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Abstract
In this paper, motivated and inspired by Ceng and Yao (J. Comput. Appl. Math.
214(1):186-201, 2008), Iiduka and Takahashi (Nonlinear Anal. 61(3):341-350, 2005),
Jaiboon and Kumam (Nonlinear Anal. 73(5):1180-1202, 2010), Kim (Nonlinear Anal.
73:3413-3419, 2010), Marino and Xu (J. Math. Anal. Appl. 318:43-52, 2006) and Saeidi
(Nonlinear Anal. 70:4195-4208, 2009), we introduce a new iterative scheme for finding
a common element of the set of solutions of a mixed equilibrium problem for an
equilibrium bifunction, the set of fixed points of an infinite family of nonexpansive
mappings, the set of solutions of some variational inequality problem, and the set of
fixed points of a left amenable semigroup {Tt : t ∈ S} of nonexpansive mappings with
respect toW-mappings and a left regular sequence {μn} of means defined on an
appropriate space of bounded real-valued functions of the semigroup S. Furthermore,
we prove that the iterative scheme converges strongly to a common element of the
above four sets. Our results extend and improve the corresponding results of many
others.
MSC: 43A65; 47H05; 47H09; 47H10; 47J20; 47J25; 74G40

Keywords: mixed equilibrium problem; variational inequality problem; reversible
semigroup; mean; common fixed point

1 Introduction
Let H be a real Hilbert space, let C be a nonempty closed convex subset of H , and let
PC be the metric projection of H onto C. Let ϕ : C → R be a real-valued function and
θ : C × C → R be an equilibrium bifunction with θ (u,u) =  for each u ∈ C. We consider
the mixed equilibrium problem (for short,MEP) is to find x* ∈ C such that

MEP : θ
(
x*, y

)
+ ϕ(y) – ϕ

(
x*
)≥ , ∀y ∈ C.

In particular, if ϕ ≡ , this problem reduces to the equilibrium problem (for short, EP),
which is to find x* ∈ C such that

EP : θ
(
x*, y

)≥ , ∀y ∈ C.

Denote the set of solutions of MEP by �. The mixed equilibrium problems include fixed
point problems, optimization problems, variational inequality problems, Nash equilib-
rium problems and the equilibrium problems as special cases.
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A mapping T of C into itself is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖,

for all x, y ∈ C. We denote by F(T) the set of fixed points of T . It is well known that F(T)
is closed convex. Recall that a mapping f : C → C is called contractive if there exists a
constant α ∈ (, ) such that

∥∥f (x) – f (y)
∥∥≤ α‖x – y‖,

for all x, y ∈ C.
In , Moudafi [] introduced the viscosity approximation method for nonexpansive

mappings (see [] for further developments in both Hilbert and Banach spaces).
Starting with an arbitrary initial x ∈H , define a sequence {xn} recursively by

xn+ = ( – αn)Txn + αnf (xn), n≥ , (.)

where αn is a sequence in (, ). It is proved that under certain appropriate conditions
imposed on {αn}, the sequence {xn} generated by (.) strongly converges to the unique
solution x* in F(T) of the variational inequality

〈
(f – I)x*,x – x*

〉≤ , ∀x ∈ F(T)

(see [, ]).
Let A be a strongly positive bounded linear operator onH , that is, there exists a constant

γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖,

for all x ∈H .
In , Marino and Xu [] considered the following iterative method:

xn+ = (I – αnA)Txn + αnγ f (xn), n≥ , (.)

where  < γ < γ̄

α
, α is a contraction coefficient of f . They proved that if the sequence

{αn} satisfies appropriate conditions, then the sequence {xn} generated by (.) converges
strongly to the unique solution of the variational inequality

〈
(A – γ f )x*,x – x*

〉≥ , x ∈ F(T),

which is the optimality condition for the minimization problem

min
x∈F(T)



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x), for x ∈H).

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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A set-valuedmapping T :H → H is calledmonotone if for all x, y ∈H , f ∈ Tx and g ∈ Ty
imply 〈x – y, f – g〉 ≥ . A monotone mapping T : H → H is maximal if its graph G(T)
is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if for (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥  for
every (y, g) ∈G(T) implies f ∈ Tx. Let A be a monotone mapping of C into H , and let NCv
be the normal cone to C at v ∈ C, i.e.,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
and define

Tv =

⎧⎨
⎩Av +NCv, if v ∈ C,

∅, if v /∈ C.

Then T is maximal monotone, and  ∈ Tv if and only if v ∈ VI(C,A); see [].
In , for finding an element of F(T) ∩ VI(C,A), Iiduka and Takahashi [] proposed

a new iterative sequence: x = x ∈ C and

xn+ = αnx + ( – αn)TPC(xn – λnAxn), n≥  (.)

and obtained a strong convergence theorem in a Hilbert space.
Let {Tn} be a sequence of nonexpansive mappings of C into itself, and let {λn} be a se-

quence of nonnegative numbers in [, ]. For each n ≥ , define a mapping Wn of C into
itself as follows:

Un,n+ = I,

Un,n = λnTnUn,n+ + ( – λn)I,

Un,n– = λn–Tn–Un,n + ( – λn–)I,

...

Un,k = λkTkUn,k+ + ( – λk)I,

Un,k– = λk–Tk–Un,k + ( – λk–)I,

...

Un, = λTUn, + ( – λ)I,

Wn =Un, = λTUn, + ( – λ)I.

(.)

Such a mappingWn is called theW -mapping generated by T,T, . . . ,Tn and λ,λ, . . . ,λn.
The concept ofW -mapping was introduced in [, ] and [].
In , Ceng and Yao [] introduced the hybrid iterative scheme

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C arbitrary,

θ (yn,x) + ϕ(x) – ϕ(yn) + 
r 〈K ′(yn) –K ′(xn),η(x, yn)〉 ≥ , ∀x ∈ C,

xn+ = αnf (Wnxn) + βnxn + γnWnyn,

(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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where K ′(x) is the Fréchet derivative of K at x. They proved the sequences {xn} and {yn}
generated by the hybrid iterative scheme (.) converge strongly to a common element of
the set of solutions of MEP and the set of common fixed points of finitely many nonex-
pansive mappings.
Recall the mapping B is said to be relaxed (ξ ,ν)-cocoercive, if there exist two constants

ξ ,ν >  such that

〈Bx – By,x – y〉 ≥ –ξ‖Bx – By‖ + ν‖x – y‖, ∀x, y ∈ C.

This class of mappings has been considered by many authors; for example, [, ].
In this paper, motivated and inspired by Ceng and Yao [], Iiduka and Takahashi [],

Jaiboon and Kumam [], Kim [], Marino and Xu [] and Saeidi [], we introduce a
new iterative scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C arbitrary,

θ (zn,x) + ϕ(x) – ϕ(zn) + 
rn 〈K ′(zn) –K ′(xn),η(x, zn)〉 ≥ ,

yn = ( – γn)xn + γnTμnWnPC(I – δnB)zn,

xn+ = αnγ f (Wnxn) + βnxn + (( – βn)I – αnA)TμnWnyn,

(.)

for all x ∈ C, n≥ , for finding a common element of the set of solutions of a mixed equi-
librium problem for an equilibrium bifunction, the set of fixed points of an infinite family
of nonexpansivemappings, the set of solutions of some variational inequality problem and
the set of fixed points of a left amenable semigroup {Tt : t ∈ S} of nonexpansive mappings
with respect toW -mappings and a left regular sequence {μn} of means defined on an ap-
propriate space of bounded real-valued functions of the semigroup S. Furthermore, we
prove that the proposed iterative scheme (.) converges strongly to a common element
of the above four sets. Our result extends and improves the corresponding results of many
others.

2 Preliminaries
Let S be a semigroup. We denote by B(S) the space of all bounded real-valued functions
defined on S with supremum norm. For each s ∈ S, we define the left and right translation
operators ls and rs on B(S) by

(lsf )(t) = f (st) and (rsf )(t) = f (ts)

for each t ∈ S and f ∈ B(S), respectively. Let X be a subspace of B(S) containing . An
element μ in the dual space X* of X is said to be amean on X if ‖μ‖ = μ() = . For s ∈ S,
we can define a point evaluation δs by δs(f ) = f (s) for each f ∈ X. It is well known that μ is
a mean on X if and only if

inf
s∈S f (s)≤ μ(f ) ≤ sup

s∈S
f (s)

for each f ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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LetX be a translation invariant subspace of B(S) (i.e., lsX ⊂ X and rsX ⊂ X for each s ∈ S)
containing . Then a mean μ on X is said to be left invariant (resp. right invariant) if

μ(lsf ) = μ(f )
(
resp. μ(rsf ) = μ(f )

)

for each s ∈ S and f ∈ X. A mean μ on X is said to be invariant if μ is both left and right
invariant [–].X is said to be left (resp. right) amenable ifX has a left (resp. right) invari-
ant mean. X is amenable if X is left and right amenable. Moreover, B(S) is amenable when
S is a commutative semigroup or a solvable group. However, the free group or semigroup
of two generators is not left or right amenable. In this case, we say that the semigroup S
is an amenable semigroup (see [, ]). A semigroup S is left reversible if S has the finite
intersection property for right ideals. Every left reversible semigroup S,WAP(S) the space
of weakly almost period functions on S has a left invariant mean. If S is both left and right
reversible, thenWAP(S) has an invariant mean. Each group or amenable semigroup is left
and right reversible (see [, ]).
A net {μα} of means on X is said to be asymptotically left (resp. right) invariant if

lim
α

(
μα(lsf ) –μα(f )

)
= 

(
resp. lim

α

(
μα(rsf ) –μα(f )

)
= 

)

for each f ∈ X and s ∈ S, and it is said to be left (resp. right) strongly asymptotically invari-
ant (or strong regular) if

lim
α

∥∥l*sμα –μα

∥∥ = 
(
resp. lim

α

∥∥r*sμα –μα

∥∥ = 
)

for each s ∈ S, where l*s and r*s are the adjoint operators of ls and rs, respectively. Such
nets were first studied by Day in [] where they were called weak* invariant and norm
invariant, respectively.
It is easy to see that if a semigroup S is left (resp. right) amenable, then the semigroup

S′ = S∪{e}, where es′ = s′e = s′ for all s′ ∈ S, is also left (resp. right) amenable and conversely.
Let S be a semigroup, and let C be a closed and convex subset of H . Let F(T) denote

the fixed point set of T . Then � = {Ts : s ∈ S} is called a representation of S as nonexpan-
sive mappings on C if Ts is nonexpansive with Te = I and Tst = TsTt for each s, t ∈ S (cf.
[–]). We denote by F(�) the set of common fixed points of {Ts : s ∈ S}, i.e.,

F(�) =
⋂
s∈S

F(Ts) =
⋂
s∈S

{x ∈ C : Tsx = x}.

Lemma . ([, ]) Let S be a semigroup and C be a closed convex subset of a Hilbert
space H . Let � = {Ts : s ∈ S} be a nonexpansive semigroup on C such that {Ttu : t ∈ S} is
bounded for some u ∈ C, let X be a subspace of B(S) such that  ∈ X and the mapping
t �→ 〈Ttx, y〉 is an element of X for each x ∈ C and y ∈H , and μ be a mean on X. If we write
Tμx instead of

∫
Ttxdμ(t), then the following hold:

(i) Tμ is a nonexpansive mapping from C into itself,
(ii) Tμx = x for each x ∈ F(�),
(iii) Tμx ∈ co{Ttx : t ∈ S} for each x ∈ C, where coA is the closed convex hull of A.

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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Let C be a nonempty subset of a Hilbert space H and T : C →H be a mapping. Then T
is said to be demiclosed at v ∈ H if, for any sequence {xn} in C, the following implication
holds:

xn ⇀ u ∈ C and Txn → v imply Tu = v,

where → (resp. ⇀) denotes strong (resp. weak) convergence.

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space H and
suppose that T : C → H is nonexpansive. Then, the mapping I – T is demiclosed at zero.

Let C be a nonempty subset of a normed space E, and let x ∈ E. An element y ∈ C is
said to be the best approximation to x if

‖x – y‖ = d(x,C),

where d(x,C) = infy∈C ‖x – y‖. The number d(x,C) is called the distance from x to C. Let
H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H . Then, for any x ∈ H , there exists a unique nearest point in C,
denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

The mapping PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C and satisfies

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖

for every x, y ∈ H . Moreover, PCx is characterized by the following properties: PCx ∈ C
and for all x ∈H , y ∈ C,

〈x – PCx, y – PCx〉 ≤  (.)

and

‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖.

It is easy to see that the following is true:

u ∈ VI(C,B) ⇐⇒ u = PC(u – λBu), λ > . (.)

In this paper, for solving the mixed equilibrium problems for an equilibrium bifunction
θ : C ×C →R, we assume that θ satisfies the following conditions:
(E) θ (x,x) =  for all x ∈ C;

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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(E) θ is monotone, i.e., θ (x, y) + θ (y,x)≤  for all x, y ∈ C;
(E) for each x, y, z ∈ C,

lim
t↓ θ

(
tz + ( – t)x, y

)≤ θ (x, y);

(E) for each x ∈ C, the function y �→ θ (x, y) is convex and lower semicontinuous.

Definition . () Let F : C →H and η : C ×C →H be two mappings. Then F is called:
(i) η-monotone if

〈
F(x) – F(y),η(x, y)

〉≥ , ∀x, y ∈ C,

(ii) η-strongly monotone with constant α if there exists a constant α >  such that

〈
F(x) – F(y),η(x, y)

〉≥ α‖x – y‖, ∀x, y ∈ C,

(iii) Lipschitz continuous with constant β if there exists a constant β >  such that

∥∥F(x) – F(y)
∥∥≤ β‖x – y‖, ∀x, y ∈ C.

If η(x, y) = x – y, for all x, y ∈ C, then the definitions (i) and (ii) reduce to the
definition of monotonicity and strong monotonicity, respectively.

() A mapping η : C × C → H is called Lipschitz continuous with constant λ if there
exists a constant λ >  such that

∥∥η(x, y)∥∥≤ λ‖x – y‖, ∀x, y ∈ C.

() A differentiable function K : C →R on a convex set C is called:
(i) η-convex [] if

K(y) –K(x)≥ 〈
K ′(x),η(y,x)

〉
, ∀x, y ∈ C,

where K ′(x) is the Fréchet derivative of K at x,
(ii) η-strongly convex with constant σ [] if there exists a constant σ >  such that

K(y) –K(x) –
〈
K ′(x),η(y,x)

〉≥ σ


‖x – y‖, ∀x, y ∈ C.

() A mapping F : C → R is called sequentially continuous at x [], if F(xn) → F(x)
for each sequence {xn} satisfying xn ⇀ x. F is called sequentially continuous on C if it is
sequentially continuous at each point of C.

Lemma . ([]) Let K : C → R be differentiable η-strongly convex with a constant σ > ,
and let η : C × C → H be a mapping such that η(x, y) + η(y,x) =  for all x, y ∈ C. Then
K ′ : C →H is η-strongly monotone with constant σ > .

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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Lemma . ([]) AHilbert space H is said to satisfy Opial’s condition if for each sequence
{xn} in H , the condition xn ⇀ x implies that

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

for all y ∈H with y �= x.

Lemma . Let H be a real Hilbert space. Then

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉,

for all x, y ∈H .

Let C be a nonempty closed convex subset of a real Hilbert space H , ϕ : C → R be a
real-valued function and θ : C × C → R be an equilibrium bifunction. Let r be a positive
parameter. For a given point x ∈ C, consider the auxiliary problem for the mixed equilib-
rium problem (for short,MEP(x, r)) which consists of finding y ∈ C such that

θ (y, z) + ϕ(z) – ϕ(y) +

r
〈
K ′(y) –K ′(x),η(z, y)

〉≥ , ∀z ∈ C,

where η : C×C →H andK ′(x) is the Fréchet derivative of a functionalK : C →R at x. Let
Sr : C → C be the mapping such that for each x ∈ C, Sr(x) is the solution set ofMEP(x, r),
i.e.,

Sr(x) =
{
y ∈ C : θ (y, z) + ϕ(z) – ϕ(y)

+

r
〈
K ′(y) –K ′(x),η(z, y)

〉≥ ,∀z ∈ C
}

(.)

for all x ∈ C.
We first need the following important and interesting result.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H , and
let ϕ : C → R be a lower semicontinuous and convex functional. Let θ : C × C → R be an
equilibrium bifunction satisfying conditions (E)-(E). Assume that

(i) η : C ×C →H is Lipschitz continuous with constant λ >  such that
(a) η(x, y) + η(y,x) = , ∀x, y ∈ C,
(b) for each fixed y ∈ C, x �→ η(y,x) is sequentially continuous from the weak

topology to the weak topology,
(ii) K : C →R is η-strongly convex with constant σ >  and its derivative K ′ is

sequentially continuous from the weak topology to the strong topology,
(iii) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ C such that for any

y ∈ C \Dx,

θ (y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x),η(zx, y)

〉
< .

Then the following hold:
() Sr is single-valued;

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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() Sr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈H ,

‖Srx – Sry‖ ≤ 〈Srx – Sry,x – y〉;

() (j) Sr is nonexpansive if K ′ is Lipschitz continuous with constant ν >  such that
σ ≥ λν ;

(jj) 〈K ′(x) –K ′(x),η(u,u)〉 ≥ 〈K ′(u) –K ′(u),η(u,u)〉, ∀(x,x) ∈ C ×C, where
ui = Sr(xi), i = , ;

() F(Sr) = �;
() � is a closed and convex subset of C.

Remark . In particular, from Lemma ., whenever K(x) = ‖x‖
 and η(x, y) = x – y for

each (x, y) ∈ C ×C, then Sr is firmly nonexpansive, i.e.,

〈
x – x,Sr(x) – Sr(x)

〉≥ ∥∥Sr(x) – Sr(x)
∥∥, ∀(x,x) ∈ C ×C.

We need the following results concerning theW -mappingWn.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T,T, . . . be nonexpansive mappings of C into H such that

⋂∞
i= F(Ti) is nonempty, and let

λ,λ, . . . be real numbers such that  < λi ≤ b <  for any i ∈ N. Then, for every x ∈ C and
k ∈N, the limit limn→∞ Un,kx exists.

Using Lemma ., one can define a mappingW of C into H as

Wx = lim
n→∞Wnx = lim

n→∞Un,x,

for every x ∈ C.

Remark. ([]) LetC be a nonempty closed convex subset of a realHilbert spaceH . Let
T,T, . . . be nonexpansive mappings of C intoH such that

⋂∞
i= F(Ti) is nonempty, and let

λ,λ, . . . be real numbers such that  < λi ≤ b <  for any i ∈N. Then F(W ) =
⋂∞

i= F(Ti).

Remark . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T,T, . . . be nonexpansive mappings of C into H such that

⋂∞
i= F(Ti) is nonempty. If

{xn} is an arbitrary bounded sequence in C, then we have

lim
n→∞‖Wxn –Wnxn‖ = .

Lemma . ([]) Let {xn} and {zn} be bounded sequences in a Hilbert space H and let
{βn} be a sequence in [, ] with  < lim infn→∞ βn and lim supn→∞ βn < . Suppose

xn+ = βnxn + ( – βn)zn

for all integers n ≥  and

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
)≤ .

Then limn→∞ ‖zn – xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/185
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Lemma . ([]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with a coefficient γ̄ >  and  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ̄ .

Lemma . ([]) Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – bn)an + bncn,

where {bn} is a sequence in (, ) and {cn} is a sequence in R such that
()

∑∞
n= bn = ∞,

() lim supn→∞ cn ≤  or
∑∞

n= |bncn| < ∞.
Then

lim
n→∞an = .

3 Main result: strong convergence theorems
In this section, we deal with the strong convergence of hybrid viscosity approximation
scheme (.) for finding a common element of the set of solutions of a mixed equilibrium
problem, the set of fixed points of an infinite family of nonexpansive mappings, the set
of fixed points of a left amenable semigroup of nonexpansive mappings and the set of
solutions of variational inequality in a Hilbert space.

Theorem . Let S be a semigroup, � = {Tt : t ∈ S} be a nonexpansive semigroup on H
such that F(�) �= ∅, X be a left invariant subspace of B(S) such that  ∈ X, and the function
t �→ 〈Ttx, y〉 is an element of X for each x, y ∈H . Let {μn} be a left strong regular sequence of
means on X such that limn→∞ ‖μn+ –μn‖ = . Let C be a nonempty closed convex subset
of a real Hilbert space H and {Ti} be an infinite family of nonexpansive mappings from C
into itself such that Ti(F(�)∩ �) ⊂ F(�) for each i ∈N. Let ϕ : C →R be a lower semicon-
tinuous and convex functional. Let θ : C × C → R be an equilibrium bifunction satisfying
conditions (E)-(E), and let T,T, . . . be an infinite family of nonexpansive mappings of
C into H . Let r > , γ >  be two constants. Let f be a contraction of C into itself with a
coefficient α ∈ (, ), and let A be a strongly positive bounded linear operator with a coeffi-
cient γ̄ >  such that  < αγ < γ̄ < αγ + . Let B : C →H be an L-Lipschitzian and relaxed
(ξ ,ν)-cocoercivemapping. Suppose thatF =

⋂∞
n= F(Tn)∩F(�)∩�∩VI(C,B) �= ∅. Let {αn},

{βn} and {γn} be sequences in [, ] such that αn+βn ≤ , and let the sequence {δn} ⊂ (,∞).
Assume that:
(C) η : C ×C →H is Lipschitz continuous with constant λ >  such that

(a) η(x, y) + η(y,x) = , ∀x, y ∈ C,
(b) for each fixed y ∈ C, x �→ η(y,x) is sequentially continuous from the weak

topology to the weak topology,
(C) K : C →R is η-strongly convex with constant σ >  and its derivative K ′ is not only

sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant ν >  such that σ ≥ λν ,

(C) for each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y ∈ C \Dx,

θ (y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x),η(zx, y)

〉
< ,
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(C) (i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,

 < lim infn→∞ γn ≤ lim supn→∞ γn < ,
(iii) limn→∞ |δn+ – δn| = , a ≤ δn ≤ b for some a, b with  ≤ a ≤ b≤ (ν–ξL)

L ,
(iv) limn→∞ |γn+ – γn| = ,

(C) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
Given x ∈ C is arbitrary, then the sequences {xn}, {yn} and {zn} generated iteratively by
(.) converge strongly to x* ∈ F , where x* = PF (γ f + (I – A))x*, which solves the following
variational inequality:

〈
(γ f –A)x*,x – x*

〉≤ , ∀x ∈F .

Lemma . ‖( – βn)I – αnA‖ ≤  – βn – αnγ̄ .

Proof Since limn→∞ αn = , we may assume, without loss of generality, that αn ≤ ( –
βn)‖A‖–. Since A is a linear bounded self-adjoint operator on H , we have

‖A‖ = sup
{∣∣〈Ax,x〉∣∣ : x ∈H ,‖x‖ = 

}
.

Observe that

〈(
( – βn)I – αnA

)
x,x

〉
=  – βn – αn〈Ax,x〉
≥  – βn – αn‖A‖
≥ ,

which shows that ( – βn)I – αnA is positive. By Lemma ., we have

∥∥( – βn)I – αnA
∥∥≤  – βn – αnγ̄ . �

Lemma . Let B be an L-Lipschitzian and relaxed (ξ ,ν)-cocoercive mapping and δn ≤
(ν–ξL)

L , then

∥∥(I – δnB)x – (I – δnB)y
∥∥≤ ‖x – y‖,

for all x, y ∈ C.

Proof Since B is an L-Lipschitzian and relaxed (ξ ,ν)-cocoercive mapping and δn ≤
(ν–ξL)

L , we have

∥∥(I – δnB)x – (I – δnB)y
∥∥

= ‖x – y‖ – δn〈Bx – By,x – y〉 + δn‖Bx – By‖

≤ ‖x – y‖ – δn
(
–ξ‖Bx – By‖ + ν‖x – y‖) + δnL

‖x – y‖

≤ ‖x – y‖ + δnξL‖x – y‖ – δnν‖x – y‖ + δnL
‖x – y‖

=
(
 + δnξL – δnν + δnL

)‖x – y‖ ≤ ‖x – y‖,
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for all x, y ∈ C. Thus,

∥∥(I – δnB)x – (I – δnB)y
∥∥≤ ‖x – y‖,

for all x, y ∈ C. �

Lemma . ‖zn – p‖ ≤ ‖xn – p‖, ∀p ∈F .

Proof From (.), we note that zn = Srnxn. From Lemma ., we get

‖zn – p‖ ≤ ‖Srnxn – Srnp‖ ≤ ‖xn – p‖

for all p ∈F . �

Lemma . {xn}, {yn}, {zn}, {Wnyn}, {Wnxn} and {f (Wnxn)} are all bounded.

Proof Let p ∈F . Since p ∈ VI(C,B), from (.), we get p = PC(I – δnB)p. From Lemma .,
Lemma . andWn, PC being nonexpansive, we have

‖yn – p‖ =
∥∥( – γn)xn + γnTμnWnPC(I – δnB)zn – p

∥∥
≤ ( – γn)‖xn – p‖ + γn

∥∥TμnWnPC(I – δnB)zn – p
∥∥

≤ ( – γn)‖xn – p‖ + γn
∥∥(I – δnB)zn – (I – δnB)p

∥∥
≤ ( – γn)‖xn – p‖ + γn‖zn – p‖
≤ ‖xn – p‖.

From (.) and Lemma ., we obtain

‖xn+ – p‖
=
∥∥αnγ f (Wnxn) + βnxn +

(
( – βn)I – αnA

)
TμnWnyn – p

∥∥
=
∥∥αn

(
γ f (Wnxn) –Ap

)
+ βn(xn – p)

+
(
( – βn)I – αnA

)
(TμnWnyn – p)

∥∥
≤ αn

∥∥γ f (Wnxn) –Ap
∥∥ + βn‖xn – p‖ + ∥∥( – βn)I – αnA

∥∥‖yn – p‖
≤ ( – βn – αnγ̄ )‖yn – p‖ + βn‖xn – p‖

+ αnγ
∥∥f (Wnxn) – f (p)

∥∥ + αn
∥∥γ f (p) –Ap

∥∥
≤ ( – αnγ̄ )‖xn – p‖ + αnγα‖xn – p‖ + αn

∥∥γ f (p) –Ap
∥∥

=
(
 – αn(γ̄ – γα)

)‖xn – p‖ + αn(γ̄ – γα)
‖γ f (p) –Ap‖

γ̄ – γα
, (.)

for all n ≥ . It follows by mathematical induction that

‖xn+ – p‖ ≤ max

{
‖x – p‖, ‖γ f (p) –Ap‖

γ̄ – γα

}
, n≥ .

Therefore, {xn} is bounded. We also deduce that {yn}, {zn}, {Wnyn}, {Wnxn} and {f (Wnxn)}
are all bounded. �
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Lemma . Let the mapping Wn be generated iteratively by (.). If {ωn} is a bounded
sequence in H , then
() limn→∞ ‖Wn+ωn –Wnωn‖ = .
() limn→∞ ‖Tμn+ωn – Tμnωn‖ = .

Proof () We shall use M to denote the possible different constants appearing in the fol-
lowing argument. From (.), since Ti and Un,i are nonexpansive, we have

‖Wn+ωn –Wnωn‖ =
∥∥λTUn+,ωn + ( – λ)ωn – λTUn,ωn – ( – λ)ωn

∥∥
≤ λ‖Un+,ωn –Un,ωn‖
= λ

∥∥λTUn+,ωn + ( – λ)ωn – λTUn,ωn – ( – λ)ωn
∥∥

≤ λλ‖Un+,ωn –Un,ωn‖
≤ λλ · · ·λn‖Un+,n+ωn –Un,n+ωn‖

≤ M
n∏
i=

λi,

which implies that

lim
n→∞‖Wn+ωn –Wnωn‖ = .

() Let q ∈ F(�). Then ‖Tsωn – q‖ ≤ ‖ωn – q‖. Also, we have

‖Tsωn‖ ≤ ‖ωn – q‖ + ‖q‖

for all s ∈ S and n≥ . Since {ωn} is bounded and limn→∞ ‖μn+ –μn‖ = , we get

‖Tμn+ωn – Tμnωn‖ = sup
{∣∣〈Tμn+ωn – Tμnωn, z〉

∣∣ : ‖z‖ = 
}

= sup
{∣∣μn+(s)〈Tsωn, z〉 –μn(s)〈Tsωn, z〉

∣∣ : ‖z‖ = 
}

≤ ‖μn+ –μn‖ · sup
s∈S

‖Tsωn‖

≤ ‖μn+ –μn‖
(‖ωn – q‖ + ‖q‖)

–→ . �

Lemma . limn→∞ ‖xn+ – xn‖ = limn→∞ ‖zn+ – zn‖ = .

Proof Define a sequence {un} by

xn+ = βnxn + ( – βn)un

for all n ≥ . Observe that from the definition of un, we get

un+ – un =
xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

=
αn+γ f (Wn+xn+) + (( – βn+)I – αn+A)Tμn+Wn+yn+

 – βn+
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–
αnγ f (Wnxn) + (( – βn)I – αnA)TμnWnyn

 – βn

=
αn+

 – βn+
γ f (Wn+xn+) –

αn

 – βn
γ f (Wnxn) + Tμn+Wn+yn+

– TμnWnyn +
αn

 – βn
ATμnWnyn –

αn+

 – βn
ATμn+Wn+yn+

=
αn+

 – βn+

(
γ f (Wn+xn+) –ATμn+Wn+yn+

)
+

αn

 – βn

(
ATμnWnyn – γ f (Wnxn)

)
+ Tμn+Wn+yn+

– Tμn+Wn+yn + Tμn+Wn+yn – TμnWnyn. (.)

From (.), we note that zn = Srnxn and zn+ = Srn+xn+, we have

θ (zn,x) + ϕ(x) – ϕ(zn) +

rn

〈
K ′(zn) –K ′(xn),η(x, zn)

〉≥ , (.)

θ (zn+,x) + ϕ(x) – ϕ(zn+) +


rn+

〈
K ′(zn+) –K ′(xn+),η(x, zn+)

〉≥  (.)

for all x ∈ C. Putting x = zn+ in (.) and x = zn in (.), we have

θ (zn, zn+) + ϕ(zn + ) – ϕ(zn) +

rn

〈
K ′(zn) –K ′(xn),η(zn+, zn)

〉≥ , (.)

θ (zn+, zn) + ϕ(zn) – ϕ(zn+) +


rn+

〈
K ′(zn+) –K ′(xn+),η(zn, zn+)

〉≥ . (.)

After multiplying (.) and (.) by rn and adding them together, we obtain
〈
η(zn+, zn),K ′(zn) –K ′(xn) –

rn
rn+

(
K ′(zn+) –K ′(xn+)

)〉≥ .

Hence,〈
η(zn+, zn),K ′(zn) –K ′(zn+) +K ′(xn+) –K ′(xn)

+
(
 –

rn
rn+

)(
K ′(zn+) –K ′(xn+)

)〉≥ .

Then, by Lemma ., we have
〈
η(zn+, zn),K ′(xn+) –K ′(xn) +

(
 –

rn
rn+

)(
K ′(zn+) –K ′(xn+)

)〉

≥ 〈
η(zn, zn+),K ′(zn) –K ′(zn+)

〉≥ σ‖zn – zn+‖,

and hence

σ‖zn+ – zn‖

≤ ∥∥η(zn+, zn)∥∥
(∥∥K ′(xn+) –K ′(xn)

∥∥ +( – rn
rn+

)∥∥K ′(zn+) –K ′(xn+)
∥∥)

≤ λ‖zn+ – zn‖
(

ν‖xn+ – xn‖ +
(
 –

rn
rn+

)
ν‖zn+ – xn+‖

)
.
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Without loss of generality, we assume that there exists a real number k such that rn > k > 
for all n ≥ , we have

‖zn+ – zn‖ ≤ λν

σ
‖xn+ – xn‖ + ν

σ


k
|rn+ – rn|‖zn+ – xn+‖

≤ ‖xn+ – xn‖ + ν

σk
|rn+ – rn|M′, (.)

whereM′ = sup{‖zn – xn‖ : n≥ }.
Setting vn = PC(I – δnB)zn for all n ≥ , from Lemma ., we have

‖vn+ – vn‖ ≤ ∥∥PC(I – δn+B)zn+ – PC(I – δnB)zn
∥∥

≤ ∥∥(I – δn+B)zn+ – (I – δnB)zn
∥∥

≤ ∥∥(I – δn+B)zn+ – (I – δn+B)zn
∥∥ + ∥∥(δn+ – δn)Bzn

∥∥
≤ ‖zn+ – zn‖ + |δn+ – δn|‖Bzn‖.

From (.), we get

‖Tμn+Wn+vn+ – TμnWnvn‖
≤ ‖Tμn+Wn+vn+ – Tμn+Wn+vn‖ + ‖Tμn+Wn+vn – Tμn+Wnvn‖

+ ‖Tμn+Wnvn – TμnWnvn‖
≤ ‖vn+ – vn‖ + ‖Wn+vn –Wnvn‖ + ‖Tμn+Wnvn – TμnWnvn‖
≤ ‖zn+ – zn‖ + |δn+ – δn|‖Bzn‖

+ ‖Wn+vn –Wnvn‖ + ‖Tμn+Wnvn – TμnWnvn‖
≤ ‖xn+ – xn‖ + ν

σk
|rn+ – rn|M′ + |δn+ – δn|‖Bzn‖

+ ‖Wn+vn –Wnvn‖ + ‖Tμn+Wnvn – TμnWnvn‖. (.)

Also, we have

‖yn+ – yn‖
=
∥∥( – γn+)xn+ + γn+Tμn+Wn+vn+ – ( – γn)xn – γnTμnWnvn

∥∥
=
∥∥( – γn+)(xn+ – xn) + (γn – γn+)xn

+ (γn+ – γn)TμnWnvn + γn(Tμn+Wn+vn+ – TμnWnvn)
∥∥

≤ ( – γn+)‖xn+ – xn‖ + |γn – γn+|‖xn‖
+ |γn+ – γn|‖TμnWnvn‖ + γn+‖Tμn+Wn+vn+ – TμnWnvn‖. (.)

From (.), we obtain

‖un+ – un‖ – ‖xn+ – xn‖
≤ αn+

 – βn+

(∥∥γ f (Wn+xn+)
∥∥ + ‖ATμn+Wn+yn+‖

)
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+
αn

 – βn

(‖ATμnWnyn‖ +
∥∥γ f (Wnxn)

∥∥)
+ ‖Tμn+Wn+yn+ – Tμn+Wn+yn‖
+ ‖Tμn+Wn+yn – TμnWnyn‖ – ‖xn+ – xn‖

≤ αn+

 – βn+

(∥∥γ f (Wn+xn+)
∥∥ + ‖ATμn+Wn+yn+‖

)
+

αn

 – βn

(‖ATμnWnyn‖ +
∥∥γ f (Wnxn)

∥∥)
+ ‖yn+ – yn‖ + ‖Tμn+Wn+yn – TμnWnyn‖ – ‖xn+ – xn‖. (.)

Combining (.), (.) and (.), we obtain

‖un+ – un‖ – ‖xn+ – xn‖
≤ αn+

 – βn+

(∥∥γ f (Wn+xn+)
∥∥ + ‖ATμn+Wn+yn+‖

)
+

αn

 – βn

(‖ATμnWnyn‖ +
∥∥γ f (Wnxn)

∥∥)
≤ ( – γn+)‖xn+ – xn‖ + |γn – γn+|‖xn‖

+ |γn+ – γn|‖TμnWnvn‖ + γn+

(
‖xn+ – xn‖

+
ν

σk
|rn+ – rn|M′ + |δn+ – δn|‖Bzn‖ + ‖Wn+vn –Wnvn‖

+ ‖Tμn+Wnvn – TμnWnvn‖
)
+ ‖Tμn+Wn+yn – TμnWn+yn‖

+ ‖TμnWn+yn – TμnWnyn‖ – ‖xn+ – xn‖. (.)

Thus, it follows from (.), Lemma ., Lemma . and condition (C) that

lim sup
n→∞

(‖un+ – un‖ – ‖xn+ – xn‖
)≤ .

By Lemma ., we get

lim
n→∞‖un – xn‖ = .

Consequently, we have

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖un – xn‖ = . (.)

From (.), we get

lim
n→∞‖zn+ – zn‖ = . �

Lemma . limn→∞ ‖xn – Ttxn‖ =  for all t ∈ S.

Proof Let p ∈F and put

M =max

{
‖x – p‖, ‖γ f (p) –Ap‖

γ̄ – γα

}
.
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Set D = {y ∈ H : ‖y – p‖ ≤ M}. We remark that D is a bounded closed convex set,
{xn}, {yn}, {zn} ⊂D and it is invariant under � andWn for all n ∈N. We will show that

lim sup
n→∞

sup
y∈D

‖Tμny – TtTμny‖ = , (.)

for all t ∈ S. Let ε > , by [] (Theorem .), there exists δ >  such that

coFδ(Tt ;D) + Bδ ⊂ Fε(Tt ;D) (.)

for all t ∈ S. By [] (Corollary .), there exists a natural number N such that

∥∥∥∥∥ 
N + 

N∑
i=

Ttisy – Tt

(


N + 

N∑
i=

Ttisy

)∥∥∥∥∥≤ δ, (.)

for all t, s ∈ S and y ∈ D. Since {μn} is left strong regular, there exists n ∈ N such that
‖μn – l*tiμn‖ ≤ δ

M+‖p‖ for n≥ n and i = , , . . . ,N . Then we have

sup
y∈D

∥∥∥∥∥Tμny –
∫ 

N + 

N∑
i=

Ttisy dμn(s)

∥∥∥∥∥
= sup

y∈D
sup
‖z‖=

∣∣∣∣∣〈Tμny, z〉 –
〈∫ 

N + 

N∑
i=

Ttisy dμn(s), z

〉∣∣∣∣∣
= sup

y∈D
sup
‖z‖=

∣∣∣∣∣μn(s)〈Tsy, z〉 –μn(s)

〈


N + 

N∑
i=

Ttisy, z

〉∣∣∣∣∣
= sup

y∈D
sup
‖z‖=

∣∣∣∣∣ 
N + 

N∑
i=

μn(s)〈Tsy, z〉 – 
N + 

N∑
i=

μn(s)〈Ttisy, z〉
∣∣∣∣∣

≤ 
N + 

N∑
i=

sup
y∈D

sup
‖z‖=

∣∣μn(s)〈Tst, z〉 – l*tiμn(s)〈Tsy, z〉
∣∣

≤ max
i=,,,...,N


N + 

N∑
i=

∥∥μn – l*tiμn
∥∥‖Tsy‖

≤ max
i=,,,...,N

∥∥μn – l*tiμn
∥∥(M + ‖p‖)≤ δ, (.)

for all n ≥ n. By Lemma ., we have

∫ 
N + 

N∑
i=

Ttisy dμn(s) ∈ co

{


N + 

N∑
i=

Tti (Tsy) : s ∈ S

}
. (.)

It follows from (.)-(.) that

Tμny =
∫ 

N + 

N∑
i=

Ttisy dμn(s) +

(
Tμny –

∫ 
N + 

N∑
i=

Ttisy dμn(s)

)

∈ co

{


N + 

N∑
i=

Ttisy : s ∈ S

}
+ Bδ
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⊂ coFδ(Tt ;D) + Bδ

⊂ Tε(Tt ;D),

for all y ∈D and n≥ n. Therefore,

lim sup
n→∞

sup
y∈D

‖TtTμny – Tμny‖ ≤ ε.

Since ε >  is arbitrary, we obtain (.). Now, let t ∈ S and ε > . Then there exists δ >
, which satisfies (.). Take L = (γα + ‖A‖)M + ‖γ f (p) – Ap‖. From limn→∞ αn = ,
(.) and (.), there exists k ∈N such that αn < δ(–βn)

L
, Tμny ∈ Fδ(Tt ;D) for all y ∈D and

‖xn – xn+‖ < δ(–βn)
βn for all n≥ k. We note that

∥∥αn
(
γ f (Wnxn) –ATμnWnyn

)∥∥
≤ αn

(
γ
∥∥f (Wnxn) – f (p)

∥∥ + ∥∥γ f (p) –Ap
∥∥ + ‖ATμnWnyn –Ap‖)

≤ αn
(
γα‖Wnxn – p‖ + ∥∥γ f (p) –Ap

∥∥ + ‖A‖‖TμnWnyn – p‖)
≤ αn

(
γα‖xn – p‖ + ∥∥γ f (p) –Ap

∥∥ + ‖A‖‖yn – p‖)
≤ αn

((
γα + ‖A‖)‖xn – p‖ + ∥∥γ f (p) –Ap

∥∥)
≤ αn

((
γα + ‖A‖)M +

∥∥γ f (p) –Ap
∥∥)

≤ δ( – βn)


,

for all n ≥ k. Since

xn+ – βnxn+

= ( – βn)TμnWnyn + βnxn + αn
(
γ f (Wnxn) –ATμnWnyn

)
– βnxn+,

we get

xn+ = TμnWnyn +
βn

 – βn
(xn – xn+)

+
αn

 – βn

(
γ f (Wnxn) –ATμnWnyn

)
∈ Fδ(Tt ;D) + B δ


+ B δ



⊂ Fδ(Tt ;D) + Bδ

⊂ Fε(Tt ;D),

for all n ≥ k. This shows that

lim sup
n→∞

‖xn – Ttxn‖ ≤ ε.

Since ε >  is arbitrary, we get limn→∞ ‖xn – Ttxn‖ = . �

Lemma . limn→∞ ‖xn – TμnWnyn‖ = .
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Proof Since xn+ = αnγ f (Wnxn) + βnxn + (( – βn)I – αnA)TμnWnyn, we have

‖xn – TμnWnyn‖ ≤ ‖xn – xn+‖ + ‖xn+ – TμnWnyn‖
= ‖xn – xn+‖ + αn

∥∥γ f (Wnxn) –ATμnWnyn
∥∥ + βn‖xn – TμnWnyn‖,

that is,

‖xn – TμnWnyn‖ ≤ 
 – βn

‖xn – xn+‖ + αn

 – βn

∥∥γ f (Wnxn) –ATμnWnyn
∥∥.

It follows from condition (C) and Lemma . that

lim
n→∞‖xn – TμnWnyn‖ = . �

Lemma . limn→∞ ‖xn – zn‖ = .

Proof For p ∈F , since Sr is firmly nonexpansive, we have

‖zn – p‖ = ‖Srnxn – Srnp‖

≤ 〈Srnxn – Srnp,xn – p〉 = 〈zn – p,xn – p〉

=


(‖zn – p‖ + ‖xn – p‖ – ‖zn – xn‖

)
and hence

‖zn – p‖ ≤ ‖xn – p‖ – ‖zn – xn‖. (.)

Note that the following equality holds:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖

for all t ∈ [, ] and x, y ∈H . So, from (.) and (.), we get

‖yn – p‖ =
∥∥( – γn)(xn – p) + γn

(
TμnWnPC(I – δnB)zn – p

)∥∥
≤ γn

∥∥TμnWnPC(I – δnB)zn – p
∥∥ + ( – γn)‖xn – p‖

– γn( – γn)
∥∥TμnWnPC(I – δnB)zn – xn

∥∥
= γn‖zn – p‖ + ( – γn)‖xn – p‖ – ( – γn)‖yn – xn‖

≤ γn
(‖xn – p‖ – ‖zn – xn‖

)
+ ( – γn)‖xn – p‖

= ‖xn – p‖ – γn‖zn – xn‖. (.)

Therefore, from Lemma ., Lemma . and (.), we have

‖xn+ – p‖

=
∥∥αn

(
γ f (Wnxn) –Ap

)
+ βn(xn – TμnWnyn) + (I – αnA)(TμnWnyn – p)

∥∥
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≤ ∥∥βn(xn – TμnWnyn) + (I – αnA)(TμnWnyn – p)
∥∥

+ αn
〈
γ f (Wnxn) –Ap,xn+ – p

〉
≤ (‖I – αnA‖‖yn – p‖ + βn‖xn – TμnWnyn‖

)
+ αn

∥∥γ f (Wnxn) –Ap
∥∥‖xn+ – p‖

≤ (
( – αnγ̄ )‖yn – p‖ + βn‖xn – TμnWnyn‖

)
+ αn

∥∥γ f (Wnxn) –Ap
∥∥‖xn+ – p‖

≤ ( – αnγ̄ )‖yn – p‖ + β
n‖xn – TμnWnyn‖

+ ( – αnγ̄ )βn‖yn – p‖‖xn – TμnWnyn‖
+ αn

∥∥γ f (Wnxn) –Ap
∥∥‖xn+ – p‖

≤ ( – αnγ̄ )
(‖xn – p‖ – γ ‖zn – xn‖

)
+ β

n‖xn – TμnWnyn‖

+ ( – αnγ̄ )βn‖yn – p‖‖xn – TμnWnyn‖
+ αn

∥∥γ f (Wnxn) –Ap
∥∥‖xn+ – p‖.

Then we derive

( – αnγ̄ )γn‖zn – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + α
nγ̄

‖xn – p‖ + β
n‖xn – TμnWnyn‖

+ ( – αnγ̄ )βn‖yn – p‖‖xn – TμnWnyn‖
+ αn

∥∥γ f (Wnxn) –Ap
∥∥‖xn+ – p‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + α
nγ̄

‖xn – p‖

+ β
n‖xn – TμnWnyn‖ + ( – αnγ̄ )βn‖yn – p‖‖xn – TμnWnyn‖

+ αn
∥∥γ f (Wnxn) –Ap

∥∥‖xn+ – p‖. (.)

So, from (C), Lemma ., Lemma . and (.), we obtain

lim
n→∞‖xn – zn‖ = . �

Lemma . limn→∞ ‖yn – vn‖ = limn→∞ ‖zn – vn‖ = , where vn = PC(I – δnB)zn for all
n≥ .

Proof Let p ∈ F . Setting vn = PC(I – δnB)zn for all n ≥ , since p ∈ VI(C,B), we have p =
PC(I – δnB)p. From the L-Lipschitzian and relaxed (ξ ,ν)-cocoercive mapping on B and
Lemma ., we have

‖vn – p‖

=
∥∥PC(I – δnB)zn – PC(I – δnB)p

∥∥
≤ ∥∥zn – p – δn(Bzn – Bp)

∥∥
= ‖zn – p‖ – δn〈Bzn – Bp, zn – p〉 + δn‖Bzn – Bp‖
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≤ ‖xn – p‖ – δn
(
–ξ‖Bzn – Bp‖ + ν‖zn – p‖) + δn‖Bzn – Bp‖

≤ ‖xn – p‖ +
(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖. (.)

From (.) and (.), we get

‖yn – p‖ =
∥∥( – γn)xn + γnTμnWnvn – p

∥∥
=
∥∥( – γn)(xn – p) + γn(TμnWnvn – p)

∥∥
≤ ( – γn)‖xn – p‖ + γn‖vn – p‖

≤ ‖xn – p‖ + γn

(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖. (.)

From (.), Lemma . and (.), we have

‖xn+ – p‖

=
∥∥αn

(
γ f (Wnxn) –Ap

)
+ βn(xn – p)

+
(
( – βn)I – αnA

)
(TμnWnyn – p)

∥∥
≤ (

αn
∥∥γ f (Wnxn) –Ap

∥∥ + βn‖xn – p‖ + ( – βn – αnγ̄ )‖yn – p‖)
= α

n
∥∥γ f (Wnxn) –Ap

∥∥ + β
n‖xn – p‖ + ( – βn – αnγ̄ )‖yn – p‖

+ αn
(
βn
∥∥γ f (Wnxn) –Ap

∥∥‖xn – p‖
+ ( – βn – αnγ̄ )

∥∥γ f (Wnxn) –Ap
∥∥‖yn – p‖)

+ βn( – βn – αnγ̄ )‖xn – p‖‖yn – p‖
≤ αnM + β

n‖xn – p‖ + ( – βn – αnγ̄ )‖yn – p‖
+ βn( – βn – αnγ̄ )

(‖xn – p‖ + ‖yn – p‖)
= αnM + βn( – αnγ̄ )‖xn – p‖ + ( – αnγ̄ )( – βn – αnγ̄ )‖yn – p‖

≤ αnM + βn( – αnγ̄ )‖xn – p‖ + ( – αnγ̄ )( – βn – αnγ̄ )

×
(

‖xn – p‖ + γn

(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖

)

≤ αnM + ( – αnγ̄ )‖xn – p‖

+ ( – αnγ̄ )γn
(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖

= αnM + ‖xn – p‖

+ ( – αnγ̄ )γn
(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖. (.)

It follows that

 ≤ –( – αnγ̄ )γn
(
δnξ + δn –

δnν
L

)
‖Bzn – Bp‖

≤ αnM + ‖xn – p‖ – ‖xn+ – p‖
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≤ αnM +
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖

–→ ,

which implies that

lim
n→∞‖Bzn – Bp‖ = . (.)

On the other hand, since PC is firmly nonexpansive, by Lemma ., we have

‖vn – p‖ =
∥∥PC(I – δnB)zn – PC(I – δnB)p

∥∥
≤ 〈

(I – δnB)zn – (I – δnB)p, vn – p
〉

=


{∥∥(I – δnB)zn – (I – δnB)p

∥∥ + ‖vn – p‖ – ∥∥zn – vn – γn(Bzn – Bp)
∥∥}

≤ 

{‖zn – p‖ + ‖vn – p‖ – ‖zn – vn‖

+ γn‖zn – vn‖‖Bzn – Bp‖ – γ 
n ‖Bzn – Bp‖},

which yields that

‖vn – p‖ ≤ ‖zn – p‖ – ‖zn – vn‖ + γn‖zn – vn‖‖Bzn – Bp‖
≤ ‖xn – p‖ – ‖zn – vn‖ + γn‖zn – vn‖‖Bzn – Bp‖. (.)

Combining (.) and (.), we obtain

‖yn – p‖ ≤ ( – γn)‖xn – p‖ + γn‖vn – p‖

≤ ( – γn)‖xn – p‖ + γn
(‖xn – p‖ – ‖zn – vn‖

+ γn‖zn – vn‖‖Bzn – Bp‖)
= ‖xn – p‖ – γn‖zn – vn‖ + γn‖zn – vn‖‖Bzn – Bp‖. (.)

Therefore, from (.) and (.), we get

‖xn+ – p‖ ≤ αnM + βn( – αnγ̄ )‖xn – p‖ + ( – αnγ̄ )( – βn – αnγ̄ )‖yn – p‖

≤ αnM + βn( – αnγ̄ )‖xn – p‖ + ( – αnγ̄ )( – βn – αnγ̄ )

× (‖xn – p‖ – γ ‖zn – vn‖ + γ 
n ‖zn – vn‖‖Bzn – Bp‖)

≤ αnM + ( – αnγ̄ )‖xn – p‖ – ( – αnγ̄ )( – βn – αnγ̄ )γn‖zn – vn‖

+ ( – αnγ̄ )( – βn – αnγ̄ )γ 
n ‖zn – vn‖‖Bzn – Bp‖.

Hence, we have

( – αnγ̄ )( – βn – αnγ̄ )γn‖zn – vn‖

≤ αnM +
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖

+ ( – αnγ̄ )( – βn – αnγ̄ )γ 
n ‖zn – vn‖‖Bzn – Bp‖,
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which implies that

lim
n→∞‖zn – vn‖ = . (.)

Observe that

‖yn – vn‖ ≤ ‖yn – xn‖ + ‖xn – zn‖ + ‖zn – vn‖
≤ γn‖TμnWnvn – xn‖ + ‖xn – zn‖ + ‖zn – vn‖
≤ γn

(‖TμnWnvn – TμnWnyn‖ + ‖TμnWnyn – xn‖
)

+ ‖xn – zn‖ + ‖zn – vn‖
≤ γn

(‖vn – yn‖ + ‖TμnWnyn – xn‖
)
+ ‖xn – zn‖ + ‖zn – vn‖,

and hence

( – γn)‖yn – vn‖ ≤ γn‖TμnWnyn – xn‖ + ‖xn – zn‖ + ‖zn – vn‖.

Thus, from Lemma ., Lemma ., (.) and (C), we derive

lim
n→∞‖yn – vn‖ = . �

Lemma . PF (γ f + (I –A)) is a contraction of H into itself.

Proof From Lemma ., we have

∥∥PF (γ f + (I –A)
)
x – PF

(
γ f + (I –A)

)
y
∥∥

≤ ∥∥γ f (x) + (I –A)x – γ f (y) – (I –A)y
∥∥

≤ γ
∥∥f (x) – f (y)

∥∥ + ∥∥(I –A)(x – y)
∥∥

≤ γα‖x – y‖ + ( – γ̄ )‖x – y‖
=
(
 – (γ̄ – γα)

)‖x – y‖,

for all x, y ∈H . From the condition γ̄ ,  < αγ < γ̄ < αγ + , we obtain  – (γ̄ – γα) ∈ (, ).
Therefore, PF (γ f + (I –A)) is a contraction. �

Now, we prove Theorem ..

Proof of Theorem . From Lemma . and the Banach contraction principle, PF (γ f +
(I – A)) has a unique fixed point, say x* ∈ H . That is, x* = PF (γ f + (I – A))x*. Then, using
(.), x* is the unique solution of the variational inequality

〈
(γ f –A)x*,x – x*

〉≤  (.)

for all x ∈F . Now, we show that

lim sup
n→∞

〈
(γ f –A)x*,xn – x*

〉≤ . (.)
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To show this, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
(γ f –A)x*,xn – x*

〉
= lim

i→∞
〈
(γ f –A)x*,xni – x*

〉
. (.)

Since {xni} is bounded, there exists a subsequence {xnij } of {xni} which converges weakly
to z. Without loss of generality, we can assume that xni ⇀ z. We need to show that z ∈F =
F(�)∩ � ∩ (

⋂∞
n= F(Tn))∩VI(C,B).

(I) Since xni ⇀ z, by Lemma . and Lemma ., we get

Ttz = z

for all t ∈ S. Therefore, z ∈ F(�).
(II) Now, we show that z ∈ �. Since zn = Srnxn, we derive

θ (zn,x) + ϕ(x) – ϕ(zn) +

rn

〈
K ′(zn) –K ′(xn),η(x, zn)

〉≥ ,

for all x ∈ C. From the monotonicity of θ , we have

θ (x, zn) ≤ –θ (zn,x)≤ ϕ(x) – ϕ(zn) +

rn

〈
K ′(zn) –K ′(xn),η(x, zn)

〉
,

and hence

θ (x, zni ) ≤ ϕ(x) – ϕ(zni ) +
〈
K ′(zni ) –K ′(xni )

rni
,η(x, zni )

〉
.

Since K ′(zni )–K ′(xni )
rni

→  and zni ⇀ z, from the lower semicontinuity of ϕ and (E), we have

θ (x, z) + ϕ(z) – ϕ(x)≤ ,

for all x ∈ C. For t with  < t ≤  and x ∈ C, let xt = tx + ( – t)z. Since x ∈ C and z ∈ C, we
have xt ∈ C and

θ (xt , z) + ϕ(z) – ϕ(xt) ≤ .

From (E), (E) and the convexity of ϕ, we get

 = θ (xt ,xt) + ϕ(xt) – ϕ(xt)

≤ tθ (xt ,x) + ( – t)θ (xt , z) + tϕ(x) + ( – t)ϕ(z) – ϕ(xt)

≤ t
(
θ (xt ,x) + ϕ(x) – ϕ(xt)

)
.

Hence,

θ (xt ,x) + ϕ(x) – ϕ(xt) ≥ ,
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for all x ∈ C. From (E) and the lower semicontinuity of ϕ, we have

θ (z,x) + ϕ(x) – ϕ(z) ≥ ,

for all x ∈ C. Therefore, z ∈ �.
(III) We show that z ∈ F(W ) =

⋂∞
i= F(Ti). Assume that z /∈ F(W ), then z �= Wz. Since

z ∈ F(�) ∩ �, by our assumption, we have Tiz ∈ F(�), ∀i ∈ N and then Wnz ∈ F(�). From
Lemma ., we get

TμnWnz =Wnz, (.)

for all n ∈N. Since

‖yn – xn‖ ≤ ‖yn – vn‖ + ‖vn – zn‖ + ‖zn – xn‖,

from Lemma . and Lemma ., we get

lim
n→∞‖yn – xn‖ = . (.)

By Lemma ., Lemma ., (.) and (.), we obtain

lim inf
i→∞ ‖xni – z‖

< lim inf
i→∞ ‖xni –Wz‖

≤ lim inf
i→∞

(‖xni – Tμni
Wniyni‖ + ‖Tμni

Wniyni – Tμni
Wnixni‖

+ ‖Tμni
Wnixni – Tμni

Wniz‖ + ‖Tμni
Wniz –Wz‖)

≤ lim inf
i→∞

(‖yni – xni‖ + ‖xni – z‖)
≤ lim inf

i→∞ ‖xni – z‖.

This is a contraction. Therefore, z ∈ F(W ) =
⋂∞

i= F(Ti).
(IV) We show that z ∈ VI(C,B). Let U :H → H be a set-valued mapping defined by

Ux =

⎧⎨
⎩Bx +NCx, if x ∈ C,

∅, if x /∈ C,

where NCx is the normal cone to C at x ∈ C. By assumption of B, we have

〈Bx – By,x – y〉 ≥ –ξ‖Bx – By‖ + ν‖x – y‖

≥ (
ν – ξL

)‖x – y‖

≥ , (.)
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which implies that B is monotone. Thus, U is a maximal monotone. Let (u, v) ∈ G(U).
Since v – Bu ∈NCu and vn = PC(I – δnB)zn ∈ C, we have

〈u – vn, v – Bu〉 ≥ . (.)

On the other hand, from (.), we have

〈
u – vn, vn – (I – δnB)zn

〉≥ 

and hence
〈
u – vn,

vn – zn
δn

+ Bzn
〉
≥ .

It follows by (.) and (.) that

〈u – vni , v〉 ≥ 〈u – vni ,Bu〉

≥ 〈u – vni ,Bu〉 –
〈
u – vni ,

vni – zni
δni

+ Bzni

〉

=
〈
u – vni ,Bu – Bzni –

vni – zni
δni

〉

= 〈u – vni ,Bu – Bvni〉 + 〈u – vni ,Bvni – Bzni〉

–
〈
u – vni ,

vni – zni
δni

〉

≥ 〈u – vni ,Bvni – Bzni〉 –
〈
u – vni ,

vni – zni
δni

〉
.

From Lemma . and Lemma ., we obtain 〈u – z, v〉 ≥  as i→ ∞. Since U is maximal
monotone, we have z ∈ U–(). Therefore, z ∈ VI(C,B). By (I)-(IV), z ∈ F = F(�) ∩ � ∩
(
⋂∞

n= F(Tn))∩VI(C,B). Since x* = PF (γ f + (I –A))x*, from (.), we have

lim sup
n→∞

〈
(γ f –A)x*,xn – x*

〉
= lim sup

i→∞

〈
(γ f –A)x*,xni – x*

〉
= lim sup

i→∞

〈
(γ f –A)x*, zni – x*

〉
=
〈
(γ f –A)x*, z – x*

〉
≤ .

(V) Finally, we prove that {xn}, {yn} and {zn} converge strongly to x*. From (.), we obtain

∥∥xn+ – x*
∥∥ =

∥∥αn
(
γ f (Wnxn) –Ax*

)
+ βn

(
xn – x*

)
+
(
( – βn)I – αnA

)(
TμnWnyn – x*

)∥∥
≤ ∥∥βn

(
xn – x*

)
+
(
( – βn)I – αnA

)(
TμnWnyn – x*

)∥∥
+ αn

〈
γ f (Wnxn) –Ax*,xn+ – x*

〉
≤ (

βn
∥∥xn – x*

∥∥ + ∥∥(( – βn)I – αnA
)(
TμnWnyn – x*

)∥∥)
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+ αnγ
〈
f (Wnxn) – f

(
x*
)
,xn+ – x*

〉
+ αn

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉
≤ (

βn
∥∥xn – x*

∥∥ + ( – βn – αnγ̄ )
∥∥yn – x*

∥∥)
+ αnγα

∥∥xn – x*
∥∥∥∥xn+ – x*

∥∥ + αn
〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉
≤ ( – αnγ̄ )

∥∥xn – x*
∥∥ + αnγα

(∥∥xn – x*
∥∥ + ∥∥xn+ – x*

∥∥)
+ αn

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉
,

which implies that

∥∥xn+ – x*
∥∥

≤  – αnγ̄ + (αnγ̄ ) + αnγα

 – αnγα

∥∥xn – x*
∥∥

+
αn

 – αnγα

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉

=
(
 –

(γ̄ – γα)αn

 – αnγα

)∥∥xn – x*
∥∥ + (αnγ̄ )

 – αnγα

∥∥xn – x*
∥∥

+
αn

 – αnγα

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉

=
(
 –

(γ̄ – γα)αn

 – αnγα

)∥∥xn – x*
∥∥

+
(γ̄ – γα)αn

 – αnγα

(
αnγ̄



(γ̄ – γα)
∥∥xn – x*

∥∥ + 
γ̄ – γα

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉)
.

It follows that

∥∥xn+ – x*
∥∥ ≤ ( – bn)

∥∥xn – x*
∥∥ + bncn, (.)

where

bn =
(γ̄ – γα)αn

 – αnγα
,

cn =
αnγ̄



(γ̄ – γα)
∥∥xn – x*

∥∥ + 
γ̄ – γα

〈
γ f

(
x*
)
–Ax*,xn+ – x*

〉
.

From (C)-(i), we have
∑∞

n= bn = ∞, and by (.), we get lim supn→∞ cn ≤ . Conse-
quently, applying Lemma . to (.), we get ‖xn – x*‖ → . Therefore,

lim
n→∞xn = x*.

From Lemma . and (.), we obtain

lim
n→∞ yn = x* and lim

n→∞ zn = x*.

This completes the proof of Theorem .. �
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Corollary . Let H ,C, S,�,X, {μn}, ϕ, θ ,Ti, f ,A, {αn}, {βn} and {γn} be as in Theorem ..
Suppose that F =

⋂∞
n= F(Tn)∩ F(�)∩ � �= ∅. Assume that

(C) η : C ×C →H is Lipschitz continuous with constant λ >  such that
(a) η(x, y) + η(y,x) = , ∀x, y ∈ C,
(b) for each fixed y ∈ C, x �→ η(y,x) is sequentially continuous from the weak

topology to the weak topology;
(C) K : C →R is η-strongly convex with constant σ >  and its derivative K ′ is not only

sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant ν >  such that σ ≥ λν ;

(C) for each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y ∈ C \Dx,

θ (y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x),η(zx, y)

〉
< ;

(C) (i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,

 < lim infn→∞ γn ≤ lim supn→∞ γn < ,
(iii) limn→∞ |γn+ – γn| = ;

(C) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
Given x ∈ C is arbitrary, let the sequences {xn}, {yn} and {zn} be generated by

⎧⎪⎪⎨
⎪⎪⎩

θ (zn,x) + ϕ(x) – ϕ(zn) + 
rn 〈K ′(zn) –K ′(xn),η(x, zn)〉 ≥ ,

yn = ( – γn)xn + γnTμnWnPCzn,

xn+ = αnγ f (Wnxn) + βnxn + (( – βn)I – αnA)TμnWnyn, n≥ .

Then {xn}, {yn} and {zn} converge strongly to x* ∈ F , where x* = PF (γ f + (I – A))x*, which
solves the following variational inequality:

〈
(γ f –A)x*,x – x*

〉≤ , ∀x ∈F .

Proof Setting B =  in Theorem ., we obtain the required result. �

Corollary . Let H , C, S, �, X, {μn}, Ti, f , A, {αn}, {βn} and {γn} be as in Theorem ..
Suppose that F =

⋂∞
n= F(Tn)∩ F(�) �= ∅. Assume that

(C) (i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,

 < lim infn→∞ γn ≤ lim supn→∞ γn < ,
(iii) limn→∞ |γn+ – γn| = ;

(C) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
Given x ∈ C is arbitrary, let the sequences {xn}, {yn} and {zn} be generated by

⎧⎨
⎩yn = ( – γn)xn + γnTμnWnPCxn,

xn+ = αnγ f (Wnxn) + βnxn + (( – βn)I – αnA)TμnWnyn, n≥ .
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Then {xn}, {yn} and {zn} converge strongly to x* ∈ F , where x* = PF (γ f + (I – A))x*, which
solves the following variational inequality:

〈
(γ f –A)x*,x – x*

〉≤ , ∀x ∈F .

Proof Set B = , θ (x, y) =  for all x, y ∈ C, ϕ =  and rn =  for all n ≥ . Take K(x) = ‖x‖


and η(x, y) = x – y for all x, y ∈ C. From (.), we have

⎧⎨
⎩yn = ( – γn)xn + γnTμnWnPCxn,

xn+ = αnγ f (Wnxn) + βnxn + (( – βn)I – αnA)TμnWnyn, n≥ .

Then the conclusion immediately follows from Theorem .. �

Corollary . Let H , C, S, �, X, {μn}, ϕ, θ , f , A, {αn}, {βn} and {γn} be as in Theorem ..
Suppose that � �= ∅. Assume that
(C) η : C ×C →H is Lipschitz continuous with constant λ >  such that

(a) η(x, y) + η(y,x) = , ∀x, y ∈ C,
(b) for each fixed y ∈ C, x �→ η(y,x) is sequentially continuous from the weak

topology to the weak topology;
(C) K : C →R is η-strongly convex with constant σ > , and its derivative K ′ is not

only sequentially continuous from the weak topology to the strong topology, but also
Lipschitz continuous with constant ν >  such that σ ≥ λν ;

(C) for each x ∈ C, there exist a bounded subset Dx ⊂ C and zx ∈ C such that for any
y ∈ C \Dx,

θ (y, zx) + ϕ(zx) – ϕ(y) +

r
〈
K ′(y) –K ′(x),η(zx, y)

〉
< ;

(C) (i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,

 < lim infn→∞ γn ≤ lim supn→∞ γn < ,
(iii) limn→∞ |γn+ – γn| = ;

(C) lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
Given x ∈ C is arbitrary, let the sequences {xn}, {yn} and {zn} be generated by

⎧⎪⎪⎨
⎪⎪⎩

θ (zn,x) + ϕ(x) – ϕ(zn) + 
rn 〈K ′(zn) –K ′(xn),η(x, zn)〉 ≥ ,

yn = ( – γn)xn + γnPCzn,

xn+ = αnγ f (xn) + βnxn + (( – βn)I – αnA)yn, n ≥ .

Then {xn}, {yn} and {zn} converge strongly to x* ∈ �, where x* = P�(γ f + (I – A))x*, which
solves the following variational inequality:

〈
(γ f –A)x*,x – x*

〉≤ , ∀x ∈ �.

Proof Set B =  and Tix = x for all i = , , . . . in (.). Then Wnx = x for all x ∈ C. The
conclusion immediately follows from Theorem .. �
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