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Abstract 

Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physi-
ological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean 
genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic 
analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group 
further categorized into five subgroups (IIa–IIe). The soybean WRKYs from each group shared similar gene structures 
and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole 
genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by 
RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt 
stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. 
RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in 
response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The 
data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.
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Background
Soybean (Glycine max) is a global cash crop. Apart from 
its major contribution to human and animal nutrition, 
the seed provides a feedstock for biodiesel production 
and represents a significant raw material for a number 
of pharmaceutical and industrial processes (Phang et al. 
2008; Wang et al. 2010). In recent years, the demand for 
soybean is increasing rapidly, so it attracted more and 
more attention to improve soybean agronomic traits, 
such as stress tolerance. Soybean productivity is greatly 
compromised by soil salt. However, during  the  long 
period of evolution, soybean has evolved complex strat-
egies to survive salt stress. These strategies are origi-
nated from the changes of various aspects, such as the 
genome, gene expression, metabolism and physiology 

(Phang et  al. 2008). To present, functionally reported 
salt tolerance related genes in soybean are mainly cat-
egorized into several classes, including ion transporter 
coding genes (e.g. GmHKT1, GmSALT3, GmNHX1, 
GmCAX1 and GmCHX1) (Chen et  al. 2011; Guan et  al. 
2014; Li et  al. 2006; Luo et  al. 2005a; Qi et  al. 2014), 
transcription factors (TFs) (e.g. GmNAC11/-20/-29, 
GmDREB1, GmMYB76/-92/-174/-177, GmbZIP44/-62/-78, 
GmWRKY27 and GmERF7) (Hao et  al. 2011; Jin et  al. 
2010; Liao et  al. 2008a, b; Wang et  al. 2015; Zhai et  al. 
2013) and others genes (e.g. glutathione S-transferase 
gene GsGST, late embryogenesis abundant gene GmLEA, 
calcineurin B-like protein coding gene GmCBL1 and fla-
vone synthase gene GmFNSII) (Ji et  al. 2010; Lan et  al. 
2005; Li et al. 2012; Phang et al. 2008; Wang et al. 2011; 
Yan et al. 2014; Zhou et al. 2010).

The product of a TF gene binds to a specific cis-regu-
latory sequence(s) in the promoter of its target gene. The 
WRKYs are among the largest class of plant TFs, and 
their promoter target (the W-box) has the sequence (T)
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(T)TGAC(C/T) (Rushton et  al. 2010). WRKY TFs are 
recognized by the presence of a conserved DNA-bind-
ing region composed of about 60 residues (the “WRKY” 
domain), which harbors the WRKYGQK heptapeptide 
followed by a C2H2 or C2HC zinc finger motif (Rushton 
et al. 2010). In some cases, the heptapeptide can take the 
form WRKYGKK or WRKYGEK (Rushton et  al. 2010). 
WRKY TFs have been classified into three main groups: 
those possessing two heptapeptides are clustered into 
group I; both group I and II members harbor one C2H2 
type zinc finger motif, while the group III members fea-
ture a C2HC one. The large size of group II has been 
addressed by its division into five subgroups (IIa, IIb, IIc, 
IId and IIe), based on peptide sequence (Eulgem et  al. 
2000; Rushton et al. 2010).

Since the first reports of WRKY TFs (dePater et  al. 
1996; Ishiguro and Nakamura 1994; Rushton et al. 1995, 
1996), considerable progress has been made in reveal-
ing the function of WRKY TFs. They are elucidated to be 
involved in various developmental and physiological pro-
cesses (Rushton et  al. 2010), such as seed development 
(Lagace and Matton 2004; Luo et  al. 2005b), seed dor-
mancy and germination (Xie et  al. 2005, 2007; Zentella 
et al. 2007), senescence (Miao et al. 2004; Robatzek and 
Somssich 2002; Ulker et  al. 2007) trichome morpho-
genesis (Johnson et  al. 2002), metabolic pathways (Kato 
et al. 2007; Sun et al. 2003) and plant development (Cai 
et al. 2014; Devaiah et al. 2007; Guo et al. 2015; Yu et al. 
2013, 2016). The particularly prominent roles of WRKY 
in plant appear to be the modulation of response to 
biotic and abiotic stresses (Chen et al. 2012; Eulgem and 
Somssich 2007; Pandey and Somssich 2009). In the root 
of the model plant Arabidopsis, 18 WRKY genes have 
been shown to be induced by exposure to salt stress 
(Jiang and Deyholos 2006); In rice, ten WRKY genes (of 
13 analyzed) respond differentially to a range of abiotic 
stress treatment (Qiu et al. 2004), while in Brachypodium 
distachyon, over 60 % of a set of 86 WRKY genes assayed 
were up-regulated by heat and cold stress and over 50 % 
were down-regulated by salt, drought and/or oxidation 
stress (Wen et  al. 2014). Among the soybean WRKY 
TFs, 25 out of 64 have been shown to be differentially 
expressed in response to at least one abiotic stress treat-
ment (Zhou et al. 2008).

Base on the availability of the complete soybean 
genome sequence and several databases (PlantTFDB, 
SoyDB, SoyTFKB, NCBI and Phytozome), a previous 
study reported a genome-wide characterization of the 
WRKY family in soybean and a functional analysis of 
some genes involved in response to Phakopsora pachy-
rhizi (Bencke-Malato et  al. 2014). However, in Phyto-
zome (release v10), the new assembly (v2.0) replaces the 
Glyma1 assembly. The new database corrects several 

issues in pseudomolecule reconstruction in the Glyma1 
assembly. According to the new database and a recent 
RNA-Seq result (Belamkar et al. 2014), Song et al. identi-
fied 176 GmWRKYs and analyzed their expression files in 
different tissues and in response to drought and salt stress 
(Song et al. 2016). However, beside Phytozome, there are 
many other soybean genome sequence databases. Fur-
thermore, several other transcriptome experiment data 
sets of soybean under abiotic stress are provided by NCBI 
website. Here, integrating more databases and RNA-Seq 
results (Belamkar et al. 2014; Wei et al. 2015), we made 
a new genome-wide identification of soybean WRKYs 
and compared their response to salt stress in different 
tissues. In addition, we analyzed expression profiles of 
66 GmWRKYs by quantitative RT-PCR (RT-qPCR). Our 
findings provide new clues for further investigation of 
WRKY gene in soybean salt tolerance.

Methods
Retrieval of GmWRKY sequences
A set of 185 GmWRKY sequences was recovered from 
Phytozome (http://phytozome.jgi.doe.gov/pz/portal.html,  
release 10.2) using the keyword PF03106 as a search 
term, along with three further GmWRKY sequences 
from the NCBI database (http://www.ncbi.nlm.nih.
gov). The presence of a WRKY domain(s) in all 188 
GmWRKYs was confirmed by running the SMART pro-
gram (http://smart.embl-heidelberg.de) (Letunic et  al. 
2015). These GmWRKY genes were further checked in 
PlantTFDB (http://planttfdb.cbi.pku.edu.cn/, release 3.0) 
(Jin et  al. 2014) and SoyTFKB (http://www.igece.org/
Soybean_TF/).

Multiple sequence alignment and phylogenetic analysis
A multiple alignment of the WRKY sequences was per-
formed using the ClustalW program implemented in 
MEGA v6.06 software package (http://www.megasoft-
ware.net/) (Tamura et al. 2013). The sequences were also 
subjected to a phylogenetic analysis using the neighbor-
joining method; the resulting tree was based on 1000 
bootstrap replicates, the p-distance model and pairwise 
deletion.

Gene structure and conserved motifs analysis
The exon–intron structure of each gene was derived by 
comparing its coding sequence with the correspond-
ing genomic DNA sequence, using the GSDS program 
(http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015). The online 
program MEME v4.10.1 (http://meme-suite.org/tools/
meme) was used to identify the conserved motifs pre-
sent; the relevant parameters were: number of repeti-
tions = any; maximum number of motifs = 16; optimum 
width of each motif = 6–70 residues.

http://phytozome.jgi.doe.gov/pz/portal.html
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://smart.embl-heidelberg.de
http://planttfdb.cbi.pku.edu.cn/
http://www.igece.org/Soybean_TF/
http://www.igece.org/Soybean_TF/
http://www.megasoftware.net/
http://www.megasoftware.net/
http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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Genomic location and gene duplication
Each WRKY gene was positioned in the genome by refer-
ence to the full genome sequence. The gene duplications 
in GmWRKY genes were identified based on the investi-
gations described in previous study (Schmutz et al. 2010), 
and Circos software was used to provide a graphical rep-
resentation of the position of homeologous chromosome 
segments (Krzywinski et al. 2009).

RNA‑seq analysis
A transcriptomic analysis was based on archival RNA-
seq data collected from a set of salt stress experiments, 
mounted on the NCBI GEO database (Belamkar et  al. 
2014). Experiments GSM1377923, -24 and -25 repre-
sented three independent replicates of plants sampled 
before any exposure to salt; GSM1377935, -36 and -37 
related to plants sampled after a 1  h exposure to the 
stress; GSM1377938, -39 and -40 after a 6  h exposure; 
and GSM1377941, -42 and -43 after a 12 h exposure. The 
other transcriptomic analysis was also based on archi-
val RNA-seq data derived from the NCBI GEO database 
(Wei et  al. 2015), experiment GSE57960 was related to 
plants sampled after a 12  h exposure to salt stress, the 
aerial part of plants was used for sequencing. The reads 
per kilobase of exon model per million mapped reads 
(RPKM) algorithm was used for normalization and mean 
normalized values were used for the analysis. The tran-
scription response was given in the form of fold changes 
relative to the 0 h control. Cluster v3.0 software (Univer-
sity of Tokyo, Human Genome Center) was used to per-
form hierarchical clustering, which was visualized using 
Java TreeView software (Saldanha 2004). The relevant 
parameters were: similarity measurement: correlation 
(uncentered); linkage method: average linkage method.

Plant materials
Seed of cv. Williams 82 was germinated on a sheet of 
moist filter paper, and the seedlings were grown under 
a regime of 28/20  °C, 14  h photoperiod, light inten-
sity 800  μmol  m−2 s−1 and relative humidity 55  %. Two 
weeks old seedlings were exposed to 200  mM NaCl for 
either 0, 2, 6 or 24 h, after which the whole seedling was 
harvested, snap-frozen in liquid nitrogen and stored at 
−80 °C.

RT‑qPCR analysis
Total RNA was extracted from the frozen plant mate-
rial using the TRIzol reagent (Invitrogen, USA) follow-
ing to the manufacturer’s instructions. The resulting 
RNA was treated with RNase-free DNaseI (Promega, 
USA) to remove genomic DNA contamination, and the 
cDNA First strand was synthesized with 3 μg total RNA 
by TransScript One-step gDNA Removal and cDNA 

synthesis SuperMix (TransGen, China) following the 
manufacturer’s protocol. The subsequent RT-qPCRs 
and data analysis were performed using a Bio-Rad Real-
Time PCR detection system (Bio-Rad) based on the 
SYBR Green I master mix, as reported previously (Bus-
tin et al. 2009; Seo et al. 2009). According to a previous 
study, GmELF1b was most stably expressed under salt 
stress, so it was used as a reference gene (Le et al. 2012). 
All reactions were carried out in triplicate, using samples 
harvested from independent plants. The relevant primer 
sequences are given in Additional file 1: Table S1.

Results and discussion
Identification of WRKY genes in soybean
The WRKYs represent one of the largest families of 
plant TFs. The acquisition of full genome sequences 
has simplified the enumeration of WRKY copy number, 
so that it is now clear that there are 81 WRKY copies in 
tomato (Huang et al. 2012), 55 in cucumber (Ling et al. 
2011), 104 in poplar (He et  al. 2012), 59 in grapevine 
(Wang et  al. 2014), 116 in cotton (Dou et  al. 2014) and 
119 in maize (Wei et  al. 2012). In a previous study, 182 
putative WRKY gene models were identified (Bencke-
Malato et  al. 2014). In recent, phytozome updated the 
soybean assembly; the new assembly (v2.0) replaced 
the Glyma1 assembly. Therefore, we performed a com-
prehensive analysis of soybean WRKY sequences 
obtained from Phytozome, PlantTFDB and NCBI, and 
finally identified a total of 185 non-redundant puta-
tive WRKY genes. Compared with previous 182 WRKY 
genes, six genes GmWRKY49 (Glyma.05G203900), 
GmWRKY53 (Glyma.06G061900), GmWRKY72 (Glyma. 
07G161100), GmWRKY108 (Glyma.10G171000), GmWR 
KY130 (Glyma.14G085500) and GmWRKY131 (Glyma. 
14G100100) are novel ones, while three previous genes 
GmWRKY17 (Glyma06g06530), GmWRKY38 (Glyma 
18g48460) and GmWRKY132 (Glyma14g11440) are con-
sidered obsolete according to the current version of the 
annotated genome. However, the three obsolete genes 
have been retained for further study. Thus, a total of 188 
annotations of GmWRKYs were presented in this study 
(Table 1). All the 188 retrieved sequences were proved to 
contain WRKY domains using SMART analysis.

In previous genome-wide studies, the commonly 
accepted nomenclature for WRKY members was 
based on their location order on chromosomes (Dou 
et  al. 2014; Ling et  al. 2011). Identically, in the present 
study, GmWRKYs was designated from GmWRKY1 to 
GmWRKY188 based on their exact physical position 
from the top to the bottom on the soybean chromosomes 
1–20 (Table  1). For genes producing more than one 
transcript, only the primary sequence was named. This 
nomenclature system was different from previous study 
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Table 1 The WRKY gene family in Soybean

Gene name Gene IDa Conserved heptapeptideb Group Chromosome Amino acid

GmWRKY1 Glyma.01G043300 WRKYGQK IIb Chr1 509

GmWRKY2 Glyma.01G053800 WRKYGQK/WRKYGQK I Chr1 455

GmWRKY3 Glyma.01G056800 WRKYGQK IIc Chr1 297

GmWRKY4 Glyma.01G128100 WRKYGEK/WRKYGQK I Chr1 507

GmWRKY5 Glyma.01G189100 WRKYGQK IId Chr1 321

GmWRKY6 Glyma.01G222300 WRKYGQK IIe Chr1 245

GmWRKY7 Glyma.01G224800 WRKYGQK III Chr1 322

GmWRKY8 Glyma.02G007500 WRKYGQK IIb Chr2 484

GmWRKY9 Glyma.02G010900 WRKYGQK IIc Chr2 320

GmWRKY10 Glyma.02G020300 WRKYGQK IIb Chr2 480

GmWRKY11 Glyma.02G112100 WRKYGQK/WRKYGQK I Chr2 455

GmWRKY12 Glyma.02G115200 WRKYGQK IIc Chr2 293

GmWRKY13 Glyma.02G141000 WRKYGQK IId Chr2 355

GmWRKY14 Glyma.02G203800 WRKYGQK/WRKYGQK I Chr2 505

GmWRKY15 Glyma.02G232600 WRKYGQK/WRKYGQK I Chr2 580

GmWRKY16 Glyma.02G285900 WRKYGQK IIc Chr2 337

GmWRKY17 Glyma.02G293400 WRKYGQK IIb Chr2 401

GmWRKY18 Glyma.02G297400 WRKYGQK/WRKYGQK I Chr2 588

GmWRKY19 Glyma.02G306300 WRKYGQK/WRKYGQK I Chr2 507

GmWRKY20 Glyma.03G002300 Lost　 III Chr3 271

GmWRKY21 Glyma.03G042700 WRKYGEK/WRKYGQK I Chr3 507

GmWRKY22 Glyma.03G109100 WRKYGQK IIc Chr3 238

GmWRKY23 Glyma.03G159700 WRKYGQK IId Chr3 341

GmWRKY24 Glyma.03G176600 WRKYGQK/WRKYGQK I Chr3 448

GmWRKY25 Glyma.03G220100 WRKYGQK IId Chr3 253

GmWRKY26 Glyma.03G220800 WRKYGQK IIc Chr3 287

GmWRKY27 Glyma.03G224700 WRKYGQK IIb Chr3 541

GmWRKY28 Glyma.03G256700 WRKYGQK III Chr3 362

GmWRKY29 Glyma.04G054200 WRKYGKK IIc Chr4 161

GmWRKY30 Glyma.04G061300 WKKYGQK IIa Chr4 222

GmWRKY31 Glyma.04G061400 WRKYGQK IIa Chr4 220

GmWRKY32 Glyma.04G076200 WRKYGQK IId Chr4 279

GmWRKY33 Glyma.04G115500 WRKYGQK/WRKYGQK I Chr4 761

GmWRKY34 Glyma.04G173500 WRKYGQK IIb Chr4 531

GmWRKY35 Glyma.04G218400 WRKYGQK IIc Chr4 234

GmWRKY36 Glyma.04G218700 WRKYGKK IIc Chr4 196

GmWRKY37 Glyma.04G223200 WRKYGQK III Chr4 337

GmWRKY38 Glyma.04G223300 WRKYGQK III Chr4 317

GmWRKY39 Glyma.04G238300 WRKYGQK III Chr4 364

GmWRKY40 Glyma.05G029000 WRKYGQK IIb Chr5 594

GmWRKY41 Glyma.05G096500 WRKYGQK IId Chr5 334

GmWRKY42 Glyma.05G123000 WRKYGQK IIb Chr5 361

GmWRKY43 Glyma.05G123600 WRKYGQK IIe Chr5 430

GmWRKY44 Glyma.05G127600 WRKYGQK IIc Chr5 358

GmWRKY45 Glyma.05G160800 WRKYGQK IIe Chr5 255

GmWRKY46 Glyma.05G165800 WRKYGKR III Chr5 1355

GmWRKY47 Glyma.05G184500 WRKYGKK IIc Chr5 188

GmWRKY48 Glyma.05G185400 WRKYGQK IIc Chr5 216

GmWRKY49 Glyma.05G203900 Lost　 IIc Chr5 99
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Table 1 continued

Gene name Gene IDa Conserved heptapeptideb Group Chromosome Amino acid

GmWRKY50 Glyma.05G211900 WRKYGQK IIe Chr5 288

GmWRKY51 Glyma.05G215900 WRKYGQK III Chr5 363

GmWRKY52 Glyma.06G054500 WRKYGKK IIc Chr6 175

GmWRKY53 Glyma.06G061900 WRKYGQK IIa Chr6 309

GmWRKY54 Glyma06g06530* WRKYGQK IIa Chr6 294

GmWRKY55 Glyma.06G077400 WRKYGQK IId Chr6 300

GmWRKY56 Glyma.06G125600 WRKYGQK III Chr6 364

GmWRKY57 Glyma.06G142000 WRKYGQK III Chr6 319

GmWRKY58 Glyma.06G142100 WRKYGQK III Chr6 331

GmWRKY59 Glyma.06G147100 WRKYGKK IIc Chr6 196

GmWRKY60 Glyma.06G147500 WRKYGQK IIc Chr6 236

GmWRKY61 Glyma.06G168400 WRKYGKK IIc Chr6 160

GmWRKY62 Glyma.06G190800 WRKYGQK IIb Chr6 615

GmWRKY63 Glyma.06G212900 WKKYGQK IIa Chr6 242

GmWRKY64 Glyma.06G219800 WRKYGQK/WRKYGQK I Chr6 470

GmWRKY65 Glyma.06G242200 Lost/WRKYGQK I Chr6 176

GmWRKY66 Glyma.06G307700 WRKYGQK IIb Chr6 628

GmWRKY67 Glyma.06G320700 WRKYGQK/WRKYGQK I Chr6 776

GmWRKY68 Glyma.07G023300 WRKYGQK IIa Chr7 311

GmWRKY69 Glyma.07G057400 WRKYGQK III Chr7 369

GmWRKY70 Glyma.07G116300 WRKYGQK IIc Chr7 237

GmWRKY71 Glyma.07G133700 WRKYGQK IId Chr7 317

GmWRKY72 Glyma.07G161100 Lost/WRKYGQK I Chr7 252

GmWRKY73 Glyma.07G227200 WRKYGQK/WRKYGQK I Chr7 533

GmWRKY74 Glyma.07G238000 WRKYGQK IIc Chr7 391

GmWRKY75 Glyma.07G262700 WRKYGQK IIb Chr7 576

GmWRKY76 Glyma.08G011300 WRKYGEK IIc Chr8 147

GmWRKY77 Glyma.08G018300 WRKYGQK IIe Chr8 292

GmWRKY78 Glyma.08G021900 WRKYGQK III Chr8 359

GmWRKY79 Glyma.08G078100 WRKYGQK IIb Chr8 181

GmWRKY80 Glyma.08G078700 WRKYGQK IIe Chr8 429

GmWRKY81 Glyma.08G082400 WRKYGQK IIc Chr8 371

GmWRKY82 Glyma.08G118200 WRKYGQK IIe Chr8 261

GmWRKY83 Glyma.08G142400 WRKYGKK IIc Chr8 184

GmWRKY84 Glyma.08G143400 WRKYGQK IIc Chr8 235

GmWRKY85 Glyma.08G218600 WRKYGQK IIa Chr8 313

GmWRKY86 Glyma.08G240800 WRKYGQK/WRKYGQK I Chr8 523

GmWRKY87 Glyma.08G320200 WRKYGQK IIb Chr8 486

GmWRKY88 Glyma.08G325800 WRKYGQK/WRKYGQK I Chr8 577

GmWRKY89 Glyma.09G005700 WRKYGQK IIb Chr9 541

GmWRKY90 Glyma.09G029800 WRKYGQK IIe Chr9 506

GmWRKY91 Glyma.09G034300 WRKYGQK IIc Chr9 331

GmWRKY92 Glyma.09G061900 WRKYGQK IId Chr9 296

GmWRKY93 Glyma.09G080000 WRKYGQK IIb Chr9 458

GmWRKY94 Glyma.09G127100 WRKYGQK IIb Chr9 242

GmWRKY95 Glyma.09G129100 WRKYGQK IIe Chr9 372

GmWRKY96 Glyma.09G240000 WRKYGQK IIb Chr9 541

GmWRKY97 Glyma.09G244000 WRKYGQK IIc Chr9 238

GmWRKY98 Glyma.09G250500 WRKYGQK/WRKYGQK I Chr9 734
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Table 1 continued

Gene name Gene IDa Conserved heptapeptideb Group Chromosome Amino acid

GmWRKY99 Glyma.09G254400 WRKYGQK IIc Chr9 192

GmWRKY100 Glyma.09G254800 WRKYGQK IIe Chr9 348

GmWRKY101 Glyma.09G274000 WRKYGQK III Chr9 300

GmWRKY102 Glyma.09G280200 WIKYGQK/WRKYGQK I Chr9 543

GmWRKY103 Glyma.10G011300 WRKYGQK IIc Chr10 323

GmWRKY104 Glyma.10G032900 WRKYGQK IId Chr10 392

GmWRKY105 Glyma.10G111400 Lost　 IIb Chr10 305

GmWRKY106 Glyma.10G113800 WRKYGKK IIa Chr10 120

GmWRKY107 Glyma.10G138300 WRKYGQK IIb Chr10 482

GmWRKY108 Glyma.10G171000 WHQYGLK IIc Chr10 367

GmWRKY109 Glyma.10G171100 WRKYGQK IIc Chr10 192

GmWRKY110 Glyma.10G171200 WRKYGQK IIc Chr10 336

GmWRKY111 Glyma.10G230200 WRKYGQK IIe Chr10 297

GmWRKY112 Glyma.11G021200 WRKYGQK IIe Chr11 214

GmWRKY113 Glyma.11G053100 WRKYGQK IId Chr11 321

GmWRKY114 Glyma.11G163300 WRKYGQK/WRKYGQK I Chr11 548

GmWRKY115 Glyma.12G097100 WRKYGQK IIb Chr12 614

GmWRKY116 Glyma.12G152600 WRKYGQK/WRKYGQK I Chr12 467

GmWRKY117 Glyma.12G212300 WRKYGQK IIe Chr12 263

GmWRKY118 Glyma.13G102000 WRKYGQK IId Chr13 324

GmWRKY119 Glyma.13G117600 WRKYGQK IIb Chr13 383

GmWRKY120 Glyma.13G267400 WRKYGQK III Chr13 294

GmWRKY121 Glyma.13G267500 WRKYGQK III Chr13 296

GmWRKY122 Glyma.13G267600 WRKYGQK III Chr13 300

GmWRKY123 Glyma.13G267700 WRKYGQK III Chr13 270

GmWRKY124 Glyma.13G289400 WRKYGQK IIe Chr13 265

GmWRKY125 Glyma.13G310100 WRKYGQK IIb Chr13 614

GmWRKY126 Glyma.13G370100 WRKYGQK IIa Chr13 309

GmWRKY127 Glyma.14G006800 WRKYGQK/WRKYGQK I Chr14 508

GmWRKY128 Glyma.14G016200 WRKYGQK/WRKYGQK I Chr14 585

GmWRKY129 Glyma.14G028900 WRKYGQK IIc Chr14 335

GmWRKY130 Glyma.14G085500 Lost　 IId Chr14 276

GmWRKY131 Glyma.14G100100 WRKYGKK IIc Chr14 68

GmWRKY132 Glyma14g11440* WRKYGKK IIc Chr14 137

GmWRKY133 Glyma.14G102900 WRKYGQK IIa Chr14 278

GmWRKY134 Glyma.14G103100 WRKYGQK IIa Chr14 282

GmWRKY135 Glyma.14G135400 WRKYGQK IId Chr14 316

GmWRKY136 Glyma.14G185800 WRKYGQK III Chr14 329

GmWRKY137 Glyma.14G186000 WRKYGQK III Chr14 303

GmWRKY138 Glyma.14G186100 WRKYGQK III Chr14 240

GmWRKY139 Glyma.14G199800 WRKYEDK III Chr14 332

GmWRKY140 Glyma.14G200200 WRKYGQK/WRKYGQK I Chr14 575

GmWRKY141 Glyma.15G003300 WRKYGQK IIa Chr15 330

GmWRKY142 Glyma.15G110300 WRKYGQK IIb Chr15 599

GmWRKY143 Glyma.15G135600 WRKYGQK IIe Chr15 523

GmWRKY144 Glyma.15G139000 WRKYGQK IIc Chr15 356

GmWRKY145 Glyma.15G168200 WRKYGQK IId Chr15 293

GmWRKY146 Glyma.15G186300 WRKYGQK IIb Chr15 451

GmWRKY147 Glyma.16G026400 WRKYGQK III Chr16 373
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(Bencke-Malato et  al. 2014). A full comparison of cur-
rently known WRKY genes is given in Additional file 2: 
Table S2.

In silico mapping revealed that the WRKY genes 
were distributed over all 20 soybean chromosomes. 

Chromosome 7 harbored the highest number of GmWRKY 
genes (16, 8.51 %), while chromosome 11, 12 and 20 har-
bored only three (1.60 %). The largest WRKY product was 
encoded by GmWRKY46 (1355 residues), and the shortest 
was GmWRKY131 (68 residues) (Fig. 1; Table 1).

Table 1 continued

Gene name Gene IDa Conserved heptapeptideb Group Chromosome Amino acid

GmWRKY148 Glyma.16G031400 WRKYGQK IIc Chr16 195

GmWRKY149 Glyma.16G031900 WRKYGQK IIe Chr16 335

GmWRKY150 Glyma.16G054400 WRKYGQK IIc Chr16 195

GmWRKY151 Glyma.16G176700 WRKYGQK IIe Chr16 274

GmWRKY152 Glyma.16G177000 WRKYGQK IIe Chr16 408

GmWRKY153 Glyma.16G219800 WRKYGQK III Chr16 265

GmWRKY154 Glyma.17G011400 WRKYGQK IIb Chr17 489

GmWRKY155 Glyma.17G035400 WRKYGQK IIc Chr17 398

GmWRKY156 Glyma.17G042300 WRKYGQK IIb Chr17 391

GmWRKY157 Glyma.17G057100 WRKYGQK IId Chr17 320

GmWRKY158 Glyma.17G074000 WRKYGQK/WRKYGQK I Chr17 505

GmWRKY159 Glyma.17G097900 WRKYGQK IIb Chr17 600

GmWRKY160 Glyma.17G168900 WRKYGQK IId Chr17 332

GmWRKY161 Glyma.17G197500 WRKYGQK IId Chr17 316

GmWRKY162 Glyma.17G222300 WRKYGQK IIa Chr17 312

GmWRKY163 Glyma.17G222500 WRKYGQK IIa Chr17 278

GmWRKY164 Glyma.17G224800 WRKYGKK IIc Chr17 164

GmWRKY165 Glyma.17G239200 WRKYGQK IId Chr17 278

GmWRKY166 Glyma.18G056600 WRKYGQK/WRKYGQK I Chr18 542

GmWRKY167 Glyma.18G081200 WRKYGQK/WRKYGQK I Chr18 577

GmWRKY168 Glyma.18G092200 WRKYGQK IIb Chr18 478

GmWRKY169 Glyma.18G124700 WRKYGQK IIb Chr18 529

GmWRKY170 Glyma.18G183100 WRKYGQK IId Chr18 308

GmWRKY171 Glyma.18G208800 WRKYGQK/WRKYGQK I Chr18 541

GmWRKY172 Glyma.18G213200 WRKYGQK III Chr18 299

GmWRKY173 Glyma.18G238200 WRKYGQK IIe Chr18 351

GmWRKY174 Glyma.18G238600 WRKYGQK IIc Chr18 192

GmWRKY175 Glyma.18G242000 WRKYGQK/WRKYGQK I Chr18 744

GmWRKY176 Glyma.18G256500 WRKYGQK IIb Chr18 541

GmWRKY177 Glyma.18G263400 WRKYGQK/WRKYGQK I Chr18 520

GmWRKY178 Glyma18g48460* WRKYGQK IIc Chr18 225

GmWRKY179 Glyma.19G020600 WRKYGQK IIb Chr19 495

GmWRKY180 Glyma.19G094100 WRKYGQK IIc Chr19 188

GmWRKY181 Glyma.19G177400 WRKYGQK/WRKYGQK I Chr19 471

GmWRKY182 Glyma.19G217000 WRKYGQK IId Chr19 264

GmWRKY183 Glyma.19G217800 WRKYGQK IIc Chr19 290

GmWRKY184 Glyma.19G221700 WRKYGQK IIb Chr19 516

GmWRKY185 Glyma.19G254800 WRKYGQK III Chr19 362

GmWRKY186 Glyma.20G028000 WRKYGQK/WRKYGQK I Chr20 439

GmWRKY187 Glyma.20G030500 WRKYGQK IIb Chr20 163

GmWRKY188 Glyma.20G163200 WRKYGQK IIe Chr20 321

a Genes that are not annotated in the new assembly (v2.0) are marked with the star symbol
b The variants of conserved WRKYGQK peptide are shown in red color and some conserved WRKYGQK sequences are lost in several members



Page 8 of 15Yu et al. SpringerPlus  (2016) 5:920 

Classification of WRKY genes in soybean
As described previously, WRKY family is typically cat-
egorized into three main groups defined by the num-
ber of WRKY domains present and the configuration 
of their zinc finger (Rushton et al. 2010). The 188 soy-
bean WRKY genes were also categorized into the three 
main groups (Additional file  3: Fig. S1). The group I 
members numbered 32 (GmWRKY65 and -72 har-
bored a single N-terminal WRKY domain); there were 
130 sequences assigned to group II, sub-divided into 
subgroup IIa (14 members), IIb (33 members), IIc (42 
members), IId (21 members) and IIe (20 members); the 
remaining 26 sequences belonged to group III (Table 1; 
Fig.  1). In Arabidopsis and poplar, group I houses the 
largest number of WRKYs, while in rice, group III is 
the largest (He et al. 2012). However, the largest group 
in soybean is group II, implying that this group had 
experienced more gene duplications during the evolu-
tionary course.

Although most of the sequences harbored the well 
conserved WRKYGQK motif, variants were present in 
24 of the sequences: WRKYGKK in 11, WRKYGEK in 
three, WKKYGQK in two, and WRKYGKR, WRKYEDK, 
WIKYGQK and WHQYGLK each in one. Strikingly, A 
WRKYGQK-like stretch was lacking in GmWRKY20, 
-49, -105 and -130, while the group I members WRKY65 
and -72 had both lost their N terminal WRKYGQK-like 
stretch (Table  1; Additional file  3: Fig. S1). The largest 
number of variants belonged to group IIc, 11 out of 24. 
The WRKYGQK sequence was highly conserved in sub-
groups IIb, IId and IIe, as well as in the C terminal WRKY 
domain of group I members (Table  1; Additional file  3: 
Fig. S1). This is consistent with the implication that this 
group experienced more gene duplications. There was 
also some variation in the zinc finger motif (including its 
complete absence) in 11 of the sequences (WRKY6, -42, 
-52, -65, -72, -79, -94, -106, -112, -139 and -165) (Addi-
tional file 3: Fig. S1).

Gene duplication of soybean WRKY genes
Duplication events contribute not only to functional 
redundancy, but also generate functional novelty (Moore 
and Purugganan 2005). The modern soybean genome 
has undergone two whole genome duplication (WGD) 
events, the first, associated with the evolution of the leg-
ume clade occurred ~59 million years ago (Lavin et  al. 
2005), while the second, which was responsible for the 
creation of the Glycine genus, occurred ~13 million years 
ago (Schmutz et  al. 2010). To investigate whether the 
expansion of GmWRKY genes had primarily happened 
during both WGD events, we mapped the GmWRKYs 
to the duplicated blocks (Fig.  2). Consistent with previ-
ous study (Schmutz et al. 2010), the blocks between chro-
mosomes involved more than just two chromosomes. Of 
188 GmWRKYs, 180 (95.7  %) genes were located in the 
blocks (the exceptions were GmWRKY46, -63, -65, -72, 
-94, -105, -106, and -139) (Fig. 2), indicating that WGD 
was the primary reason for the expansion of GmWRKYs 
(Fig. 2).

Besides WGD, tandem duplication event is the other 
approach for gene expansion. Precise mapping analysis 
showed the presence of 14 adjacent genes possibly due 
to tandem duplication (Fig. 2; Additional file 4: Fig. S2a). 
These 14 WRKY genes were localized in 6 distinct tandem 
duplicate gene clusters, with four clusters containing two 
tandem genes (GmWRKY120/123, GmWRKY121/122, 
GmWRKY131/132 and GmWRKY151/152) and two clus-
ters possessing three ones (GmWRKY108/109/110 and 
GmWRKY136/137/138). All the 14 tandem duplicated 
WRKY genes were mapped onto the duplicated blocks, 
implying that local duplications occurred earlier than the 
WGD.

Gene structure and conserved motifs of GmWRKYs
Gene structural diversity may reflect the evolution of 
multigene families (Hu et  al. 2010). In order to look 
into the structural diversity of GmWRKY genes, we first 
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constructed a phylogenetic tree based on the full-length 
GmWRKY polypeptide sequences, and they were also 
categorized into seven subfamiles as above (Additional 
file  4: Fig. S2a). From the tree, we could find that each 
clade consists of two to four genes, which well matched 
the two WGD events and confirmed that the expansion 
of GmWRKY happened during both WGD events. We 
then analyzed the exon–intron organization in the coding 

sequences of each soybean WRKY genes HD-ZIP genes 
(Additional file  4: Fig. S2b). Previous study showed that 
most Populus WRKY genes contain two to four introns 
(He et al. 2012). Similarly, the majority of soybean WRKY 
members harbored two to four introns. For instance, over 
60  % members of subgroups IIc (26/42), IId (17/21), IIe 
(14/20) and III (23/26) harbored two introns; over 60  % 
group I members (17/32) harbored four; most members in 
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group IIa harbored three (7/14) or four (5/14) (Additional 
file 4: Fig. S2b). In contrast, the gene structure appeared 
to be more variable in groups IIb, the number of introns 
in this group varied from one to six (Additional file 4: Fig. 
S2b). In Populus, although there were only eight members 
in group IIb, the numbers of introns varied from three to 
six (He et  al. 2012). These results indicated that WRKY 
genes in different species were relatively conserved during 
the evolution. Furthermore, genes shared similar exon–
intron organization within the same subgroup, while they 
were strikingly distinct in the gene structure among dif-
ferent groups, suggesting that they were not only con-
served, but diverged during the evolution.

To better understand the conservation and diversi-
fication of WRKY genes in soybean, putative motifs of 
GmWRKYs were predicted using MEME software and 
finally 16 distinct motifs were identified (Additional 
file 4: Fig. S2c). As expected, most of the closely related 
members in the phylogenetic tree shared common motif 
compositions, suggesting that the WRKY proteins within 
the same subfamily might be of similar functions. How-
ever, like putative motifs predicted in ZmWRKYs (Gao 
et  al. 2014), the biological significance of most of the 
putative motifs in GmWRKYs was also unclear because 
they did not have homologs when searching against 
Pfam (http://pfam.sanger.ac.uk/search) and SMART 
(Simple Modular Architecture Research Tool) databases. 
The same phenomenon also existed in Populus NAC 
and HD-ZIP proteins (Hu et  al. 2010, 2012). Accord-
ing to previous study, WRKY proteins harbor typical 
WRKY domains and zinc-finger motifs (Eulgem et  al. 
2000; Rushton et al. 2010). Here, motif 1, 2 and 9 com-
prised the WRKY domain, motif 3 and 10 were the par-
tial zinc-finger motifs followed motif 2 and 9 (Additional 
file 5: Table S3). The product size of the group I and sub-
group IIb genes was larger than that of members of the 
other groups (Table  1), consistent with their harboring 
a greater number of motifs (Additional file  4: Fig. S2c). 
In contrast, although subgroup IIc possessed the larg-
est number of members, they harbored the least num-
ber of motifs (one to three). Even though the C-terminal 
regions of GmWRKYs were highly divergent, we could 
also identify several conserved motifs which were pre-
sent in GmWRKYs from specific subgroups, for example, 
motifs 3, 5 and 6 in group I, motif 14 in subgroup IIb, 
and motif 13 in subgroups IIa and IIb (Additional file 4: 
Fig. S2c). Whether these motifs play functional roles 
remained to be further elucidated.

Expression profiles of GmWRKYs in response to salt stress
The WRKY gene family is heavily implicated in the plant 
response to abiotic stress (Chen et  al. 2012), as indicated 
by a number of microarray-based transcriptomic data 

sets. Several studies have reported the influence of abiotic 
stress on WRKY genes based on these data sets (Dou et al. 
2014; Satapathy et al. 2014; Wei et al. 2012). In soybean (cv. 
Kefeng No. 1), the response of a set of 64 WRKY genes fol-
lowing the plant’s exposure to salt stress has been described 
(Zhou et al. 2008), but this number represents only about 
one-third of the total WRKY genes. In order to give insight 
to the function of GmWRKYs in plant response to salt tol-
erance, we analyzed the soybean (cv. Williams 82) gene 
expression profiles under salt stress (Belamkar et al. 2014). 
Finally, 66 of the 188 GmWRKY genes were transcription-
ally regulated under salt stress (Fig.  3a; Additional file  6: 
Table S4). 65 genes were up-regulated, with only WRKY71 
being down-regulated (Fig.  3a). The response of WRKY 
was typically quite rapid (Eulgem et al. 2000), most nota-
bly in the case of GmWRKY20, -47, -76, -126, -134, -153, 
-164, which responded by an at least five fold rise in tran-
script abundance after a 1 h exposure to the stress. In some 
cases, the response was transient: some examples were the 
genes WRKY44, -51, -54, -78, -81, -85, -102 and -107, for 
which transcript abundance peaked after a 6  h exposure 
and then fell away (Fig. 3a; Additional file 6: Table S4). The 
most responsive gene (WRKY134) belonged to subgroup 
IIa, which was increased to ~226 fold after a 6 h exposure 
(Fig. 3a; Additional file 6: Table S4). By contrast, the expres-
sion of GmWRKY71, a member of group IId was down-
regulated in response to salt stress (Fig. 3a). 

In soybean, a notable number of responsive genes 
belonged to subgroup IIb (18 of 33), although their level 
of induction by salt treatment was only modest (Fig. 3b). 
In addition, most of subgroup IIc (14/42) and group III 
(14/26) members were significantly induced and these 
genes tended to be dramatically up-regulated after a 6 h 
exposure (Fig.  3c, d). In Arabidopsis root, the 18 salt 
induced members belong to group I (4/18), II (11/18) 
and III (3/18), respectively (Jiang and Deyholos 2006). 
These data indicated that either in soybean or Arabidop-
sis, group II members made major contribution in salt 
response, suggesting that WRKY functions in response 
to salt stress in different organisms appeared to be con-
served during evolution.

The material used in the above RNA-seq was soy-
bean root which was not able to represent other parts. 
We then analyzed the other RNA-seq data which were 
derived from the aerial part of soybean plants (cv. 
SuiNong 28) (Wei et  al. 2015). A total of 49 GmWRKY 
genes were transcriptionally regulated under salt stress 
(Fig. 3e; Additional file 7: Table S5). 47 genes were down-
regulated, with only two (WRKY155 and WRKY183) 
being up-regulated (Fig. 3e). These results were quite dif-
ferent with the above RNA-seq analysis, indicating that 
GmWRKY genes showed distinct response profiles in dif-
ferent tissues.

http://pfam.sanger.ac.uk/search
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Investigation of GmWRKY gene expressions by RT‑qPCR
The transcriptional profiles we analyzed above could 
provide clues for revealing the function of GmWRKYs in 
plant response to salt tolerance. However, the material 

used in RNA-seq was soybean root or aerial part which 
was not able to represent the entire plant. To shed light 
on the expression profiles of GmWRKY genes, 2  weeks 
old soybean seedlings (cv. Williams 82) were exposed to 
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Fig. 3 The transcription response of the WRKY genes in response to salt stress. Transcript abundance levels have been normalized and hierarchical 
clustered. Blue colored blocks indicate a decreased and yellow ones an increased level of transcription relative to the control. a The set of 66 genes 
transcriptionally altered in soybean root by the stress. Genes with remarkable changed expressions are labeled in red. b–d The transcription profiles 
of genes belonging to subgroups b IIb and c IIc and to d group III. hr number of hours of exposure to the stress. e The set of 49 genes transcription-
ally altered in the aerial part of soybean by the stress
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200 mM NaCl for 0, 2, 6 or 24 h, respectively, and then 
the total RNA of the whole plant was isolated used for 
RT-qPCR analysis. 66 GmWRKY genes were tested and 
exhibited distinct expression patterns in response to 
salt stress, of which 12 showed no significant change 
(Fig.  4a), 35 were decreased (Fig.  4b), while 19 were 
induced (Fig.  4c). GmWRKY38, -120 and -185 were 
substantially decreased, especially GmWRKY120. In 
contrast, GmWRKY20, -89, -114 and -142 were remark-
ably induced. These expression patterns were differ-
ent with the above RNA-seq analysis, indicating that 
GmWRKY genes showed distinct response profiles in 
the whole plants compared to different tissues. The 
response of WRKY to abiotic stresses was generally rapid 
and transient (Eulgem et  al. 2000). Likely, most of the 
GmWRKY genes responded rapidly, their expressions 
were decreased (31/35) or induced (16/19) after only 
a 2  h exposure (Fig.  4b, c). In addition, the response of 
GmWRKYs was transient, such as GmWRKY36, -82, -83, 
-141, -153, -159 and -66 (Fig. 4b, c).

In tomato and cucumber, most WRKYs are up-regulated 
by salt stress (Huang et al. 2012; Ling et al. 2011). In con-
trast, the majority of Brachypodium distachyon WRKYs 
are down-regulated by the stress (Wen et  al. 2014). In 
soybean, most WRKYs were up-regulated in root, while 
down-regulated in the aerial part by the stress (Fig.  4). 
Species differences presumably reflected a major degree 
of functional divergence in the WRKY gene family.

Conclusion
The present study has taken a genome-wide view of the 
soybean WRKY gene family, and characterized their 
transcriptional response to salt stress. An analysis of their 
phylogeny, chromosomal location, gene structure and 
content of conserved motifs has allowed the genes to be 
classified into the standard set of groups. The expansion 
in copy number of the GmWRKYs has occurred largely as 
a result of the two well recognized ancient whole genome 
duplication events. To date, only three GmWRKY genes 
have been functionally investigated (Jiang and Deyholos 
2009), leaving unknown the function of the remaining 
more than 180. The responsiveness to salt stress of about 
one-third of the GmWRKY complement confirms the 
potential of gene manipulation within this gene family as 
means of improving the salt tolerance of important crop 
species.
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