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1 Introduction and result

A new phase of Quantum Chromodynamics, called Quark-Gluon Plasma (QGP) is pro-

duced at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) by col-

liding two pancakes of heavy nuclei such as Gold or Lead at a relativistic speed. From the

numerical simulation, it is realized that the QGP is a strongly coupled fluid since it has very

low viscosity over entropy density ratio. Therefore, perturbative calculations(methods) of

QGP properties are not reliable [2]. Thus non-perturbative methods like AdS/CFT corre-

spondence [8–10] may be applied to describe different properties of the QGP such as rapid

thermalization, elliptic flow, jet quenching parameter and quarkonium dissociation which

they have been considerably studied in the literature [2, 11–13]. The property we would

like to discuss here is Chiral Magnetic Effect (CME) [14–18].

The presence of a strong magnetic field at the very early stages of heavy ion collision,

realized from analytical calculations [16] and numerical simulation [20], and its accom-

panying non-trivial gluon field configurations lead to the CME. More precisely, the axial

charge µ5, given by the difference between the number of fermions with left-handed and
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right-handed quarks, is proportional to the of non-trivial gauge field provided that the

left-handed and right-handed quarks are initially equal. The spin of quarks is tightly

aligned along the strong magnetic field. For a non-zero winding number, in order to have

a non-zero axial charge, the momentum direction of some quarks, depending on the sign of

winding number must be altered. This phenomenon produces a non-zero electric current

of (massless) quarks along the strong magnetic field, which is given by

J =
µ5
2π2

B . (1.1)

Around one fermi after the collision, the produced plasma is thermalized and the

system is in local equilibrium and hydrodynamics can be applied to study the evolution

of the produced matter. At ultra-relativistic energies, the underlying physics enjoys axial

global symmetry in the classical level, however, due to anomaly, this symmetry is broken

in the quantum level. As a result, the anomalous hydrodynamic need to be considered [3].

In this case, CME is emerged naturally by imposing the second law of thermodynamics.

The ability of experimental observation of the anomaly effect in heavy ion experiment

is still under intense debates [4–6]. Furthermore, the time dependent magnetic field in

heavy ion collision is strong for τ . 1 fm and it becomes small afterward. The strong

regime of magnetic field has overlap with a stage of plasma evolution that the system is

not in local equilibrium or in other words is not thermalized. In addition, at some stage

of thermalization, the highly anisotropic energy-momentum tensor becomes isotropic and

diagonal in the local rest frame of the plasma [7]. In order to shed some light on the

dynamic of CME in the early stages of heavy ion collision, we investigate the effect of

simplified anisotropic environment, where the pressure in one direction of space is different

from the other directions. We will use the AdS/CFT correspondence which is a powerful

tool to study CME in the anisotropic strongly coupled QGP.

The AdS/CFT correspondence [8–10] states that type IIB string theory on AdS5×S5

geometry, describing the near horizon geometry of a stack of Nc extremal D3-branes, is

dual to the four-dimensional N = 4 super Yang-Milles (SYM) theory with gauge group

SU(Nc). In particular, in the large Nc and t’Hooft coupling limits, a strongly coupled SYM

theory is dual to the type IIb supergravity which provides a useful tool to study the strongly

coupled regime of the SYM theory. As a generalization, a thermal SYM theory corresponds

to the supergravity on an AdS-Schwarzschild background where SYM theory temperature is

identified with the Hawking temperature of AdS black hole [19]. Furthermore, Mateos and

Trancanelli have introduced an interesting generalization of this duality to the thermal

and spatially anisotropic SYM [1]. In order to add matter (quark) in the fundamental

representation of the corresponding gauge group, one needs to introduce a D-brane into

the background in the probe limit [21]. The probe limit means that D-brane does not

back-react on the geometry. Then the asymptotic shape of the brane gives the mass and

condensation of the quark. In addition, the shape of the brane can be classified into two

types, one is the Mikowski embedding (ME) and the other is black hole embedding (BE).

While the ME does not see the horizon, the BE crosses it (for more details see appendix A).

To specify the anisotropic solution in [1], one needs to enter two inputs, the location

of the horizon uh and the value of the Dilaton field at the horizon φ̃h. Then it is claimed
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that there is a one-to-one correspondence between these parameters and the anisotropy

parameter a and temperature of the system. It means that for given uh and φ̃h, using

the equations of motion one finds just a temperature and an anisotropy parameter for the

solution, though the map between (uh, φ̃h) and (a, T ) has not been defined. In section 3,

we carefully investigate this map and, for the first time, we find fitted functions between

these parameters that is consistent with the numerical results. More precisely, we find the

inverse map, meaning that, for given values of anisotrpy parameter and temperature one

can find the corresponding uh and φ̃h. In fact this is one of the main results of this paper.

Applying the AdS/CFT correspondence, an interesting setup has been introduced

in [22] to describe the CME, as we will review and generalize it in the section 4. We realize

that for the massless quarks the anisotropy of system does not affect the value of the CME

and its value is the same as the isotropic case, i.e. (1.1). However, for the quarks with

finite mass raise in anisotropy of the system will increase the value of the CME. In order

to have non-zero value for the CME, the mass of the quark must vary between zero and

its maximum at which this value vanishes. The maximim value of the mass also increases

as one raises the anisotropy parameter.

2 Review on the anisotropic background

The background we are interested in is an anisotropic solution of the IIb supergravity

equations of motion [1]. This solution in the string frame is given by

ds2 = gttdt
2 + gxx(dx2 + dy2) + gzzdz

2 + guudu
2 + g55ds

2
S5 ,

ds2S5 = dθ2 + cos2 θds2S3 + sin2 θdψ2,

χ = az, φ = φ(u).

(2.1)

χ and φ are axion and dilaton fields respectively. a, which is a dimensionful constant,

represents the anisotropy in the background. The components of metric are

gtt = −FBu−2, gxx = u−2, gzz = Hu−2, guu = F−1u−2, g55 = e
1
2
φ. (2.2)

H, F and B depend only on the radial direction u. In terms of the dilaton field, they have

the following forms

H = e−φ, (2.3a)

F =
e−

1
2
φ

4(φ′ + uφ′′)

[
a2e

7
2
φ(4u+ u2φ′) + 16φ′

]
, (2.3b)

B′

B
=

1

24 + 10uφ′
(
24φ′ − 9uφ′2 + 20uφ′′

)
, (2.3c)

and the dilaton filed must satisfy an equation of order three as

0 =
256φ′φ′′ − 16φ′3 (7uφ′ + 32)

u a2e
7φ
2 (uφ′ + 4) + 16φ′

+
φ′

u (5uφ′ + 12) (uφ′′ + φ′)

×
[
13u3φ′4 + 8u

(
11u2φ′′2 − 60φ′′ − 12uφ′′′

)
+ u2φ′3

(
13u2φ′′ + 96

)
+ 2uφ′2

(
−5u3φ′′′+53u2φ′′+36

)
+φ′

(
30u4φ′′2−64u3φ′′′−288+32u2φ′′

) ]
.

(2.4)
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In the above equation, a appears explicitly. One can shift the Dilaton field,

φ̃(u) = φ(u) +
4

7
log a, (2.5)

to eliminate a. Note also that the solution contains a self dual five-form field(see appendix

B for explicit form). The horizon is located at u = uh meaning that F(uh) = 0 and the

Hawking temperature is given by

T =
−F ′(uh)

√
B(uh)

4π
. (2.6)

The boundary lies at u = 0 and the metric approaches AdS5 × S5 asymptotically. At the

boundary, the suitable boundary conditions are

φB = 0, (2.7a)

FB = BB = 1. (2.7b)

The gauge theory lives in a space-time with coordinates (t, x, y, z). Since there is a U(1)

symmetry in the xy-plane, x and y are normally considered as the transverse directions

and the longitudinal direction is z. An anisotropy is clearly seen between the transverse

and longitudinal directions. For more details, we refer the reader to the original paper [1].

The study of various properties of the above background has been done in the literature,

e.g. see [25–29].

3 More on the anisotropic background

In order to study the CME as well as other physical quantities in the anisotropic back-

ground, one needs to specify the state of the medium under consideration by choosing

appropriate values for the temperature T and anisotropy parameter a. However, these

parameters are related numerically to uh and the value of the deformed Dilaton field, in-

troduced in (2.5), at the horizon, φ̃h. Since the inverse relation between (uh, φ̃h) and (a, T )

is not introduced in [1], specific values for a and T should be found by try and error.

Moreover, the other difficulty is that, to achieve large values of a/T in the field theory side,

we need to fine-tune the values of φ̃h and uh. For example, choosing (φ̃h = 0.28, uh = 1)

leads to (a ' 508.135, T ' 0.692) and choosing (φ̃h = 0.28023, uh = 1) gives rise to

(a ' 6130.78, T ' 0.988). This means that for ∆φ̃h = 0.00023, the difference between two

a/T s is of the order of 5500. Finally, the numerical calculation collapses. For instanse,

φ̃h & 0.281, uh = 1. As we will show in appendix C, there is a curve

φ̃h(uh) =
2

7
log

16

6u2h
, (3.1)

where for an arbitrary point on this curve, a/T goes to infinity.

To bring the initial inputs of the anisotropic plasma more under control, we will study

the inverse map between φ̃h(a, T ) and uh(a, T ) in this section. Using Padé approximation,

we explicitly introduce a function to compute φ̃h and uh in terms of a and T . It should

be noted that the method we will use here is based on numerical observation and is not

a concrete analytical derivation. However, we will show different numerical evidences that

the approximated inverse map is acceptable in a wide range of a/T .
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3.1 Map between (φ̃h, uh) and (a, T )

As far as the authors of [1] have been able to verify numerically, there is a one-to-one map

between (φ̃h, uh) and (a, T ). As a matter of fact, for given values of φ̃h and uh, by solving

the equations of motion (2.3), a and T can be found. More explicitly, we have

a(φ̃h, uh) = lim
ε→0

exp

[
7

4
φ̃(ε; φ̃h, uh)

]
, (3.2a)

T (φ̃h, uh) =
√
Bh
a2/7e−

1
2
φ̃h

16πuh

(
16 + u2he

7
2
φ̃h
)
, (3.2b)

where Bh = B(φ̃h, uh). Equation (2.5) and (2.7a) indicate that the value of the anisotropy

parameter is related to the asymptotic value of the φ̃(u), as it has been clearly emphasised

in (3.2a).

Now our goal is to investigate the inverse of mapping, if any, between (φ̃h, uh) and

(a, T ). In order to do so, we start with equations of motion for the metric components (2.2)

(see equations (124-9) in [1]). By introducing a new variable u→ ξuh, where ξ ∈ [0, 1] is a

dimensionless variable, one can easily see that the equations of motion depend only on the

variable ξ and the dimensionless parameter auh. As a result, this behavior points out that

just the dimensionless parameter auh appears in the corresponding solutions of all metric

components.

By multiplying (3.2b) by 1/a, we find

T

a
=
√
Bh

e
1
2
φh

16πauh

(
16 + a2u2he

7
2
φh
)
. (3.3)

According to discussion presented in the previous paragraph, Bh and φh only turn out to be

a function of the dimensionless parameter auh and therefore, from (3.3), one can conclude

that the same parameter appears in the T/a or equivalently T/a = f(auh). In turn, it

means that all the metric components are functions of a/T . Then it is easy to obtain

Tuh =
1

η
f−1

(
1

η

)
, (3.4)

where η ≡ a/T and we have assumed that f is invertible.

As a first step, we numerically plot η(φ̃h, log uh). The plot has been shown in figure 1

by a green contour plot. In this figure, (3.1) has been shown by the thick black line which

corresponds to η → ∞ and separates the (φ̃h, log uh) plane into two regions. The upper

part of the plane in not allowed and the lower part leads to finite values for η. The contour

plot indicates that η is constant over lines parallel to (3.1). To be more accurate, we also

numerically find the points in the (φ̃h, log uh) plane where for them the corresponding η

has constant values 1/2, 5 and 20 with accuracy 10−5. Then the fitted lines for these three

different values of η are shown in the figure (3.1) by black dashed lines. This figure shows

that all points with a specific value of η is fitted by a line with slope ∼ −1.75 and different

intercepts. It suggests that for a constant value of η we have log uh = c(η) − 1.75 φ̃h.
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Figure 1. Contour plot of η(φ̃h, log uh) is shown in the green region. Red dots indicate constant

lines of η with accuracy 10−5. Black dashed lines are results of fit and thick black line corresponds

to the case η →∞.

By recalling that all metric components are functions of η and assuming a generic form

log uh = c(η) + log K(φ̃h), the numerical observations give rise to

uh(η, φ̃h) = κ1(η)K(φ̃h), (3.5)

where K(φ̃h) and κ1(η) are unknown functions. Thus from the above equation and (3.4)

one can find

φ̃h = K−1
(

uh
κ1(η)

)
= K−1

(
κ2(η)

T

)
, (3.6)

where

κ2(η) =
1

η

f−1(η)

κ1(η)
. (3.7)

We argued that φh should be a function of η. Using this fact, the far right equality of φ̃h
in (3.6) and (2.5) restricts the function K−1(x) to be −4

7 log x or

K(x) = e−
7
4
x. (3.8)

Note that the factor 7
4 = 1.75 is numerically consistent with our former result which was

produced for a constant value of η. Using above equation and (3.6) the inverse map for

φ̃h(a, T ) can be written as

φ̃h(a, T ) =
4

7
log

(
T

κ2(a/T )

)
, (3.9)
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Figure 2. Numerical values for κ1(η) and κ2(η) (blue dots) and their analitical values for T � a

(red dashed curves) and T � a (green dot-dashed curves). The blue curves represent the padé

functions (3.23) for κ1(η) and κ2(η).

and for uh(a, T ) we find

uh(a, T ) =
1

T
κ1(η)κ2(η), (3.10)

where (3.4) and (3.7) have been used.

Henceforth, our aim is to gain the appropriate functions for κ1(η) and κ2(η). Unfortu-

nately it is analytically impossible, and as we will explain in the following, suitable fitted

functions will be found using the numerical results and asymptotic behaviours.

• General values of a and T .

Now let us start with arbitrary values for a and T , or equivalently η, and then solve

the equation

a(φ̃h = 0, u0h)

T (φ̃h = 0, u0h)
= η, (3.11)

to find u0h(η). We can numerically solve the above equation and according to (3.5)

and (3.8) we have

κ1(η) = u0h(η). (3.12)

From above equation and (3.10), it is straightforward to see

κ2(η) = T (0, uh = u0h(η)). (3.13)

These functions have been shown in the figure 2 by the blue dots. Notice that by

knowing the functions κ1(η) and κ2(η) and using (3.9) and (3.10), the inverse map

can be found numerically.

• High temperature limit.

In the case of high temperature, T � a, φ and πTuh, up to O
( η
π

)6
, can be written

as [1]

φh(η)=−1

4

(η
π

)2(
log 2−

(
3− 2π2 + 72(log 2)2

)
72

(η
π

)2)
, (3.14a)
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πTuh=1+
(η
π

)2(5 log 2−2

48
+

180+40π2−12 log 2−273(log 2)2

13824

(η
π

)2)
. (3.14b)

From (2.5) and (3.9) we have

eφh = [ηκ2(η)]−
4
7 , (3.15)

and by considering (3.14a), it is easy to find that

κ2(η) =
1

η

(
1 +

7 log 2

16

(η
π

)2
+

7
(
−12 + 8π2 − 225(log 2)2

)
4608

(η
π

)4)
. (3.16)

κ1(η) can be found using (3.10), (3.14b) and (3.16) and finally becomes

κ1(η) =
η

π

(
1− 1 + 8 log 2

24

(η
π

)2
+

(
108− 32π2 + 60 log 2 + 1617(log 2)2

)
3456

(η
π

)4)
. (3.17)

The red dashed curves in figure 2 represent the above functions.

• Low temperature limit.

In this limit the functions κ1(η) and κ2(η) can be gained in two ways. One way is to

use the properties of the IR solution we have found in the appendix C. Another way

is to use the numerical data from figure 2.

(i) In the appendix C, a solution has been introduced in the low temperature limit,

a � T . According to this solution, by comparing (3.9) and (C.3) and utiliz-

ing (3.10), one gets

κ1(η) =

√
8

3
∼ 1.63. (3.18)

Note that this is exactly the asymptotic value of κ1(η) in the limit of η →∞ in

figure 2. Then using (3.10), (3.18) and (C.9), one finds

κ2(η) =
117/12

4 211/12π7/6
η

1
6 . (3.19)

(ii) As it is clearly seen from figure 2, for large values of η the function κ1(η) goes

to a constant value, say c ' 1.63. Thus (3.9) and (3.10) lead to

φh = −4

7
log(ηκ2(η)),

uh =
c

T
κ2(η).

(3.20)

Now the entropy density of the system can be computed via s = N2
c

2π2
e−

5
4φh

u3h
[1]

and above equations. In the end we have

s =
1

2πc3
N2
c T

3η
5
7 [κ2(η)]−

16
7 . (3.21)
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Furthermore, in this limit it was shown in [1] that the entropy density scales as

s = centN
2
c a

1
3T

8
3 , (3.22)

where cent ' 3.2. Comparing (3.21) and (3.22), one can identify κ2(η) with

(2πc3cent)
−7/16η1/6 in agreement with (3.19).

Finally we have plotted the resulting functions for κ1(η) and κ2(η) (the green dot-

dashed curves) in the figure 2.

3.2 Padé approximant for κ1(η) and κ2(η)

We obtained the asymptotic forms of the κ1(η) and κ2(η) in the previous subsections in

the region where a � T and a � T . Applying the Padé approximant and the mentioned

asymptotic forms, one can gain explicit functions for κ1(η) and κ2(η) which fit the numerical

results of the rest of the region. In order to be able to reproduce the asymptotic forms, we

have to choose the following forms1

κ1(η) =
η

π

(
1 + α2(η/π)2 + α4(η/π)4

1 + β2(η/π)2 + β4(η/π)4 + β6(η/π)6

) 1
2

,

κ2(η) =
1

η

(
1 + α̃2(η/π)2 + α̃4(η/π)4 + α̃6(η/π)6

1 + β̃2(η/π)2 + β̃4(η/π)4

) 7
12

.

(3.23)

Moreover, for both functions we need to take into account the last terms in the numerator

and denominator to have the best fits with the numerical results in the region with T ∼ a
and as a result the parameters are

α2 ' 1.674349, α4 ' 0.076186, β2 =
1

12
(1 + 12α2 + 8 log 2),

β4 =
1

1728

(
−99+144α̃2+1728α̃4+32π2+84 log 2+1152α̃2 log 2−1041(log 2)2

)
,

β6 =
3

8
α4,

(3.24)

and

α̃2 ' 0.927296, α̃4 ' 0.167441, β̃2 = α̃2 −
3

4
log 2,

β̃4 =
1

96

(
3 + 96α̃4 − 2π2 − 72α̃2 log 2 + 99(log 2)2

)
,

α̃6 =
11

32
β̃4

(3.25)

Note that the three parameters α6, β2 and β4 in (3.24) (and equivalently β̃2, β̃4 and β̃6
in (3.25)) are fixed by the asymptotic behaviour of κ1(η) and κ2(η) . It is important to

notice that if we do not consider the last terms in the numerator and denominator of (3.23),

1Since, for large value of a/T (& 30), a and T are too sensitive to initial inputs φ̃h and uh, the Padé

approximated functions (3.23) do not reproduce the accurate results. Therefore one must use the numerical

functions computed in (3.12) and (3.13) to find φ̃h and uh.
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Figure 3. Numerical values for eφh and auh (blue dots) and their corresponding high temperature

(red dashed curves), low temperature (green dot dashed curves) and Padé approximant (solid blue

curves) versus a/T .

all the free parameters can be fixed by the asymptotic forms of κ1(η) and κ2(η). In other

words, one needs to have more terms in the expansion (3.16) and (3.17), for example

up to O( ηπ )10, to find all the free parameters, including α6(α̃2) and β4(α̃4), by using the

asymptotic behaviours.

As a cross check and in order to clear more the validity of our assumptions, we will do

the following numerical procedure, too. We solve the equation of motion (2.4) by choosing

φ̃h and uh as initial inputs. Then, using (3.2), we find the values for a(φ̃h, uh) and T (φ̃h, uh)

and (3.1) gives the value of φh. Now by choosing different values for φ̃h and uh, we plot

eφh and auh with respect to a/T which are shown by blue dots in figure 3. Note that

these blue dots in figure 3 are directly calculated numerically and neither the asymptotic

analytical solutions nor separation of variable (3.5) has been used. In the other side, eφh

and auh can be found by the method developed in this section. In figure 3, we plotted eφh

and auh using the analytical values of κ1(η) and κ2(η) for high and low temperatures and

Padé approximant with red dashed curve, green dot dashed curve and blue solid curve,

respectively. It is not too hard to show that for a fix value of a/T the ratio of numerically

generated eφh (or auh) to Padé approximated function is less than ∼ 1.005 which, in turn,

indicates that our approximated functions work very well. On the other side, according

to figure 3, the Padé approximated functions approach high temperature approximation

values (red dashed curves) for a/T . 1 and low temperature approximation values (green

dot dashed curves) for a/T & 100 which approve that our approximations seem to be valid

in all the range of zero to infinity of a/T .

Now by having the approximated functions of φ̃(a, T ) and uh(a, T ) at hand, the

anisotropic metric for any desired values of a and T can be computed, easily. In the

following we will use these functions and investigate the effects of anisotropic parameter

and temperature on the CME.
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4 Holographic setup of CME

Since the QGP is a strongly coupled system, the AdS/CFT correspondence is a notice-

able candidate to explain its properties. Using the gravity dual, various properties of the

plasma have been discussed. In particular, the CME has attracted much attention and an

interesting gravity description of it has been introduced in [22].2 Such a description can be

constructed of a supersymmetric intersection of Nc D3-branes and Nf rotating D7-branes as

t x y z u S3 θ ϕ

D3 × × × ×
D7 × × × × × ×

. (4.1)

Here D7-branes are rotating with angular velocity ω in Rϕ-plane where R = sin θ/u. For

more details on the coordinates of this plane we refer the reader to [22]. The value of

the angular velocity is identified with the axial chemical potential µ5 or more precisely

ω = 2µ5.
3 In the limit of large Nc and large ’t Hooft coupling constant λ = g2YMNc, the

D3-branes are replaced by AdS5×S5 background (they are replaced by AdS-Schwarzchild

background at finite temperature). The system then reduces to Nf rotating D7-branes

in the AdS-Schwarzchild background with a worldvolume constant magnetic field which is

needed to produce the CME. In the probe limit where Nf � Nc, the dynamics of the Nf

D7-branes on the AdS-Schwarzchild background, which is the gravitational dual of N = 2

SYM theory, is described by Driac-Born-Infeld (DBI) and Chern-Simons (CS) actions.

In the place of AdS-Schwarzchild background, let us start with a general background

ds2 = −gttdt2 + gxx(dx2 + dy2) + gzzdz
2 + guudu

2

+ gssds
2
S3 + gθθdθ

2 + gψψdϕ
2,

(4.2)

which is asymptotically AdS5×S5. u is the radial coordinate with the boundary at u→ 0.

The N = 2 SYM theory lives in the Minkowski background with t, x, y, z. Moreover, the

above background contains a five-form field which asymptotically leads to the five-form

field in the AdS5 × S5 background(for instance see appendix B).

In the low energy limit, the action for the Nf D7-branes in a general background is

given by

S = SDBI + SCS ,

SDBI = −NfτD7

∫
d8ξ e−φ

√
− det(Gab + 2πα′Fab) ,

SCS = NfτD7

∫
P [ΣC(n)]e2πα

′F ,

(4.3)

2For another approach, e.g. see [30].
3Consider N = 2 SYM Lagrangian. After a chiral rotation ψ → e−iγ

5ϕ/2ψ, the following new term

appears in the fermion’s kinetic term

−∂µϕ
2
ψ̄γµγ5ψ.

Using ϕ = ωt, it is evidently seen that ω = 2µ5 (for more detail see [22]).
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whereGab = gMN∂aX
M∂bX

N is the induced metric on the probe branes. τ−1D7 = (2π)7l8sgs is

the D7-brane tension. ξa are the worldvolume coordinates and the capital indices M,N, . . .

are used to denote space-time coordinates. In our case the background metric gMN was

introduced in (4.2). Fab is the field strength of the gauge fields living on the D7-branes.

As it was shown in (4.1), the D7-branes extend along t, x, y, z, S3 and the radial direction.

In the CS action, C(n) denotes Ramond-Ramond form fields and P [. . .] is the pull-back of

the bulk fields to the worldvolume of D7-branes.

In order to describe the CME, we expect a current caused by a magnetic field. We

therefore consider appropriate filed configurations on the D7-branes as follows [22]

ϕ(t, u) = ωt+ ϕ(u), θ(u), (4.4)

and for the gauge field we consider the following cases

(i) Az(u), Fxy = Bz, (4.5a)

(ii) Ay(u), Fxz = By. (4.5b)

In the case (i), the magnetic field is applied along the anisotropy direction. However, in (ii)

it is perpendicular to the anisotropy direction. Notice that metric translational symmetry

in the (x, y, z)-directions and rotational symmetry in the S3-directions allow us to choose

above functionality for ψ and θ. Using the AdS/CFT dictionary, dual operator coupled to

Az(y)(u) is Jz(y) and the expectation value of Jz(y) will describe the magnitude of CME in

the gauge theory side. Bz(y) is a constant external magnetic field. Here the axial chemical

potential is described by ω. Substituting the above configurations in the action (4.3), we

find

SDBI = −
∫
du
√
Q1 +Q2A′2z(y) +Q3ϕ′2,

SCS = −
∫
Q4A

′
z(y).

(4.6)

Notice that ′ = ∂
∂u and

Q1 = Qz(y)(gtt − ω2gψψ)(guu + gθθθ
′2), (4.7a)

Q2 = Qz(y)(gtt − ω2gψψ)guu, (4.7b)

Q3 = Qz(y)gttgψψ, (4.7c)

Q4 = NBωg2ss, (4.7d)

where

Qz = N 2e−2φg3ssg
2
xxgzz

(
1 +

B2
z

g2xx

)
, (4.8a)

Qy = N 2e−2φg3ssg
2
xxgzz

(
1 +

B2
y

gxxgzz

)
, (4.8b)

N =
λNcNf

(2π4)
. (4.8c)
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Since the action depends only on the derivative of Az(y) and ϕ, there are two con-

stants of motion, i.e. α = ∂S
∂ϕ′ and β = ∂S

∂A′
z(y)

. After applying two successive Legendre-

transformations with respect to ϕ′ and A′z(y), the final form of the action becomes

Ŝ = −
∫
du

√
Q1

Q2

√
Q2

(
1− α2

Q3

)
− (β +Q4)2, (4.9)

where the hat means that the Legendre-transformations have been applied. The location

of the horizon on the probe branes, u∗, can be found by

Q2∗ = Q2(u = u∗) = 0. (4.10)

Then the reality condition on the action implies that [22]

α = −
√
Q3∗, (4.11a)

β = −Q4∗, (4.11b)

where Q3(u) and Q4(u) are evaluated at u = u∗.

According to the gauge-gravity correspondence, the expectation value of the dual op-

erators Jz(y) and Oϕ coupled to Az(y) and ϕ can be found from the asymptotic expansions

of Az(y) and ϕ. It was shown in [22] that

〈Jz(y)〉 = −(2πα′)β, (4.12a)

〈Oϕ〉 = α. (4.12b)

As a result, β up to a constant, gives the value of the CME on the gauge theory side.

Also regarding the discussion about discrete space-time symmetries, α is an order param-

eter of spontaneous symmetry breaking [22]. Furthermore, since the background (4.2) is

asymptotically AdS5 × S5, the asymptotic expansion of θ is given by [22–24]

θ(u) = θ0u+ θ3u
3 + . . . . (4.13)

The leading term θ0 is proportional to the mass of the fundamental matter and 〈Om〉 ∝ θ3
where Om is the operator dual to mass.

5 Numerical results for the CME

Our goal in this section is to compute the value of the CME in terms of the quark mass

in the anisotropic background (2.1). To do so, we should solve the equation of motion for

θ(u) to find the quark mass from (4.13). Since it is straightforward to solve this equation of

motion, we do not mention it here and refer the reader to [22, 31]. It is worth noticing that,

in order to find the solutions, β must be chosen on the brane horizon u∗. Therefore, apart

from MEs, BEs and NEs(see appendix A) have non-zero current and contribute to the

CME. In figure 4 the right axis shows the location of the background horizon, uh ' 0.39,

for T = 1 and a = 20 and the background horizon at u0h = 0.32 has been shown by vertical

dot-dashed line when T = 1 and a = 0. The solutions in the yellow and gray regions cross

the worldvolume horizon and correspond to the NEs and BEs with non-zero currents.
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The black dot-dashed line and the right axis illustrate the locations of background horzon for the

cases a = 0 and a = 20, respectively. The worldvolume horizons have been indicated by a doted

curve for a = 0 and a blue curve for a = 20. The yellow and gray regions correpond to the NEs and

BEs. The black curve shows the critical embedding for a = 0. The embedding corresponding to

both the red (with magnetic field transverse to the anisotropic direction) and the red-dashed (with

magnetic field parallel to the anisotropic direction) curves are the same.

5.1 Zero mass case

Although in the presence of the magnetic field the trivial solution θ(u) = 0 is not a

favourable solution energetically, let us start with this exceptional case. (4.13) indicates that

the mass of the fundamental matter is zero for this spacial case. Moreover, from (4.10), it is

easy to see that the horizon on the probe D-branes coincides with the horizon in the back-

ground, i.e. u∗ = uh. As a result, according to (4.11b) and (4.12a), the value of the CME is

〈Jz(y)〉 = 〈Jz(y)0 〉, (5.1)

where 〈Jz(y)0 〉 = (2πα′)2NωBz(y) =
NcNf
2π2 µ5Bz(y) is the value of the CME in the isotropic

background (or equivalently in the isotropic SYM theory) [22, 31]. In other words, via
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Figure 5. The value of the CME as a function of the quark mass for B = 1 and T = 1/2 (left)

and T = 1 (right) and different values of a.

a holographic calculation one realizes that the value of the CME is insensitive to the

anisotropy of the system in the massless case.

5.2 Finite mass case

For non-trivial solutions θ(u) 6= 0, as it was explained in (4.13), the asymptotic value of

θ(u), or more precisely m ∝ limε→0 θ
′(ε), specifies the mass of the fundamental matter.

The value of the mass generally depends not only on the magnetic field but also on the

anisotropy parameter. In figure 4, we have plotted the critical embedding, horizons on

the brane and in the background in terms of various values of the magnetic fields and two

values of anisotropy parameter at a fixed temperature. Let us summarize the main points:

• In the presence of the anisotropy parameter for small but equal values of By and Bz,

the value of the mass does not change. However, the difference between mBy and

mBz is significant for larger values of the magnetic fields (see the red curves in the

figure 4). Note that mBy(z) denotes the mass of the quarks when the magnetic field

is applied along y(z).

• When a large magnetic field is applied along the anisotropy direction, the value of

the mass can be smaller than it is in the isotropic case. Therefore, the masses for

which the CME is non-zero is more restricted than the case with a = 0. Notice that

for the small value of the magnetic fields, the allowed masses are extended.

• When the magnetic fields apply transverse to the anisotropy direction, the allowed

masses with non-zero value of the CME are extended.

Some of the above results are in agreement with the ones obtained in [37].

In [22], it was shown that raising the temperature in the system will increase the

value of the CME. This behaviour also persists in the presence of the α′-correction [31].

The numerical computation whose results are plotted in figure 5 indicates that this value

increases as one raises the anisotropy in the system at fixed temperature. As a matter of

fact, the anisotropy parameter somehow behaves similarly to the temperature, in agreement

with the (numerical) results displayed in the literature [37, 38]. Moreover, notice that there
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is critical mass at which the CME vanishes. Higher values of the mass have zero current.

In this figure, although we plotted Jy versus mass, Jz behaves similarly for B = 1.

6 Conclusion

In this paper, we have studied the effects of the anisotropy parameter and the temperature

on the CME. The effects are investigated for general values of both parameters by consid-

ering the rotating probe D7-branes in the anisotropic background. Our main findings can

be summarized as follows.

• Utilizing the asymptotic forms in the regions with a � T and a � T , we have

introduced the functions (3.23) which can be used to find the values of the uh and

φ̃h for given values of a and T ; i.e. φ̃h(a, T ) and uh(a, T ). In fact this is the first time

that this map has been introduced.

• In the second part of the paper, applying the functions (3.23), we observed that the

mass, at which the CME vanishes, becomes larger with respect to the case where

a = 0 by raising the anisotropy parameter at fixed temperature.

A Embeddings of the probe brane

In the probe limit, the embeddings of a probe D-brane are classified into three categories

according to its shape in the anisotropic background. As it was stated in the introduction,

MEs are those embeddings that close off above the background horizon. In other words,

there is no horizon on the probe branes. On the contrary, BE means that the probe brane

sees the background horizon and its horizon is precisely coincident with the background

one. It is well-known that the quark-antiquark bound states (mesons) are stable on the

MEs. However, they are unstable on the BEs. In the presence of the electric field which is

turned on the brane [32, 33] or for rotating probe branes [34, 35], a new group of embeddings

(NEs) appears. As a matter of fact, for this group of solutions there is a horizon on the

probe brane which is not coincident with the background horizon. On the MEs since the

quark-antiquark bound states are stable, there are no free charge carriers and consequently

no current and hence the system behaves as an insulator. Oppositely, on the BEs and NEs

the bound states are unstable and as a result, non-zero current is observed [22, 36].

A set of possible brane embeddings is presented in figure 6. The background horizon is

located at u ∼ 1.6 and therefore the blue and green curves show MEs and BEs, respectively.

The black dashed curve represents the horizon on the probe brane and since there is a cross

point between red curves and this horizon, the red curves show NEs. Moreover note that

NEs exist in a narrow region of mass.

B Five-form field notation

The five-form is taken to be proportional to the volume form of the five-sphere

F5 = α(Ω5 + ?Ω5) (B.1)
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Figure 6. A plot of the possible D7-brane embeddings for uh = 5/π,B = 8 and ω = 1.

where ? denotes Hodge star operator. Assuming that the metric of the five-sphere is

ds25 = dθ21 + sin2 θ1dφ1 + cos2 θ1(dγ
2
1 + sin2 γ1dγ

2
2 + sin2 γ1 sin γ2dγ

2
3). (B.2)

It is then straightforward to write the volume form of the five-sphere in terms of the above

coordinates as

Ω5 = cos3 θ1 sin θ1 sin2 γ1 sin γ2 dθ1 ∧ dφ1 ∧ dγ1 ∧ dγ2 ∧ dγ3,

?Ω5 = −e
− 7

4
φ

u5

√
B dt ∧ dx ∧ dy ∧ dz ∧ du,

(B.3)

and therefore the components of the five-form are given by

Ftxyzu = −αe
− 7

4
φ

u5

√
B,

Fθ1φ1γ1γ2γ3 = α cos3 θ1 sin θ1 sin2 γ1 sin γ2.

(B.4)

Since F5 = dC4, we consider the following ansatz

C4 = Ctxyz dt ∧ dx ∧ dy ∧ dz + Cφ1γ1γ2γ3 dφ1 ∧ dγ1 ∧ dγ2 ∧ dγ3, (B.5)

and then one can simply find that

Ctxyz = −4α

∫
du

u5
e−

7
4
φ
√
B,

Cφ1γ1γ2γ3 = −α cos4 θ sin2 γ1 sin γ2.

(B.6)

C The IR solution

For large values of the temperature, T � a, it is possible to find analytic expressions for

the metric and the dilaton [1]. In this appendix we will discuss and analytically find an
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interesting solution of the equation of motion (2.4) in the low temperature limit. To do so,

let us start with the following ansatz

φ(ξ) = lim
ε→0

(
φh −

4

7
log ξ + εf(ξ)

)
, (C.1)

where we assume that f(ξ) and its derivative are finite at ε→ 0 and ξ = u
uh

. The explicit

form of the φh can be found by using the consistency condition for the solution introduced

in [1] (see Equ. (139)) which is given by

φ̃′h = − 4e
7
2
φ̃huh

16 + e
7
2
φ̃hu2h

(C.2)

and we then have

φ̃h =
2

7
log

16

6u2h
(C.3)

Regarding above equation, by substituting ansatz (C.1) in the (2.4) one can see that it

satisfies the equation of motion provided that we choose

f(ξ) = c1ξ
11/7−

√
55/7 + c2ξ

11/7+
√

55/7 (C.4)

where c1 and c2 are arbitrary constants. Therefore, (C.1) leads to

φ(u) =
4

7
log

√
8/3

au
, (C.5)

and using (2.3) the other components of the metric can be found as below

H(u) =

(
3

8

)2/7

(au)4/7 , (C.6)

F(u) =
49

11

(
1

18

)3/7

(au)2/7 , (C.7)

B(u) =
11

49
183/7

(
1

au

)2/7

. (C.8)

(C.7) reveals that the proposed solution describes a zero temperature background or more

precisely T � a. As a result, this solution can be considered as an IR limit of a general

anisotropic background. The temperature and entropy of the solution are then straight-

forward to be computed form (3.3) and s = N2
c

2π2
e−

5
4φh

u3h
[1]. Hence we obtain

T

a
=

( √
11

π217/1433/7

)(
1

auh

)6/7

, (C.9)

s =
Nc

2π

(
3

8

)5/14

a5/7u
−16/7
h . (C.10)

Eliminating uh between two above equations, we find

s = centN
2
c a

1/3T 8/3 (C.11)

where cent = 27/633/2π5/3

114/3
= 3.2, compatible with the numerical value for cent in [1].
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Figure 7. The critical embedding of probe D7-branes for T = 1/2 and a = 10 when magnetic field

is perpendicular to the anisotropy.

Figure 8. The critical value of magnetic field as a function of anisotropy a for two cases, magnetic

field perpendicular and parallel to anisotropy.

D Effect of the magnetic field on the mass

Using set of (4.1) coordinates, it is convenient to introduce the new following coordinates

R =
1

u
sin θ,

r =
1

u
cos θ.

(D.1)

In this coordinate system, the shape of the probe D7-branes is described by R(r), as it was

extensively studied in the literature and the probe branes are rotating in Rφ-plane with

angular velocity ω. Moreover the asymptotic value of R(r) is identified with the mass of the

quarks, i.e. m = limr→∞R(r). When the magnetic field is non-zero, as it is evidently seen

from figure 7, the value of the mass decreases as the magnetic field increases. Therefore,

for fixed values of the temperature and anisotropy parameter an upper limit exists for
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the magnetic field. For larger values of the magnetic field the mass of the quark becomes

negative and the corresponding configurations are not physical [39].

We finally investigate the regime of validity of the parameters a, T and By(z). The be-

haviour of D7-brane solutions in the presence of magnetic field and chemical potential has

been extensively studied in the literature [37, 40, 41]. In fact, for given values of a and T ,

it is well known that there is a critical value for the magnetic field Bc at which MEs4 start

to have a negative asymptotic value at r →∞, corresponding to the negative mass for the

matter fields. Furthermore, when the magnetic field is larger than its critical value, one can

check that for any given NE or BE(which has a non-zero current) there is a ME(indicating a

zero current) with the same mass where its free energy is lower. It means that the later em-

bedding is thermodynamically preferred and therefore no current is induced in the system.

In the presence of the anisotropy parameter, the magnetic field can be applied in the

parallel or perpendicular to the anisotropy direction. In figure 8, we depict the critical

values of magnetic field for T = 1/2 and T = 1. This figure illustrates that for the

small values of anisotropy parameter, the critical magnetic field does not depend on the

anisotropy, drastically. But by increasing the anisotropy parameter, the difference between

the values of the critical magnetic field is noticeable.
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