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Renormalization group (RG) flow describes how short distance fluctuations modify

coupling constants (coupling functions in general) as a system is probed at progressively

larger length scales. Although RG provides a general framework for quantum field theo-

ries [1–3], it is of limited practical use for strongly coupled theories due to the fact that

one has to keep track of a large (often infinite) set of operators.

AdS/CFT correspondence [4] provides an alternative way of organizing RG which

is tractable for a certain set of strongly coupled quantum field theories. According to

the dictionary of the conjecture [5, 6], D-dimensional coupling functions of quantum field

theories become dynamical variables in a (D + 1)-dimensional bulk space. The radial

direction in the bulk plays the role of the length scale in RG. The saddle point solution

of an action in the bulk describes the evolution of the coupling functions along the radial

direction, which can be interpreted as RG flow [7–9]. Despite this natural interpretation,

the connection between holography and RG has been incomplete because the bulk fields

are in general dynamical and quantum variables. They are dynamical in the sense that the

bulk action includes two-derivative terms along the radial direction, and quantum because

bulk fields have non-trivial quantum fluctuations. In conventional RG, on the contrary,

coupling functions are non-dynamical and classical in the sense that they obey first-order

beta functions, and an initial condition completely fixes the coupling functions at lower

energy scales without any uncertainty.

A precise connection between holography and RG can be made via quantum renor-

malization group [10, 11]. Unlike the conventional RG scheme, only a subset of operators

is kept in quantum RG. The price one has to pay is to promote the coupling functions to

dynamical fields. The partition function is given by a sum over all possible RG paths for

the coupling functions of the operators in the subset. The weight for each path is deter-

mined by an action for the scale-dependent dynamical sources. In the context of matrix

field theories, one needs to include only single-trace operators, although multi-trace opera-

tors are generated in the Wilsonian effective action [12, 13]. In quantum RG, double-trace

operators generated at each step of coarse graining become kinetic terms for the sources of

single-trace operators, allowing them to have non-trivial quantum fluctuations. The role

of double-trace operators in holography was also emphasized in refs. [14, 15]. Quantum

RG allows one to establish precise connections between the beta functions of quantum field

theories and the bulk actions. In this paper, we show that quantum gravity can be derived

from a matrix field theory via quantum RG.

Let us consider a large N matrix field theory in the ’t Hooft limit. We consider a set

of primary single-trace operators {On} constructed from a trace of products of microscopic

matrix fields, Φa. Any operator can be written as derivatives and multiplications of them.

In conventional RG, one has to include not only the single-trace operators but also all

multi-trace operators.

Quantum RG is formulated only in terms of the primary single-trace operators. The

first step is to project fixed points to the subspace of the single-trace operators. In general,

there exists no real fixed point on the subspace because multi-trace operators are generated

out of single-trace operators under RG flow. However, one can have a projected fixed point.

It refers to a theory at which RG flow is orthogonal to the subspace. In other words, a
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Figure 1. At fixed points, RG flow vanishes. At projected fixed points, only the projected RG

flow along the subspace of single-trace operators vanishes.

projected fixed point is a fixed point under the RG flow projected onto the subspace of

single-trace operators. This is illustrated in figure 1.

Let us consider a projected fixed point whose action S0[Φ] is made of single-trace op-

erators in the D-dimensional Minkowski space. To the theory, single-trace and multi-trace

deformations can be added. The generating function is given by Z =
∫
DΦ ei(S0+S1+S2).

Here the single-trace deformation is written as S1[Om; Jm] = N2
∑

m

∫
dDxJm(x)Om with

spacetime dependent sources Jm(x). S2[Om,J ] is the multi-trace deformation which in-

cludes quadratic or higher order terms inOm, where J represents sources for the multi-trace

operators. We normalize the single-trace operators to be O(1).

The multi-trace deformations can be removed by promoting the sources for the single-

trace operators to dynamical fields. For this, we rewrite the generating function as

Z[J,J ] =

∫
DΦ exp

(
iS0 + iS2

[
− i

N2

δ

δJm
;J
])

× exp(iS1[Om, J
m]), (1)

where every Om(x) in S2 is replaced by the functional derivative, − i
N2

δ
δJm(x) . We introduce

a pair of auxiliary fields j(0)m, p
(0)
m for each single-trace operator [10, 11] to write

Z[J,J ] =

∫
Dj(0)mDp(0)

m DΦ eiS0+iN2
∫
dDx p

(0)
m (j(0)m−Jm)

×eiS2[−i/N2δ/δj(0)m;J ]eiS1[Om;j(0)m]. (2)

Integrating j(0)m by part, the multi-trace terms are turned into a polynomial of p
(0)
m ,

Z[J,J ] =

∫
Dj(0)mDp(0)

m eiN
2
∫
dDx p

(0)
m (j(0)m−Jm)

×eiS2

[
−p(0)m ;J

]
Z[j(0)], (3)

– 2 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
6

where Z[j(0)] is the generating function with the single-trace deformation, S1[Om; j(0)m].

The original theory with multi-trace deformations is mapped into a theory with only single-

trace operators whose sources are dynamical.

Now we focus on Z[j(0)] and apply renormalization group procedure. Under a coarse

graining, high-energy modes are integrated out, and the UV-cut off is lowered by a factor

of e−dz. This renormalizes the deformation into S1[Om; j(0)m] + δS, where

δS[On; j(0)n] = dzN2

∫
dDx

{
Lc(x; j(0)]

−βm(x; j(0)]Om +
Gmn{µ}(x; j(0)]

2
Om∂{µ}On

}
. (4)

Here f(x; j(0)] denotes a function that depends on j(0)(x) and their derivatives at position x.

Lc(x; j(0)] is the Casimir energy that is generated out of integrating out high-energy modes.

It can be viewed as the quantum correction to the identity operator. βm(x; j(0)] represents

the beta functional for the single-trace operators.1 Because S0 is a projected fixed point,

βm (but not Gmn{µ}) vanishes at j(0) = 0, and can be expanded as βm(x; j(0)] = ∆m
n j

(0)n+

O((j(0))2). If there exists a single-trace operator with a scaling dimension ∆O under the

projected RG flow, ∆m
n has an eigenvalue ∆O−D. Gmn{µ}(x; j(0)] is the source for double-

trace operators generated from quantum corrections. {µ} denotes a series of derivative,

(∂µ1∂µ2 . . .). No higher-trace operators are generated to the order of dz. Following the

same steps as in eqs. (1)–(3), another set of auxiliary fields are introduced to remove the

double-trace operators as

Z[j(0)] =

∫
Dj(1)nDp(1)

n eiN
2
∫
dDx p

(1)
n (j(1)n−j(0)n)

×eiδS[−p(1)n ;j(0)n]Z[j(1)]. (5)

It can be explicitly checked that S1 + δS is reproduced as the auxiliary fields are inte-

grated out.

By iterating these steps, one can write the generating function as a functional integra-

tion of the auxiliary fields introduced at each step of coarse graining,

Z[j(0)] =

∫
ΠL
l=1Dj

(l)nDp(l)
n eiSBZ[j(L)], (6)

where

SB = N2dz
L∑
l=1

∫
dDx

{
p(l)
n

j(l)n − j(l−1)n

dz

+δS
[
−p(l)

n ; j(l−1)n
]}

(7)

1Descendants of Om can be removed by integration by part.
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In the dz → 0 limit, j(l)n(x), p
(l)
n (x) become (D + 1)-dimensional fields, jn(x, z), pn(x, z)

with z = ldz. The bulk action is written as

SB = N2

∫ z∗

0
dz

∫
dDx

{
pn(∂zj

n) + Lc(x; j]

+βm(x; j]pm +
Gmn{µ}(x; j]

2
pm∂{µ}pn

}
, (8)

where z∗ = Ldz is an IR scale at which we stop the RG procedure. Without loss of

generality, we can take z∗ = ∞. If the scale z is interpreted as a ‘time’, the dynamical

source j and the operator field p become canonically conjugate to each other. The Casimir

energy, Lc becomes the potential ‘energy’ of the source fields j, and the quadratic term in

p becomes the kinetic ‘energy’. The fact that sources become dynamical in the bulk is also

natural from the point of view of string theory in that dynamical closed strings provide

sources for open strings which define field theory on D-branes [16].

Now we consider a scale-reversal (SR) transformation: jn(x, z) → jn(x, z∗ − z),

pn(x, z) → −pn(x, z∗ − z). Since RG flow is irreversible, one naively expects that the

bulk action should always break the SR symmetry. However, SR symmetric bulk actions

can still describe irreversible RG flows because of a boundary at the UV cut-off scale (and

also an IR boundary if there is an IR cut-off as well), which explicitly break the SR sym-

metry. In the bulk action, only the third term in eq. (8) breaks the symmetry. It turns

out that the SR-symmetry breaking term in the bulk can be removed if there exists a

D-dimensional c-functional c[j(x)] which generates the projected RG flow of single-trace

operators as a gradient flow,

βm(x; j] = Gmn{µ}(x; j]∂{µ}
δc[j]

δjn(x)
, (9)

where Gmn{µ}(x; j] plays the role of a ‘super-metric’ in the space of single-trace operators.

In this case, the conjugate momentum can be shifted as pn → pn− δc
δjn

, and the SR odd term

becomes a boundary terms, N2 (c[j(x, 0)]− c[j(x, z∗)]). Then the bulk action is written as

SB = N2
∫
dz

{∫
dDx pn(∂zj

n)−H
}

, where the ‘Hamiltonian’ is given by

H = −1

2
pT ·G · p+

1

2
βT ·G−1 · β −

∫
dDxLc (10)

which respects the SR symmetry. Here p, β are understood as vectors whose indices run

over m and x (pT , βT are their transposes) and G is a matrix. The second term on the r.h.s.

of eq. (10) along with the quadratic term of the Casimir energy determines the mass of the

source fields. To the quadratic order in j, it becomes 1
2β

T ·G−1·β = 1
2 jT ·∆T ·G−1·∆·j. This

explains why the scaling dimension of an operator determines the mass of the corresponding

field in the bulk. Note that the mass is positive when G is positive. In this case, the kinetic

term has the ‘wrong’ sign. This implies that the radial direction is space-like not time-like.
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If Gmn{µ}(x; j]∂{µ} is positive semidefinite, the c-functional that satisfies eq. (9) de-

creases monotonically under the projected RG flow,

dc[j]

dz
= −

∫
dx

δc[j]

δjm(x)
βm(x; j]

= −
∫
dx

δc[j]

δjm(x)
Gmn{µ}(x; j]∂{µ}

δc[j]

δjn(x)
≤ 0. (11)

It is interesting to note that the SR symmetry of the bulk action is related to the mono-

tonicity of the projected RG flow. When the RG flow is a gradient flow, the irreversibility

parameterized by the c-functional depends only on the initial and final points, but not on

the path connecting the two end points. That is why the SR symmetry breaking term in

the bulk action can be transferred to the boundary terms.

As a concrete example, let we consider a projected fixed point of a matrix field the-

ory where the single-trace energy-momentum tensor is the only operator that has finite

scaling dimension under projected RG flow. All other single-trace operators have infi-

nite scaling dimensions and they instantly die out if they are generated under RG flow.

Therefore a general single-trace action is completely specified by background metric. Con-

sequently, the only operators that arise in the full un-projected RG flow are the single-trace

energy-momentum tensor and multi-trace operators made of the energy-momentum ten-

sor. Although it is not clear whether such a matrix field theory exists, we proceed with the

assumption that it exists to illustrate how quantum gravity emerges via quantum RG in a

simple setting. For more general field theories, one has to include more operators [11], but

the generalization is straightforward.

The generating function is written as Z[g(0)] =
∫
DΦ eiS1[Φ;g(0)(x)], where Φ represents

underlying microscopic degrees of freedom, and g
(0)
µν (x) with µ, ν = 0, 1, . . . , (D − 1) is a

D-dimensional background metric with signature (−,+,+, . . . ,+). It is assumed that the

regularization scheme respects the D-dimensional diffeomorphism invariance. S1 includes

only single-trace operators and is O(N2) in the ’t Hooft limit. The energy-momentum

tensor, normalized to be O(1), is given by Tµν(x; g(0)] = 1

N2
√
|g(0)|

δS1

δg
(0)
µν (x)

. Under a coarse

graining, the action is modified by a quantum correction δS(1)′ which includes the Casimir

energy, the single-trace energy-momentum tensor and double-trace operators constructed

from Tµν . The new effective action S1[Φ; g(0)(x)] + δS(1)′ should reproduce the exact same

generating function,

Z[g(0)] =

∫
Dg(1)

µνDπ
(1)µνDΦ eiN

2
∫
dDx π(1)µν(g

(1)
µν −g

(0)
µν )

×eiδS(1)′ [i/N2δ/δg
(1)
µν ,g

(0)]eiS1[Φ;g(1)], (12)

where the quantum correction is expressed in terms of functional derivative with respect

to auxiliary fields as in eq. (2),

δS(1)′ = dz

∫
dDx n(1)z(x)

{
N2
√
|g(0)|

(
−C0 + C1

DR(x; g(0)]
)

+ iAµν(x; g(0)]
δ

δg
(1)
µν (x)

−Bµν;ρσ(x; g(0)]

2N2

δ

δg
(1)
µν (x)

δ

δg
(1)
ρσ (x)

+ . . .

}
. (13)
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Here we adopt a local RG scheme [11, 17] where the length scale is increased in a spacetime

dependent way: n(1)z(x) is a local speed of coarse graining. C0, C1
DR are the first

two leading order terms of the Casimir energy in the derivative expansion, where DR
is the D-dimensional Ricci scalar [18, 19]. Aµν represents the warping factor of the D-

dimensional spacetime. Bµν,ρσ represents the source of the double-trace operator, TµνT ρσ

that is generated under coarse graining. From dimensional ground, we expect C0 ∼ a−D,

C1 ∼ a−D+2, Aµν ∼ 1 and Bµν;ρσ ∼ aD, where a is a short-distance cut-off scale, the

only scale in the theory. The ellipsis represents higher derivative terms in the Casimir

energy and the contribution of the operators that involve at least one derivative, such as

(∇(1)
α1∇

(1)
α2 . . .)

δ

δg
(1)
µν (x)

, δ

δg
(1)
µν (x)

(
←−
∇(1)
α1

−→
∇(1)
α2 . . .)

δ

δg
(1)
ρσ (x)

, where ∇(1) is the covariant derivative

with respect to the metric g
(1)
µν . The higher derivative terms are suppressed by additional

powers of a.

In the local RG, n(1)z is a gauge freedom which controls the local speed of coarse

graining. One can introduce another gauge freedom by using the fact that Z[g(1)] is invari-

ant under the D-dimensional diffeomorphism, Z[g
(1)
µν ] = Z

[
g

(1)
µν + dz(∇(1)

µ n
(1)
ν +∇(1)

ν n
(1)
µ )
]
,

where dz n(1)µ is an infinitesimal shift of the D-dimensional coordinates for the low-energy

field with respect to the coordinates of the high-energy field. This leads to

Z[g(0)] =

∫
Dg(1)

µνDπ
(1)µνDΦ eiN

2
∫
dDx π(1)µν(g

(1)
µν −g

(0)
µν )

eiδS
(1)′ [i/N2δ/δg

(1)
µν ;g(0)]eiδS

(1)′′ [i/N2δ/δg
(1)
µν ]eiS1[Φ;g(1)], (14)

where δS(1)′′ = −idz
∫
dDx(∇(1)

µ n
(1)
ν +∇(1)

ν n
(1)
µ ) δ

δg
(1)
µν (x)

. Integrating g
(1)
µν by part, δS(1)′ +

δS(1)′′ becomes a quadratic polynomial of π(1)µν . Repeating these steps, the generating

function is written as

Z[g(0)] =

∫ L∏
l=1

[
Dg(l)

µν(x)Dπ(l)µν(x)
]

eiSBZ[g(L)(x)], (15)

where the bulk action, to the linear order of dz, becomes

SB = N2dz

L∑
l=1

∫
dDx

{
π(l)µν g

(l)
µν − g(l−1)

µν

dz

+2n(l)µ(x)∇(l)νπ(l)
µν + n(l)z(x, z)

[√
|g(l−1)|

(
−C0

+C1
DR(x, g(l−1)]

)
+Aµν(x; g(l−1)]π(l)µν

+
Bµν;ρσ(x; g(l−1)]

2
π(l)µνπ(l)ρσ + . . .

]}
. (16)

In the dz → 0 limit, the metric and the conjugate field become (D + 1)-dimensional

fields. In order to make the radial coordinate more symmetric with the D-dimensional co-

ordinate x, we introduce a dimensionful radial coordinate xD = ael dz, and define (D+ 1)-

dimensional coordinate as X = (x, xD). The dimensionless lapse and shift functions are

– 6 –
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defined as Nµ(X) ≡ n(l)µ(x)/xD and ND(X) ≡ n(l)z(x)a/xD. Then the bulk theory takes

the form of a constrained Hamiltonian system for the metric and its conjugate momen-

tum [20],

SB = N2

∫
dXD+1

{
πµν(∂Dgµν)−NµHµ −NDH

}
, (17)

where the momentum and Hamiltonian constraints are given by

Hµ = −2∇νπµν ,
H = −γ

√
|g|(−Λ0 +D R)− βµνπµν

−Gµν;ρσ

2
πµνπρσ + . . . (18)

with Λ0 = C0/C1, γ = C1/a, βµν = Aµν/a, and Gµν;ρσ = Bµν;ρσ/a. The most general forms

of the warping factor and the super-metric which are consistent with the D-dimensional

diffeomorphism invariance are

βµν = βgµν ,

Gµν;ρσ =
α√
|g|

(gµρgνσ − λgµνgρσ) (19)

to the leading order in a. For unitary theories, α, β, γ,Λ0 are real, and their values depend

on the matter content [19]. Here we focus on the case with α, γ > 0. In the bulk action,

these parameters always appear in combination with N z. Therefore one can choose N z to

normalize one of the parameters. This freedom stems from the fact that only relative speeds

of RG flows for different operators matter. One often chooses N z to fix the warping factor

as β = 2/a [17]. Here we make an alternative choice such that α
2 = 1

γ ≡ 2κ2 ∼ aD−1. As

expected, the warping term, βµνπ
µν breaks the SR symmetry. However, βµν can be written

as a gradient flow βµν = Gµν,ρσ δc
δgρσ(x) with c = − β

2κ2(Dλ−1)

∫
dDx

√
|g|. The SR-symmetry

breaking term is traded with a cosmological constant 1
2

δc
δgµν
Gµν;ρσ

δc
δgρσ

in the bulk and the

surface tension term N2
(
c[g(x, xD = a)]− c[g(x, xD =∞)]

)
at the boundaries.

In order to fix λ, we note that H = 0 and Hµ = 0 on shell because the generating

function is independent of the choice of {Nµ(X), ND(X)}: choice of different RG prescrip-

tions is a pure gauge freedom which does not affect the generating function. They have to

be of first class because the constraint equations H = 0, Hµ = 0 are satisfied on shell at

any X in the bulk for any choice of {Nµ(X), ND(X)} [11]. The fact that they should form

first-class constraints, which holds at each order in a, forces λ = 1
D−1 . In D = 3, this was

shown in ref. [21, 22]. It is straightforward to extend the result to general dimensions.

Once the canonical momentum is integrated out, one obtains the (D+ 1)-dimensional

Einstein gravity upto the two derivative terms,

SB =
N2

2κ2

∫
dD+1X

√
|G|
(
−Λ + (D+1)R+ . . .

)
. (20)

Here GMN with M,N = 0, 1, 2, . . . , D is the (D + 1)-dimensional metric constructed from

gµν , Nµ and ND with signature (−,+,+, . . . ,+). The signature of the radial direction
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is determined by the sign of α.2 Λ = Λ0 − D(D−1)β2

4 is the cosmological constant. Λ0 is

determined by the vacuum energy density of the field theory per unit RG length scale,

that is, the contribution from the modes integrated between the length scale a and aedz.

If Λ0 = 0, which holds for supersymmetric theories, the cosmological constant is negative

as it is solely determined by the warping factor. In this case, one naturally obtains AdS

in the bulk. The Newton constant is GN ∼ κ2/N2, where κ2 is given by the ratio between

the beta function of the double-trace energy-momentum tensor and the coefficient of DR
in the Casimir energy. The ellipsis in eq. (20) denotes terms that have more than two

derivatives.

If the underlying field theory does not have any other operator except for the energy-

momentum tensor, the higher derivative terms in eq. (20) can have more than two deriva-

tives only along the field theory direction but not along the radial direction. For example,

the bulk action may include (DR)2 contributed from the Casimir energy. This would imply

that the bulk action for the idealized field theory is anisotropic beyond the two derivative

order. In reality, there are many other operators besides the energy-momentum tensor.

As a result, one needs to include other fields in the bulk, which generate higher derivative

terms for the metric in all directions once integrated out.

Generically, Λ, κ2 and the coefficients of the higher derivative terms will be determined

by the UV cut-off scale and the spectrum of operators for the boundary quantum field

theory. One obtains a weakly curved spacetime in the bulk if the cosmological constant is

smaller than the scales associated with the higher derivative terms, as is the case for the

N = 4 super Yang-Mills theory in the strong coupling limit. It will be of great interest to

understand the precise condition under which the weakly curved spacetime emerges in the

bulk.

Finally, we comment on holographic duals for (ungauged) vector models [23]. Once

multi-trace operators are traded with dynamical sources in the first step of RG as in

eq. (3), the resulting single-trace action remains quadratic in the following steps [24].

Because multi-trace operators are not generated, the bulk action is linear in the conjugate

momenta [25] except at the UV boundary. The conjugate momenta remain as Lagrangian

multipliers which enforce the usual first order beta function as constraints in the bulk.

Therefore there is no quantum fluctuation in the RG path for any N .
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2If α was negative, the radial direction would be time-like.
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