central charges appearing in (1.4) and (1.5). In particular, we will find that

P vac
0 =

32 i π ν2

−3 + 5ν2
A, (1.8)

k = −
32π ν

(
3 + ν2

)
` (−3 + 5ν2)

A, (1.9)

c =
768 ` π ν3

(3 + ν2) (−3 + 5ν2)
A (1.10)

2From here on, this is what we will mean whenever we state that a quantity depends only on (ν, `). The

dependence on the couplings will be implied since it is related to (ν, `) by way of the equations of motion.
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which, when plugged in (1.5), exactly reproduces (1.7):

SWald = SWCFT . (1.11)

In the body of the paper we will further discuss equality in other ensembles.

As a by-product of our computations, which allowed us to compute the charges of the

Warped Black Holes in arbitrary theories, we reconsider the existence of a Hawking-Page

phase transition for these backgrounds, generalizing the results of [81] in Topologically

Massive Gravity.

The paper is organized as follows. We will first review in section 2 the phase space and

asymptotic symmetry group of asymptotically WAdS3 spacetimes as well as the WCFT

entropy formula in WAdS/WCFT holography. The warped black hole entropy in New

Massive Gravity will be provided to review some known results of the entropy matching.

Moving on, in section 3.1, we further investigate the geometry of WAdS3 and argue that all

curvature invariants can be expressed in a manner that will allow us to derive, in Sect 3.2,

the Wald entropy of the warped black hole in a very concise form (see eq. (1.7)). Moreover,

these simplifications will make possible the computation of the charges for an arbitrary

theory in section 4. Section 5 is devoted to provide explicit formulae in a few examples in

a hope to make the arguments more understandable and transparent. In the final section,

we discuss the Hawking-Page phase transition for WAdS3 black holes. Technical details

are relegated to two appendices.

2 Review: WAdS3 spaces WCFT entropy matching in NMG

In this section, we review some basic features about WAdS3 spaces and reproduce the match

between Bekenstein-Hawking and WCFT entropies in the case of New Massive Gravity.

2.1 Phase space

WAdS3 spaces [48, 50, 82] can be obtained by deforming the AdS3 metric in the Kerr-

Schild-like manner, breaking the SL(2,R) × SL(2,R) isometry group of AdS3 down to a

SL(2,R)×U(1) isometry group. The metric in global coordinates is

ds2 =
`2

ν2 + 3

[
− cosh2(σ)dτ2 + dσ2 +

4ν2

ν2 + 3

(
du+ sinh(σ)dτ

)2
]

(2.1)

in which we recognize the AdS3 metric (for ν = 1) but otherwise with a squash-

ing/stretching factor 4ν2/(ν2 +3). In this case, black hole solutions exist and are quotients

of the WAdS3 metric. The black hole metric can be written in the so-called warped-black-

hole coordinates of [55] as:

ds2 = dt2 +
dr2

r2

`2
(ν2 + 3)− 12mr + 4j`

ν

+ dφ2

(
3r2

`2
(ν2 − 1) + 12mr − 4j`

ν

)
+ dt dφ

(
−4νr

`

)
(2.2)

– 5 –
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with r ∈ [0,∞), t ∈ (−∞,∞), φ ∼ φ+ 2π, and m and j are parameters characterizing the

black hole. That metric is a black hole with two horizons in the case where j < 9`m2ν
3+ν2 .

They are located at

r± =
2`2

ν2 + 3

(
3m±

√
9m2 − j

ν`
(ν2 + 3)

)
. (2.3)

When the warp parameter ν2 > 1, the solution is said to be stretched, and when ν2 < 1,

it is squashed. For ν2 = 1 we recover locally AdS3 space. We will focus on the spacelike

stretched case, which exhibits no pathologies such as naked closed timelike curves, unlike

its squashed counterpart.

An important feature of these metrics is that they are part of exact string theory

backgrounds, like AdS3 spaces. The latter are known to be the target space of an exact

Conformal Field Theory, an SL(2,R) WZW model [83–88]. These models provide exact

solutions to all orders in α′ modulo a renormalization of the WZW level, identified with the

AdS radius [89]. WAdS3 spaces, on the other hand, are part of backgrounds representing

marginal deformations of the SL(2,R) WZW model [90]. It was shown in Sect 2.3 of [91]

that the background fields extracted from the classical action get renormalized only through

a redefinition of the parameters in the metric (the AdS radius and squashing parameter).

Therefore, when considering WAdS3 black holes in higher-curvature theories, we will have

to consider the modification to their entropy only due to replacing the area law by Wald’s

entropy (and not to a modification of the geometry).

2.2 Asymptotic symmetries

WAdS3 spaces are not asymptotically AdS3 (except of course for ν2 = 1) and do not belong

to the Brown-Henneaux phase space [13]. Instead, they satisfy the following boundary

conditions [53–57] (coordinates are (t, r, φ)):

gBC =

 1 +O(r−1) O(r−2) −2νr
` +O(r0)

O(r−2) `2

ν2+3
1
r2 +O(r−3) O(r−1)

−2νr
` +O(r0) O(r−1) 3(ν2−1)

`2
r2 +O(r)

 (2.4)

The infinitesimal diffeomorphisms leaving these boundary conditions invariant are gen-

erated by the asymptotic Killing vectors [55]

ln = einφ
((

1 +O(r−1)
)
∂t + (−inr +O(1)) ∂r +

(
1 +O(r−2)

)
∂φ
)

pn = einφ
(
1 +O(r−1)

)
∂t. (2.5)

These generators obey the following Lie-commutation relations:

i[lm, ln] = (m− n) lm+n, i[lm, pn] = −n pm+n, [pm, pn] = 0 . (2.6)

The conserved charges Lm, Pm associated to these generators ln, pn satisfy a Virasoro-Kac-

Moody U(1) algebra:

i{Lm, Ln} = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (2.7)

– 6 –
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i{Lm, Pn} = −nPm+n (2.8)

i{Pm, Pn} =
k

2
mδm+n,0 . (2.9)

The explicit definitions and expressions of charges (in particular the central charge and the

level) and their commutators will be provided later, since they are (bulk)-theory-dependent.

2.3 WCFT and BH entropies in NMG

The above algebra is the defining symmetry algebra of a WCFT, a two-dimensional field

theory with global SL(2,R)×U(1) invariance [51, 52]. These theories share many features

with 2d CFTs, in particular the existence of a formula counting the degeneracy of states

at large potentials/charges, given in the micro-canonical ensemble by [51]

SWCFT = −4πi
P0P

vac
0

k
+ 2π

√
c

6

(
L0 −

P 2
0

k

)
. (2.10)

This formula has allowed to match entropies on the gravity and field theory sides in various

theories. We briefly review here the case of NMG [69].

The NMG action is given by

INMG =
1

16π

∫
d3x
√
−g
(

(R− 2Λ) +
1

p

(
RµνR

µν − 3

8
R2

))
(2.11)

where p has the dimensions of a mass square. Warped black holes are solutions of NMG

for the following couplings:

p =
3− 20ν2

2`2
, Λ =

4ν4 − 48ν2 + 9

2`2 (20ν2 − 3)
. (2.12)

In terms of the angular velocity

Ω = − ν2 + 3

4
(√

` ν (9`m2ν − (ν2 + 3) j) + 3`mν
) (2.13)

the entropy can be expressed as

SBH = − 8πν2

(20ν2 − 3) Ω
(2.14)

on the gravity side. On the field theory side, the central charge c and level k in the

asymptotic symmetries algebra are

c =
96`ν3

(3 + ν2)(20ν2 − 3)
, k = − 4ν(3 + ν2)

`(20ν2 − 3)
. (2.15)

The WCFT formula for the entropy can be rewritten in terms of Ω and the inverse tem-

perature β as

SWCFT =
2πi

Ω
P vac

0 − 8π2

βΩ
Lvac

0 (2.16)
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with

Lvac
0 =

(P vac
0 )2

k
− c

24
. (2.17)

P0 is the charge associated to ∂t and L0 the one associated to ∂φ. The vacuum is obtained

by taking m = i/6 and j = 0, corresponding to the only metric in the family (2.2) with

enhanced SL(2,R)×U(1) isometry and no conical defect in appropriate coordinates (for a

detailed discussion, see [51]), which yields

P vac
0 =

4ν2i

20ν2 − 3
, Lvac

0 = 0. (2.18)

We then have

SBH = SWCFT (2.19)

as expected. The goal of this paper is to show that this matching holds for any higher-

derivative gravity theory.

3 Geometry of WAdS3 and Wald entropy

3.1 Symmetries and curvature tensors

In this section, we summarize some key facts related to curvature invariants constructed

out of a WAdS3 metric. In particular, these results are applicable to the warped black

holes since they are quotients of the WAdS3 metric.

First of all, in 3d, all Riemann tensors can be expressed in terms of Ricci tensors. In

the case of WAdS3, from [50], we know that some products of Ricci tensors are

{R,RµνRµν , RµνRνρRρµ} =
6

`2

{
−1,

ν4 − 2ν2 − 3

`2
,
−ν6 − 3ν4 + 9ν2 − 9

`4

}
. (3.1)

This can be easily verified for the metric eq. (2.2). Furthermore, recall that in a maximally

symmetric spacetime, all curvature tensors (for e.g. product of covariant derivatives of

Riemann/Ricci tensors) are expressible (covariantly) in terms of the metric tensor.3 In

the present case where we only have SL(2,R) × U(1), a slight generalization of such an

expression is available as well. This is in essence the argument in appendix D of [75].

Any tensor constructed out of the metric should respect the SL(2,R)×U(1) isometry.

The consequences have been investigated and exploited in ref. [75]. In particular, any

scalar curvature invariants constructed out of the metric are constants. As such, in our

case, these constants can only depend on ν and ` and not on the parameters of the black

holes (i.e. m and j), which are parameters of the global quotients.4

3For example, Rµνρσ = const (gµρgνσ − gνρgµσ), from which all products of (covariant derivatives) of

Riemanns can hence be constructed in terms of the metric tensor.
4There are two ways to see this. First, repeating the argument in appendix D.1 of ref. [75], one writes

down a Killing vector which takes a particular point in the manifold to any other point. Then one uses

a Lorentz boost in the tangent space to argue that all curvature scalars are invariants under this boost.

These two facts imply that the value of any curvature scalar is constant over the manifold. Alternatively,

a more direct way to see this is to evaluate the Ricci tensor and its covariant derivatives for the black

hole spacetimes (i.e. eq. (3.7)). In three dimensions, all curvature scalars are just products of covariant

derivatives of Ricci with appropriate contractions. Using eq. (3.6)–(3.7), upon contracting all indices, one

sees that eventually one ends up with just constants depending on ν and `.

– 8 –
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For a general tensor, let us consider what happens in the case of a symmetric-two tensor

Sµν . Due to boost-invariance (which is a consequence of the SL(2,R)×U(1) symmetry), in

a conveniently chosen vielbein basis e0̂, e1̂ and e2̂ (we wrote these as one-forms eî ≡ eîµdxµ),

which is given explicitly in [75], we have

S0̂0̂ = −S1̂1̂, S 0̂1̂ = S0̂2̂ = S1̂2̂ = 0 (3.2)

while S2̂2̂ is arbitrary. This implies that any such tensor only contains two arbitrary

components. In particular, we can conveniently decompose it as

Sâb̂ = c1η
âb̂ + c2J

âJ b̂ . (3.3)

where the constants ci’s only depend on ν and `. The vector Jµ is most usefully chosen to

be the U(1)R of the SL(2,R)L ×U(1)R,

Jµ∂µ = ∂t = p0 , (3.4)

where we work in the warped black hole coordinates in which eq. (2.2) is written and p0

is the U(1)R Killing vector (see eq. (2.5)). Note that JµJµ = 1. Translating back into

spacetime indices, we obtain

Sµν = c1g
µν + c2J

µJν . (3.5)

Furthermore, note that

∇µJν =
ν

`
εµνσJ

σ (3.6)

where the convention is εtrφ =
√
−g = 1. Thus, all products of covariant derivatives of S

can in turn be rewritten as products of g, ε and J . Let us give an example where Sµν = Rµν .

Then,

Rµν =
ν2 − 3

`2
gµν + 3

1− ν2

`2
JµJν , ∇µRνρ = 3ν

ν2 − 1

`3
[εµνσJρ + εµρσJν ] Jσ . (3.7)

Throughout this paper, we will be interested in a tensor Zαβµν which has the same

index-symmetry as the Riemann tensor and is constructed out of the metric (and its deriva-

tives). It also depends on the theory one considers. By general SL(2,R)×U(1) symmetric

arguments, we can repeat the above arguments to obtain

Zαβµν = A
[
gµαgβν − gανgβµ

]
+B

[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
(3.8)

for some constants A and B that only depend on (ν, `). In this case, we prefer to reexpress

JµJν in terms of Rµν such that the r.h.s. is expressed in terms of product of gµν and Rµν .

On the other hand, the equations of motion always take the form

Kµν [gαβ ] = 0 (3.9)

where Kµν [gαβ ] for a given symmetric-two-tensor constructed out of the metric. For e.g.

in pure Einstein theory, it is just the Einstein tensor or the Ricci tensor. Following the
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above logic, evaluating Kµν on a warped AdS or black hole solution, the symmetry of the

geometry allows us to decompose Kµν into a sum of the metric and the Ricci tensor:5

Kµν = E1Rµν + E2gµν = 0. (3.10)

where E1 and E2 are constants which only depend on (ν, `) and on the couplings αi of

the theories. Note that the dependence on the couplings of the theories is linear. The

equations of motion then reduce to two independent equations, setting

E1(ν, `, αi) = E2(ν, `, αi) = 0. (3.11)

This means that as long as we have a theory with two independent couplings, such as

that in TMG or NMG, then we will always be able to solve the equations of motion.

The couplings appear linearly in the Ei’s, for that reason we can always solve these two

decoupled equations (subject to obtaining real ` and ν as solutions).

3.2 Wald entropy of warped black holes

For any diffeomorphism covariant theory of gravity, the Wald entropy formula in 3d is

SWald = −2π

∫ 2π

0
dφZαβµνεαβεµν

√
gφφ

∣∣∣
r=r+

(3.12)

where

Zαβµν =
δcovL

δRαβµν
=:
∑
i=0

(−1)i∇(e1 · · · ∇ei)
∂L

∂∇(e1 · · · ∇ei)Rαβµν
(3.13)

and εµν is the binormal at the horizon, given by εµν = ∇µξν with ξ the generator of the

horizon with its surface gravity normalized to unity [92].

In general, the expression of the Z tensor is rather complicated. However, we have seen

that by general SL(2,R) × U(1) symmetry arguments (see section 3.1), it can be written

as (3.8). Given Z of the form above, we can compute

Zαβµνεαβεµν
√
gφφ|r=r+ = −4

[
A+BRαβn

β
α

]√
gφφ|r=r+ (3.14)

where we have used εµνεµν = −2 and defined nµν ≡ −εαµεαν . Furthermore, using

Rαβn
β
α|r=r+ =

2
(
ν2 − 3

)
`2

(3.15)

and
√
gφφ|r=r+ = −Ω−1, one is led to

SWald = (32GNπA)

[
1 +

B

A

2(ν2 − 3)

`2

]
× Area

4GN
(3.16)

or

SWald = −16π2

Ω
A

[
1 +

B

A

2(ν2 − 3)

`2

]
. (3.17)

5In the case where the Lagrangian contains only Ricci tensors (and not covariant derivatives of Ricci

tensor), we work this out very explicitly in appendix A. For e.g., see eq. (A.15).
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4 Charges in warped black holes

4.1 Covariant phase space formalism

The definition of (asymptotically) conserved charges is a subtle procedure that can be

approached by many differents roads. We will briefly review below the salient features of

the formalisms we will be using throughout this work, and refer the reader to the literature

for a more detailed summary (see e.g. sections 3 of [93] or [75], appendix A of [94]).

From the Lagrangian n-form L (with n the spacetime dimension), which is a local func-

tional of all fields denoted collectively Φ, the equations of motion E(Φ) = 0 are determined

as follows:

δL(Φ) = E(Φ)δΦ + dΘ[δΦ,Φ] (4.1)

where Θ[δφ, φ], the symplectic potential (n− 1)-form, can always be chosen to be covari-

ant [27]. We use a slight abuse of notation, writing E(Φ) for both an n-form and its Hodge

dual. We will be concerned here with the situation where Φ only consists in the metric

tensor g. In that case, the gauge symmetries of the theory are transformations δξg = Lξg
under which the transformation of the Lagrangian is computed as

δξL = LξL = d(iξL) := dMξ(Φ) ; Mξ ≡ iξL . (4.2)

Under such a gauge transformation, one can rewrite, using Bianchi identities,

E(Φ)δξΦ = dSξ(E(Φ),Φ). (4.3)

More explicitly, in a pure gravity theory one has E(g)δξg = ∇µ(2ξνEµν) − 2ξν∇µEµν ,

where the last term vanishes by virtue of Bianchi identities, and hence in that case6 Sµξ =

2ξνEµν . S enjoys the important property that it vanishes on-shell, and hence is called weakly

vanishing Noether current. On the other hand, writing (4.1) for a gauge transformation

(δ = δξ) and using (4.2), one gets

E(Φ)δξΦ = −dJξ(Φ) (4.4)

where the canonical Noether current is defined as

Jξ(Φ) = Θ[δξΦ,Φ]−Mξ(Φ) (4.5)

From (4.3) and (4.4), one therefore gets that the (n−1)-form Sξ(E(Φ),Φ)+Jξ(Φ) is off-shell

closed and thus exact, and there exists an (n− 2)-form Qξ(Φ) such that

Sξ(E(Φ),Φ) + Jξ(Φ) ≈ Jξ(Φ) := −dQξ(Φ) (4.6)

where ≈ stands for on-shell equality. Qξ(Φ) is the Noether charge as defined by Wald [26],

which is not to be confused with the conserved charge generating the action of the symmetry

generator ξ on the covariant phase space (denoted Hξ or Hξ for its Hodge dual henceforth).

6The one-form S denotes the Hodge dual of the (n-1)-form S.

– 11 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
4

The latter is obtained as follows. Using (4.2), (4.5), (4.6) and the property Lξ = iξd+ diξ,

the variation of the weakly vanishing Noether current can be expressed on-shell as

δSξ(E(Φ),Φ) ≈ ω(δξΦ, δΦ) + dkIWξ (δΦ,Φ), (4.7)

where we defined the symplectic structure

ω[δ1Φ, δ2Φ; Φ] = δ1Θ[δ2Φ,Φ]− δ2Θ[δ1Φ,Φ] (4.8)

and (n− 2)-form

kIWξ (δΦ,Φ) = −iξΘ[δΦ,Φ]− δQξ(Φ) (4.9)

eq. (4.7) expresses that when the equations of motion (E(Φ) = 0) and the linearized equa-

tions of motion (δE(Φ) = 0 = δSξ(E(Φ),Φ)) hold, and when ξ is a symmetry (δξΦ = 0),

kIWξ (δΦ,Φ) defined a conserved charge (dkIWξ (δΦ,Φ) ≈ 0) given by

δHξ =

∫
C=∂Σ

kIWξ (δΦ,Φ), (4.10)

where C is a Cauchy surface, computing the infinitesimal charge difference between con-

figurations Φ and Φ + δΦ. Finite charge differences Hξ are obtained by an integral in

configuration space.

An important observation is that the definitions in (4.7) are ambiguous up to the

redefinitions

ω(δξΦ, δΦ)→ ω(δξΦ, δΦ)− dE(δξΦ, δΦ), kIWξ (δΦ,Φ)→ kIWξ (δΦ,Φ) + E(δξΦ, δΦ)

for an arbitrary E(δξΦ, δΦ) anti-symmetric in δξΦ and δΦ. This ambiguity generalizes

the one in the symplectic potential (n − 1)-form under Θ → Θ + dY, and hence in the

symplectic structure. One proposal to fix this ambiguity [78, 79] is by acting on the weakly

vanishing Noether current with a contracting homotopy operator, yielding an (n− 2)-form

denoted kBBξ (δΦ,Φ). In essence, this operator is the inverse of the exterior derivative d

(see e.g. [95] for an explicit expression). One advantage of this procedure is that it provides

a definition of charges depending only on the equations of motion of the Lagrangian, and

not on boundary terms. We then have

kBBξ (δΦ,Φ) = kIWξ (δΦ,Φ) + E(δξΦ, δΦ), (4.11)

in which the expression of E(δξΦ, δΦ) is known explicitly (see e.g. (3.7) of [75]). Remark

that this ambiguity is not relevant for exact symmetries, having δξΦ = 0, but may yield

distinct results in the asymptotic context (see [75] for one such example in Kerr/CFT). In

this work, we will be working with Iyer-Wald charges, and explicitly check that the extra

term E does not contribute.

Finally, the algebra of charges can be represented by a Dirac bracket as follows:

δξHζ := {Hζ , Hξ} = H[ζ,ξ] +

∫
C=∂Σ

kIWζ (δξΦ,Φ). (4.12)

This is valid on-shell when the charges are integrable. The second term on the right-hand

side is recognized as a central extension, which cannot be absorbed in a redefinition of the

generators.
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4.2 Expressions for Θ and δQξ

Following [75], Θ and Qξ admit the decomposition:

Θa2...an = Θ(0)
a2...an +

∑
s≥1

Θ(s)
a2...an

(Qξ)c3...cn = (Q
(0)
ξ )c3...cn +

∑
s≥1

(Q
(s)
ξ )c3...cn (4.13)

where Θ(0), Q
(0)
ξ , Θ(s) and Q

(s)
ξ are given by the general expressions [75]:

Θ(0)
a2...an ≡ −2

(
Zabcd∇dδgbc − (∇dZabcd)δgbc

)
εaa2...an

(Q
(0)
ξ )c3...cn ≡

(
−Zabcd∇cξd − 2ξc(∇dZabcd)

)
εabc3...cn . (4.14)

Θ(s)
a2...an =

[
2
(
Zibcd|e1...es−1a + Zabcd|e1...es−1i

)
δgijRjbcd|e1...es−1

− 2Zibcd|e1...es−1jδgijRabcd|e1...es−1

+(s− 1)

(
Zkbcd|e1...es−2iaδgijR j

kbcd| e1...es−2
− 1

2
Zkbcd|e1...es−2ijδgijR a

kbcd| e1...es−2

)
−Zkbcd|e1...es−1aδRkbcd|e1...es−1

]
εaa2...an (4.15)

(Q
(s)
ξ )c3...cn = −2ξk

[
Zklcd|e1...es−1aRblcd|e1...es−1

+ Zalcd|e1...es−1bRklcd|e1...es−1

+Zalcd|e1...es−1kRblcd|e1...es−1
+
s− 1

2
Zlmcd|e1...es−2kaR b

lmcd| e1...es−2

]
εabc3...cn (4.16)

for a n-dimensional Lagrangian with k-th derivatives of the Riemann tensor (s = 1, . . . k).

In these expressions, the Zabcd, Rabcd, Zabcd|e1...es and Rabcd|e1...es are auxiliary fields in terms

of which our original Lagrangian can be rewritten without derivatives higher than second

order (we will not need their explicit expressions, see however section 4 of [75] for details).

Furthermore, the relevant E term for our computations is [75]

Ea3...an [£ξ1g; £ξ2g] =
1

2

(
−3

2
Zabcd£ξ1g

e
c ∧£ξ2ged + 2Zacde£ξ1gcd ∧£ξ2g

b
e

)
εaba3...an .

(4.17)

This term will never contribute to the charges. Obviously, it is true for exact Killing

vectors. For the central charge, we take ξ1 = ln and ξ2 = l−n (or tn ans t−n for the level)

and use the expression (3.8) of Zabcd. As we will integrate over a t, r = cst surface, we only

need to consider the φ component of E. A direct computation shows that it is indeed zero.

4.3 Lagrangians without derivative of the Ricci

4.3.1 Expressions of charges

First, we will derive the expressions of the charges for the case of a Lagrangian without

derivatives of the Ricci. The exact charges depend only on Q
(0)
ξ and Θ(0) and are given

by [27]

δL0 ≡ −
∫
∞
δQ∂φ , (4.18)

δP0 ≡
∫
∞
δQ∂t +

∫
∞
i∂tΘ (4.19)
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where the integral is (n − 2)-dimensional sphere (t, r=constant) at spatial infinity. There

is no term with i∂φΘ in δL0 because ∂φ is assumed to be tangent to this sphere.

Using the general form of Zabcd (3.8), an explicit computation leads to

L0 =
32π

(
A`2 + 2B

(
−3 + ν2

))
`2

j +
24πν

(
−1 + ν2

) (
A`2 + 2B

(
−3 + 5ν2

))
`5

r2 ,

P0 =
48π

(
A`2 + 2B

(
−3 + ν2

))
`2

m (4.20)

where A,B are the constants entering in (3.8) and depending on the theory.

For the central terms in (4.12), we note that it is sufficient to consider the terms pro-

portional to n and n3 for the computation of the level and the central charge, respectively.

We get

k = 2i

∫
∞
kIWpn [£p−nφ, φ̄]

∣∣∣∣
n

= −32πν

`

(
A+ 4B

(
−3 + 2ν2

)
`2

)
,

c = 12i

∫
∞
kIWln [£l−nφ, φ̄]

∣∣∣∣
n3

=
192πν

(3 + ν2)

(
A`+ 2B

(
−3 + ν2

)
`

)
. (4.21)

In whole generality, the charges associated with exact Killing vectors of a metric sat-

isfying the equations of motion of a given theory are finite. Therefore, we see from (4.20)

that a theory admitting WAdS3 as solutions must have its constants A and B related in

the following way:

B = − A`2

2 (−3 + 5ν2)
. (4.22)

In other words, the coupling constants of the considered theory should satisfy the above

relation. As expected it turns out it is equivalent to satisfy the equations of motion (see

details in appendix A).

Using (4.22), the charges have the following expression

L0 =
128π ν2

−3 + 5ν2
Aj , P0 =

192π ν2

−3 + 5ν2
Am, (4.23)

k = −
32π ν

(
3 + ν2

)
` (−3 + 5ν2)

A , c =
768 ` π ν3

(3 + ν2) (−3 + 5ν2)
A (4.24)

with only one constant depending on the considered theory. The Iyer-Wald entropy be-

comes

SWald = − 64π2ν2

(−3 + 5ν2)

A

Ω
(4.25)

which is the result advertised in eq. (1.7).

Note that the expressions of the charges are proportional to their value in NMG, the

simplest theory where warped black holes are solutions:

{L0, P0, k, c} =

(
8π(−3 + 20ν2)

(−3 + 5ν2)
A

)
{LNMG

0 , PNMG
0 , kNMG, cNMG}. (4.26)
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4.3.2 Warped Cardy formula

In this section, we show that the Iyer-Wald and Warped Cardy entropies match. The

computation of the latter needs us to evaluate the exact charges for the vacuum solution

(m = i/6 and j = 0), which are then given by

Lvac
0 = 0, P vac

0 =
32iπν2

−3 + 5ν2
A. (4.27)

We substitute these into the WCFT formula

SWCFT =
2πi

Ω
P vac

0 − 8π2

βΩ
Lvac

0 , (4.28)

and get precisely the Iyer-Wald entropy (4.25):

SWCFT =
−64π2ν2

(−3 + 5ν2)Ω
A = SWald . (4.29)

4.4 Lagrangians with derivatives of the Ricci

Now we focus on the general case of a Lagrangian with derivatives of the Ricci. The first

change with respect to the case without derivative is the appearance of new terms in Zabcd

as given by (3.13). However, thanks to the symmetries, it will keep the same form (3.8)

provided we replace A and B in (3.8) by some other Ã and B̃. In addition, the charges Θ(s)

and Q(s) in (4.13) are expected to be corrected as well. Nevertheless, we show using the

SL(2,R)×U(1) symmetry (see appendix B) that P0 is not corrected and that L
(s)
0 , c(s), k(s)

have the following form:

L
(s)
0 = 4π

(
4 a3 ν

2 + a2

(
3 + ν2

)
`2

)
r2 − (48 a2m) r +

16 a2 `

ν
j

c(s) =
192

(
3 a2 π + a2 πν

2 + 4 a3 πν
2
)
r2

`2
− 1152 a2mπr

k(s) = −16π a3. (4.30)

with a2, a3 constants depending on ν, `. Thus the charges are (4.20), (4.21) with A→ Ã and

B → B̃ plus the corrections (4.30). In order to have finite exact charges, the divergences

must cancel. It implies

a2 = 0, a3 = −
3
(
−1 + ν2

) (
Ã`2 + 2B̃

(
−3 + 5ν2

))
2ν `3

. (4.31)

The purpose of the first equation is to cancel the r−divergence. To get rid of the

r2−divergence, the second term in (4.20) for L0 should cancel against the first term

in (4.30). Imposing that condition, we get the same expression for the exact charges

we had in the case without derivative. In consequence, the Warped Cardy formula again

matches with the Iyer-Wald entropy. However, finiteness of the Virasoro central charge

requires a3 = 0. This is a necessary condition in order to have a well-defined phase space
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with Vir + u(1) Kac-Moody symmetries. We will take this as a supplementary condition

on the coupling constants of the theory (though it is not excluded that this condition could

derive from requiring the metric to satisfy the equations of motion). In this case, all the

corrections vanish. Relation (4.22) then holds between Ã and B̃ and we get the same

charges (4.23) as in the case without derivative of the Ricci.

In conclusion, we have shown that the Iyer-Wald entropy is always reproduced by a

Warped Cardy formula using the SL(2,R)×U(1) symmetries and on-shell conditions. We

have also found a general explicit expression for the charges.

5 WAdS3 entropy in higher curvature theories: examples

In this section, we present a few examples with detailed computations.

5.1 L = aR− Λ + bR2 + cRµνR
µν +m1R

ν
µR

ρ
νR

µ
ρ +m2RµνR

µνR+m3R
3

We first deal with the most general Lagrangian involving no derivatives of the Ricci tensor

and up to cubic order [96]. As there is no derivative of the Ricci in that Lagrangian, the

tensor Z is only proportional to ∂/∂Riemann. We have to consider the derivative of the

Ricci scalar and Ricci tensor. After symmetrization, we get

δR

δRabcd
=

1

2

(
gbdgac − gadgbc

)
(5.1)

δ(RµνR
µν)

δRabcd
=

2

4

(
gbdRac − gadRbc − gbcRad + gacRbd

)
. (5.2)

So,

Zabcd =

(
a

2
− 6

`

2

b+
54

`4
m3 +

3ν2(ν2 − 3)

`4
m1 +

3
(
3− 2ν2 + ν4

)
l4

m2

)(
gbdgac − gadgbc

)
+

(
c

2
− 3

2`2
m2 −

3(3 + ν2)

4`2
m1

)(
gbdRac − gadRbc − gbcRad + gacRbd

)
. (5.3)

Meaning that the constants A and B are

A =

(
a

2
− 6

`

2

b+
54

`4
m3 +

3ν2(ν2 − 3)

`4
m1 +

3
(
3− 2ν2 + ν4

)
l4

m2

)
(5.4)

B =

(
c

2
− 3

2`2
m2 −

3(3 + ν2)

4`2
m1

)
. (5.5)

For NMG, a = 1
16π ,b = −3

16π8p , c = 1
16πp and m1 = m2 = m3 = 0 with p = 3−20ν2

2`2
, so

A =
3− 5ν2

8π (3− 20ν2)
, B =

`2

16π (3− 20ν2)
. (5.6)

The charges obtained by (4.20) and (4.21) are consistent with their expressions found by

other techniques.
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5.2 Corrections for a theory with (∇aRbc)2

Take a Lagrangian with the higher curvature term

L = ∇aRbc∇aRbc. (5.7)

Following [75], we can compute the Z-terms entering the charges:

Zabcd =
∂L

∂Rabcd
−∇e1

∂L

∂∇e1Rabcd
(5.8)

= −1

2

(
−gac Rbd + gbc Rad − gbd Rac + gad Rbc

)
(5.9)

which can be rewritten as (3.8), using (A.9):

Zabcd =
6ν2

`4

(
−gacgbd + gbcgad − gbdgac + gadgbc

)
+

3ν2

`2

(
−gacRbd + gbcRad − gbdRac + gadRbc

)
(5.10)

and

Zabcd|e =
∂L

∂∇e1Rabcd
(5.11)

=
1

2

(
gac∇eRbd − gbc∇eRad + gbd∇eRac − gad∇eRbc

)
(5.12)

and the relevant corrections to Θ and Q are

Θ(1)
a2a3 = 2

[
δgij

(
Rj ib c∇

aRbc+Rjc(∇aRic−∇iRac)−Rac(∇jRic
)
−δRbc∇aRbc

]
εaa2a3 (5.13)

(Qξ)
(1)
c3 = −2ξk

[
Rbc∇aRkc +Rkc∇bRac +Rbc∇kRac

]
εabc3 (5.14)

Using the relations (3.6), (3.7), and δRbc = ν2−3
`2

δgbc, together with the decomposition of

the Riemann tensor, we get the form given by (B.2) in the appendix:

RacR
bc;e =

3ν

`5
(ν2 − 1)

(
(ν2 − 3)Jbεeas − 2ν2Jaεebs

)
Js (5.15)

Ra bd cR
dc;e =

3ν3

`5
(ν2 − 1)

(
Jbεeas + Jaεebs

)
Js. (5.16)

We can then rewrite the corrections as

Θ
(1)
bc =

6ν

`5
(ν2 − 1)δgij

(
ν2J iεajs − (2ν2 − 3)J jεais − (ν2 − 3)J iεjas + 2ν2J jεias

)
Jsεabc

(Qξ)
(1)
c = −ξk

6ν

`5
(ν2 − 1)

[
(ν2 − 3)

(
Jkεabs + Jaεbks + Jaεkbs

)
−2ν2

(
Jbεaks + Jkεbas + Jbεkas

)]
Jsεabc . (5.17)

Since we are going to integrate over φ, and we have to contract the correction to Θ with

∂t, we need to compute Θ
(1)
tφ and (Qξ)

(1)
φ . We also know that δg only non-zero components

are δgrr and δgφφ. It is then straightforward to show that

Θ
(1)
tφ = 0 (5.18)
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(Q∂t)
(1)
φ = −72 r

ν2

`6
(ν2 − 1)2 (5.19)

(Q∂φ
)
(1)
φ = 0. (5.20)

Even if (Q∂t)
(1)
φ is non-zero, the contribution of this term to the charge vanishes when we

take the δ of it. The same results are recovered using the general method proposed in [75].

6 Phase transitions

To study possible phase transitions between black holes and thermal states, one must first

identify the ensemble black holes are dual to. As argued in Sect 2. of [81] or Sect 5.3

of [51], WAdS3 black holes are dual to the ensemble

Z = Tre−β+P̃0−β−L̃0 = Tre−βQT−βΩQΦ (6.1)

with

P̃0 := Q∂x+ =
P 2

0

k
, L̃0 := Q∂x− = L0 −

P 2
0

k
. (6.2)

The coordinates T and Φ appearing in (6.1) are natural coordinates when expressing

WAdS3 black holes as a deformation of BTZ black holes:7

ds2
WBTZ = ds2

BTZ − 2H2ξ ⊗ ξ (6.3)

where ds2
BTZ is the BTZ black hole metric (where we put Newton’s constant G to 1):

ds2
BTZ =

(
8M − r2

`2b

)
dT 2 − R2dR2

8MR2 − R4

`2b
− 16J2

+ 8J dT dΦ +R2dΦ2 (6.4)

and ξ such that ||ξ||2 = 1 is given by

ξµ =
1√
8

√
`b

(M `b − J)
(−∂T + ∂Φ) . (6.5)

For the change of coordinates between (2.2) and (6.3), see e.g. Sect 5.4 of [51].

The symmetry argument is still valid in that coordinate system and so the Zabcd field

has the same form (3.8). Doing similar computations, the exact charges are given by

QT = CM , QΦ = C J . (6.6)

with C a constant depending on the coupling constants, on the deformation parameter H2

and `b. For example, NMG has

CNMG =
16
(
1− 2H2

)3/2
17− 42H2

. (6.7)

7The deformation parameter H is given in terms of ν by H2 = 3(1−ν2)

2(3+ν2)
, and `b = 2

√
1

3+ν2
`.
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The thermodynamic potentials are given for any theory by

T =
2
√
`2bM

2 − J2

π`
√
`2b
(
`2bM

2 − J2
)

+ `2bM
, Ω =

J√
`2b
(
`2bM

2 − J2
)

+ `2bM
. (6.8)

Integrating the first law, the Gibbs free energy is given by

G = QT − TS + ΩQΦ, (6.9)

leading to8

GWAdS(T,Ω) = C

(
−1

8

)
, GWBTZ(T,Ω) = C

−`2bπ2T 2

2
(
1− `2bΩ2

) . (6.10)

First, we study the local stability of these phases. In the grand canonical ensemble, the

stability condition is the requirement for a system to have a negative semi-definite Hessian

of its free energy G(T,Ω) . This implies that

C > 0 . (6.11)

For example in NMG, this condition implies that H2 < 17/42.

Secondly, we consider the global stability. In the classical limit, the dominant phase

is the most probable, i.e. the one who dominates the partition function among the saddle

points. Here the two known phases are the black hole and the thermal vacuum. We

compare their free energies through their difference

∆G = C

(
−1

8
+

`2b π
2T 2

2
(
1− `2bΩ2

)) . (6.12)

If ∆G < 0, WAdS dominates and for ∆G > 0, WBTZ dominates. The constant C factorizes

out.9 It implies that the phase diagram does not depend on which theory we look at and

moreover, as thermodynamic potentials also do not depend on the deformation parameter,

it is the same phase diagram as for BTZ black holes. The phase diagram is represented

(for ` = 1) in figure 1. Our results differ from those of [97] in which the authors dealt with

the NMG case, but considered a different ensemble.
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A On-shell conditions for theories without derivatives of Riemanns

In this section, we shall study the consequences of the equations of motion for the most

general theory without derivatives of Riemanns. Moreover, we will show that on-shell

conditions imply eq. (4.22). Due to the fact that we are in three dimensions, the most

general action (without derivatives of Riemanns) is of the form

I =

∫
d3x
√
−gf(Rµν , g

µν) . (A.1)

The equation of motion is easily derived (see [98] for example) to be

2
∂f

∂gµν
− fgµν = ∇α∇νPαµ +∇α∇µPαν − Pµν − gµν∇β∇αPαβ (A.2)

where

Pµν = gµαgνβ
∂f

∂Rαβ
. (A.3)

The object of interest Zµναβ in three dimensions is

Zµναβ ≡ ∂L

∂Rµναβ
=

∂Rγδ
∂Rµναβ

∂L

∂Rγδ
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=
1

4

[
gµαδδ

βδγ
ν − gανδγµδδβ + gβνδγ

µδδ
α − gβµδγνδδα

] ∂L

∂Rγδ
(A.4)

which is related to Pµν by

Zµναβ =
1

2

[
gµαgβν − gανgβµ

]
+

1

4

[
gµαP βν − gναP βµ + gβνPαµ − gβµPαν

]
. (A.5)

For later purposes, it is useful to note that for a locally WAdS3 spacetime, due to

SL(2,R)×U(1) symmetry, we have that for q ≥ 1,

(Ricci(q))µν ≡ Rµβ1R
β1
β2R

β2
β3 . . . R

βq−1 ν = Aqg
µν +BqR

µν , (A.6)

in which by Ricci(q) we mean the Ricci tensor to q-power with appropriate contractions.

The factors Aq and Bq are constants dependent on ` and ν. For example, A1 = 0, B1 =

1, A2 = 2ν2
(
ν2 − 3

)
/`4, B2 = −(3 + ν2)/`2. By definition, the Aq and Bq satisfy the

following recursion relations

Aq = A2Bq−1 =
2ν2(ν2 − 3)

`4
Bq−1 (A.7)

Bq = Aq−1 +B2Bq−1 = Aq−1 −
3 + ν2

`2
Bq−1 . (A.8)

As a notational convention, we will denote tr(Ricci(q)) ≡ (Ricci(q))µµ. Moreover, it is also

useful to note that

∇α∇µRαν = ∇α∇νRαµ = −6ν2

`4
gµν −

3ν2

`2
Rµν

Rµν =
12ν2

`4
gµν +

6ν2

`2
Rµν , (A.9)

and so

∇α∇µRαν +∇α∇νRαµ − Rµν = −24ν2

`4
gµν −

12ν2

`2
Rµν (A.10)

while ∇αRαβ = 0 using the contracted Bianchi identity and the fact that R is a constant.

For illustrative purposes, let us first consider the simple case where for some fixed

k ≥ 2,

f = fk ≡ ckRk + bk tr(Ricci(k)) . (A.11)

In this case,

Pµν = k
[
ck gµνR

k−1 + bk(Ricci
(k−1))µν

]
(A.12)

while

Zµναβ =
k

2

[
ckR

k−1 + bkAk−1

] [
gµαgβν − gανgβµ

]
+
k

4
bkBk−1

[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
(A.13)

where we have used eq. (A.6). On the other hand, the equation of motion eq. (A.2) in this

case reads

k
[
ckR

k−1Rµν + bk(Ricci
(k))µν

]
− 1

2

[
ckR

k + bktr(Ricci
(k))
]
gµν
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=
1

2
kbk

{
∇α∇ν [(Ricci(k−1))αµ] +∇α∇µ[(Ricci(k−1))αν ]− [(Ricci(k−1))µν ]

−gµν∇β∇α[(Ricci(k−1))αβ ]
}

+ kck

[
∇µ∇νR(k−1) − gµν R(k−1)

]
(A.14)

which upon using eq. (A.6) and eq. (A.9)–(A.10) yields

0 =

[
kckR

k−1 + kbkBk + kbkBk−1
6ν2

`2

]
Rµν

−1

2

[
ckR

k − 2kbkAk + bktr(Ricci
(k))− kbkBk−1

24ν2

`4

]
gµν . (A.15)

By explicitly plugging in the metric and Rµν for a locally WAdS3 metric, these equations

in turn become two decouple equations

0 = ckR
k−1 + bkBk + bkBk−1

6ν2

`2
, (A.16)

0 = ckR
k − 2kbkAk + bktr(Ricci

(k))− kbkBk−1
24ν2

`4
. (A.17)

Let us now recall from eq. (A.5), eq. (A.6) and eq. (A.12) that in this case we have

Zµναβ =
k

2

[
ckR

k−1 + bkAk−1

] [
gµαgβν − gανgβµ

]
+
k

4
bkBk−1

[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
≡ A

[
gµαgβν−gανgβµ

]
+B

[
gµαRβν−gναRβµ+gβνRαµ−gβµRαν

]
, (A.18)

where

A ≡ k

2

[
ckR

k−1 + bkAk−1

]
, B ≡ k

4
bkBk−1 . (A.19)

Their ratio is

B

A
=

1

2

bkBk−1

ckRk−1 + bkAk−1
=

1

2

1

−6ν2/`2 + (Ak−1 −Bk)/Bk−1
(A.20)

where we have used one of the equations of motion eq. (A.16). Using eq. (A.8), we obtain

B

A
= − `2

2(−3 + 5ν2)
(A.21)

which is eq. (4.22) as required by finiteness of charges.

Moreover, one can straightforwardly generalize the same computations to a more gen-

eral f = fk;q1,...,qn ≡ c(k, q1, . . . qn)Rk × tr[(Ricci)(q1)]× tr[(Ricci)(q2)]× . . .× tr[(Ricci)(qn)]

or even the most general action

f =
∑
k,n

∑
q1,...,qn

fk;q1...qn . (A.22)

The upshot is that eventually similar arguments as above follow through and imply

eq. (4.22) as desired.
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B Computations of Θ(s) and Q
(s)
ξ (for s ≥ 1)

In this appendix, we explicit the computation of the corrections to the charges. First, all

of terms appearing in Θ(s) and (Q
(s)
ξ ) are of the following form10

(Qξ)
(s)
c3...cn = ξkA

kabεabc3...cn

Θ(s)
a2...an = (δgij)B

ijaεaa2...an , (B.1)

where Bija is a tensor symmetric in the (i, j) indices while Akab is antisymmetric in (a, b).

Both A and B are covariant tensors constructed out of the metric. By SL(2,R) × U(1)

symmetry, in the vielbein-analysis, we know that by boost-invariance, there are four inde-

pendent non-zero components for Bija while there are three for Akab. This means that we

can decompose them in the following way

Aabk =
((
a1g

ak + a2ε
akcJc

)
Jb − (a↔ b)

)
+ a3ε

abpJpJ
k

Bija = b1g
ijJa +

((
b2J

igja + b3J
iεjakJk

)
+ (i↔ j)

)
+ b4J

iJ jJa (B.2)

where a1, a2, a3 are constants depending only on ν and `.

Let us first focus on the expression for Θ(s). Using the fact that the only non-zero

components of δgij are the δgrr and δgφφ components and that gijδgij = 0, we get

Θ(s)
a2...an = (δgij)

(((
b2J

igja + b3J
iεjakJk

)
+ (i↔ j)

)
+ b4J

iJ jJa
)
εaa2...an . (B.3)

Moreover Jµ∂µ = ∂t implies that the first four terms in the bracket of eq. (B.3) (propor-

tional to either δgijJ
i or δgijJ

j) do not contribute to Θ(s). Furthermore, since we are

interested in the a = r component (to compute charges at r=constant surface), the last

term does not contribute either. Hence, we have established that in the computation of

δL0 and δP0, Θ(s) vanishes.

Next, consider the expression for (Qξ)
(s)

(Qξ)
(s)
c3...cn = ξk

(
a3ε

abpJpJ
k +

(
2a1g

k[a + 2a2ε
pk[aJp

)
Jb]
)
εabc3...cn . (B.4)

For δP0, we consider ξµ∂µ = ∂t = Jµ∂µ. Direct computations show that only one term in

eq. (B.4) does not vanish, and∫
∞

(Qξ)
(s) =

∫
∞
ξk

(
2a2ε

pk[aJpJ
b]
)
εabcdx

c =
8πν a3

`
r , (B.5)

where we have used JµJµ = 1 and Jµdx
µ = dt− (2rν/`)dφ while setting the (a, b) = (t, r).

We should still take the δ of that expression, so it gives us zero.

Finally, we consider the expression for (Qξ)
(s) for ξµ∂µ = ∂φ in the computation of

δL0. Direct computation shows∫
∞

(Qξ)
(s) =

(
16π a3 ν

2 + 4π a2

(
3 + ν2

)
`2

)
r2 − (48 a2m) r +

16 a2 `

ν
j . (B.6)

10There is a term in the expression of Θ(s) that looks like ZδR which seems like it cannot be manifestly

written in the form in eq. (B.1). However, in section (B.1), we show that with a bit of work, even this term

can be put into the form in eq. (B.1).
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The corrections to the central charges are proportional to the Lie derivative of the Noether

charge. Explicit computations gives us the following

c(s) =
192

(
3 a2 π + a2 π ν

2 + 4 a3 π ν
2
)
r2

l2
− 1152 a2mπ r , k(s) = −16π a3 . (B.7)

B.1 Putting the ZδR term in the form of eq. (B.1)

Consider the following object

T a ≡ Zkbcd|e1...es−1aδ
[
Rkbcd;e1...es−1

]
(B.8)

which is one of the terms appearing in Θ(s) that does not look like of the form eq. (B.1).

Since every covariant tensor built out of a SL(2,R) metric can be written in terms of

polynomials of ε, gµν and Jρ appropriately. Then

Rkbcd;e1...es−1 =
∑
p

cp(ν, `)t
(p)
kbcd;e1...es−1

(B.9)

where t is some basis tensor built out of polynomials of ε, g and J . Crucially the coefficient

cp only depends on (ν, l) and not on the black hole or quotienting parameters. Note that

δJµ = δεabc = 0, (B.10)

since
√
−g = 1 and Jµdx

µ = dt − (2νr/`)dφ does not contain black hole’s parameters.

Therefore, we have

δRkbcd;e1...es−1 =
∑
p

cp(ν, `)δt
(p)
kbcd;e1...es−1

=
∑
p

cp(ν, `)
δt

(p)
kbcd;e1...es−1

δgij
δgij , (B.11)

since variations hit the t-tensor through gµν and that t is a polynomial of g. It is important

to note that no covariant derivatives of gµν appear in this t. Therefore, we obtain

T a ≡

Zkbcd|e1...es−1a
∑
p

cp
δt

(p)
kbcd;e1...es−1

δgij

 δgij ≡ Aijaδgij , (B.12)

where Aija = Ajia.
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