
Soleymani et al. Advances in Difference Equations (2016) 2016:4
DOI 10.1186/s13662-015-0732-z

R E S E A R C H Open Access

Several numerical methods for computing
unitary polar factor of a matrix
Fazlollah Soleymani1, Farhad Khaksar Haghani2 and Stanford Shateyi3*

*Correspondence:
stanford.shateyi@univen.ac.za
3Department of Mathematics and
Applied Mathematics, University of
Venda, Thohoyandou, 0950, South
Africa
Full list of author information is
available at the end of the article

Abstract
We present several numerical schemes for computing the unitary polar factor of
rectangular complex matrices. Error analysis shows high orders of convergence. Many
experiments in terms of number of iterations and elapsed times are reported to show
the efficiency of the new methods in contrast to the existing ones.

MSC: 65F30

Keywords: iterative methods; polar decomposition; numerical methods; polar
factor; Hermitian; order of convergence

1 Preliminaries
Let Cm×n (m ≥ n) denote the linear space of all m × n complex matrices. The polar de-
composition of a complex matrix A ∈C

m×n could be defined as

A = UH , U∗U = Ir , rank(U) = r = rank(A), ()

where H is a Hermitian positive semi-definite matrix of order n and U ∈ C
m×n is a sub-

unitary matrix []. A matrix U is sub-unitary if ‖Ux‖ = ‖x‖ for any x ∈R(UH) = N (U)⊥,
where R and N denote the linear space spanned by columns of matrix X (range of X) and
the null space of matrix X, respectively. Note that if rank(A) = n then U∗U = In, and U is
an orthonormal Stiefel matrix.

The Hermitian factor H is always unique and can be written as (A∗A)
 , while the unitary

factor U is unique if A is nonsingular; see for more [].
It is required to remark that the polar and matrix sign decompositions are intimately

connected []. For example, Roberts’ integral formula [],

sign(A) =

π

∫ ∞

(
tI + A)– dt, ()

has an analog in

U =

π

∫ ∞

(
tI + A∗A

)– dt. ()

These integral formulas reveal that any property or iterative method involving the ma-
trix sign function can be transformed into one for the polar decomposition by replacing
A via A∗A, and vice versa.

© 2015 Soleymani et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81590626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0732-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0732-z&domain=pdf
mailto:stanford.shateyi@univen.ac.za

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 2 of 11

Practical interest in the polar decomposition stems mainly from the fact that the unitary
polar factor of A is the nearest unitary matrix to A in any unitarily invariant norm. The
polar decomposition is therefore of interest whenever it is required to orthogonalize a
matrix []. To obtain more background in this topic, one may refer to [–].

Now we briefly review some of the most important iterative matrix methods for com-
puting polar decomposition. Among many iterations (see e.g. [] and the references
therein) available for finding U , the most practically useful one is the Newton iteration.
The method of Newton introduced for polar decomposition in [] is as follows:

Uk+ =

(
Uk + U–∗

k
)
, ()

for the square nonsingular cases and the following alternative for general rectangular
cases []:

Uk+ =

(
Uk + U†∗

k
)
, ()

wherein U† stands for the Moore-Penrose generalized inverse. Note that, throughout this
work, U–∗

k stands for (U–
k)∗. Similar notations are used as well.

Remark . We point out that here we focus mainly on computing the unitary polar fac-
tor of rectangular matrices, since the high-order methods discussed in this work will not
require the computation of pseudo-inverse and is better than the corresponding Newton’s
version (), which requires the computation of one pseudo-inverse per computing cycle.

Recently, an efficient cubically convergent method has been introduced in [] as fol-
lows:

Uk+ = Uk[I + Yk][I + Yk + Zk]–, ()

where Yk = U∗
k Uk , Zk = YkYk .

An (enough close) initial matrix U must be employed in such matrix fixed-point type
methods to ensure convergence. Such an approximation/guess for the unitary factor of
the rectangular complex matrices can be constructed by

U =

α

A, ()

where α > is an estimate of ‖A‖. This is known as one of the good ways in the litera-
ture for constructing an initial value to ensure the convergence of iterative Newton-type
methods for finding the unitary polar factor of A.

The other sections of this paper are organized as follows. In Section , we derive an iter-
ation function for polar decomposition. Next, Section discusses the convergence prop-
erties of this method. It is revealed that the rate of convergence is six since the proposed
formulation transforms the singular values of the approximated matrices produced per
cycle with a sixth rate to unity (one). This discloses that our method is quite rapid. Several
other new iterative methods are constructed in Section . Many numerical experiments
are provided to support the theoretical aspects of the paper in Section . Finally, conclu-
sions are drawn in Section .

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 3 of 11

2 A numerical method
The procedure of constructing a new iterative method for U , is to apply a zero-finder on
a particular map []. That is, solving the following nonlinear (matrix) equation:

F(U) := U∗U – I = , ()

where I is the identity matrix, by an appropriate root-finding method could yield novel
schemes.

To that end, we first introduce the following iterative expression for finding the simple
zeros of nonlinear equations:

{
yk = uk – –L(uk)

–L(uk)
f (uk)
f ′(uk) ,

uk+ = yk – f (yk)
f ′(yk) ,

()

with L(uk) = f ′′(uk)f (uk)
f ′(uk) . This is a combination of the cubical method proposed in [] and

the quadratically convergent Newton’s method.

Theorem . Let α ∈ D be a simple zero of a sufficiently differentiable function f : D ⊆
C → C for an open interval D, which contains x as an initial approximation of α. Then
the iterative expression () has sixth order of convergence.

Proof The proof is based on Taylor expansions of the function f around the appropriate
points and would be similar to those taken in []. As a consequence, it is skipped over.

�

Here using () for solving u – = , we have the following iteration in the reciprocal
form:

uk+ =
uk + ,u

k + ,u
k + u

k

 + ,u
k + ,u

k + ,u
k + u

k
, k = , , ()

The iteration obtained after applying a nonlinear equation solver on the mapping () and
its reciprocal, could be used for polar decomposition. But here, the experimental results
show that the reciprocal form () is more stable in the presence of round-off errors.

Drawing the attraction basins [] of () for finding the solution of the polynomial equa-
tion u – = in the complex plane reveals that the application of () for finding matrix
sign function and consequently the unitary polar factor has global convergence. This is
done in Figure on the rectangle [–,] × [–,].

By taking into account this global convergence behavior, we extend () as follows:

Uk+ = Uk[I + ,Yk + ,Zk + Wk]

× [I + ,Yk + ,Zk + ,Wk + Lk]–, ()

where U is chosen by () (or its simplest form U = A) and Yk = U∗
k Uk , Zk = YkYk , Wk =

YkZk , and Lk = YkWk . The iteration algorithm () converges to the unitary polar factor
under some conditions. These discussions will be presented in the next section.

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 4 of 11

Figure 1 Attraction basins shaded according to the number of iterations for Newton’s method (left)
and (10) (right), for the polynomial g(u) = u2 – 1.

3 Convergence properties
This section is dedicated to the convergence properties of () for finding the unitary polar
factor of A.

Theorem . Assume that A ∈ C
m×n is an arbitrary matrix. Then the matrix iterates

{Uk}k=∞
k= of () converge to U .

Proof The proof of this theorem follows the lines of the proofs given in []. As such, it is
skipped over. �

Theorem . Let A ∈ C
m×n be an arbitrary matrix. Then the new method () is of sixth

order to find the unitary polar factor of A.

Proof The proposed scheme () transforms the singular values of Uk according to the
following map:

σ
(k+)
i = σ

(k)
i

[
 + ,σ

(k)
i

+ ,σ

(k)
i

+ σ

(k)
i

]

× [
 + ,σ

(k)
i

+ ,σ

(k)
i

+ ,σ

(k)
i

+ σ (k)

i
]–, ()

and it leaves the singular vectors invariant. From equation (), it is enough to show that
convergence of the singular values to unity possesses a sixth order of convergence for k ≥ .
Thus, we arrive at

σ
(k+)
i –

σ
(k+)
i +

= –
(– + σ

(k)
i)(– + σ (k)

i)

(+ σ
(k)
i)(+ σ (k)

i)
. ()

Taking absolute values from both sides of (), one gets the following:

∣∣∣∣σ
(k+)
i –

σ
(k+)
i +

∣∣∣∣ ≤
(

– + σ (k)
i

 + σ (k)
i

)∣∣∣∣σ
(k)
i –

σ
(k)
i +

∣∣∣∣

. ()

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 5 of 11

This demonstrates the sixth rate of convergence for the proposed numerical algorithm
(). Consequently, the proof is complete. �

Remark . The presented method is not a member of the Padé family of iterations given
in [] (and discussed deeply in []), with global convergence. As a result, it is interesting
from both theoretical and computational point of views.

The new formulation () is quite rapid, but there is still a way for speeding up the whole
process via an acceleration technique given for Newton’s method in [], known as scaling.
Some important scaling approaches were derived in different norms as comes next; we
have

θk =
(‖U†

k ‖

‖Uk‖

)

, ()

where ‖ · ‖ is the spectral norm. This scale factor is optimal in the given Uk , since ()
minimizes the next error ‖Uk+ – U‖. Unfortunately, to determine the scale factor (),
one needs to compute two extreme singular values of Uk at each iteration. To save the cost
of computing the extreme singular values, one might approximate the scaling parameter
as in the following []:

θk =
(‖U†

k ‖F

‖Uk‖F

)

()

or

θk =
(‖U–

k ‖‖U–
k ‖∞

‖Uk‖‖Uk‖∞

)

. ()

Another relatively inexpensive scaling factor is []

θk =
∣∣det(Uk)

∣∣–/n. ()

The complex modulus of the determinant in this choice is inexpensively obtained from
the same matrix factorization used to calculate U–

k .
Finally in this section, the new scheme can be expressed in the following accelerated

form as well:
⎧⎪⎨
⎪⎩

Compute θk (for example) by (), k ≥ ,
Mk = I + ,θ

k Yk + ,θ
k Zk + ,θ

k Wk + θ
k Lk ,

Uk+ = θkUk[I + ,θ
k Yk + ,θ

k Zk + θ
k Wk]M–

k .
()

4 Some other iterative methods
As discussed in the preceding sections, the construction of the iterative methods for find-
ing the unitary polar factor of a matrix mainly relies on the nonlinear equation solver
which is going to be applied on the mapping ().

Now, some may question that the construction () is straightforward, since it is the com-
bination of two already known methods. It is here stated that the main goal is to attain a

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 6 of 11

new scheme for a polar decomposition which has global convergence behavior and is new,
i.e., it is not a member of the Padé family of iterations (or its reciprocal). So, the novelty and
usefulness of () in terms of solving nonlinear equations is not of main interest here and
the importance is focused on providing a novel and useful scheme for finding the unitary
polar factor.

To construct some other new and useful iterative methods for finding the unitary polar
factor of a matrix, we could again use the first sub-step of () along with different kinds
of approximation for the newly appearing first derivative in the second sub-step. As such,
we could derive the following nonlinear equation solver:

{
yk = uk – –L(uk)

–L(uk)
f (uk)
f ′(uk) ,

uk+ = yk – f (yk)
f [uk ,yk] ,

()

wherein f [xk , yk] is the two-point divided difference. Note again that pursuing the opti-
mality conjecture of Kung-Traub or usefulness of the iterative method in terms of solving
nonlinear equation is not the only cutting-edge factor, since the most eminent factor is
in designing a new scheme for unitary polar factor with global convergence behavior. An
application of () to equation () results in the following fourth-order scheme for the
unitary polar factor:

Uk+ = Uk[I + Yk + Zk][I + Yk + Zk]–. ()

At this moment, by applying a similar secant-like strategy in a third sub-step after (),
one may design the following seventh-order scheme:

⎧⎪⎪⎨
⎪⎪⎩

yk = uk – –L(uk)
–L(uk)

f (uk)
f ′(uk) ,

zk = yk – f (yk)
f [uk ,yk] ,

uk+ = zk – f (zk)
f [zk ,yk] ,

()

and subsequently the following iterative method:

Uk+ = Uk[I + ,Yk + ,Zk + ,Wk + Lk]

× [I + ,Yk + ,Zk + ,Wk + ,Lk]–. ()

The attraction basins of these two new iterative methods are provided in Figure , which
manifest their global convergence behavior. Note that a theoretical discussion for proving
this global behavior is also possible using a similar strategy as given in [].

The error analysis of the new schemes () and () are similar to the case given in
Section . As a result, they are not included here.

5 Numerical results
We have tested the contributed methods (), (), () denoted by PM, PM, and PM,
respectively, using the programming package Mathematica in double precision [].
Apart from this scheme, several iterative methods, such as () denoted by NM, and ()

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 7 of 11

Figure 2 Attraction basins shaded according to the number of iterations for (20) (left) and (22) (right),
for the polynomial g(u) = u2 – 1.

denoted by KHM, and the scaled Newton method (denoted by ANM) are given by

{
Compute θk by (), k ≥ ,
Uk+ =

 [θkUk + θ–
k U†∗

k],
()

have been tested and compared. We used the following stopping criterion: Rk+ =
‖Uk+–Uk‖∞

‖Uk‖∞ ≤ ε, wherein ε = – is the tolerance.
We now apply different numerical methods for finding the unitary polar factors of many

randomly generated rectangular matrices with complex entries. In order to help the read-
ers to re-run the experiments we used SeedRandom[12345] for producing pseudo-
random (complex) numbers.

The random matrices for different dimensions of m×n are constructed by the following
piece of Mathematica code (I =

√
–):

SeedRandom[12345]; number = 15;

Table[A[l] = RandomComplex[{-10 - 10 I,

10 + 10 I}, {m, n}];, {l, number}];

We have gathered up the numerical results for the experiments in Tables -. The initial
approximation is constructed as U =

‖A‖
A. Only for the cases m×n = × and m×

n = × , the comparisons of the required number of iterations have been reported
and we mainly focused on the elapsed CPU time (in seconds) to clearly reveal that our
proposed scheme is quite efficient in most cases. The results of comparison for the square
nonsingular cases of m × n = × are included in Table . This shows that the
efficient results are in complete agreement with the CPU time utilized in the execution of
program(s) for PM.

To give an answer to the key question: whether the increasing order convergence is
worth in view of increasing the matrix multiplications in each iteration, it is requisite to
incorporate the notion of efficiency index, p/θ , whereas p and θ stand for the rate of con-
vergence and the computational cots per cycle, respectively. This is achieved by assuming
that each matrix-matrix multiplication cost -unit while the cost for one regular matrix
inverse is .-unit and one matrix Moore-Penrose inverse is -unit. Consequently, the effi-

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 8 of 11

Table 1 Results of comparison for the dimension m × n = 110 × 100 in terms of the number
of iterations

Matrix No. NM ANM KHM PM1 PM2 PM3

1 10 8 6 4 5 4
2 10 7 6 4 5 4
3 10 8 6 4 5 4
4 10 7 6 4 5 4
5 10 8 6 4 5 4
6 10 8 6 4 5 4
7 10 8 6 4 5 4
8 10 8 6 4 5 4
9 10 8 6 4 5 4
10 10 7 6 4 5 4
11 10 8 6 4 5 4
12 10 8 6 4 5 4
13 10 8 6 4 5 4
14 10 8 6 4 5 4
15 10 8 6 4 5 4

Table 2 Results of comparison for the dimension m × n = 110 × 100 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 0.040002 0.041002 0.020001 0.018001 0.019001 0.020001
2 0.039002 0.044002 0.029002 0.022001 0.018001 0.019001
3 0.042002 0.042002 0.020001 0.018001 0.018001 0.020001
4 0.039002 0.041002 0.020001 0.019001 0.018001 0.022001
5 0.040002 0.042002 0.020001 0.019001 0.018001 0.020001
6 0.041002 0.041002 0.020001 0.019001 0.018001 0.020001
7 0.039002 0.045003 0.023001 0.018001 0.027002 0.026002
8 0.050003 0.041002 0.020001 0.022001 0.019001 0.020001
9 0.039002 0.045003 0.020001 0.018001 0.021001 0.021001
10 0.043002 0.041002 0.020001 0.019001 0.018001 0.020001
11 0.040002 0.042002 0.020001 0.019001 0.019001 0.020001
12 0.040002 0.049003 0.022001 0.019001 0.018001 0.019001
13 0.040002 0.041002 0.020001 0.021001 0.018001 0.020001
14 0.041002 0.045003 0.020001 0.019001 0.018001 0.019001
15 0.040002 0.042002 0.020001 0.019001 0.019001 0.019001

Table 3 Results of comparison for the dimension m × n = 210 × 200 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 0.208012 0.240014 0.092005 0.088005 0.093005 0.091005
2 0.207012 0.240014 0.090005 0.086005 0.079005 0.090005
3 0.209012 0.221013 0.092005 0.088005 0.081005 0.094005
4 0.209012 0.243014 0.097005 0.106006 0.093005 0.090005
5 0.216012 0.240014 0.091005 0.107006 0.094005 0.089005
6 0.211012 0.216012 0.090005 0.088005 0.084005 0.090005
7 0.208012 0.243014 0.091005 0.105006 0.093005 0.092005
8 0.211012 0.225013 0.095005 0.091005 0.078005 0.088005
9 0.210012 0.238014 0.092005 0.089005 0.092005 0.088005
10 0.217012 0.239014 0.091005 0.094005 0.093005 0.089005
11 0.208012 0.218012 0.090005 0.086005 0.078004 0.089005
12 0.209012 0.240014 0.102006 0.087005 0.080005 0.089005
13 0.209012 0.244014 0.092005 0.086005 0.078005 0.089005
14 0.210012 0.239014 0.091005 0.086005 0.079005 0.094005
15 0.216012 0.239014 0.097006 0.105006 0.093005 0.088005

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 9 of 11

Table 4 Results of comparison for the dimension m × n = 410 × 400 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 1.131065 1.151066 0.581033 0.619035 0.542031 0.607035
2 1.144065 1.150066 0.587034 0.597034 0.522030 0.610035
3 1.190068 1.144065 0.578033 0.587034 0.532030 0.632036
4 1.153066 1.144065 0.589034 0.591034 0.524030 0.598034
5 1.135065 1.147066 0.581033 0.586033 0.538031 0.607035
6 1.145066 1.148066 0.588034 0.599034 0.527030 0.602034
7 1.134065 1.152066 0.587034 0.593034 0.532030 0.599034
8 1.123064 1.157066 0.577033 0.594034 0.518030 0.617035
9 1.137065 1.149066 0.589034 0.593034 0.520030 0.604035
10 1.127064 1.140065 0.503029 0.593034 0.521030 0.614035
11 1.129065 1.144065 0.577033 0.591034 0.524030 0.596034
12 1.119064 1.147066 0.593034 0.592034 0.522030 0.600034
13 1.139065 1.152066 0.591034 0.590034 0.527030 0.600034
14 1.124064 1.142065 0.587033 0.593034 0.522030 0.595034
15 1.126064 1.155066 0.597034 0.605035 0.522030 0.619035

Table 5 Results of comparison for the dimension m × n = 510 × 500 in terms of the number
of iterations

Matrix No. NM ANM KHM PM1 PM2 PM3

1 12 9 7 5 6 5
2 12 9 7 5 6 5
3 12 9 7 5 6 5
4 12 9 7 5 6 5
5 12 9 7 5 6 5
6 12 9 7 5 6 5
7 12 9 7 5 6 5
8 12 9 7 5 6 5
9 12 9 7 5 6 5
10 12 9 7 5 6 5

Table 6 Results of comparison for the dimension m × n = 510 × 500 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 2.160124 2.222127 1.067061 1.116064 0.926053 1.074061
2 2.185125 2.181125 1.041060 1.129065 0.924053 1.102063
3 2.142123 2.199126 1.029059 1.174067 0.957055 1.121064
4 2.154123 2.111121 1.113064 1.121064 0.955055 1.096063
5 2.139122 2.131122 1.086062 1.049060 0.961055 1.077062
6 2.130122 2.195126 1.084062 1.050060 0.939054 1.075061
7 2.126122 3.235185 1.077062 1.134065 0.938054 1.076062
8 2.126122 2.098120 1.108063 1.083062 0.957055 1.076062
9 2.100120 2.147123 1.054060 1.084062 0.994057 1.069061
10 2.157123 2.210126 1.052060 1.076062 0.966055 1.073061

Table 7 Results of comparison for the dimension m × n = 510 × 500 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 2.006115 1.940111 0.972056 0.984056 0.878050 1.003057
2 1.967113 1.937111 0.969055 0.983056 0.876050 1.013058
3 1.967113 1.918110 0.972056 0.994057 0.878050 1.003057
4 1.982113 1.912109 0.980056 0.996057 0.876050 1.012058
5 2.099120 1.932111 0.968055 0.992057 0.886051 1.011058
6 1.969113 1.919110 0.977056 0.984056 0.889051 1.003057
7 1.974113 1.919110 0.975056 0.983056 0.881050 1.015058
8 1.967113 1.920110 0.969055 0.999057 0.877050 1.011058
9 1.976113 1.920110 0.992057 1.003057 0.875050 1.004057
10 1.970113 1.932111 0.975056 0.990057 0.876050 1.012058

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 10 of 11

Table 8 Results of comparison for the dimension m × n = 600 × 600 in terms of the elapsed
time

Matrix No. NM ANM KHM PM1 PM2 PM3

1 1.281073 1.320075 1.687096 1.866107 1.568090 1.870107
2 1.301074 1.322076 1.695097 1.853106 1.554089 1.878107
3 1.216070 1.333076 1.706098 1.867107 1.562089 1.578090
4 1.286074 1.324076 1.703097 1.847106 1.561089 1.895108
5 1.296074 1.325076 1.716098 1.858106 1.557089 1.858106
6 1.370078 1.319076 1.905109 1.830105 1.768101 1.873107
7 1.286074 1.320075 1.708098 1.857106 1.566090 1.583091
8 1.531088 1.317075 1.906109 2.123121 1.766101 1.868107
9 1.375079 1.314075 1.917110 1.851106 1.762101 1.888108
10 1.288074 1.321076 1.711098 1.841105 1.562089 1.855106

ciency indices for the discussed methods are: E() ., E() ., E() .,
E() ., and E() ..

However, it is also required to state that for square cases and as could be seen in Table ,
the NM and ANM are better choices since they are using the regular inverses in their it-
erative structures, unlike their structures in the rectangular cases. Furthermore, it sounds
as if the computation of the scaling factor for the proposed method will not be attractive,
due to the computation of an extra pseudo-inverse per cycle.

The acquired numerical results agree with the theoretical discussions given in Sections
and , overwhelmingly. As a result, we can state that PM-PM reduce the number of
iterations and time in finding the polar decomposition.

6 Concluding remarks
In this paper, we developed high-order methods for matrix polar decomposition. It has
been shown that the convergence is global. Many numerical tests (of various dimensions)
have been provided to show the performance of the new method.

In , Kenney and Laub [] proposed a family of rational iterative methods for sign
(subsequently for polar decomposition), based on Padé approximation. Their principal
Padé iterations are convergent globally. Thus, we have convergent methods of arbitrary
orders for sign (subsequently for polar decomposition). However, here we tried to propose
new methods, which are interesting from theoretical point of view and are not members
of Padé family. Numerical results have demonstrated the behavior of the new algorithms.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors jointly worked on deriving the results and approved the final manuscript.

Author details
1Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran. 2Department of Mathematics,
Faculty of Basic Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran. 3Department of Mathematics and
Applied Mathematics, University of Venda, Thohoyandou, 0950, South Africa.

Acknowledgements
The authors thank the anonymous referees for their suggestions which helped to improve the quality of the paper.

Received: 26 April 2015 Accepted: 20 December 2015

References
1. Higham, NJ: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

Soleymani et al. Advances in Difference Equations (2016) 2016:4 Page 11 of 11

2. Laszkiewicz, B, Ziȩtak, K: Approximation of matrices and family of Gander methods for polar decomposition. BIT
Numer. Math. 46, 345-366 (2006)

3. Higham, NJ: The matrix sign decomposition and its relation to the polar decomposition. Linear Algebra Appl.
212/213, 3-20 (1994)

4. Roberts, JD: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int.
J. Control 32, 677-687 (1980)

5. Higham, NJ: Computing the polar decomposition - with applications. SIAM J. Sci. Stat. Comput. 7, 1160-1174 (1986)
6. Byers, R: Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl. 85, 267-279 (1987)
7. Gander, W: Algorithms for the polar decomposition. SIAM J. Sci. Stat. Comput. 11, 1102-1115 (1990)
8. Soheili, AR, Toutounian, F, Soleymani, F: A fast convergent numerical method for matrix sign function with

application in SDEs. J. Comput. Appl. Math. 282, 167-178 (2015)
9. Soleymani, F, Stanimirović, PS, Stojanović, I: A novel iterative method for polar decomposition and matrix sign

function. Discrete Dyn. Nat. Soc. 2015, Article ID 649423 (2015)
10. Nakatsukasa, Y, Bai, Z, Gygi, F: Optimizing Halley’s iteration for computing the matrix polar decomposition. SIAM J.

Matrix Anal. Appl. 31, 2700-2720 (2010)
11. Du, K: The iterative methods for computing the polar decomposition of rank-deficient matrix. Appl. Math. Comput.

162, 95-102 (2005)
12. Khaksar Haghani, F: A third-order Newton-type method for finding polar decomposition. Adv. Numer. Anal. 2014,

Article ID 576325 (2014)
13. Soleymani, F, Stanimirović, PS, Shateyi, S, Haghani, FK: Approximating the matrix sign function using a novel iterative

method. Abstr. Appl. Anal. 2014, Article ID 105301 (2014)
14. Soleymani, F: Some high-order iterative methods for finding all the real zeros. Thai J. Math. 12, 313-327 (2014)
15. Cordero, A, Soleymani, F, Torregrosa, JR, Shateyi, S: Basins of attraction for various Steffensen-type methods. J. Appl.

Math. 2014, Article ID 539707 (2014)
16. Khaksar Haghani, F, Soleymani, F: On a fourth-order matrix method for computing polar decomposition. Comput.

Appl. Math. 34, 389-399 (2015)
17. Kenney, C, Laub, AJ: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12, 273-291

(1991)
18. Kielbasiński, A, Zieliński, P, Ziȩtak, K: On iterative algorithms for the polar decomposition of a matrix. Appl. Math.

Comput. 270, 483-495 (2015)
19. Dubrulle, AA: Frobenius iteration for the matrix polar decomposition. Technical report HPL-94-117, Hewlett-Packard

Company (1994)
20. Byers, R, Xu, H: A new scaling for Newton’s iteration for the polar decomposition and its backward stability. SIAM J.

Matrix Anal. Appl. 30, 822-843 (2008)
21. Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2015)

	Several numerical methods for computing unitary polar factor of a matrix
	Abstract
	MSC
	Keywords

	Preliminaries
	A numerical method
	Convergence properties
	Some other iterative methods
	Numerical results
	Concluding remarks
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References

