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Abstract
The local well-posedness for a generalized periodic coupled Camassa-Holm system is
established in the Sobolev space Hs(S)× Hs–1(S) with s > 7

2 . A wave-breaking criterion
of strong solutions is acquired in the Sobolev space Hs(S)× Hs–1(S) with s > 3

2 by
employing the localization analysis in the transport equation theory and a sufficient
condition of global existence for the system is derived in the Sobolev space
Hs(S)× Hs–1(S) with s > 3.
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1 Introduction
In this article, we consider a generalized periodic coupled Camassa-Holm system on the
circle S with S = R/Z (the circle of unit length):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt + umx + uxm + ηη̄x = , t > ,x ∈ R,

ηt + (uη)x = , t > ,x ∈ R,

m(,x) =m(x), x ∈ R,

η(,x) = η(x), x ∈ R,

m(t,x + ) =m(t,x), t > ,x ∈ R,

η(t,x + ) = η(t,x), t > ,x ∈ R,

()

where m = ( – ∂
x + ∂

x )u = ( – ∂
x )u and η = ( – ∂

x )(η̄ – η̄) are periodic on the x-
variable and η̄ is taken as a constant and R is the set of real numbers. In fact, system ()
is a generalization of two components for the following equation (if η =  in system ()):

mt + umx + uxm = , m =
(
 – ∂

x
)u. ()

Equation () is firstly derived as the Euler-Poincaré differential equation on the Bott-
Virasoro group with respect to the H metric [], and it is known as a modified Camassa-
Holm equation and also viewed as a geodesic equation on some diffeomorphism group
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[]. It is shown in [] that the dynamics of Eq. () on the unit circle S is significant differ-
ent from those of Camassa-Holm equation. For example, Eq. () does not conform with a
blow-up solution in finite time.
If m = ( – ∂

x )u and η = η̄ = ρ in system (), system () becomes the famous two-
component Camassa-Holm system,

⎧
⎨

⎩

( – ∂
x )ut + u( – ∂

x )ux + ux( – ∂
x )u + ρρx = , t > ,x ∈ R,

ρt + (uρ)x = , t > ,x ∈ R,
()

where the variable u(t,x) represents the horizontal velocity of the fluid, and ρ(t,x) is re-
lated to the free surface elevation fromequilibriumwith the boundary assumptions, u → 
and ρ →  as |x| → ∞. System () was found originally in [], but it was firstly derived rig-
orously by Constantin and Ivanov []. The system has bi-Hamiltonian structure and is
complete integrability. Since the birth of the system, a lot of literature was devoted to the
investigation of the two-component Camassa-Holm system, for example, Chen et al. []
established a reciprocal transformation between the two-component Camassa-Holm sys-
tem and the first negative flow of the AKNS hierarchy. Escher et al. [] used Kato theory to
establish local well-posedness for the two-component system and presented some precise
blow-up scenarios for strong solutions of the system. Gui and Liu [, ] established the
local well-posedness for the two-component Camassa-Holm system in the Besov spaces
and derived the wave-breaking mechanism and the exact blow-up rate. The dynamics in
the periodic case for system () was considered in []. The other results related to the
system can be found in [–].
If m = ( – ∂

x )u in system (), system () becomes a modified version of the two-
component Camassa-Holm system,

⎧
⎨

⎩

( – ∂
x )ut + u( – ∂

x )ux + ux( – ∂
x )u + ηη̄x = , t > ,x ∈ R,

ηt + (uη)x = , t > ,x ∈ R,
()

where u denotes the velocity field, η̄ and η represent the average density (or depth) and
pointwise density (or depth). System () is introduced by Holm et al. in [] and is viewed
as geodesic motion on the semidirect product Lie group with respect to a certain metric
[]. System () admits peaked solutions in the velocity and average density [], but it
is not integrable unlike system (). For some other recent work one is referred to Refs.
[–] for details.
The motivations of the present paper is to find whether or not system () has some dif-

ferent dynamics from system () mathematically, such as wave breaking and a global so-
lution. Comparing with the modified two-component Camasssa-Holm equation [], we
investigate the local well-posedness, global existence, and a wave-breaking criterion in the
Sobolev space. One of the difficulties is the acquisition of the priori estimates ‖uxxx‖L∞(S).
The difficulty has been overcome by Lemma .. We use the technique of [, ] to derive
a wave-breaking criterion for strong solutions of the system () in the low Sobolev spaces
Hs(S)×Hs–(S) with s > 

 . It needs to point out that in the Sobolev spacesHs(R)×Hs–(R)
with s > 

 the wave-breaking of the solution of system () only depends on the slope of
the component u of solution []. However, the wave-breaking of the solution for system
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() is determined only by the slope of the component ρ of solution definitely. It implies
that there are differences between system () and system (). On the other hand, we de-
rive a sufficient condition for global solution in the Sobolev space Hs(S) with s > , which
can be done because ‖uxx‖L∞(S) and ‖ρx‖L∞(S) can be controlled by ‖u‖Hs(S) and ‖ρ‖Hs–(S)

separately if s > .
The rest of this paper is organized as follows. Section  states themain results of present

paper. Section  is devoted to the study of the local existence and uniqueness of a solution
for system () by using the Kato theorem. In Section , we employ the transport equation
theory to prove a wave-breaking criterion in the low Sobolev space Hs(S) × Hs–(S) with
s > 

 . The global existence result for system () is proved in Section .

2 Themain results
We denote by ∗ the convolution and let [A,B] = AB–BA denote the commutator between
A and B. Note that if g(x) :=  + 

∑∞
n=


+n+n cos(nx), then ( – ∂

x )–f = g ∗ f for all
f ∈ L(R) and g ∗m = u (see []). We let C denote all of different positive constants which
depend only on initial data. To investigate dynamics of system () for the Cauchy problem
on the circle, we rewrite system () by taking ρ = η̄ – η̄ and η = ρ – ρxx:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux = –∂xg ∗ [u + ux –

u


xx – uxuxxx + 

ρ
 – 

ρ

x ], t > ,x ∈ R,

ρt + uρx = –∂x( – ∂
x )–(uxρx) – ( – ∂

x )–(uxρ), t > ,x ∈ R,

u(,x) = u(x), x ∈ R,

ρ(,x) = ρ(x), x ∈ R,

u(t,x + ) = u(t,x), t > ,x ∈ R,

ρ(t,x + ) = ρ(t,x), t > ,x ∈ R.

()

The main results of the present paper are listed as follows.

Theorem . Given z = (u,ρ) ∈ Hs(S) × Hs–(S) (s > 
 ), there exist a maximal T =

T(‖z‖Hs(S)×Hs–(S)) and a unique solution z = (u,ρ) to problem (), such that

z = z(·, z) ∈ C
(
[,T);Hs ×Hs–) ∩C([,T);Hs– ×Hs–).

Moreover, the solution depends continuously on the initial data, the mapping

z → z(·, z) :Hs ×Hs– → C
(
[,T);Hs ×Hs–) ∩C([,T);Hs– ×Hs–)

is continuous.

The following wave-breaking criterion shows the wave breaking is only determined by
the slope of ρ but not the slope of u.

Theorem . Let z = (u,ρ) ∈ Hs(S) × Hs–(S), s > 
 and T be the maximal existence

time of the solution z = (u,ρ) to system (). Assume m ∈ L(S) and T < ∞. Then

∫ T



∥
∥∂xρ(τ )

∥
∥
L∞ dτ = ∞.

http://www.boundaryvalueproblems.com/content/2014/1/155
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A sufficient condition of global existence is given in the following.

Theorem . Let z = (u,ρ) ∈ Hs(S) × Hs–(S), s > . Then system () admits a unique
solution

z = (u,ρ) ∈ C
(
[,∞);Hs ×Hs–) ∩C([,∞);Hs– ×Hs–).

3 Local well-posedness
In this section, we establish the local well-posedness by using Kato theory [].
Set Y = Hs(S) × Hs–(S), X = Hs–(S) × Hs–(S), � = ( – ∂

x )

 , Q =

(
� 
 �

)
and f (z) =

(
–∂x(–∂x )–(u+ux–


 u


xx–uxuxxx+


 ρ– 

 ρx )
–∂x(–∂x )–(uxρx)–(–∂x )–(uxρ)

)
.

In order to verify Theorem ., we need the following lemmas in which μ, μ, μ, and
μ are constants depending only on max{‖z‖Y ,‖y‖Y }.

Lemma . The operator A(z) =
(
u∂x 
 u∂x

)
belongs to G(Hs–(S)×Hs–(S), ,β).

Lemma . Let A(z) =
(
u∂x 
 u∂x

)
, then A(z) ∈ L(Hs(S)×Hs–(S),Hs–(S)×Hs–(S)).More-

over, for all z, y,w ∈Hs(S)×Hs–(S),

∥
∥
(
A(z) –A(y)

)
w

∥
∥
Hs–×Hs– ≤ μ‖z – y‖Hs×Hs–‖w‖Hs×Hs– .

Lemma . For s > 
 , z, y ∈ Hs(S) × Hs–(S) and w ∈ Hs–(S) × Hs–(S), we have B(z) =

QA(z)Q– –A(z) ∈ L(Hs– ×Hs–) and

∥
∥
(
B(z) – B(y)

)
w

∥
∥
Hs–×Hs– ≤ μ‖z – y‖Hs×Hs–‖w‖Hs–×Hs– .

The proofs of Lemmas .-. can be found in [].

Lemma . ([]) Let r, t be real numbers such that –r < t ≤ r. Then

‖fg‖Ht ≤ C‖f ‖Hr‖g‖Ht , if r >


,

‖fg‖
Ht+r– 


≤ C‖f ‖Hr‖g‖Ht , if r <



,

where C is a positive constant depending on r, t.

Lemma . Let

f (z) =

(
–∂x( – ∂

x )–(u + ux –

u


xx – uxuxxx + 

ρ
 – 

ρ

x )

–∂x( – ∂
x )–(uxρx) – ( – ∂

x )–(uxρ)

)

.

Then f (z) is bounded on bounded sets in Hs(S) × Hs–(S) with s > 
 and satisfies the fol-

lowing:
(a) ‖f (z) – f (y)‖Hs×Hs– ≤ μ‖z – y‖Hs×Hs– , z, y ∈Hs ×Hs–;
(b) ‖f (z) – f (y)‖Hs–×Hs– ≤ μ‖z – y‖Hs–×Hs– , z, y ∈Hs– ×Hs–.

http://www.boundaryvalueproblems.com/content/2014/1/155
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Proof (a) Let y = (v,σ ), we have

∥
∥f (z) – f (y)

∥
∥
Hs×Hs–

≤
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(

u + ux –


uxx – uxuxxx – v – vx +



vxx + vxvxxx

)∥
∥
∥
∥
Hs

+
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(


ρ –



σ 

)∥
∥
∥
∥
Hs

+
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(


ρ
x –



σ 
x

)∥
∥
∥
∥
Hs

+
∥
∥
(
 – ∂

x
)–(uxρ – vxσ )

∥
∥
Hs–

+
∥
∥∂x

(
 – ∂

x
)–(uxρx – vxσx)

∥
∥
Hs–

≤ ∥
∥u – v

∥
∥
Hs– +

∥
∥ux – vx

∥
∥
Hs– +

∥
∥uxx – vxx

∥
∥
Hs–

+ ‖uxuxxx – vxvxxx‖Hs– +
∥
∥ρ – σ ∥∥

Hs– +
∥
∥ρ

x – σ 
x
∥
∥
Hs–

+ ‖uxρx – vxσx‖Hs– + ‖uxρ – vxσ‖Hs– . ()

Noting that s > 
 , we have

∥
∥u – v

∥
∥
Hs– ≤ C‖u + v‖Hs–‖u – v‖Hs– ≤ C‖u – v‖Hs , ()

∥
∥ux – vx

∥
∥
Hs– ≤ C‖u – v‖Hs , ()

∥
∥uxx – vxx

∥
∥
Hs– ≤ C‖u – v‖Hs , ()

‖uxuxxx – vxvxxx‖Hs–

≤ ‖uxuxxx – uxvxxx + uxvxxx – vxvxxx‖Hs–

≤ ‖uxuxxx – uxvxxx‖Hs– + ‖uxvxxx – vxvxxx‖Hs–

≤ C‖u‖Hs–‖u – v‖Hs +C‖u – v‖Hs–‖v‖Hs

≤ C‖u – v‖Hs , ()
∥
∥ρ – σ ∥∥

Hs– ≤ C‖ρ – σ‖Hs– , ()

and

∥
∥ρ

x – σ 
x
∥
∥
Hs– ≤ C‖ρ – σ‖Hs– . ()

Similarly, for the last two terms on the right-hand side of Eq. (), we get

‖uxρx – vxσx‖Hs– ≤ ‖uxρx – uxσx‖Hs– + ‖uxσx – vxσx‖Hs–

≤ C‖u‖Hs‖ρ – σ‖Hs– +C‖σ‖Hs–‖u – v‖Hs ()

and

‖uxρ – vxσ‖Hs– ≤ ‖uxρ – uxσ‖Hs– + ‖uxσ – vxσ‖Hs–

≤ C‖u‖Hs–‖ρ – σ‖Hs– +C‖σ‖Hs–‖u – v‖Hs . ()

http://www.boundaryvalueproblems.com/content/2014/1/155
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Therefore, from Eqs. ()-(), we obtain

∥
∥f (z) – f (y)

∥
∥
Hs×Hs– ≤ C‖u – v‖Hs +C‖ρ – σ‖Hs–

= μ‖z – y‖Hs×Hs– , ()

from which we know (a) holds.
Now, we prove (b). We have

∥
∥f (z) – f (y)

∥
∥
Hs–×Hs–

≤
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(

u + ux –


uxx – uxuxxx – v – vx +



vxx + vxvxxx

)∥
∥
∥
∥
Hs–

+
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(


ρ –



σ 

)∥
∥
∥
∥
Hs–

+
∥
∥
∥
∥∂x

(
 – ∂

x
)–

(


ρ –



σ 

)∥
∥
∥
∥
Hs–

+
∥
∥
(
 – ∂

x
)–(uxρ – vxσ )

∥
∥
Hs–

+
∥
∥∂x

(
 – ∂

x
)–(uxρx – vxσx)

∥
∥
Hs–

≤ ∥
∥u – v

∥
∥
Hs– +

∥
∥ux – vx

∥
∥
Hs– +

∥
∥uxx – vxx

∥
∥
Hs–

+ ‖uxuxxx – vxvxxx‖Hs– +
∥
∥ρ

x – σ 
x
∥
∥
Hs– +

∥
∥ρ – σ ∥∥

Hs–

+ ‖uxρ – vxσ‖Hs– + ‖uxρx – vxσx‖Hs– . ()

Note that s > 
 . Using Lemma . with t = s –  and r = s –  gives rise to

∥
∥u – v

∥
∥
Hs– ≤ ∥

∥(u + v)(u – v)
∥
∥
Hs–

≤ C‖u + v‖Hs–‖u – v‖Hs– ≤ C‖u – v‖Hs– . ()

In an analogous way to Eq. (), we have

∥
∥ux – vx

∥
∥
Hs– ≤ C‖u – v‖Hs– , ()

∥
∥uxx – vxx

∥
∥
Hs– ≤ C‖u – v‖Hs– , ()

∥
∥ρ – σ ∥∥

Hs– ≤ C‖ρ – σ‖Hs– , ()

and

∥
∥ρ

x – σ 
x
∥
∥
Hs– ≤ C‖ρ – σ‖Hs– . ()

For the fourth term on the right-hand side of Eq. (), one has

‖uxuxxx – vxvxxx‖Hs– ≤ ‖uxuxxx – uxvxxx + uxvxxx – vxvxxx‖Hs–

≤ ‖uxuxxx – uxvxxx‖Hs– + ‖uxvxxx – vxvxxx‖Hs–

≤ C‖uxxx – vxxx‖Hs–‖ux‖Hs– + ‖ux – vx‖Hs–‖vxxx‖Hs–

≤ C‖u – v‖Hs– , ()

where we used Lemma ..

http://www.boundaryvalueproblems.com/content/2014/1/155
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In an analogous way to Eq. (), we can estimate the last two terms on the right-hand
side of Eq. ():

‖uxρx – vxσx‖Hs– ≤ ‖uxρx – uxσx‖Hs– + ‖uxσx – vxσx‖Hs–

≤ C‖ρ – σ‖Hs– +C‖u – v‖Hs– ()

and

‖uxρ – vxσ‖Hs– ≤ ‖uxρ – uxσ‖Hs– + ‖uxσ – vxσ‖Hs–

≤ C‖ρ – σ‖Hs– +C‖u – v‖Hs– . ()

Therefore, from Eqs. ()-(), we deduce

∥
∥f (z) – f (y)

∥
∥
Hs–×Hs– ≤ C‖u – v‖Hs– +C‖ρ – σ‖Hs–

= μ‖z – y‖Hs–×Hs– . ()

This completes the proof of Lemma .. �

Proof of Theorem . Applying the Kato theorem for abstract quasi-linear evolution equa-
tions of hyperbolic type [], Lemmas .-. and ., we obtain the local well-posedness
of system () in Hs(S)×Hs–(S), s > 

 , and

z = z(·, z) ∈ C
(
[,T);Hs ×Hs–) ∩C([,T);Hs– ×Hs–). �

4 Wave-breaking criterion
In order to prove Theorem ., the following lemmas are crucial.

Lemma . ([, , ]) The following estimates hold:
(i) For s ≥ ,

‖fg‖Hs ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖L∞‖g‖Hs

)
. ()

(ii) For s > ,

‖f ∂xg‖Hs ≤ C
(‖f ‖Hs+‖g‖L∞ + ‖f ‖L∞‖∂xg‖Hs

)
. ()

(iii) For s ≤ ,

‖fg‖Hs ≤ C‖f ‖L∞‖g‖Hs , ()

where C is a constant independent of f and g .

Lemma . ([, ]) Suppose that s > – d
 . Let v be a vector field such that ∇v belongs to

L([,T];Hs–) if s >  + d
 or to L([,T];H d

 ∩ L∞) otherwise. Suppose also that f ∈ Hs,

http://www.boundaryvalueproblems.com/content/2014/1/155
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F ∈ L([,T];Hs) and that f ∈ L∞([,T];Hs)∩C([,T];S′) solves the d-dimensional linear
transport equations

⎧
⎨

⎩

ft + v · ∇f = F ,

f |t= = f.
()

Then f ∈ C([,T];Hs).More precisely, there exists a constant C depending only s, p, and d,
and such that the following statements hold:
() If s �=  + d

 ,

‖f ‖Hs ≤ ‖f‖Hs +C
∫ t



∥
∥F(τ )

∥
∥
Hs dτ +C

∫ t


V ′(τ )

∥
∥f (τ )

∥
∥
Hs dτ , ()

or hence

‖f ‖Hs ≤ eCV (t)
(

‖f‖Hs +
∫ t


e–CV (t)∥∥F(τ )

∥
∥
Hs dτ

)

()

with V (t) =
∫ t
 ‖∇v(τ )‖

H
d
 ∩L∞ dτ if s <  + d

 and V (t) =
∫ t
 ‖∇v(τ )‖Hs– dτ else.

() If f = v, then for all s > , the estimates () and () hold with
V (t) =

∫ t
 ‖∂xu(τ )‖L∞ dτ .

Lemma . ([]) Let  < σ < . Suppose that f ∈Hσ , g ∈ L([,T];Hσ ), ν , ∂xν ∈ L([,T];
L∞) and f ∈ L∞([,T];Hσ ) ∩ C([,T];S′) solves the -dimensional linear transport equa-
tion

⎧
⎨

⎩

ft + ν∂xf = g,

f |t= = f.
()

Then f ∈ C([,T];Hσ ).More precisely, there exists a constant C depending only on σ , such
that the following statement holds:

‖f ‖Hσ ≤ ‖f‖Hσ +C
∫ t



∥
∥g(τ )

∥
∥
Hσ dτ +C

∫ t


V ′(τ )

∥
∥f (τ )

∥
∥
Hσ dτ , ()

or hence

‖f ‖Hσ ≤ eCV (t)
(

‖f‖Hσ +
∫ t


C

∥
∥g(τ )

∥
∥
Hσ dτ

)

()

with V (t) =
∫ t
 (‖ν(τ )‖L∞ + ‖∂xν(τ )‖L∞ )dτ .

Lemma . For all x ∈ R, the following statements hold:

(i)
∥
∥∂

x g
∥
∥
L∞ ≤  + ln + π ()

and

(ii) ‖uxx‖L∞ ≤ C‖uxxx‖L∞ . ()

http://www.boundaryvalueproblems.com/content/2014/1/155
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Proof Let g(x) be the Green’s function for the operator ( – ∂
x ). Then from

(
 – ∂

x + ∂
x
)
g(x) = δ(x) =

∞∑

n=–∞
einx,

we get

g(x) =
∞∑

n=–∞


 + n + n

einx =  + 
∞∑

n=


 + n + n

cos(nx).

Hence,

gxxx(x) = 
∞∑

n=

n

 + n + n
sin(nx).

From the Fourier series, we know

h(x) =
∞∑

n=

sin(nx)
n

=
π



(

 –
x
π

)

for  < x < π ,

from which we get

∣
∣h(x) – gxxx

∣
∣ =

∣
∣
∣
∣

∞∑

n=

(

n
–

n

 + n + n

)

sin(nx)
∣
∣
∣
∣

≤ 
∞∑

n=

(

n
–

n

 + n + n

)

= 
∞∑

n=

(


n( + n)
+

n
( + n)

)

.

On the other hand,

∞∑

n=

(


n( + n)
+

n
( + n)

)

≤ lim
n→∞

∫ n



(

x
–

x
 + x

+
x

( + x)

)

dx

=



ln +


.

Hence, we have

∥
∥∂

x g
∥
∥
L∞ ≤  + ln + π .

This completes the proof of (i).
Now, we prove (ii). Let x ∈ S satisfy uxxx(x) = . Then, for all x ∈ S, we have

uxx =
∫ x

x
uxxx dx,

from which one finds

‖uxx‖L∞ ≤ C‖uxxx‖L∞ . �
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Lemma . Let z = (u,ρ) ∈Hs(S)×Hs–(S) with s≥ . Suppose that T is the maximal
existence time of solution z = (u,ρ) of system () with the initial data z. Then, for all t ∈
[,T), the following conservation law holds:

H =
(∫

S

(
u + ux + uxx + ρ + ρ

x
)
dx

) 


=
(∫

S

(
u + ux + uxx + ρ

 + ρ
x

)
dx

) 

. ()

Proof Multiplying the first equation of system () by u and integrating by parts, we reach



d
dt

∫

S

(
u + ux + uxx

)
dx +

∫

S
uρρx dx –

∫

S
uρxρxx dx = . ()

Multiplying the second equation of system () by ρ and integrating by parts, we get



d
dt

∫

S

(
ρ + ρ

x
)
dx +

∫

S
uρρx dx –

∫

S
uρρxxx dx +

∫

S
uxρ dx

–
∫

S
uxρρxx dx = , ()

which together with Eq. () yields



d
dt

∫

S

(
u + ux + uxx + ρ + ρ

x
)
dx = , ()

which implies Eq. ().
Let us consider the following differential equation.

⎧
⎨

⎩

qt = u(t,q), t ∈ [,T),

q(,x) = x, x ∈ R,
()

where u denotes the first component of solution z to system (). �

Lemma . (See []) Let u ∈ C([,T);Hs(S)) ∪ C([,T);Hs–(S)), s ≥ . Then Eq. ()
has a unique solution q ∈ C([,T) × S;S). Moreover, the map q(t, ·) is an increasing dif-
feomorphism of R with

qx(t,x) = exp

(∫ t


ux

(
s,q(s,x)

)
ds

)

, ∀(t,x) ∈ [,T)× R.

Lemma . Let z = (u,ρ) ∈Hs(S)×Hs–(S) with s ≥  and T >  be the maximal exis-
tence time of the corresponding solution z = (u,ρ) to system (). Then we have

(ρxx – ρ)
(
t,q(t,x)

)
qx(t,x) = ρxx(x) – ρ(x), ∀(t,x) ∈ [,T)× S. ()

Moreover, for all (t,x) ∈ [,T)× S, we have

‖ρxx‖L∞ ≤ H + |ρxx – ρ|eTH := μ. ()

http://www.boundaryvalueproblems.com/content/2014/1/155
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Proof Differentiating the left-hand side of Eq. () with respect to t and making use of
system (), we get

d
dt

[(
ρxx

(
t,q(t,x)

)
– ρ

(
t,q(t,x)

))
qx(t,x)

]

= (ρtxx + ρxxxqt – ρt – ρxqt)qx + (ρxx – ρ)qtx

= (ρtxx + ρxxxu – ρt – ρxu + ρxxux – ρux)qx

= .

This proves Eq. (). From Eq. (), we obtain for all t ∈ [,T)

|ρxx| – |ρ| ≤ |ρxx – ρ| = |ρxx – ρ|e–
∫ t
 ux(s,q(s,x))ds,

which results in

‖ρxx‖L∞ ≤ (‖u‖H + ‖ρ‖H
) 
 + |ρxx – ρ|et(‖u‖

H+‖ρ‖
H )




≤ H + |ρxx – ρ|eTH , ()

where Lemma . is used. This completes the proof of Lemma .. �

Lemma . Let z = (u,ρ) ∈ Hs(S)×Hs–(S) with s ≥ . Suppose that m ∈ L(S) and T
is the maximal existence time of solution z = (u,ρ) of system () with the initial data z.

‖uxxx‖L∞ ≤ C
√

‖m‖L +
(
H +Hμ

)
Te


 (H+H+Hμ)T :=M. ()

Proof Multiplying the first equation of system () bym and integrating by parts, we have



d
dt

∫

S
m dx = –

∫

S
ummx dx – 

∫

S
uxm dx –

∫

S
mρρx dx +

∫

S
mρxρxx dx, ()

which results in

d
dt

∫

S
m dx = –

∫

S
uxm dx – 

∫

S
mρρx dx + 

∫

S
mρxρxx dx. ()

By the Hölder inequality, Eq. () ensures that

d
dt

‖m‖L ≤ ‖ux‖L∞‖m‖L + ‖m‖L‖ρ‖L‖ρx‖L∞

+ ‖m‖L‖ρx‖L‖ρxx‖L∞

≤ ‖ux‖L∞‖m‖L +
(
 + ‖m‖L

)

× (‖ρ‖L‖ρx‖L∞ + ‖ρx‖L‖ρxx‖L∞
)

≤ ‖m‖L
(
‖ux‖L∞ + ‖ρ‖L‖ρx‖L∞ + ‖ρx‖L‖ρxx‖L∞

)

+
(‖ρ‖L‖ρx‖L∞ + ‖ρx‖L‖ρxx‖L∞

)
.
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Applying the Gronwall inequality, we get

‖m‖L ≤
(

‖m‖L +
∫ t



(‖ρ‖L‖ρx‖L∞ + ‖ρx‖L‖ρxx‖L∞
)
dτ

)

× e
∫ t
(‖ux‖L∞+‖ρ‖L‖ρx‖L∞+‖ρx‖L‖ρxx‖L∞ )dτ ,

which, together with Eqs. () and (), yields

‖m‖L ≤ (‖m‖L +
(
H +Hμ

)
T

)
e(H+H+Hμ)T . ()

On the other hand, from Lemma ., we deduce

‖uxxx‖L∞ = ‖gxxx ∗m‖L∞ ≤ ‖gxxx‖L∞‖m‖L ≤ C‖m‖L . ()

Therefore, from Eq. () we deduce that Eq. () holds. This completes the proof of
Lemma .. �

Next, we give the proof of Theorem ..

Proof of Theorem . We split the proof of Theorem . into five steps.
Step . For s ∈ (  , ), applying Lemma . to the second equation, we have

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– +C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ

+C
∫ t



∥
∥∂x

(
 – ∂

x
)–(uxρx) +

(
 – ∂

x
)–(uxρ)

∥
∥
Hs– dτ .

From Lemma .(iii), we get

∥
∥∂x

(
 – ∂

x
)–(uxρx)

∥
∥
Hs–(S) ≤ C‖ρ‖Hs–‖ux‖L∞ ()

and

∥
∥
(
 – ∂

x
)–(uxρ)

∥
∥
Hs–(S) ≤ C‖ρ‖Hs–‖ux‖L∞ . ()

From Eqs. () and (), we obtain

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– +C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ . ()

On the other hand, using Lemma ., we get from the first equation of system ()

∥
∥u(t)

∥
∥
Hs(S)

≤ C
∫ t



∥
∥
∥
∥∂xg ∗

[

u + ux –


uxx – uxuxxx +



ρ –



ρ
x

]∥
∥
∥
∥
Hs

dτ

+ ‖u‖Hs +C
∫ t



∥
∥u(t)

∥
∥
Hs

∥
∥∂xu(τ )

∥
∥
L∞ dτ .
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Thanks to Lemma .(iii), one has

∥
∥
∥
∥∂xg ∗

[

u + ux –


uxx – uxuxxx +



ρ –



ρ
x

]∥
∥
∥
∥
Hs

≤ C
∥
∥
∥
∥u

 + ux –


uxx – uxuxxx +



ρ –



ρ
x

∥
∥
∥
∥
Hs–

≤ C
(‖u‖Hs–‖u‖L∞ + ‖ux‖Hs–‖ux‖L∞ + ‖uxx‖Hs–‖uxx‖L∞

+ ‖uxxx‖Hs–‖ux‖L∞ + ‖ρ‖Hs–‖ρ‖L∞ + ‖ρx‖Hs–‖ρx‖L∞
)
.

Hence, we obtain

∥
∥u(t)

∥
∥
Hs(S)

≤ ‖u‖Hs +C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞
)
dτ

+C
∫ t



∥
∥ρ(τ )

∥
∥
Hs–

(∥
∥ρ(τ )

∥
∥
L∞ +

∥
∥ρx(τ )

∥
∥
L∞

)
dτ , ()

which, together with Eq. (), ensures that

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ ‖u‖Hs + ‖ρ‖Hs– +C
∫ t



(‖u‖Hs +
∥
∥ρ(t)

∥
∥
Hs–

)

× (‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞
)
dτ . ()

Using the Gronwall inequality and Lemma ., we have

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

× eC
∫ t
(‖u‖L∞+‖ux‖L∞+‖uxxx‖L∞+‖ρ‖L∞+‖ρx‖L∞ )dτ . ()

From Lemmas . and ., we get

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)
e(C(M+H)T+C

∫ t
 ‖ρx‖L∞ dτ ). ()

Therefore, if the maximal existence time T <∞ satisfies
∫ t
 ‖ρx‖L∞ dτ < ∞, we get from

Eq. ()

lim sup
t→T

(∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

)
< ∞, ()

which contradicts the assumption on the maximal time T < ∞. This completes the proof
of Theorem . for s ∈ (  , ).

http://www.boundaryvalueproblems.com/content/2014/1/155


Guo and Wang Boundary Value Problems 2014, 2014:155 Page 14 of 21
http://www.boundaryvalueproblems.com/content/2014/1/155

Step . For s ∈ [,  ), applying Lemma . to the second equation of system (), we get

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– +C
∫ t


‖ρ‖Hs–‖∂xu‖

L∞∩H 

dτ

+C
∫ t



∥
∥∂x

(
 – ∂

x
)–(uxρx) +

(
 – ∂

x
)–(uxρ)

∥
∥
Hs– dτ .

Using Eqs. () and () gives rise to

‖ρ‖Hs–(S) ≤ ‖ρ‖Hs– +C
∫ t


‖ρ‖Hs–‖∂xu‖

L∞∩H 

dτ ,

which, together with Eq. (), yields

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ ‖u‖Hs + ‖ρ‖Hs– +C
∫ t



(‖u‖Hs +
∥
∥ρ(t)

∥
∥
Hs–

)

× (‖u‖L∞ + ‖u‖
H


 +ε + ‖uxx‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞

)
dτ , ()

where ε ∈ (,  ) and we used the fact that H 
 +ε ↪→ L∞ ∩H 

 .
Using the Gronwall inequality and Lemma ., we have

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

× e
C

∫ t
(‖u‖L∞+‖u‖

H

 +ε

+‖uxxx‖L∞+‖ρ‖L∞+‖ρx‖L∞ )dτ

. ()

From Lemmas . and ., we get

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)
e(C(M+H)T+C

∫ t
 ‖ρx‖L∞ dτ ). ()

Using the argument as in Step  one completes Theorem . for s ∈ [,  ).
Step . For s ∈ (, ), differentiating once the second equation of system () with respect

to x, we have

∂tρx + u∂xρx –
(
 – ∂

x
)–(uxρx) – ∂x

(
 – ∂

x
)–(uxρ) = . ()

Using Lemma ., we get

‖ρx‖Hs–(S) ≤ ‖ρx‖Hs– +C
∫ t


‖ρ‖Hs–

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ , ()

where we used the following estimates:

∥
∥
(
 – ∂

x
)–(uxρx)

∥
∥
Hs– ≤ C‖uxρx‖Hs– ≤ C‖ρ‖Hs–‖ux‖L∞
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and

∥
∥∂x

(
 – ∂

x
)–(uxρ)

∥
∥
Hs– ≤ C‖uxρ‖Hs– ≤ C‖ρ‖Hs–‖ux‖L∞ ,

where Lemma .(iii) was used.
Using Eqs. (), (), and () (where s –  is replaced by s – ) yields

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ ‖u‖Hs + ‖ρ‖Hs– +C
∫ t



(‖u‖Hs +
∥
∥ρ(t)

∥
∥
Hs–

)

× (‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞
)
dτ . ()

Using the Gronwall inequality again, we have

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ (‖u‖Hs + ‖ρ‖Hs–
)

× eC
∫ t
(‖u‖L∞+‖ux‖L∞+‖uxx‖L∞+‖ρ‖L∞+‖ρx‖L∞ )dτ . ()

From Lemmas ., ., and ., we get

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs– ≤ (‖u‖Hs + ‖ρ‖Hs–

)
e(C(M+H)T+C

∫ t
 ‖ρx‖L∞ dτ ). ()

Using the argument as in Step  one completes Theorem . for s ∈ (, ).
Step . For s = k ∈N, k ≥ , differentiating k – times the second equation of system ()

with respect to x, we obtain

(∂t + u∂x)∂k–
x ρ +

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

+ ∂k–
x

(
 – ∂

x
)–(uxρx) + ∂k–

x
(
 – ∂

x
)–(uxρ) = . ()

Using Lemma ., we get from Eq. ()

∥
∥∂k–

x ρ
∥
∥
H ≤ ∥

∥∂k–
x ρ

∥
∥
H +C

∫ t



∥
∥∂k–

x ρ
∥
∥
H‖∂xu‖

H

 ∩L∞ dτ

+C
∫ t



∥
∥
∥
∥

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

+ ∂k–
x

(
 – ∂

x
)–(uxρx) + ∂k–

x
(
 – ∂

x
)–(uxρ)

∥
∥
∥
∥
H

dτ . ()

From Lemma . and Lemma ., we have

∥
∥∂k–

x
(
 – ∂

x
)–(uxρx)

∥
∥
H ≤ C‖uxρx‖Hk– ≤ C‖ρ‖Hs–‖u‖Hs– ,

∥
∥∂k–

x
(
 – ∂

x
)–(uxρ)

∥
∥
H ≤ C‖uxρ‖Hk–

≤ C
(‖u‖Hs–‖ρ‖L∞ + ‖ρ‖Hs–‖ux‖L∞

)
,
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and
∥
∥
∥
∥

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

∥
∥
∥
∥
H

≤ C‖ρ‖Hs–‖u‖Hs– .

Therefore, we deduce that

∥
∥∂k–

x ρ
∥
∥
H ≤ ∥

∥∂k–
x ρ

∥
∥
H +C

∫ t



(‖u‖Hs + ‖ρ‖Hs–
)(‖u‖Hs– + ‖ρ‖L∞

)
dτ . ()

From the Gagliardo-Nirenberg inequality, we have for σ ∈ (, )

‖ρ‖Hs– ≤ C
(‖ρ‖Hσ +

∥
∥∂k–

x ρ
∥
∥
H

)
.

On the other hand, Eq. () implies that

‖ρ‖Hσ (S) ≤ ‖ρ‖Hσ +C
∫ t


‖ρ‖Hσ

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ , ()

which, together with Eq. (), yields

‖ρ‖Hs– ≤ C‖ρ‖Hs– +C
∫ t



(‖u‖Hs + ‖ρ‖Hs–
)(‖u‖Hs– + ‖ρ‖L∞

)
dτ . ()

Note that s – ≥ . Using Lemma . and ., we get

∥
∥u(t)

∥
∥
Hs(S)

≤ C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖uxxx‖L∞
)
dτ

+ ‖u‖Hs +C
∫ t



∥
∥ρ(τ )

∥
∥
Hs–

(∥
∥ρ(τ )

∥
∥
L∞ +

∥
∥ρx(τ )

∥
∥
L∞

)
dτ , ()

which, together with Eq. (), results in

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
+C

∫ t



(‖u‖Hs +
∥
∥ρ(t)

∥
∥
Hs–

)

× (‖u‖Hs– + ‖ρ‖L∞ + ‖ρx‖L∞ + ‖uxx‖L∞ + ‖uxxx‖L∞
)
dτ . ()

Using the Gronwall inequality, Lemma ., we get

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)

× eC
∫ t
(‖u‖Hs–+‖ρ‖L∞+‖ρx‖L∞+‖uxxx‖L∞ )dτ . ()

IfT <∞ satisfies
∫ T
 ‖ρx‖L∞ dτ < ∞, applying Step  and induction assumption, we obtain

from Lemma . and Lemma . that ‖u‖Hs– + ‖ρ‖L∞ + ‖uxxx‖L∞ is uniformly bounded.
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From Eq. (), we get

lim sup
t→T

(∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

)
< ∞,

which contradicts the assumption that T < ∞ is the maximal existence time. This com-
pletes the proof of Theorem . for s = k ∈N and k ≥ .
Step . For s ∈ (k,k + ), k ∈ N and k ≥ , differentiating k –  times the second equation

of system () with respect to x, we obtain

(∂t + u∂x)∂k–
x ρ +

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

+ ∂k
x
(
 – ∂

x
)–(uxρx) + ∂k–

x
(
 – ∂

x
)–(uxρ) = . ()

Using Lemma . with s – k ∈ (, ), we get from Eq. ()

∥
∥∂k–

x ρ
∥
∥
Hs–k

≤ C
∫ t



∥
∥∂k–

x ρ
∥
∥
Hs–k

(‖u‖L∞ + ‖∂xu‖L∞
)
dτ

+
∥
∥∂k–

x ρ
∥
∥
Hs–k +C

∫ t



∥
∥
∥
∥

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

+ ∂k
x
(
 – ∂

x
)–(uxρx) + ∂k–

x
(
 – ∂

x
)–(uxρ)

∥
∥
∥
∥
Hs–k

dτ . ()

For each ε ∈ (,  ), using Lemmas . and ., and the fact that H 
 +ε ↪→ L∞, we have

∥
∥∂k

x
(
 – ∂

x
)–(uxρx)

∥
∥
Hs–k ≤ C‖uxρx‖Hs– ≤ C‖ρ‖Hs–‖u‖Hs– , ()

∥
∥∂k–

x
(
 – ∂

x
)–(uxρ)

∥
∥
Hs–k

≤ C‖uxρ‖Hs– ≤ C
(‖ρ‖Hs–‖u‖L∞ + ‖ρ‖L∞‖ux‖Hs–

)
, ()

and
∥
∥
∥
∥

∑

l+l=k–,l,l≥

Cl,l∂
l+
x u∂ l+

x ρ

∥
∥
∥
∥
Hs–k

≤ C
∑

l+l=k–,l,l≥

Cl,l
(∥
∥∂ l+

x u
∥
∥
Hs–k+

∥
∥∂ l

x ρ
∥
∥
L∞

+
∥
∥∂ l+

x u
∥
∥
L∞

∥
∥∂ l+

x ρ
∥
∥
Hs–k

)

≤ C
(‖u‖Hs‖ρ‖

Hk– 
 +ε + ‖u‖

Hk– 
 +ε‖ρ‖Hs–

)
. ()

Therefore, from Eqs. (), (), and (), we get

∥
∥∂k–

x ρ
∥
∥
Hs–k ≤ ∥

∥∂k–
x ρ

∥
∥
Hs–k +C

∫ t



(‖u‖Hs + ‖ρ‖Hs–
)

× (‖u‖
Hk– 

 +ε + ‖ρ‖
Hk– 

 +ε

)
dτ . ()
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Using Lemma . in the first equation of system () for s ∈ (k,k + ) with k ≥ , we obtain

∥
∥u(t)

∥
∥
Hs(S)

≤ ‖u‖Hs +C
∫ t


‖u‖Hs

(‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞
)
dτ

+C
∫ t



∥
∥ρ(τ )

∥
∥
Hs–

(∥
∥ρ(τ )

∥
∥
L∞ +

∥
∥ρx(τ )

∥
∥
L∞

)
dτ , ()

which, together with Eqs. () and () (where s –  is replaced by s – k), shows that

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
+C

∫ t



(‖u‖Hs +
∥
∥ρ(t)

∥
∥
Hs–

)

× (‖u‖
Hk– 

 +ε + ‖ρ‖
Hk– 

 +ε

)
dτ . ()

Using the Gronwall inequality again, we get

∥
∥u(t)

∥
∥
Hs +

∥
∥ρ(t)

∥
∥
Hs–

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)
e
C

∫ t
(‖u‖

Hk– 
 +ε

+‖ρ‖
Hk– 

 +ε
)dτ

. ()

Noting that k – 
 + ε < k, k – 

 + ε < k –  and k ≥ , and applying Step , we obtain
‖u‖

Hk– 
 +ε +‖ρ‖

Hk– 
 +ε is uniformly bounded. Thus, we complete the proof of Theorem .

for s ∈ (k,k + ), k ∈N and k ≥ .
Therefore, from Step  to Step , we finish the proof of Theorem .. �

5 Global solution
To prove Theorem ., we need the following lemmas.

Lemma . ([]) Let r > . If u ∈ Hr ∩W ,∞ and v ∈ Hr– ∪ L∞, then

∥
∥
[
�r ,u

]
v
∥
∥
L ≤ C

(‖ux‖L∞
∥
∥�r–∥∥

L +
∥
∥�ru

∥
∥
L‖v‖L∞

)
.

Lemma . Let z = (u,ρ) ∈ Hs(S)×Hs–(S), s > . Then ‖z‖Hs×Hs– = ‖(u,ρ)‖Hs×Hs– is
finite for  < t <∞.

Proof Applying�s to ut = –uux– f (u), where f (u) = ∂x�
–(u +ux –


u


xx–uxuxxx+


ρ

 –

ρ


x ), and multiplying by �su and the integrating over S, we have

d
dt

∫

S

(
�su

) dx = –
∫

S
�su�suux dx – 

∫

S
�su�sf (u)dx. ()

From Lemma . and the Cauchy inequality, we obtain

∫

S
�su�suux dx ≤

∫

S
�su

(
�suux – u�sux

)
dx +

∫

S

(
�su

)
u�sux dx

≤ C‖ux‖L∞‖u‖Hs . ()

http://www.boundaryvalueproblems.com/content/2014/1/155
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The Cauchy inequality ensures

∫

S
�su�sf (u)dx ≤ ‖u‖Hs

∥
∥f (u)

∥
∥
Hs ()

and

∥
∥f (u)

∥
∥
Hs ≤ C

∥
∥
∥
∥u

 + ux –


uxx – uxuxxx +



ρ –



ρ
x

∥
∥
∥
∥
Hs–

≤ C
(∥
∥u

∥
∥
Hs– +

∥
∥ux

∥
∥
Hs– +

∥
∥uxx

∥
∥
Hs– + ‖uxuxxx‖Hs–

+
∥
∥ρ∥∥

Hs– +
∥
∥ρ

x
∥
∥
Hs–

)

≤ C
(‖u‖L∞‖u‖Hs– + ‖ux‖L∞‖ux‖Hs–

+ ‖uxx‖L∞‖uxx‖Hs– + ‖ux‖Hs–‖uxx‖L∞

+ ‖ux‖L∞‖uxxx‖Hs– + ‖ρ‖L∞‖ρ‖Hs– + ‖ρx‖L∞‖ρx‖Hs–
)
, ()

where we have used Lemma ..
Hence,

d
dt

‖u‖Hs ≤ C
(‖u‖Hs + ‖u‖Hs + ‖u‖Hs‖ρ‖Hs–

)
, ()

where C = C(‖z‖Hs×Hs– ).
Applying�s– to ρt = –uρx–∂x(–∂

x )–(uxρx)–(–∂
x )–(uxρ), andmultiplying by�s–ρ

and the integrating over S, we have

d
dt

∫

S

(
�s–ρ

) dx

= –
∫

S
�s–ρ�s–(uρx)dx – 

∫

S
�s–ρ�s–( – ∂

x
)–(uxρ)dx

– 
∫

S
�s–ρ�s–∂x

(
 – ∂

x
)–(uxρx)dx. ()

We will estimate each of the terms on the right-hand side of Eq. (). Note that
∫

S �s–ρ�s–(uxρ)dx =
∫

S �s–ρ�s–(uxρ)dx. Using Lemmas . and . and the Cauchy
inequality, we have

∫

S
�s–ρ�s–( – ∂

x
)–(uxρ)dx

=
∫

S
�s–ρ�s–(uxρ)dx

=
∫

S
�s–ρ

[
�s–,ux

]
ρ dx +

∫

S
�s–ρux�s–ρ dx

≤ C
(‖u‖Hs‖ρ‖Hs– + ‖ρ‖Hs–

)
, ()

∫

S
�s–ρ�s–∂x

(
 – ∂

x
)–(uxρx)dx

= –
∫

S
�s–ρx�

s–(uxρx)dx ≤ C
(‖u‖Hs‖ρ‖Hs– + ‖ρ‖Hs–

)
, ()
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and
∫

S
�s–ρ�s–(uρx)dx ≤ C

(‖u‖Hs‖ρ‖Hs– + ‖ρ‖Hs–
)
. ()

It follows from Eqs. ()-() that

d
dt

‖ρ‖Hs– ≤ C
(‖u‖Hs‖ρ‖Hs– + ‖ρ‖Hs–

)
, ()

which together with Eq. () yields

d
dt

(‖u‖Hs + ‖ρ‖Hs–
)

≤ C
(‖u‖Hs + ‖u‖Hs + ‖u‖Hs‖ρ‖Hs– + ‖ρ‖Hs–

)

≤ C
(‖u‖Hs + ‖ρ‖Hs–

)(‖u‖Hs + ‖ρ‖Hs– + 
)
, ()

which implies

‖u‖Hs + ‖ρ‖Hs–

‖u‖Hs + ‖ρ‖Hs– + 
≤ ‖u‖Hs + ‖ρ‖Hs–

‖u‖Hs + ‖ρ‖Hs– + 
eCt . ()

Note that ≤ t < ∞, and we get from Eq. ()

‖u‖Hs + ‖ρ‖Hs–

‖u‖Hs + ‖ρ‖Hs– + 
≤ ‖u‖Hs + ‖ρ‖Hs–

‖u‖Hs + ‖ρ‖Hs– + 
,

which results in

‖u‖Hs + ‖ρ‖Hs– ≤ ‖u‖Hs + ‖ρ‖Hs– . ()

This completes the proof of Lemma .. �

Proof of Theorem . Theorem. is a direct consequence of Theorem. and Lemma ..
�

Remark We have discussed some dynamics of system () in the periodic case. In fact, the
above results hold true with m = ( – ∂

x )k , k ≥  in the periodic case. We have

⎧
⎨

⎩

mt + umx + uxm + ηη̄x = , t > ,x ∈ R,

ηt + (uη)x = , t > ,x ∈ R.
()

More precisely, the local well-posedness Theorem . and the global existence result The-
orem . hold true in the Sobolev space Hs(S) × Hs–k+(S) with s > k – 

 , the wave-
breaking criterion Theorem . is shown to be true under the conditionm ∈ L(S).
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