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Abstract: We compute the canonical partition function Z of non-interacting conformal

higher spin (CHS) theory viewed as a collection of free spin s CFT’s in R
d. We discuss in

detail the 4-dimensional case (where s = 1 is the standard Maxwell vector, s = 2 is the

Weyl graviton, etc.), but also present a generalization for all even dimensions d. Z may

be found by counting the numbers of conformal operators and their descendants (modulo

gauge identities and equations of motion) weighted by scaling dimensions. This conformal

operator counting method requires a careful analysis of the structure of characters of rele-

vant (conserved current, shadow field and conformal Killing tensor) representations of the

conformal algebra so(d, 2). There is also a close relation to massless higher spin partition

functions with alternative boundary conditions in AdSd+1. The same partition function

Z may also be computed from the CHS path integral on a curved S1 × Sd−1 background.

This allows us to determine a simple factorized form of the CHS kinetic operator on this

conformally flat background. Summing the individual conformal spin contributions Zs

over all spins we obtain the total partition function of the CHS theory. We also find the

corresponding Casimir energy on the sphere and show that it vanishes if one uses the same

regularization prescription that implies the cancellation of the total conformal anomaly

a-coefficient. This happens to be true in all even dimensions d ≥ 2.
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1 Introduction and summary

Conformal higher spin (CHS) theories are generalizations of d = 4 Maxwell (s = 1) and

Weyl (s = 2) theories that describe pure spin s states off shell, i.e. have maximal gauge

symmetry consistent with locality [1] (see also [2–4]). The free CHS action in flat 4-

dimensional space may be written as

Ss =

∫
d4x φsPs ∂

2s φs =

∫
d4x (−1)sCsCs , (1.1)

where φs = (φµ1...µs) ≡ φµ(s) is a totally symmetric tensor and Ps = (Pµ1...µs
ν1...νs ) ≡ P

µ(s)
ν(s) is the

transverse projector which is traceless and symmetric within µ and ν groups of indices. This

action is thus invariant under a combination of differential (analog of reparametrizations)

and algebraic (analog of Weyl) gauge transformations: δφs = ∂ξs−1 + g2ηs−2 (here g2 is

flat euclidean metric and ξ and η are parameter tensors). Cs ≡ Cµ(s),ν(s) = (Cµ1...µs,ν1...νs)

is the generalized Weyl tensor, i.e. the gauge-invariant field strength that can be written

as Cµ(s),ν(s) = Pλ(s),ρ(s)
µ(s),ν(s)∂

s
λ(s)φρ(s). Here Ps is the projector 1 that makes Cµ(s),ν(s) totally

symmetric and traceless in each group of indices µ(s) and ν(s) and also antisymmetric

between them, so that Cµ(s),ν(s) corresponds to the (s, s) representation of SO(4) described

by the rectangular two-row Young tableau.2 It is often convenient to write the components

of Cs as Cµ1ν1µ2ν2...µsνs with antisymmetry in each pair of µi and νi and total symmetry in

µ’s and ν’s so that C1 = (Fµν) is the Maxwell tensor, C2 = (Cµ1ν1µ2ν2) is the linearized

Weyl tensor, etc. (see [5, 6]).

The analog of d = 4 CHS action (1.1) in any even dimension d is

Ss =

∫
ddx φsPs ∂

2s+d−4 φs = (−1)s
∫
ddx Cs ∂

d−4Cs , (1.2)

so that φs and Cs have d-independent SO(d, 2) scaling dimensions

∆(φs) = 2− s , ∆(Cs) = 2 . (1.3)

The action (1.1), (1.2) formally defines a free higher-spin non-unitary CFT in d dimensions.

While in this paper we will discuss only free CHS theory which is a sum of individual free

spin s theories we shall emphasize the existence of its interacting generalization in the

final section.

Our aim here will be to compute the associated one-particle or canonical partition

function Z(q) =
∑

n dnq
∆n that counts the numbers of corresponding gauge-invariant

conformal primaries and their descendants weighted with scaling dimensions like in the

familiar d = 4 free standard scalar and spin 1 cases in [7, 8].3

1Note the identity P
ρ(s)

ν(s) ∂
2s = P

λ(s),ρ(s)

µ(s),ν(s)∂
s
λ(s)(∂

s)µ(s) leading to the second form of the action in (1.1) [2].
2In this paper we always use Young labels ℓ = (ℓ1, ℓ2, . . . , ℓr) to denote representation of SO(2r): ℓi are

numbers of boxes in rows of the corresponding Young tableau.
3Note the the s = 0 field which is the member of the CHS family is non-dynamical in d = 4 and is the

same as the standard 2-derivative conformal scalar field only in d = 6.
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One should also find the same Zs(q) from the standard finite temperature one-loop

partition function Zs on S1 × Sd−1 background (with euclidean time circle of length β)

which may be interpreted as multi-particle or grand canonical partition function given by

lnZs =

∞∑

m=1

1

m
Zs(q

m) , q = e−β . (1.4)

To compute Zs then requires the knowledge of the kinetic CHS operator on curved S1 ×
Sd−1 background.

The form of the covariant kinetic CHS operator Os = D2s+d−4 + . . . on a curved

background is not known in general4 but it should have a particularly simple structure

on a conformally flat space. Indeed, it was found recently that on a conformally flat

background which is also an Einstein space, like Sd or AdSd, the operator Os factorizes

into a product of 2-nd derivative partially massless and massive spin s operators [9–12].

Below we will determine the form of Os on the conformally flat but non-Einstein d = 4

background S1 × S3 by first (i) finding it explicitly in the familiar s = 1 and s = 2 cases,

then (ii) conjecturing a natural generalization to the s > 2 case, and finally (iii) checking

the consistency of the resulting partition function Zs with the one found by direct count of

conformal CHS operators in R
4 that can be justified by representation-theoretic methods.

We will also find the expression for Zs for all even dimensions d > 4.

The study of this partition function is also of interest in the context of remarkable

relations between conformal higher spin theory in d dimensions, singlet sector of free scalar

CFT in R
d and dual massless higher spin theory in AdSd+1. A free massless complex scalar

theory S = −
∫
ddxΦ∗

r∂
2Φr (r = 1, . . . , N) has a tower of (on-shell) conserved symmetric

traceless higher spin currents Js ∼ PsΦ
∗
r∂

sΦr, ∂Js = 0 which are conformal fields of

dimension ∆(Js) = s+d−2 ≡ ∆+. Adding these currents to the action with the source or

shadow fields φs(x) one observes that this φs has the same dimension 2−s ≡ ∆− = d−∆+

and effectively the same algebraic and gauge (due to properties of Js) symmetries as the

CHS field in (1.3). Integrating out the free fields Φr in the path integral then gives an

effective action for φs the leading local (logarithmically divergent) part of which is, at

quadratic level, the same as the classical CHS action in (1.1), (1.2) [3, 13]. From the

AdS/CFT perspective this induced action should be found upon the substitution of the

solution of the Dirichlet problem (with φs as the boundary data) into the classical action

of a massless spin s field in AdS5.

In addition to this classical relation, there is also a one-loop one [9, 14]

Z− s

Z+ s

∣∣∣
Md

= Zs

∣∣∣
Md

. (1.5)

Here Zs is the 1-loop CHS partition function on a conformally flat space Md. Z+ s

is the free scalar CFT partition function in the spin s current part of the singlet sec-

4This operator is expected to be reparametrization and Weyl invariant and consistent with CHS gauge

symmetries for any background metric solving Bach equations of Weyl gravity theory.
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tor (the total singlet sector partition function is
∏

s Z+ s) and Z− s is its spin s shadow

operator counterpart.5

By the AdS/CFT rules, Z± s should have the equivalent interpretation as the one-loop

partition function Z
(±)
s of the massless higher spin s field ϕs in AdSd+1 with boundary

Md computed with the standard ϕs ∼ z∆+−s or the alternative ϕs ∼ z∆−−s boundary

conditions (see [14] and references there). Thus, we should also have the following relation

between the massless higher spin partition functions in the bulk AdSd+1 and the CHS

partition function at the conformally flat boundary Md

Z
(−)
s

Z
(+)
s

∣∣∣∣
AdSd+1

= Zs

∣∣∣
Md

. (1.6)

These relations (1.5), (1.6) were verified explicitly [9, 10, 14, 15] in the case ofMd being the

sphere Sd for even d = 4 and d = 6 where logZs is essentially determined by the conformal

anomaly a-coefficient.

Below we will demonstrate the validity of these relations also in the case of Md =

S1 × Sd−1. In this case eqs. (1.5) or (1.6) may be written as a relation between the

corresponding one-particle partition functions as functions of q = e−β (cf. (1.4))

Z− s(q)−Z+ s(q) = Zs(q) , Z± s(q) = Z(±)
s (q) . (1.7)

The expression for Z+ s is straightforward to find using the conformal operator counting

method in R
d [7, 8]: it should compute the operators represented by the components of

the traceless symmetric spin s current operator Js = (Jµ1...µs) of dimension ∆+ and all of

its conformal descendants (derivatives) modulo the conservation condition ∂µ1Jµ1...µs = 0

(rank s− 1 tensor of dimension ∆′
+ = ∆+ +1) and all of its derivatives. This immediately

leads to

Z+ s =
ns q

∆+ − ns−1 q
∆′

+

(1− q)d
, (1.8)

∆+ = s+ d− 2 , ∆′
+ = s+ d− 1 , ns = (2s+ d− 2)

(s+ d− 3)!

(d− 2)! s!
, (1.9)

where ns is the number of components of totally symmetric traceless rank s tensor in d

dimensions. Explicitly, in d = 4 this gives

d = 4 : Z+ s =
(s+ 1)2 qs+2 − s2 qs+3

(1− q)4
, (1.10)

5This relation can be motivated [14] by considering the double-trace JsJs deformation of the free large

N scalar theory under which the scaling dimension of only one (spin s) operator is changed, i.e. the l.h.s.

of (1.5) is ZUV/ZIR, i.e. the ratio of the UV and IR large N fixed point CFT partition functions (this

argument can be made precise in d = 3 [14]). In even d case that we are considering here Zs is given by

the determinant of the local CHS kinetic operator while in odd d the corresponding kinetic operator is the

full nonlocal kernel 〈JsJs〉 appearing in the induced theory.
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eq. (1.8) is indeed the same as the massless spin s field partition function Z(+)
s in ther-

mal AdSd+1 with S1 × Sd−1 boundary [16–18], with the negative (current conservation

subtraction) term here corresponding to the ghost contribution.6

A natural guess for the expression for Z− s that should be counting the shadow spin s

operators (modulo gauge degeneracy) is just to replace the dimensions ∆+ and ∆′
+ in (1.8)

by their shadow (∆ → d−∆) values, i.e.

Z̃− s =
ns q

∆− − ns−1 q
∆′

−

(1− q)d
, ∆− = 2− s , ∆′

− = 1− s . (1.11)

As we shall discuss below, this ∆+ → ∆− prescription that was used in the Sd case [14] here

does not give the full answer: the expression in (1.11) satisfying Z̃− s(q) = (−1)dZ+ s(1/q)

is to be corrected by an extra contribution σs(q) that removes, in particular, all negative

powers of q from the small q expansion. This extra term may be interpreted as the char-

acter of the finite dimensional irreducible representation of SO(d, 2) corresponding to the

conformal Killing tensors in d dimensions. This is related to gauge degeneracy associated

with shadow fields. We shall also provide a general group-theoretic argument for count-

ing of shadow operators based on characters of relevant conformal algebra representations

using the general analysis in [20].7

Explicitly, we will find that in d = 4

Z− s = Z̃− s(q) + σs(q) =
2(2 s+ 1) q2 − (s+ 1)2 qs+2 + s2 qs+3

(1− q)4
. (1.12)

Then, from (1.10) and (1.12),

Z− s −Z+ s =
2(2 s+ 1) q2 − 2(s+ 1)2 qs+2 + 2s2 qs+3

(1− q)4
. (1.13)

This turns out to be the same as the CHS partition function in d = 4, or, equivalently,

d = 4 : Zs =
2q2

[
(s+ 1)2(1− qs)− s2(1− qs+1)

]

(1− q)4
, (1.14)

thus verifying the relations (1.5), (1.7).

Moreover, we will see that one can give a natural interpretation to Z− s and Z+ s in

terms of counting of conformal operators in the CHS theory (1.2) in R
d:

Z− s = Zoff−shell
s , Z+ s = Ze.o.m.

s , Zs = Zoff−shell
s −Ze.o.m.

s . (1.15)

Namely, the shadow partition function Z− s counts (derivatives of) off-shell components of

field strength Cs (and its derivatives) modulo non-trivial gauge identities while Z+ s counts

6Eq.(1.8) has also the interpretation of the character of the short representation of the SO(d, 2) con-

formal group with dimension ∆+ and spin s, i.e. χ(∆+,s,0,...,0)(q, 1, . . . , 1) which is also a difference of

characters of the corresponding long representations (∆+, s, 0, . . . , 0) and (∆+ + 1, s− 1, 0, . . . , 0) (see [19]

and appendix F below).
7For other discussions of shadow fields in the context of AdS/CFT see also [21–24].
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the components of the (derivatives of) equations of motion for Cs following from the CHS

action (1.2) upon variation over φs (also modulo identities) that should be subtracted to

get the physical on-shell result for Zs. The kinematical or off-shell relation between Z− s

and Zs may not be unexpected as the shadow spin s operators and the conformal higher

spins have the same symmetries and dimensions.

For example, in d = 4 each of the terms in the numerators of (1.12), (1.10) and (1.13)

has a clear meaning: (i) 2(2 s+ 1)q2 represents the components of the CHS field strength

Cs of dimension 2 (6q2 for s = 1 Maxwell field); (ii) (s + 1)2qs+2 corresponds to the

components of the equations of motion tensor Bs = ∂sCs and also of the gauge identity

tensor Bs = (ǫ4)
s∂sCs which are both symmetric traceless rank s tensors of dimension

s + 2 (generalizations of ∂µFµν and ǫµνλρ∂νFλρ for s = 1); (iii) s2 qs+3 term accounts for

the trivial identies ∂Bs = 0 and ∂Bs = 0 (to be added back to avoid overcounting) which

are symmetric traceless rank s− 1 tensors of dimension s+ 3.

The triality relations between different objects and partition functions discussed above

are illustrated by the diagram below.

(Z+ s,Z− s)

�
�
��✒

(∂sCs, Cs)

❅
❅

❅❅■

(current Js, shadow J̃s)

❄

(log det(+), log det(−))

free scalar CFT4 conformal higher spin s CFT4

massless higher spin s in AdS5

Finally, we may obtain the total CHS partition function by summing over all spins. As-

suming a natural regularization discussed in section 6 we find that

d = 4 : Z(q) =
∞∑

s=0

Zs(q) = −q
2
(
11 + 26q + 11q2

)

6(1− q)6
, Z(q) = Z(1/q) . (1.16)

This implies also the vanishing of the associated total Casimir energy on S3, as in the case

of the massless higher spin partition function Z+(q) =
∑∞

s=0Z+ s(q) =
q2(1+q)2

(1−q)6
discussed

in [18].

This paper is organized as follows. We shall start in section 2 with a review of the

two equivalent methods of computing the canonical partition function of a free CFT: the

conformal operator counting method in R
d [7, 8] and the finite temperature computation

on a spatial sphere Sd−1. We will illustrate these methods on the examples of standard

conformal scalar in d dimensions and Maxwell theory in d = 4.

– 6 –
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In section 3, we shall generalize the discussion of the spin 1 case to the conformal spin

2 case in d = 4, i.e. Weyl gravity theory. We shall first compute the corresponding one-

loop partition function Z2 on S1 × S3 by expanding the non-linear Weyl action (both in

4-derivative and an equivalent 2-derivative formulations) to quadratic order in fluctuations

and then check the agreement of the result with the one found by the operator counting

method for the Weyl action linearized near flat space.

In section 4 we shall use the above explicit s = 1, 2 results as a motivation for a a

proposal for the factorized form of the conformal higher spin 2s-derivative operator on

the S1 × S3 background and for the structure of the associated partition function. We

will then support the consistency of our proposal by demonstrating the agreement of the

resulting canonical partition function Zs with the one that can be found directly by counting

gauge-invariant conformal operators corresponding to the linearized conformal higher spin

action (1.1) in R
4.

Next, in section 5.1, we shall clarify the relations (1.7), (1.15) between the conformal

spin s partition function and the partition functions associated with spin s conformal

operators in the singlet sector of free CFT in d = 4 and thus also with the one-loop partition

functions of massless spin s field in AdS5. We will suggest a method to compute the shadow

field partition function Z− s (1.12) that will allow a straightfoward generalization to d > 4

(section 5.2) and will thus lead to the expression for the conformal higher spin partition

function Zs generalizing (1.14) to any even dimension d. In section 5.3, we shall explain

how our general result (5.13) for the conformal higher spin partition function can be derived

in a rigorous way in terms of characters of the relevant Verma modules of the conformal

algebra so(d, 2) (with details presented in appendix F). We shall also comment on the

special case of d = 2.

Finally, in section 6, we shall sum the individual contributions Zs to obtain the total

(summed over all spins) partition function of the conformal higher spin theory. We shall

also find the Casimir energy on Sd−1 and show that it vanishes if one uses the same

regularization prescription that implies the vanishing of the total conformal anomaly a-

coefficient [9, 10, 14, 15]. This happens to be true in any even dimension d ≥ 2.

Section 7 contains some concluding remarks, empasizing the existence of the full non-

linear generalization of the conformal higher spin action (1.1), (1.2) viewed as an induced

action of a free CFTd in background fields dual to all conserved spin s currents.

There are also several technical appendices. In particular, appendix F (using the

results of [20]) explains the structure of spaces of representations and associated characters

of the conformal algebra in d dimensions that are relevant for the computation of the CFT

partition functions in the main text.

2 Free CFT partition function: scalar and vector examples

We shall start with a review of the two equivalent methods of computing the canonical

partition function of a free CFT: the operator counting method in R
d [7, 8] and the finite

temperature computation on a spatial sphere Sd−1.

– 7 –
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Radial quantization relates conformal operators in R
d with dimensions ∆n to eigen-

states of the Hamiltonian (dilatation operator) on Rt × Sd−1. Given the spectrum of

eigenvalues ωn = ∆n and their degeneracies dn, the “one-particle” or canonical partition

function is

Z(q) = tr e−βH =
∑

n

dn e
−βωn =

∑

n

dn q
∆n , q ≡ e−β . (2.1)

The multi-particle or grand canonical partition function is then given by

lnZ = −
∑

n

dn ln(1− e−βωn) =

∞∑

m=1

1

m
Z(qm) . (2.2)

At the same time, (2.2) can be found also from the free QFT path integral on S1
β × Sd−1,

i.e. computing the determinant of the corresponding Laplacian O. We shall review the

computation of Z below on the examples of conformal scalar in d dimensions and Maxwell

vector in d = 4. The latter is the first non-trivial representative of the conformal higher

spin tower in 4 dimensions.

2.1 Operator counting method in R
d

Let us start with a free massless scalar field Φ in R
d with the standard action

∫
ddx (∂Φ)2

and thus dimension ∆(Φ) = 1
2(d−2). The lowest dimension conformal operator is the scalar

field itself contributing q
1
2
(d−2) to the sum in (2.1). Its conformal descendants are found

by adding derivatives: ∂µ1 . . . ∂µk
Φ. As derivatives in all d dimensions are independent and

each power of derivative in a given direction enters only once we get a factor
∑∞

k=0 q
k =

(1− q)−1 from each of the d directions. This counting ignores the fact that some operators

vanish due to equations of motion ∂2Φ = 0. Since ∆(∂2Φ) = 1
2(d− 2) + 2 we thus need to

subtract a term q
1
2
(d−2)+2, dressed again by extra derivative factor (1−q)−d. The resulting

partition function of a conformal scalar is then

Zc.s.(q) =
q

d−2
2 (1− q2)

(1− q)d
, Zc.s.(q)

∣∣∣
d=4

=
q − q3

(1− q)4
. (2.3)

This one-particle partition function corresponds to the character of the free scalar (Dirac

singleton) representation of the conformal group SO(d, 2) (see [19]).

Next, let us consider the standard Maxwell vector field in d = 4. Here lowest dimension

gauge-invariant operator is the field strength Fµν with dimension ∆ = 2 and 6 components,

giving a term 6q2. Its derivatives give extra factor of (1−q)−4. This overcounts by ignoring

the vanishing of some operators due to equations of motion ∂µFµν = 0 and gauge identities

∂µF ∗
µν = 0 (and their derivatives). This suggests subtraction of −(4+4)q3 times (1− q)−4,

but this also overcounts as some identites are trivial, descending from the two ∂µ∂νF
µν = 0

and ∂µ∂νF ∗
µν = 0 corresponding to operators of dimension 4. This requires adding back

2q4(1− q)−4. The final d = 4 vector partition function is then

Z1(q) =
6q2 − 8q3 + 2q4

(1− q)4
=

2 (3− q) q2

(1− q)3
. (2.4)

– 8 –
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This counting argument can be straightfowardly generalized to the case of a conformal

vector in even d dimensions with the action (1.2), i.e. S1 = −1
4

∫
ddx Fµν∂

d−4Fµν (see

section 6 below).

2.2 Partition function on S1
× Sd−1

Let us now review how the same expressions for Z can be found by computing the standard

QFT partition function on a curved S1
β ×Sd−1 background (we assume that Sd−1 has unit

radius). The partition function of a free conformally coupled scalar is

− logZc.s. =
1

2
log det O0 , O0 = −D2 +

d− 2

4 (d− 1)
R . (2.5)

On S1 × Sd−1 we have

D2 ≡ DµD
µ = ∂20 +D2 , D2 = DiDi = D2

Sd−1 , (2.6)

where ∂0 is derivative along compact euclidean time direction of length β. The scalar

curvature is R = R(Sd−1) = (d− 1)(d− 2), so that

O0 = −∂20 −D2 +
1

4
(d− 1)2 . (2.7)

The eigenvalues of the Laplacian −D2 on Sd−1 and their multiplicities are (see appendix A)

λn(S
d−1) = n (n+ d− 2), (2.8)

dn(S
d−1) = (2n+ d− 2)

(n+ d− 3)!

n! (d− 2)!
. (2.9)

Hence, the eigenvalues of (2.7) are

λk,n = w2 + ω2
n, w =

2πk

β
, ωn = n+

1

2
(d− 2), k ∈ Z, n = 0, 1, 2, . . . . (2.10)

Then, computing − lnZc.s. =
1
2 log detO0 = 1

2

∑
k,n dn log λk,n one finds by the standard

argument the expression in (2.2) where

Zc.s.(β) =
∞∑

n=0

dn e
−β

[
n+ 1

2
(d−2)

]
=
q

d−2
2 (1− q2)

(1− q)d
, (2.11)

which is indeed the same as in (2.3).

The quantization of the d = 4 Maxwell action S1 = −1
4

∫
d4x

√
g Fµν F

µν in curved

background in covariant Lorentz gauge gives the following well-known expression for the

vector field partition function

Z1 =
det(−D2)

[det(−gµνD2 +Rµν)]
1/2

, (2.12)

Specializing to S1 × S3 where R00 = 0, Rij = 1
3gijR, R = 6, and Aµ = (A0, Ai) (i, j =

1, 2, 3) we get from (2.12)

Z1 =

[
det(−D2)

det(−gijD2 +Rij)

]1/2
. (2.13)
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Splitting the 3-vector field operator into the transverse (DiAi,⊥ = 0) and longitudinal parts

we end up with (using that Rij = 2 gij)

Z1 =
1

[
det(−gijD2 +Rij)⊥

]1/2 =
1

[
det O1⊥

]1/2 , O1 ij = (−∂20 −D2 + 2)ij , (2.14)

where O1⊥ is defined on transverse 3-vectors.

The same expression can be obtained directly by choosing the temporal gauge A0 = 0

in the original path integral. In S1 × S3 case the corresponding ghost factor is det(∂0)

while the Lagrangian is L = −1
4Fµν F

µν = −1
2∂0Ai ∂0A

i − 1
4Fij F

ij . Changing variables

Ai = Ai⊥ + Di ϕ introduces the Jacobian factor
[
det(−D2)

]1/2
while the Lagrangian

becomes (up to a total derivative)

L = −1

2
ϕ∂20D

2 ϕ− 1

2
Ai

⊥(−gijD2 +Rij)A
j
⊥
. (2.15)

Integration over ϕ gives the contribution [det(−∂20 D2)]−1/2 that cancels the product of the

ghost and Jacobian factors. The final result is thus again (2.14).

Using the eigenvalues and their multiplicities of the transverse vector Laplacian

(−D2)1⊥ on S3 given by (A.1)–(A.4), we conclude that the spectrum of O1⊥ in (2.14)

is (∂0 → iw, w = 2πk
β , cf. (2.10))

λk,n = w2+(n2+4n+2)+2 = w2+ω2
n , ωn = n+2 , dn = 2(n+1)(n+3) , (2.16)

and thus the one-particle partition function corresponding to Z1 in (2.14) is given by

Z1(β) =

∞∑

n=0

dn e
−β(n+2) =

2 (3− q) q2

(1− q)3
. (2.17)

This is again in agreement with the expression (2.4) found by the operator counting method.

3 Conformal spin 2 in d = 4

Let us now consider the conformal spin 2 case in d = 4, i.e. Weyl gravity with the full

non-linear action being (we drop total derivative)

S2 =
1

2

∫
d4x

√
g CµνλρC

µνλρ =

∫
d4x

√
g

(
RµνRµν −

1

3
R2

)
. (3.1)

Here, we shall first compute the corresponding one-loop partition function on S1 × S3 by

expanding the action (3.1) to quadratic order in fluctuations near this conformally flat

background. We shall then check the agreement of the result with the one found by the

operator counting method for the linearized action (3.1) expanded near R4.
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3.1 Quadratic fluctuation operator in conformally flat background

Since we are interested in quantizing spin 2 fluctuations on the conformally flat S1 ×
S3 background ,8 in expanding (3.1) we may ignore terms with the Weyl tensor of the

background metric. We may also drop terms with covariant derivatives of the curvature.

Then, using the expressions in appendix B and assuming the reparametrization and Weyl

gauge conditionsDµh
µν = 0, h µ

µ = 0, we find from (3.1) the following quadratic fluctuation

Lagrangian

L
(2) =

1

4
D2hµν D

2hµν −Rµ
ρhµν D

2hνρ +
1

2
Rµν hαβ DµDν h

αβ

− 3

2
Rρσ R

σµ hµν h
νρ +

1

2
RνρRσµhµν hρσ +

1

6
(hµν R

µν)2 +
1

4
Rµν R

µν hαβ h
αβ

+
1

2
RR µ

ρ hµν h
νρ − 1

9
R2 hµν h

µν .

(3.2)

In the special case when our conformally flat background is also an Einstein space Rµν =
1
4Rgµν , i.e. for S

4 or AdS4, the Lagrangian (3.2) reduces to

L
(2)

Rµν=
1
4
Rgµν

=
1

4
D2hµν D

2hµν − 1

8
Rhµν D

2hµν +
1

72
R2 hµν h

µν =
1

4
hµν Õ2 hµν , (3.3)

where the 4-th order operator O defined on transverse traceless tensors hµν takes the

factorized form [25–28]

Õ2 =

(
−D2 +

1

6
R

)(
−D2 +

1

3
R

)
, (3.4)

or Õ2 = (−D2 + 2)(−D2 + 4) for a unit-radius S4 with R = 12.

To analyse the non-Einstein case of S1×S3 background, let us split the components of

hµν into hij , h0i, h00 and use that here R00 = 0, Rij =
1
3Rgij , R = 6. Then, hij decouples

from h0i and h00 in (3.2), with the transverse traceless hij dependent part being

L
(2)
S1×S3 =

1

4
D2hij D

2hij − 1

3
Rhij ∂

2
0 h

ij − 1

6
Rhij D

2 hij +
1

36
R2 hijh

ij , (3.5)

where we used the notation in (2.6). The corresponding 4-th order operator is thus

O2 = (∂20 +D2)2 − 2

3
R (2∂20 +D2) +

1

9
R2 . (3.6)

It is useful to rederive this expression in the 2nd-derivative formulation of conformal higher

spin theory involving auxiliary fields [29, 30]. In the spin 2 case the corresponding La-

grangian may be written as [29, 31]

L (g, f) =
√
g

[
− fµν Gµν −

1

4
fµν fµν +

1

4
(gµνfµν)

2

]
, Gµν ≡ Rµν −

1

2
gµν R . (3.7)

8This background solves the Bach equations of motion corresponding to (3.1) so that the resulting

partition function will be gauge-independent.
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Solving for the auxiliary symmetric tensor fµν we get back to the Weyl action (3.1). Ex-

panding around a generic curved background for gµν with fµν = −2(Rµν − 1
6gµνR) it is

straightforward to find the corresponding quadratic fluctuation action for δfµν = φµν and

δgµν = hµν . Assuming gauge conditions of transversality and tracelessness of hµν and

ignoring terms involving Weyl tensor and derivatives of the curvature (as we are interested

in a conformally flat constant-curvature background), we find 9

L
(2) = L

(2)
φφ + L

(2)
φh + L

(2)
hh , (3.8)

L
(2)
φφ = −1

4
φαβφ

αβ , L
(2)
φh =

1

6
Rhαβφαβ − φαβDγDβhα

γ +
1

2
φαβD2hαβ , (3.9)

L
(2)
hh =− 1

4

(
Rγδ R

γδ − 1

3
R2

)
hαβ hαβ + 2RαγRβδh

αβhγδ +RαβRγδh
αβhγδ

− 3Rβ
δRγδhα

γhαβ +RγδR
γδhαβh

αβ + 3RβγRhα
γhαβ − 19

36
R2 hαβh

αβ

+
1

2
RαβDα h

γδDβ hγδ +Rγδ hαβDβ Dα hγδ −
5

6
RhαβD2 hαβ +

1

3
RDβ hαγD

γ hαβ

− 1

2
RDγ hαβD

γhαβ − 2Rγδ hαβDδDβ hαγ +Rγδ hαβDδDγ hαβ + 2Rα
γ hαβD2hβγ

−Rαβ Dγhβδ D
δhα

γ +Rαβ DδhβγD
δhα

γ , (3.10)

where the first term in (3.10) comes from the expansion of the
√
g factor in (3.7). Special-

izing to the case of the S1 × S3 background and concentrating on the part of the action

that depends on the transverse traceless spatial parts of the fluctuations hij , φij , we get

(after commuting derivatives, integrating by parts and using that R00 = 0, Rij =
1
3Rgij)

L
(2)
φh =

1

2
φij

(
D2 − 2

3
R

)
hij , L

(2)
hh =

1

6
Rhij

(
D2 − 1

2
R

)
hij , (3.11)

so that (3.8) becomes

L
(2) =

1

2
φij

(
D2 − 2

3
R

)
hij −

1

4
φijφ

ij +
1

6
Rhij

(
D2 − 1

2
R

)
hij . (3.12)

Note that the kinetic hh term is absent in the Lagrangian (3.7) expanded near flat space

but it appears on a curved background. Using that R = 6 (for a unit-radius S3), eq. (3.12)

can be written also as

L
(2) =

1

2
φij (D2 − 4)hij −

1

4
φijφ

ij + hij (D2 − 3)hij . (3.13)

Solving for φij , we then find that L (2) = 1
4h

ij O2 hij where

O2 = (D2 − 4)2 + 4 (D2 − 3) = ∂40 + 2 ∂20 (D
2 − 4) + (D2 − 2)2 , (3.14)

is indeed equivalent to (3.6). Note that O2 can be written in the following factorized form

O2 =
[
(∂0 − 1)2 +D2 − 3

] [
(∂0 + 1)2 +D2 − 3

]
, (3.15)

which is the S1 × S3 counterpart of (3.4) found in S4 or AdS4 case (where R = ±12).

9The case of a generic Einstein background where the fluctuation operator also factorizes is discussed in

appendix C.
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3.2 Partition function on S1
× S3

Like in the vector field case in section (2.2), the derivation of the one-loop partition function

can be presented either in 4-d covariant gauge or in the time-like reparametrization gauge

h00 = 0, h0i = 0 with the Weyl gauge hµµ = 0 being then equivalent to the tracelessness

of hij . Splitting hij into the transverse and longitudinal parts (and taking into account

various ghost and Jacobian factors as in the vector field case discussed in section 2.2), we

end up with the following simple expression for the spin 2 analog of (2.14):

Z2 =
1

[
detO2⊥ det′O1⊥

]1/2 . (3.16)

Here the spin 2 operator O2⊥ given in (3.6), (3.14) is defined on transverse traceless tensors

hij while the spin 1 one is the same as in (2.14).10 The vector determinant defined on

transverse vector Vi originates from the decomposition hij → h⊥ij +DiVj +DjVi, D
iVi = 0.

The prime indicates that the lowest n = 0 mode of the vector Laplacian on S3 is to be

dropped since this mode satisfies DiVj +DjVi = 0 and thus cannot appear from hij (see

appendix D).

The spectrum of O1⊥ was already given in (2.16). Using that the spectrum of the

transverse traceless rank 2 tensor Laplacian on S3 can be read off from (A.2)–(A.3), i.e.

(−D2)2⊥ : λn = (n+2)(n+4)−2 , dn = 2(n+1)(n+5) , n = 0, 1, 2, . . . , (3.17)

we conclude that the eigenvalues of O2⊥ in (3.14) can be written as (∂20 → −w2,

cf. (2.10), (2.16))

O2⊥ : λk,n = w4 + 2w2
[
(n+ 2)(n+ 4) + 2

]
+
[
(n+ 2)(n+ 4)

]2

=
[
w2 + (n+ 2)2

] [
w2 + (n+ 4)2

]
. (3.18)

This simple result is related to the special structure of O2 in (3.14), (3.15): its eigenvalues

factorize with the spatial parts being squares of the effective energies ωn which are linear

in n as in the conformal scalar (2.10) and vector (2.16) cases. This is also a consequence

of the underlying conformal invariance of the spin 2 theory.

As a result, the conformal spin 2 partition function takes the standard form (2.2) where

the canonical partition function is a combination of the two terms corresponding to the

two factors in (3.16)

Z2 = Z2,0(q) + Z1,1(q) . (3.19)

The notation Zs,r means that the sum over n starts with n = r, so that the explict

expressions following from (3.18) and (2.16), (2.17) are

Z2,0(q) =
∞∑

n=0

2 (n+ 1)(n+ 5) (qn+2 + qn+4), (3.20)

Z1,1(q) =
∞∑

n=1

2 (n+ 1)(n+ 3) qn+2 . (3.21)

10Note that this combination of determinants describes the right number of degrees of freedom a conformal

graviton: (6− 1− 1) + 2 = 6.

– 13 –



J
H
E
P
0
8
(
2
0
1
4
)
1
1
3

Doing the sums gives finally

Z2 =
10q2 − 18q4 + 8q5

(1− q)4
=

2q2
(
5 + 5q − 4q2

)

(1− q)3
. (3.22)

3.3 Partition function from conformal operator counting in R
4

Let us now show that the same expression (3.22) for the conformal spin 2 partition function

can be found in the operator counting method, i.e. by treating the linearized Weyl grav-

ity (3.1) as a CFT in R
4 and counting gauge-invariant conformal operators built out of the

linearized Weyl tensor C ∼ ∂∂h weighted with their conformal dimension and subtracting

the contributions of gauge identities and equations of motion.

As in the conformal scalar and d = 4 vector examples discussed in section 2.1, adding

all possible derivatives introduces the universal overall denominator factor (1− q)4, so the

main problem is to determine the numerator. First, let us count the off-shell components

of Cµ1ν1µ2ν2 modulo gauge identities. C has dimension 2 (h has dimension 0) and 10

independent components (transforming as the (2,2) representation of SO(4)); this gives

10q2 contribution. Adding all possible derivatives to C produces overcounting since there

are non-trivial gauge identities that C ∼ ∂∂h satisfies, i.e.

Bµ1µ2 ≡ εµ1ν1γ1δ1 εµ2ν2γ2δ2 ∂ν1∂ν2 Cγ1δ1γ2δ2 = 0 , (3.23)

and their derivatives. Bµν has dimension 4 and is symmetric and traceless with 9 compo-

nents, i.e. this requires subtracting the 9q4 term. However, subtracting all the derivatives

of Bµν would also overcount as Bµν itself satisfies the identity ∂µBµλ = 0 which has dimen-

sion 5 and 4 components; this requires adding back 4q5. Thus, the off-shell count of the

components of the Weyl tensor and its derivatives leads to the following contribution to

the partition function (2.1)

Zoff−shell
2 =

10 q2 − 9 q4 + 4 q5

(1− q)4
. (3.24)

It remains to subtract also some of the descendant operators ∂ . . . ∂C that vanish due to

the equations of motion for the dynamical field hµν , i.e.

Bµ1µ2 ≡ ∂ν1∂ν2Cµ1ν1µ2ν2 = 0 . (3.25)

The count of the symmetric traceless Bµ1µ2 is the same as for the Bµ1µ2 above. We need

to subtract 9q4 but also to add back 4q5 to account for the identity ∂µBµλ = 0. Thus the

contribution of the equations of motion that should be subtracted from (3.24) is

Ze.o.m.
2 =

9 q4 − 4 q5

(1− q)4
. (3.26)

As a result,

Z2 = Zoff−shell
2 −Ze.o.m.

2 =
10q2 − 2(9q4 − 4q5)

(1− q)4
, (3.27)

is indeed the same as (3.22).
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Let us note that as in the s = 1 case in section 2.1 here (i) the contributions of the

equations of motion and of the gauge identities are the same, i.e. they just double, and (ii)

the count of the equations of motion contribution is the same as the count of the conserved

traceless rank s “current” operator of dimension 2 + s (conformal stress tensor for s = 2).

As we shall discuss in the next section, these features generalize to any spin s conformal

field case in d = 4.

4 Partition function of general conformal higher spin field in d = 4

Let us now use the explicit s = 1, 2 results found above as a motivation for the form of the

conformal higher spin operator and the structure of the associated partition function on the

S1 × S3 background. We will then demonstrate the agreement of the resulting canonical

partition function Zs with the one found directly by counting gauge-invariant conformal

operators corresponding to the linearized conformal higher spin action (1.1) in R
4.

Namely, we shall assume that the 2s-derivative conformal spin s operator, evaluated

on the S1 × S3 background and restricted to transverse traceless spin s > 0 tensors with

3-dimensional indices φi1...is , takes the following form:

s=even : Os =
s∏

p=1

[
(∂0 + 2p− s− 1)2 +D2 − s− 1

]
, (4.1)

s=odd : Os = −
s−1
2∏

p=− s−1
2

[
(∂0 + 2p)2 +D2 − s− 1

]
. (4.2)

For example, for s = 1 we get O1 in (2.14), for s = 2 we find O2 in (3.15), while for s = 3

eq.(4.2) gives O3 =
(
∂20 +D2 − 4

)[
(∂0 + 2)2 +D2 − 4

][
(∂0 − 2)2 +D2 − 4

]
, etc. Eqs. (4.1)

and (4.2) may be viewed is the S1×S3 counterpart of the factorized form [9, 11, 12] of the

Os operator on S4 or AdS4 background.11

Using that the spectrum of Laplacian −D2 on S3 is given by (see (A.1)–(A.2))

(−D2)s⊥ : λn = (n+ s)(n+ s+ 2)− s , dn = 2(n+ 1)(n+ 2s+ 1) , (4.3)

we then find that the eigenvalues of Os⊥ may be written in a simple form generalizing

(2.16) and (3.18) (w = 2πkβ−1)

λk,n =
s∏

p=1

(w2 + ω2
n,p) , ωn,p = n+ 2p . (4.4)

11For spin s ≥ 2, a derivation of the factorization (4.1), (4.2) from the quadratic expansion of a curved

space action, as in section 3 for s = 2, is not possible because a general form of a CHS action in curved

space is not yet available (though one should be able to derive it in a general conformally-flat background

as in the AdS case in [11, 12]). Nevertheless, one may use a heuristic approach by trying to generalize

the 2nd-derivative formulation of conformal higher spin theory in flat background developed in [29, 30]

to S1 × S3 background. For example, for spin 3, one can assume that, like in the s = 2 case (3.13), the

(gauge-fixed) Lagrangian should be a quadratic form in three auxiliary symmetric traceless fields φ
(1,2,3)
ijk

whose coefficients are linear combinations of covariant derivatives ∂0 and D
2 allowed by dimension counting.

Requiring that such a Lagrangian L
(2)
3 leads to the factorized operator Os does not fix it completely, but

imposes many constraints. One natural solution is L
(2)
3 = φ(1) (∂2

0 +D
2−4)φ(3)+φ(2) (∂2

0 +D
2+4)φ(2)−

φ(2) φ(3) − 16φ(2) (∂2
0 − 1)φ(1).
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Our proposal for the corresponding partition function generalizing (2.14), (3.16) is then

Zs =
1

[∏s
p=1 det

′Op⊥

]1/2 , (4.5)

where prime in det′Op⊥ means that the product of the eigenvalues should start with

n = s− p, i.e. first s− p modes are to be omitted. As in the spin 2 case, this is related to

the fact that these modes do not appear in the transverse traceless decomposition of the

symmetric traceless tensor φi1...is (see appendix D).

The canonical partition function corresponding to (4.5) can then be written as

Zs =
s∑

p=1

Zp,s−p = Zs,0 + Zs−1,1 + · · ·+ Z1,s−1 , (4.6)

where Zp,s−p is the contribution of spin p operator in (4.5) following from (4.4)

Zp,s−p =
∞∑

n=s−p

2 (n+ 1)(n+ 2p+ 1)

p∑

r=1

qn+2r

=
2qs+2−p(1− q2p)[1 + q + (s2 − p2)(1− q)2 + 2s(1− q)]

(1 + q)(1− q)4
. (4.7)

Performing the sum in (4.6) we then finish with

Zs(q) =
2 q2

(1− q)4
[
(s+ 1)2 (1− qs)− s2 (1− qs+1)

]

=
2(2s+ 1)q2 − 2(s+ 1)2qs+2 + 2s2qs+3

(1− q)4
. (4.8)

This generalizes the above s = 1 (2.4) and s = 2 (3.22) expressions to any s > 2.

Let us now generalize the discussion in section 3.3 to s > 2 to demonstrate that the

same expression (4.8) follows indeed from the operator counting method. The generalized

Weyl tensor Cµ1ν1....µsνs in (1.1), (1.2) transforms in the (s, s, 0, . . . , 0) representation of

SO(d) corresponding to the rectangular Young tableau with two rows and s columns

· · ·
· · ·

︸ ︷︷ ︸
s

(4.9)

Its dimension is given by (see, e.g., [32])

n(s,s) =
(2s+ d− 4)(2s+ d− 3)(2s+ d− 2)(s+ d− 5)!(s+ d− 4)!

s! (s+ 1)! (d− 2)!(d− 4)!
, (4.10)

n(s,s)
∣∣
d=4

= 2 (2 s+ 1) . (4.11)

Since Cs has dimension 2, its components contribute 2(2 s+ 1)q2 to the numerator of Zs.

The non-trivial gauge identities that generalize (3.23) (and which are implicitly contained

in the general discussion in [5]) are

Bµ1···µs ≡ εµ1ν1γ1δ1 · · · εµsνsγsδs ∂ν1 · · · ∂νs Cγ1δ1···γsδs = 0 , ∂µ1Bµ1···µs = 0 , (4.12)
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where Bµ1···µs has dimension s + 2 and is the totally symmetric traceless tensor in the

(s, 0, . . . , 0) representation of SO(d) of dimension

ns = (2s+ d− 2)
(s+ d− 3)!

(d− 2)! s!
, ns

∣∣
d=4

= (s+ 1)2 . (4.13)

Thus, we need to subtract the term (s+1)2qs+2. We should also add back s2qs+3 to account

for the conservation identity satisfied by Bs, i.e. to compensate for the fact that the descen-

dants of Bs containing dimension s+ 3 spin s− 1 operator ∂µ1Bµ1...µs are identically zero.

In total, the generalization of the off-shell gauge-invariant operator count in (3.24) reads

Zoff−shell
s =

2(2s+ 1)q2 − (s+ 1)2 qs+2 + s2 qs+3

(1− q)4
. (4.14)

The equations of motion for the conformal spin s field following from (1.1) that generalize

the linearized Bach equations (3.25) are

Bµ1...µs ≡ ∂ν1 . . . ∂νsCµ1ν1...µsνs = 0 , ∂µ1Bµ1...µs = 0 . (4.15)

Bµ1...µs has exactly the same properties as Bµ1···µs so its counting goes analogously, i.e. the

generalization of (3.26) is found to be

Ze.o.m.
s =

(s+ 1)2 qs+2 − s2 qs+3

(1− q)4
. (4.16)

Subtracting (4.16) from (4.14) as in (3.27), we get exactly the partition function in (4.8).

This provides strong support to our conjectures for the structure (4.1), (4.2) of the

s > 2 conformal higher spin operator on S1×S3. An alternative derivation of Zs based on

group-theoretic argument will be presented in section 5.

5 Conformal spin s partition function from CFTd/AdSd+1 perspective

Let us now return to the discussion in the Introduction and elaborate on the rela-

tions (1.7), (1.15) between the conformal spin s partition function and the partition func-

tions associated with spin s conformal operators in the singlet sector of free CFT in d = 4

and thus also with the one-loop partition functions of massless spin s gauge field in AdS5.

We will suggest a method to compute the shadow partition function Z− s that will al-

low a generalization to all even dimensions d and will thus lead to the expression for the

conformal higher spin partition function Zs generalizing (4.8) to d > 4.

5.1 d = 4 case

The counting of the conformal higher spin equation of motion operators Bs (4.15) discussed

above is literally identical to the counting of spin s conserved current operators Js in the

singlet sector of free scalar CFTd leading to the identification of Ze.o.m.
s in (4.16) with

Z+ s in (1.8).12 The latter should in turn be equal to the one-loop partition function

12The full large N singlet-sector partition function in d ≥ 4 is
∑

∞

s=0 Z+ s(q) = [Zc.s.(q)]
2 which is the

same as the one-loop partition function in the full higher spin theory in thermal AdSd+1 (see [18, 33]).
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Z(+)
s of a massless spin s field in thermal AdSd+1 with S1 × Sd−1 boundary. Indeed, the

expression (1.10) or (4.16) is the same as found in [16, 17] using the thermal quotient analog

of massless spin s field heat kernel in AdS5.

The direct computation of massless spin s partition function with the alternative

boundary conditions in AdSd+1 that should give Z(−)
s appears to be non-trivial. The final

expression should match Z− s, i.e. the partition function that counts shadow operators of

spin s and dimension ∆− = 2− s in the scalar CFTd.

Below we shall first determine the expression for Z− s by a somewhat heuristic approach

and in the next section derive it by more rigorous group-theoretic method. The final d = 4

expression will be the same as in (4.14) thus confirming the identification Z− s = Zoff−shell
s

between the shadow partition function and the off-shell part of the conformal higher spin

partition function announced in (1.15).

As discussed in the Introduction, a naive guess (1.11) for Z− s is obtained by replacing

the dimensions in the expression (1.8) for Z+ s with their shadow counterparts, i.e. in d = 4

Z̃− s(q) =
(s+ 1)2 q2−s − s2 q1−s

(1− q)4
= Z+ s(1/q) . (5.1)

That may correspond to the analytic continuation in physical and ghost dimensions (∆ →
d − ∆) in the massless higher spin heat kernel expression for Z(+)

s on the AdS5 side.

However, Z̃− s(q) containing poles in q cannot be the final answer.

In general, the shadow field with dimension ∆− = 2 − s corresponds to a conformal

group SO(4, 2) representation which is below the unitarity bound that may thus contain

singular states and their associated submodules. From the AdS5 side, in the case of the

alternative boundary conditions there are additional gauge transformations allowed by

non-normalizability (see [14] and refs. there). These are in one-to-one correspondence with

the conformal Killing tensors that belong to the SO(4, 2) representation (s − 1, s − 1, 0)

labelled by the Young tableau that has two rows with s − 1 columns.13 Notice that this

representation is finite dimensional and may be also described as a representation of the

maximal compact real form SO(6), with the same Young tableau. The dimension of (s −
1, s− 1, 0) is given in (4.10) with d = 6 and s→ s− 1, i.e.

n(s−1,s−1,0)

∣∣
d=6

=
1

12
s2(s+ 1)2(2s+ 1) . (5.2)

This suggests the following form for the full shadow partition function (justified on a group-

theoretic basis in appendix F.1)

Z− s(q) = Z̃− s(q) + σs(q) , (5.3)

where σs(q) is the character associated with the conformal algebra representation corre-

sponding to the conformal Killing tensors. It may be computed as a specialization of the

SO(6) character χ(s−1,s−1,0)(x) (see appendix E), where we take a suitable limit of the

13Below we sometimes use also the simplified notation (s− 1, s− 1) ≡ (s− 1, s− 1, 0, . . . , 0) for the 2-row

reprepresentation of SO(2r).
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parameters x = (x1, x2, x3) appropriate for counting the scaling dimensions of the states 14

namely, x1 = q, and x2, x3 → 1 (see (F.24)). Explicitly, we have 15

σs(q) = lim
x→1

χ(s−1,s−1,0)(q, x, 1) = lim
x→1

detM(s− 1;x, q)

detM(0;x, q)
, (5.4)

M(s− 1;x, q) =




2 2 1

xs+1 + x−s−1 xs + x−s 1

qs+1 + q−s−1 qs + q−s 1


 ,

M(0;x, q) =




2 2 1

x2 + x−2 x+ x−1 1

q2 + q−2 q + q−1 1


 .

The ratio of the determinants in (5.4) can be expressed as

σs(q) =
1

6
s (s+ 1) (s2 + s+ 1)

− 1

6

s−1∑

p=1

p (p+ 1)
[
(2s+ 1)p− 3s2 − 2s− 1

]
(qs−p + q−s+p) .

(5.5)

Doing the finite sum and adding the result to (5.1), we finally obtain for Z− s in (5.3)

Z− s =
2(2s+ 1) q2 − (s+ 1)2 qs+2 + s2 qs+3

(1− q)4
. (5.6)

This is exactly the same as (4.14) and thus the relation Z− s = Zoff−shell
s is verified.

5.2 Generalization to d > 4

The above computation of Z− s can be readily generalized to any even d > 4. We start

with the known expression for Z+ s = Z(+)
s in (1.8), i.e.

Z+ s =
ns q

s+d−2 − ns−1 q
s+d−1

(1− q)d
, (5.7)

that counts the conserved spin s dimension ∆+ = s + d − 2 current operator and its

descendants. The naive expression for the shadow partition function (1.11) is found by the

∆ → d−∆ trick, resulting in Z̃− s(q) = Z+ s(1/q). The full Z− s is obtained by correcting

Z̃− s by the character of the conformal group SO(d, 2) representation associated with the

conformal Killing tensors, i.e.

Z− s(q) =
ns q

2−s − ns−1 q
1−s

(1− q)d
+ σs(q) , σs(q) = χ(s−1,s−1,0,...,0)(q, 1, . . . , 1) . (5.8)

14Here x may be associated with the Cartan generators of the compact subgroup SO(2)×SO(2)×SO(2) ⊂

SO(4, 2), i.e., with the scaling dimension and two spins of SO(4).
15As recalled at the end of appendix E, the character χℓ(x) is a combination of determinants that turns

out to be a polynomial in the components xi of x and their inverses x−1
i . So, the limit x2, x3 → 1 is smooth.

Alternatively, working with (E.1), one has to set x2 = x → 1 with x3 = 1, as in (5.4).
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The corresponding so(d + 2) character χ(s−1,s−1,0,...,0)(q, 1, . . . , 1) can be found

from (E.1), (F.24), and the meaning of the choice of its arguments is like in the previ-

ous d = 4 case (see also the discussion at the end of appendix E). As a result, we find

that Z− s(q) in (5.8) may be written in the following form with only positive powers of q

in the numerator

Z− s(q) =
1

(1− q)d

[
d−2∑

m=2

(−1)m cs,m q
m − ns q

s+d−2 + ns−1 q
s+d−1

]
. (5.9)

We may thus represent Z− s as

Z− s(q) = Ẑs(q)−Z+ s(q) , Ẑs ≡
1

(1− q)d

d−2∑

m=2

(−1)m cs,m q
m . (5.10)

Here the coefficients ns are the same as in (1.9), (4.13), while cs,m are some integers

obeying cs,m = cs,d−m that are readily found for any given value of d; their group theoretic

interpretation as dimensions of (s, s, 1, . . . , 1, 0, . . . , 0) representations of SO(d) with m− 2

rows of length 1 will be discussed in the next subsection. For example, in d = 4 we have

ns = (s+ 1)2 and (cf. (5.6))

cs,2 = 2(2s+ 1) . (5.11)

In d = 6, where ns =
1
12(s+ 1)(s+ 2)2(s+ 3) (see (4.13)), we find

cs,2 = cs,4 =
1

12
(s+1)2(s+2)2(2s+3), cs,3 =

1

6
s(s+1)(s+2)(s+3)(2s+3) . (5.12)

As a result, using (1.7), (5.7), (5.10), we arrive at the following expression for the conformal

higher spin partition function in any even d ≥ 4

Zs(q) = Z− s(q)−Z+ s(q) = Ẑs(q)− 2Z+ s(q)

=
1

(1− q)d

[
d−2∑

m=2

(−1)m cs,m q
m − 2ns q

s+d−2 + 2ns−1 q
s+d−1

]
.

(5.13)

This is a generalization of the d = 4 expression in (1.12), (4.8).

The explicit form of the partition function (5.13) in general d is readily found for few

low values of s. The spin 0 case is special in that there are no gauge redundancies. Only

the first terms in Z− s(q) (5.9) and Z+ s(q) (1.8) are actually present, so the expression

in (5.13) should be modified accordingly (the coefficient of the middle term in the bracket

is 1 not 2 and the last term is absent). This gives

Z0(q) =
q2 − qd−2

(1− q)d
. (5.14)

For s = 1 we get the following generalization of (2.4)

Z+1 =
1

(1− q)d
(d qd−1 − qd) , Z− 1 =

1

(1− q)d

d∑

m=2

(−1)m
(
d

m

)
qm , (5.15)

Z1 = Z− 1 −Z+1 =
1

(1− q)d

[
d−2∑

m=2

(−1)m
(
d

m

)
qm − 2d qd−1 + 2 qd

]

= 1− 1− d q − qd + d qd−1

(1− q)d
.
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For s = 2 we find

Z2(q) =
1

2

[
d2 + d+ 2 + (d− 2)(d+ 1)

1− qd

(1− q)d

]
− d

[qd + (1− q)d

(1− q)d−1
− 1− (1− q)1−d

q

]
.

(5.16)

These expressions can be checked by direct operator counting in the d ≥ 4 conformal

higher spin theory (1.2). For s = 0 we have C0 = ∂0φ0 = φ0 of dimension 2 (see (1.3)) with

the equations of motion being ∂d−4φ0 = 0; this explains the two terms in the numerator

of (5.14). Z0 in (5.14) vanishes in d = 4 and is equal to the standard 2-derivative conformal

scalar partition function (2.3) in d = 6.

For s = 1 the first term in the sum in (5.15) is
(
d
2

)
q2 = 1

2d(d − 1)q2 which is the

contribution of components of the dimension 2 field strength C1 = (Fµν) of the conformal

vector in d dimensions with Lagrangian Fµν∂d−4Fµν , (see (1.2)). The second term −
(
d
3

)
q3

subtracts the contribution of the identity Bµ1...µd−3 = ǫµ1...µd ∂µd−2
Fµd−1µd

= 0 which

has indeed
(

d
d−3

)
=

(
d
3

)
components. This overcounts as derivative of Bµ1...µd−3 vanishes

identically, so we need an extra terms to compensate for this, etc., etc. This explains the

presence of all d terms in the sum in Z− 1 in (5.15). The first term in the numerator in

Z+1 is the contribution of the equations of motion Bµ = ∂ν∂d−4Fµν = 0 where Bµ has d

components and dimension d− 1. The second term accounts for the identity ∂µBµ = 0.

Similar counting can be repeated also for s = 2 but is more cumbersome. These

counting checks demonstrate consistency of the general expressions (5.8), (5.9), (5.13).

5.3 Partition functions from characters of conformal algebra representations

Our main result (5.13) for the conformal higher spin partition function can be understood

at a deeper level in terms of characters of Verma modules of the conformal algebra so(d, 2)

(see appendix F for details). From a group-theoretic perspective, the partition functions

Z+ s and Z− s are associated with the conformal current and the shadow fields. The im-

portant point is that the conformal current and the shadow field are not equivalent as

so(d, 2)- modules. Instead, the conformal current generates a unitary irreducible module

while the shadow field generates an indecomposable so(d, 2)-module which is reducible (the

Weyl-tensor like field strength built out of a shadow field is a conformal primary) and non-

unitarizable (its dimension ∆− = 2− s is below the unitarity bound) [24]. The analysis of

the relevant so(d, 2)-modules has been presented in full generality in [20] where the corre-

sponding resolutions à la Bernstein-Gelfand-Gelfand (BGG) have been derived. We have

specialised it to our case in appendix F, explaining in some detail various technical aspects.

The conformal spin s partition function Zs(q) = Z− s(q)−Z+ s(q) can be interpreted as

on-shell shadow field partition function, with Z− s being the off-shell one. Eq. (F.21), i.e.

D[2;(s,s)](q, x) = S[2−s;(s)](q, x) − D[s+d−2;(s)](q, x), is relating the character corresponding

to the dimension 2 conformal field in (s, s) = (s, s, 0, . . . , 0) representation of so(d) to the

characters of the shadow field of dimension 2 and of the conserved current field of dimension

s + d − 2 both in (s) = (s, 0, . . . , 0) representations of so(d). The explicit expression for

D[2;(s,s)](q, x) is given in eq.(F.23).
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To specify (F.23) to the case of the partition function counting only scaling dimen-

sions (with no chemical potentials xi for so(d) spins) we need to set there x = (1, . . . , 1).

Then, according to (F.4), P (q, x) → (1 − q)−d. Also, in this case the so(d) characters

χℓ(x) (see (E.1)) that appear in (F.23) read χℓ(1, . . . , 1), i.e. are given by the dimension

dim(ℓ) of the corresponding finite-dimensional so(d) representation with Young tableau

ℓ = (ℓ1, . . . , ℓ d
2
). The dimension of (s) = (s, 0, . . . , 0) representation of so(d) is given by

ns in (1.9), the dimension of (s, s) = (s, s, 0, . . . , 0) is given in (4.10), while the dimension

of the representation (s, s, 1p) = (s, s, 1, . . . , 1, 0, . . . , 0) associated with the Young tableau

with two length s rows and p additional length 1 rows can be found from the algorithm

in [32].

Then, (F.23) takes exactly the same form as (5.9), with the coefficients cs,m in (5.9)

now having an explicit group-theoretic interpretation as dimensions of the corresponding

so(d) representations with two rows of length s and m− 2 rows of length 1:

cs,m =dim(s, s, 1m−2) (5.17)

=
(2s+ d− 2)!(s+ d− 3)!(s+ d− 4)!(s+ d− 3−m)!(s+m− 3)!

(2s+ d− 5)!(s+m− 1)!(s+ d− 1−m)!s!(s− 1)!(d− 2)!(d− 2−m)!(m− 2)!
.

Let us note also that the partition function corresponding to the conformal Killing tensors,

given by (F.24) with x = (1, . . . , 1), is the same as σs(q) expressed in terms of the so(d+2)

character in (5.8).

The above discussion applied to all even dimensions d ≥ 4. Let us now comment on

the special case of d = 2. In d = 2 the classical CHS action (1.2) is trivial (the s > 1

field strengths vanish), so this partition function comes only from gauge freedom, i.e. from

gauge fixing terms and ghosts in path integral approach (see also [10]). Assuming s > 1, it

follows from the general expression (5.13). For d = 2 the first term in the bracket is absent

and thus we get (ns = 2, see (4.13))

Zs(q) =
−4qs + 4qs+1

(1− q)2
= − 4 qs

1− q
, s > 1 . (5.18)

Equivalently, from (5.7), (5.8), (5.10),

Zs = Z− s −Z+ s = −2Z+ s , Ẑs = Z− s + Z+ s = 0 , s > 1 . (5.19)

For s = 1, i.e. the conformal vector field in d = 2 with the non-local (Schwinger) action∫
d2xFµν∂−2Fµν , the result is actually half of that of (5.18) with s = 1.16 If we also include

dimension 2 scalar with the
∫
d2xφ ∂−2φ, then a similar count gives the numerator of Z0

as q2 − 1, so that

Z1 = − 2q

1− q
, Z0 = −1 + q

1− q
= Z1 − 1 . (5.20)

16Here the counting of terms in the numerator goes as follows: Fµν of dimension 2 gives q2, there are no

gauge identities, while the equations of motion give ∂−2∂µFµν = 0, ∂−2∂µ∂νFµν = 0, i.e. 2q− q2. In total,

Z1 = q2−2q+q2

(1−q)2
= − 2q

1−q
.
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Equivalently, specializing the discussion of appendix F to the so(2, 2) = so(2, 1)⊕ so(2, 1)

case,one finds that the modules V[2;(s,s)] and thus D[2;(s,s)] are absent from the BGG se-

quence. The partition functions (characters) corresponding to the conserved current [s; (s)],

shadow [2− s; (s)], conformal Killing tensor [1− s; (s − 1)] and the conformal spin s field

[2; (s, s)] representations of so(2, 2) are then given, respectively, by

Z+ s = −2Cs−1(q) , Z− s = 2Cs−1(q) , σs = 2χs−1(q) , Zs = −4Cs−1(q) , (5.21)

where Cs(q) =
qs

1−q−1 is the character of the so(3) Verma module corresponding to a highest

weight s representation.17

6 Summing over spins: total CHS partion function and vanishing of

Casimir energy

Having found the conformal higher spin partition function for fixed s, i.e. (4.8) for d = 4

and (5.13) (with (4.13), (5.17)) for general d, we are ready to perform the sum over all

spins s = 0, 1, 2, . . . ,∞ to find to the total CHS theory partition function.

The sum of the Z+ s part (1.8) of Zs = Z− s −Z+ s is finite (assuming q < 1)

Z+(q) =
∞∑

s=0

Z+ s =
qd−2(1− q2)2

(1− q)2d
. (6.1)

Since Z+ s (5.7) is the same as the massless spin s partition function in AdSd+1, eq.(6.1) is

equal to the partition function of totally symmetric massless higher spin Vasiliev theory.

It is also the same as leading order term in the large N limit of the canonical partition

function of the singlet sector of U(N) scalar theory on S1 × Sd−1 [18] (equivalently, it

counts all spin s conserved current operators in free scalar CFTd).

The sum of Ẑs in (5.10) and thus of Z− s in (5.9) is, however, divergent: the coefficients

cs,m in Ẑs (5.10) are polynomials in s (given by (5.17), (6.1)), and their growth with s is not

suppressed by s-independent powers of q. In the discussions of the conformal a-anomaly

coefficient of CHS theory in [9, 10, 14, 15] it was noticed that there is a natural generalized

ζ-function or cutoff regularization [15] that leads to the vanishing of the total sum of the

individual anomaly coefficients over s:18

∞∑

s=0

e−(s+ d−3
2

) ǫ as

∣∣∣∣
ǫ→0, fin

= 0 , (6.2)

d = 4 : as =
1

180
ν2(14ν + 3) , ν = s(s+ 1) ; (6.3)

d = 6 : as =
1

151200
ν2(22ν3 − 55ν2 − 2ν + 2) , ν = (s+ 1)(s+ 2) ; . . . . (6.4)

17Here s may be any real number in general, see [19]. χs(q) is the standard so(3) character. Note also

that Cs(q
−1) = −C−(s+1)(q), Cs−1(q) + Cs−1(q

−1) = χs−1(q).
18Here

∣

∣

ǫ→0, fin
means keeping only finite terms in the sum in the limit ǫ → 0, i.e. dropping all poles in ǫ.
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This regularization should be consistent with the underlying symmetries of the CHS theory

and so it is an obvious prescription to to define the total partition function. Then Z =∑∞
s=0 e

−(s+ d−3
2

) ǫZs

∣∣∣
ǫ→0, fin

is given by

Z(q) = Ẑ(q)− 2Z+(q) , (6.5)

Ẑ(q) =
1

(1− q)d

d−2∑

m=2

(−1)m ĉm q
m , ĉm ≡

∞∑

s=0

e−(s+ d−3
2

) ǫ cs,m

∣∣∣∣
ǫ→0, fin

. (6.6)

Using (5.11), (5.12), we thus find for Z =
∑

sZs

d = 4 : Z = −q
2(11 + 26q + 11q2)

6(1− q)6
, (6.7)

d = 6 : Z =
q2(407− 5298q − 466311q2 − 992956q3 − 466311q4 − 5298q5 + 407q6)

241920(1− q)10
.

In general, the summed expression has the same symmetry property as Z+ in (6.1), i.e.

Z(q) = Z(1/q) . (6.8)

Given the canonical partition function Z(q) (2.1), the corresponding Casimir energy on

Sd−1 can be found from the standard relations (see, e.g., [34], cf. (2.1))

Ec =
1

2

∑

n

dn ωn =
1

2
ζE(−1) , ζE(z) =

1

Γ(z)

∫ ∞

0
dβ βz−1Z(e−β) . (6.9)

Then, by the same argument as in the case of the massless higher spin partition function

Z+(q) in [18] it follows from (6.8) that the total summed over s Casimir energy on Sd−1

in the conformal higher spin theory also vanishes.

It is of interest to derive this also directly from the explicit expressions for the Casimir

energies of individual conformal spin fields. Let us start with the d = 4 case. To compute

the corresponding Casimir energy Ec,s one may either use (6.9) with Zs given by (4.8), or

write Zs as (noting that (1− q)−4 =
∑∞

n=0

(
n+3
3

)
qn)

Zs =

∞∑

n=0

1

6
(n+ 1)(n+ 2)(n+ 3)

[
2(2s+ 1)qn+2 − 2(s+ 1)2qn+s+2 + 2s2qn+s+3

]
, (6.10)

and extract the corresponding degeneracies and mode energies to get Ec,s =∑
a

∑
n d

(a)
n ω

(a)
n . Then, using the spectral cutoff or spectral ζ-function regularization as

standard for the Casimir energy (see also [18]), we find

Ec,s =
∞∑

n=0

1

12
(n+ 1)(n+ 2)(n+ 3)

[
2(2s+ 1)(n+ 2) e−(n+2)ǫ

− 2(s+ 1)2(n+ s+ 2) e−(n+s+2)ǫ + 2s2(n+ s+ 3) e−(n+s+3)ǫ
]

ǫ→0 , fin
,

(6.11)
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so that

d = 4 : Ec,s =
1

720
ν(18ν2 − 14ν − 11) , ν = s(s+ 1) . (6.12)

Note that this expression is similar but different from (6.3) (in general, in d > 2 the Casimir

energy and the a-anomaly coefficients need not match, cf. the discussion in [18]). Still, the

sum of Ec,s also vanishes when computed with the same regularization as in (6.2):

∞∑

s=0

e− (s+ d−3
2

) ǫEc,s

∣∣∣
ǫ→0, fin

= 0 . (6.13)

The same is true for any d.19 For example, in d = 6 we find the following explicit expressions

for Zs in (5.13) and the corresponding Casimir energy (cf. (6.4))

Zs =
(s+ 1)(s+ 2)

12(1− q)6

[
(s+ 1)(s+ 2)(2s+ 3) q2 − 2s(s+ 3)(2s+ 3) q3 (6.14)

+ (s+ 1)(s+ 2)(2s+ 3) q4 − 2(s+ 2)(s+ 3) qs+4 + 2s(s+ 1) qs+5
]
,

d = 6 : Ec,s =
1

241920
ν2 (12ν3 − 58ν2 − 6ν + 117), ν = (s+ 1)(s+ 2) , (6.15)

and one can check directly that (6.13) is satisfied.

We remark that a different regularization of the sum over spins than used in (6.2) would

have led to a partition function for which Z(q) 6= Z(1/q) and as a result the corresponding

vacuum energy would have been non-vanishing.20 So, having total Ec = 0 and having right

regularization are correlated facts (see a related recent discussion in [35]).

Finally, let us consider the special case of d = 2 (5.18), (5.19). In this case Zs is −2Z+ s,

i.e. is -2 of the massless spin s partition function in AdS3, and we get from (5.18), (5.20)

the following expression for the summed partition function

d = 2 : Z = Z0 + Z1 +

∞∑

s=2

Zs = −(1 + q)2

(1− q)2
, (6.16)

so that once again Z(q) = Z(1/q) and the summed Casimir energy vanishes. This can be

seen also explicitly using that Zs = −2Z+ s implies that the corresponding Casimir energies

are also proportional in the same way, i.e. (cf. eq. (5.31) in [18])

d = 2 : Ec,s =
1

6

[
1 + 6 s (s− 1)

]
, s > 1 . (6.17)

In the special cases of “non-local” s = 0, 1 fields we get from (5.20) half the s = 0, 1

extrapolated values of (6.17), i.e. Ec,0 = Ec,1 =
1
12 . Using the universal regularisation (6.13)

to define the sum over s > 1, we conclude once again that the Casimir energy of the full

CHS theory vanishes,21

d = 2 : Ec,0 + Ec,1 +
∞∑

s=2

e− (s− 1
2
) ǫEc,s

∣∣∣∣
ǫ→0, fin

= 0 . (6.18)

19It is possible to check that the regularization with e−(s+a)ǫ leads to vanishing sum over spins for any d

only if a = d−3
2

.
20The regularization (6.2), (6.13) is indeed a very natural one as one can show that it is a direct analog

of the spectral regularization used in [15].
21This also follows from the fact that the total partition function is the function Z = Z0+Z1+

∑

∞

s=2 Zs =

−(1 + q)2/(1− q)2. Its symmetry under q → 1/q explains the vanishing of the Casimir energy.
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In d = 2 the Casimir energy on S1 is indeed proportional to the corresponding conformal

anomaly coefficient (central charge) which thus also cancels.22

7 Concluding remarks

In this paper we have found the partition function Z of non-interacting conformal higher

spin (CHS) theory viewed as a collection of free spin s CFT’s in R
d. The same partition

function can be computed from the CHS theory defined on a curved conformally flat back-

ground S1 × Sd−1. We discussed relations to partition functions appearing in the context

of AdS/CFT and gave a representation-theoretic interpretation of Z in terms of characters

of conformal algebra so(d, 2).

While we focused on the free CHS theory, we should stress that there exists a full

nonlinear generalization. As is well known, introducing consistent interactions involving

massless higher-spin fields is notoriously difficult and various no-go theorems express the

incompatibility between higher-spin gauge symmetries and minimal coupling with gravity

around a flat background (see, e.g., [36] for a review). Fradkin and Vasiliev discovered [37]

that this incompatibility can be resolved on a constant curvature (A)dS background, and

that eventually lead Vasiliev to his unfolded equations describing an interacting tower of

massless higher-spin fields [38, 39]. Only two other explicit examples of interacting higher-

spin theories (in d > 3) are known at present: Chern-Simons-like theory in d = 3 23 and

conformal higher spin theory in even d dimensions. In contradistinction with massless

higher spin theory, these two share the following attractive features: their interactions

are consistent with coupling to gravity even around a flat background and they admit a

conventional action principle.

Indeed, the non-linear CHS theory can be defined as an induced theory [3, 4, 14, 42]. As

mentioned in the Introduction, the logarithmically divergent piece of the one-loop effective

action of a scalar CFT coupled to source fields φs for all conserved symmetric spin s

currents is a local functional of φs starting with the CHS kinetic term in (1.2) 24 and can

thus be interpreted as an action for the interacting CHS theory.25

As we have found above, the bosonic CHS theory has vanishing Casimir energy, and it

may also be consistent at the quantum level if in addition to the vanishing of the anomaly

a-coefficient [9, 14] the full conformal anomaly also vanishes. This theory may thus be

worth a detailed exploration.

22The Seeley coefficient for a conformal spin s > 1 field is B2 = 1
3
c = − 2

3
[1 + 6 s (s− 1)] = −4Ec,s, see

eq. (A.7) [10]. The same values follow [14] also from the AdS3 perspective, i.e. (1.6). For s = 1 one finds

B2 = 1
3
c = − 1

3
[10]. For the non-local scalar

∫

φ∂−2φ the central charge is minus the value (c = 1) of the

real scalar one, i.e. once again B2 = − 1
3
.

23The literature on this subject is considerable so we simply refer to [40, 41] for an example of CS theory

in d = 3 flat spacetime.
24More precisely, the vertex involving a product of m fields with spins si (i = 1, . . . ,m) contains a total

number p = d+
∑m

i=1 (si−2) of partial derivatives [42]. As one can see, the spin-two fields do not contribute

in the sum, consistently with minimal coupling to gravity (i.e. spin 2 fields essentially enter through general

covariantization and do not modify the total number of derivatives).
25Notice that the resulting classical nonlinear theory is a metric-like one and does not require Vasiliev’s

unfolding procedure (though this alternative formulation should exist along the lines of [5]).
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A Spectrum of spin s laplacian on Sd

Let us summarize the result for the spectrum of the operator Os⊥ defined on symmetric

traceless transverse tensors of rank s on Sd

Os⊥(M
2) ≡ (−D2 +M2)s⊥, Os⊥ ψ

(n)
s = λn ψ

(n)
s . (A.1)

The eigenvalues and their degeneracy are given by (see, e.g., [43, 44])

λn = (n+ s)(n+ s+ d− 1)− s+M2, n = 0, 1, 2, . . . , (A.2)

dn = gs
(n+ 1)(n+ 2s+ d− 2)(2n+ 2s+ d− 1)(n+ s+ d− 3)!

(d− 1)!(n+ s+ 1)!
, (A.3)

gs =
(2s+ d− 3)(s+ d− 4)!

(d− 3)!s!
. (A.4)

Here, gs is the number of components of the symmetric traceless transverse rank s tensor

in d dimensions.

B Expansions of curvature-squared invariants

We used the following expressions [45] for the quadratic terms in the background field

expansion of the curvature-squared terms appearing in the action of Weyl gravity

δ2
∫
d4x

√
g R2 =

∫
d4x

√
g

[
1

2
Rhαβ D

2 hαβ +RRαµβν h
αβ hµν − 1

4
R2 hαβ h

αβ

+ (Rαβ hαβ)
2 +RRα

µ hαβ h
µβ + . . .

]
, (B.1)

δ2
∫
d4x

√
g RµνR

µν =

∫
d4x

√
g

[
1

4
hαβ D

2 hαβ − 1

4
RµνR

µν hαβ h
αβ

+Rαµβν hµν D
2 hαβ +

1

2
RαµRβν hαβ hµν

− 1

2
RαµRµν hαβ h

βν +Rµν R
ρµβν hαρ h

α
β

+Rαµβν Rαρβτ hµν h
ρτ +

1

2
Rµν hαβ DµDν h

αβ + . . .

]
,

where dots stand for terms with covariant derivatives of Rµν or vanishing due to the

gauge conditions

Dµ hµν = 0, hµµ = 0. (B.2)

– 27 –



J
H
E
P
0
8
(
2
0
1
4
)
1
1
3

On conformally flat d = 4 background we drop also terms containing the Weyl tensor

Cαβγδ = Rαβγδ −
1

2
(gαγRδβ − gαδRγβ − gβγRδα + gβδRγα)−

1

6
R(gαδgγβ − gαγgδβ) . (B.3)

C Factorized form of Weyl graviton operator on an Einstein background

For generality, let us also record the result (see also [46]) of expansion of the 2nd-derivative

action (3.7) near a generic Einstein background Rµν = 1
4Rgµν which is not conformally-

flat, i.e. may have a non-vanishing Weyl tensor (a simple example is S2 × S2). Then, the

quadratic fluctuation action in (3.8) is given by

L
(2)
φφ = −1

4
φµν φ

µν , L
(2)
hφ =

1

2
φµνD2 hµν −

1

12
Rhµνφµν +Rµγνδ h

µνφγδ , (C.1)

L
(2)
hh = − 1

144
R2 hµνh

µν +
1

12
RRµγνδ h

µνhγδ +
1

24
RhµνD2 hµν . (C.2)

Suppressing tensor indices, we get

L
(2) =

1

2
h Ô φ− 1

4
φφ+

1

24
Rh Ô h , (C.3)

Ô = D2 + 2R − 1

6
R , hR h ≡ hµν Rµγνδ h

γδ . (C.4)

Integrating out φ we get L (2) = 1
4h Ô2 h, where

Ô2 =

(
Ô +

1

6
R

)
Ô =

(
−D2 − 2R

)(
−D2 − 2R +

1

6
R

)
. (C.5)

In particular, for the conformally-flat Einstein space like S4 or AdS4 this reduces to the

operator (3.4).

D On tensor zero modes on S3

To illustrate the reason for the truncation of the spectrum of Os operators in the CHS

partition function (4.5) on S1 × S3, let us consider explicitly the s = 2 and s = 3 cases.

In the s = 2 case we may find the partition (3.16) in the h0µ = 0, hµµ = 0 gauge where

we are left with the spatial traceless hij tensor. We may split it as hij = hTT
ij + D(iVj)

where hTT
ij is transverse traceless and Vi is transverse, DiVi = 0. Let us consider Vi to

be the n-th eigenfunction of the Laplacian on S3, i.e. D2Vi = −λnVi, where, according
to (A.2), we have λn = (n+ 1)(n+ 3)− 1. We want to show that for the mode n = 0, we

have D(iVj) = 0, i.e. Vi is a Killing vector on S3, and therefore this mode does not appear

in the decomposition of hij . Commuting the covariant derivatives on unit-radius S3 one

can show that

(D2 + λn − 4)D(iVj) = 0 , DiD(iVj) = (2− λn)Vj . (D.1)

If n = 0, then λn = 2 and thus D(iVj) is transverse. In this case, from (A.2) we see that

D(iVj) can be non-zero only if the equation (n′ +2)(n′ +4)− 2 = −2 admits a solution for

some non-negative integer n′. Since this is impossible, we have proved the above statement.
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The same mechanism works for spin 3. Now, we split the symmetric traceless field φijk
in TT part plus traceless components as

φijk = φTT
ijk +D(ih

TT
jk) + tijk,

tijk = D(iDjVk) −
2

5
g(ijVk) −

1

5
g(ijD

2 Vk),
(D.2)

where Vi is again transverse. We want to show that certain low modes of hTT
ij and Vi drop

from this decomposition. Let us begin with the first piece, D(ih
TT
jk) . Again, hTT

ij can be

assumed to be the n-th eigenfunction of the Laplacian on S3, i.e. D2hTT
ij = −λnhTT

ij , where

now λn = (n+ 2)(n+ 4)− 2. As in (D.1) we get

(D2 + λn − 6)D(kh
TT
ij) = 0 . (D.3)

For the zero mode, λ0 = 6 and D(kh
TT
ij) = 0 follows from the positivity of the Laplacian

and the fact that there are no constant 3-tensors. Thus, this mode drops out from the

splitting (D.2).

The analysis of the second term tijk in (D.2) goes along similar lines. We assume Vi
to be the n-th mode of the Laplacian on S3, D2Vi = −λnVi, with λn = (n+ 1)(n+ 3)− 1.

We must drop the zero mode of Vi as otherwise tijk = 0, due to the analysis of the spin

2 case. To show that we must also drop the n = 1 mode, we use the following relations,

analogous to (D.1) and (D.3),

(D2 + λn − 10) tijk = 0 , Di tijk =
8

5
(7− λn)D(jVk) . (D.4)

This shows that tijk is transverse precisely at n = 1 where λ1 = 7. In this case, taking

into account that the spectrum of −D2 on 3-tensors is (n′ +3)(n′ +5)− 3, we see that the

operator D2 + λ1 − 10 ≡ D2 − 3 has no zero modes. Again, we conclude that tijk = 0.

E Characters of SO(d) representations

Below we present the basic expression for the character of irreducible tensor representation

of SO(d) with even d = 2r (for details, see, e.g., [19]). The tensor representation is

associated with a Young tableaux ℓ = (ℓ1, . . . , ℓr) with r rows of length ℓi, i = 1, . . . , r.

The character χℓ(x) is the following symmetric function of x = (x1, . . . , xr)

χℓ(x) =
D+(x)− D−(x)

2D(x)
, (E.1)

where

D±(x) = det(x
kj
i ± x

−kj
i ), kj = ℓj + r − j , (E.2)

D(x) =
∏

1≤i<j≤r

(xi + x−1
i − xj − x−1

j ) . (E.3)

One can show that (E.1) leads to a polynomial in xi and x
−1
i after an algebraic factorization.

This follows from the general definition of the character as a trace.
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In the main text, we are interested in special cases where most of components xi are

equal to 1. This is a smooth unambiguous limit after factorization. If one starts directly

with (E.1), one has to be careful to take a limit to avoid removable singularities, as we do

in eq. (5.4).

F Characters of relevant so(d, 2) representations

Below we will explain the structure of spaces of some representations (i.e. modules) of

the Lie algebra so(d, 2) of the conformal group in d dimensions that are relevant for the

computation of the CFT partition functions in the main text. By kinematics of vectorial

AdSd+1/CFTd , these representations appear also in the description of massless symmetric

higher spin s > 1 fields on AdSd+1. We will present the explicit expressions for the

associated characters.

The structure of all (generalized) Verma modules 26 of so(d, 2) has been described

in [20]. The fundamental results of [20] are applied below to the particular so(d, 2)-modules

we are interested in here.27 While in the main text we consider only the case of even d,

here we include for completeness also the case of odd d which happens to be much simpler.

F.1 Characters of generalized Verma so(d, 2)-modules

Let us first introduce some basic definitions and notation. The commutation relations of

the generators of so(d, 2) can be cast in the form

[
E,J±i

]
= ±J

±
i ,

[
Jij ,J

±
k

]
= 2iδk[jJ

±
i][

J
−
i ,J

+
j

]
= 2(iJij + δijE) (F.1)

[Jij ,Jkl] = iδjkJil + antisymetrizations

where i, j = 1, 2, . . . , d and the ladder operators J±i shift the eigenvalues of E by ±1.

The maximal compact subalgebra of so(d, 2) is the direct sum so(2) ⊕ so(d) =

span{E,Jij}. The parabolic subalgebra span{E,J−i ,Jjk} is isomorphic to the algebra of

homotheties of the Euclidean space Rd. Consider the finite-dimensional irreducible module

(to be denoted as Y[∆,ℓ]) of the latter algebra which is characterized by the eigenvalue ∆

of E, annihilated by J
−
i and carrying a finite-dimensional representation of so(d) charac-

terized by a weight vector ℓ ≡ (ℓ1, . . . , ℓr−1, ℓr). Here r denotes the rank of so(d) (i.e. the

integer part of d/2) and the labels satisfy ℓ1 > . . . > ℓr−1 > |ℓr| > 0. When d is even,

26Verma modules are highest-weight modules, i.e. they are generated by a highest weight vector.

Strictly speaking, in the present paper we consider generalized Verma modules, i.e. freely generated by

a (finite-dimensional) highest-weight space but we will drop the term “generalized” since this distinction is

rather technical.
27More precisely, the general analysis presented in subsection 4.4 of [20] is particularized here to the

modules in the first series associated with the dominant integral weight (λ0, λ1, . . . , λd) = (s − 1, s −

1, 0, . . . , 0) in the notation of [20].
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the last label ℓr can be positive or negative. Non-negative integer labels define a Young

diagram where the length of the i-th row is ℓi.
28

The Verma so(d, 2)-module V[∆,ℓ] is the module freely generated from the module Y[∆,ℓ]

by the action of the raising operators J+i . Following standard usage in the literature, we will

often make use of the CFTd language to describe the so(d, 2)-modules although, strictly

speaking, this language is adapted to the decomposition with respect to the noncompact

subalgebra so(1, 1) ⊕ so(d− 1, 1) in which case the raising and lowering operators are the

translation and the conformal boost generators. Modulo this slight abuse of terminology,

the Verma module V (∆, ℓ) can be interpreted as the module spanned by the primary

conformal field of scaling dimension ∆ (or, equivalently, by Y[∆,ℓ] in the above notation)

together with all its descendants. A descendant that is at the same time a primary is called

a singular module.

The characters are generating functions of weight multiplicities via their power ex-

pansion in the variable q corresponding to so(2) generated by E and of the variables

x = (x1, . . . , xr) generated by Jij . We shall denote the character by the same label as the

corresponding module. The character of Y[∆,ℓ] can be written as

Y[∆,ℓ](q, x) = q∆χℓ(x) , (F.2)

where χℓ(x) is the usual character of the finite-dimensional so(d)-module labelled by ℓ

and recalled above in appendix E. The character of the Verma module V[∆,ℓ] is entirely

determined by the character of Y[∆,ℓ] and by the character of the Verma module for the

trivial weight V[0,0](q, x) ≡ P (q, x), i.e.

V[∆,ℓ](q, x) = Y[∆,ℓ](q, x)V[0,0](q, x) = q∆χℓ(x)P (q, x) . (F.3)

The explicit expression for P (q, x) in even d = 2r is (in odd d = 2r + 1 there is an extra

factor of (1− q)−1, see, e.g., [19])

P (q, x) =

r∏

i=1

1

(1− qxi)(1− qx−1
i )

. (F.4)

F.2 Odd dimension d > 3

As usual, one may represent so(d, 2) as acting on fields in R
d, i.e. interpret its representa-

tions in CFTd language. The main representations considered below will be the conserved

spin s current one, the conformal spin s or shadow field one and the conformal Killing

tensor one.

Let us denote by D[1−s;(s−1)] the so(d, 2)-module associated with the conformal Killing

tensor fields in flat d-dimensional space which are totally symmetric tensors of rank s−1 and

dimension ∆ = 1− s subject to the differential constraint: the traceless part of ∂(i1ki2...is)

28In order to remove the exception of negative labels and deal, in the sequel, only with non-negative

labels ℓi > 0 (i = 1, . . . , r), we introduce the non-standard notation ℓ± ≡ (ℓ1, ℓ2, . . . ,±ℓr) for the weights

with nonvanishing last label when d is even. With a slight abuse of notation, in this exceptional cases Y[∆,ℓ]

will stand for the reducible module Y[∆,ℓ+] ⊕ Y[∆,ℓ
−
]. The reducibility is then interpreted as the fact that

a chirality condition can be imposed, e.g. (anti)selfduality on the ℓ d

2

columns of length d/2.
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should vanish (cf. [47]). They may be interpreted as trivial gauge transformations of

the conformal spin s field φs in (1.2) or of the shadow field in CFTd (and thus zero

modes of the corresponding CHS ghost determinant). The corresponding finite-dimensional

irreducible so(d, 2)-module may be formally labelled also by the rectangular Young diagram

(s− 1, s− 1, 0, . . . , 0) of so(d+ 2) made of two rows of length s− 1.

For odd dimension d, the resolution 29 of D[1−s;(s−1)] à la Bernstein-Gelfand-Gelfand is

the following exact sequence of so(d, 2)-modules (cf. appendix B of [20]):

0 → V[s+d−1;(s−1)] → V[s+d−2;(s)] → V[d−2;(s,s)] → V[d−3;(s,s,1)]

→ V[d−4;(s,s,12)] → · · · → V
[ d+1

2
;(s,s,1

d−5
2 )]

→ V
[ d−1

2
;(s,s,1

d−5
2 )]

→ · · · → V[4;(s,s,12)]

→ V[3;(s,s,1)] → V[2;(s,s)] → V[2−s;(s)] → V[1−s;(s−1)] → D[1−s;(s−1)] → 0 ,

(F.5)

where (s, s, 1p) stands for a Young diagram with two rows of length s and p additional rows

of length 1. We also use shorthand notation (s) = (s, 0, . . . , 0) and (s, s) = (s, s, 0, . . . , 0).

Let us illustrate these homomorphisms by considering the first arrows in (F.5). The

exactness implies that the map V[s+d−1;(s−1)] → V[s+d−2;(s)] is injective. In CFTd language,

the module V[s+d−2;(s)] is generated by a traceless symmetric tensor jµ1...µs of conformal

dimension s+ d− 2. Its divergence ∂νj
νµ1...µs−1 is a primary field of conformal dimension

s+d−1 and of rank s−1. The submodule generated by this primary field is indeed the image

of V[s+d−1;(s−1)] in V[s+d−2;(s)]. Moreover, the exactness also implies that this submodule

is mapped by V[s+d−2;(s)] → V[d−2;(s,s)] to zero. The module V[d−2;(s,s)] is generated by

tensors kµ1...µs,ν1...νs of dimension d−2 with the symmetries of the spin-sWeyl tensor. The

s-th divergence jµ1...µs ≡ ∂ν1 · · · ∂νskµ1...µs,ν1...νs is a primary field of dimension s + d − 2

that can be interpreted as a trivial conserved current (an “improvement”). The submodule

generated by this primary field is the image of V[s+d−2;(s)] in V[d−2;(s,s)], which is isomorphic

to the quotient module D[s+d−2;(s)] = V[s+d−2;(s)]/V[s+d−1;(s−1)] the representatives of which

are conserved currents jµ1...µs since ∂νj
νµ1...µs−1 ∼ 0 in D[s+d−2;(s)]. In other words, any

strictly conserved current is trivial.

The maximal submodule of a reducible Verma so(d, 2)-module arises from singular

modules for d odd and the resolution (F.5) of length d provides the following recursive

29Let us recall few basic facts of homological algebra. A finite resolution of length n ∈ N of the module

V0 is an exact sequence of homomorphisms di

0
dn+2
→ Vn+1

dn+1
→ Vn

dn→ · · ·
d2→ V1

d1→ V0
d0→ 0 .

A short exact sequence 0 → V2 → V1 → V0 → 0 is a resolution of length 1 expressing that V0 = V1/V2. More

generally, the exactness of the above sequence, i.e. Ker di = Im di+1 ≡ Di (i = 0, 1, . . . , n+1), produces the

following chain of short exact sequences

0 → Di+1 → Vi+1 → Di → 0 (i = 0, 1, . . . , n)

since Im di = Vi/Ker di. Notice that the first and last short exact sequence are degenerate and simply

express that D0 = V0 and Dn = Vn+1. The other members in this chain determine recursively all modules

Di in terms of the Vj with j > i. In particular, the module V0 = D0 is resolved in the sense that

V0 = V1/(V2/ . . . (Vn/Vn+1)).
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chain of irreducible modules [20]:

D[s+d−1;(s−1)] = V[s+d−1;(s−1)] , D[s+d−2;(s)] = V[s+d−2;(s)]/D[s+d−1;(s−1)] , (F.6)

D[d−2;(s,s)] = V[2;(s,s)]/D[s+d−2;(s)] , D[d−3;(s,s,1)] = V[3;(s,s,1)]/D[2;(s,s)] , . . . (F.7)

D[2;(s,s)] = V[2;(s,s)]/D[3;(s,s,1)] , D[2−s;(s)] = V[2−s;(s)]/D[2;(s,s)] , (F.8)

D[1−s;(s−1)] = V[1−s;(s−1)]/D[2−s;(s)] . (F.9)

As we have seen, in CFTd language the module D[s+d−2;(s)] is spanned by a conserved cur-

rent of spin s together with all its descendants and the quotient by D[s+d−1;(s−1)] in (F.6) is

the translation of the conservation law. Similarly, D[2;(s,s)] describes the module generated

by the linearized Weyl-like tensor of a spin-s shadow field while D[3;(s,s,1)] in (F.8) corre-

sponds to the generalized Bianchi identities. In turn, the module D[2−s;(s)] describes the

module for a pure gauge shadow field since the quotient in (F.8) means that the Weyl curva-

ture is set to zero. Finally, one recovers from (F.9) the initial identification of D[1−s;(s−1)]

as the module of conformal Killing tensor fields, since the quotient by D[2−s;(s)] is the

translation of the conformal Killing equation.

The chain (F.6)–(F.9) allows to compute the characters of all irreducible modules, e.g.,

D[s+d−2;(s)](q, x) = V[s+d−2;(s)] − V[s+d−1;(s−1)](q, x)

= qs+d−2(χ(s)(x)− q χ(s−1)(x) )P (q, x) , (F.10)

D[1−s;(s−1)](q, x) = V[1−s;(s−1)](q, x) + V[s+d−1;(s−1)](q, x)

−
(
V[2−s;(s)](q, x) + V[s+d−2;(s)](q, x)

)

+

d−5
2∑

p=0

(−1)p(V[2+p;(s,s,1p)](q, x) + V[d−2−p;(s,s,1p)](q, x))

=

[
(qs+d−1 + q1−s)χ(s−1)(x)− (qs+d−2 + q2−s)χ(s−1)(x)

+

d−5
2∑

p=0

(−1)p(q2+p + qd−2−p)χ(s,s,1p)(x)

]
P (q, x) . (F.11)

Let S[2−s;(s)] denote the so(d, 2)-module generated by the shadow field of dimension

2− s and spin s. Notice that this module does not appear in the list (F.6)–(F.9), although

it is irreducible for d odd.30 Nevertheless, due to the previous identification of D[2−s;(s)]

with the module of gauge transformations for a spin-s shadow field, one finds that the

character of the shadow field itself is given by

S[2−s;(s)](q, x) = V[2−s;(s)](q, x)−D[2−s;(s)](q, x) (F.12)

30The natural description of shadow fields in this setting seems to be rather in terms of contragredient

modules. In the computation of characters, one may ignore this subtlety.
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= V[2−s;(s)](q, x)− V[1−s;(s−1)](q, x) +D[1−s;(s−1)](q, x) (F.13)

= V[s+d−1;(s−1)](q, x)− V[s+d−2;(s)](q, x)

+

d−5
2∑

p=0

(−1)p
[
V[2+p;(s,s,1p)](q, x) + V[d−2−p;(s,s,1p)](q, x)

]
, (F.14)

where (F.12) follows from the definition of the shadow field as a primary field modulo

gauge symmetries, (F.13) comes from the second isomorphism in (F.9) and the value of

the character (F.11) has been used to obtain the third equality (F.14).

F.3 Even dimension d > 4

For even dimension d, the situation is rather more intricate because the maximal submodule

of a reducible Verma so(d, 2)-module does not necessarily arises from singular modules

only [20]. Moreover, the diagram of homomorphisms which is the analogue of (F.5) is not

a mere line of arrows but a complicate diagram involving a rhombus in the middle and

nonstandard arrows (cf. appendix B of [20]). For that reason, we will only provide the

final result: the corresponding chain of irreducible modules. It has the same structure

as (F.6)–(F.9) until its middle, but it differs in the lower half (cf. subsection 4.4.2 of [20])

D[s+d−1;(s−1)] = V[s+d−1;(s−1)] , D[s+d−2;(s)] = V[s+d−2;(s)]/D[s+d−1;(s−1)] , . . . (F.15)

D
[ d
2
+1;(s,s,1

d
2−3)]

= V
[ d
2
+1;(s,s,1

d
2−3)]

/D
[ d
2
+2;(s,s,1

d
2−4)]

,

D
[ d
2
;(s,s,1

d
2−2)±]

= V
[ d
2
;(s,s,1

d
2−2)±]

/D
[ d
2
+1;(s,s,1

d
2−3)]

,

D
[ d
2
;(s,s,1

d
2−2)]

= U
[ d
2
;(s,s,1

d
2−2)]

/V∗

[ d
2
+1;(s,s,1

d
2−3)]

,

D
[ d
2
−1;(s,s,1

d
2−3)]

= V
[ d
2
−1;(s,s,1

d
2−3)]

/U
[ d
2
;(s,s,1

d
2−2)]

= U
[ d
2
−1;(s,s,1

d
2−3)]

/V∗

[ d
2
+2;(s,s,1

d
2−4)]

, . . .

D[2;(s,s)] = V[2;(s,s)]/U[3;(s,s,1)] = U[2;(s,s)]/V∗
[s+d−2;(s)] , (F.16)

D[2−s;(s)] = V[2−s;(s)]/U[2;(s,s)] = U[2−s;(s)]/V∗
[s+d−1;(s−1)] , (F.17)

D[1−s;(s−1)] = V[1−s;(s−1)]/U[2−s;(s)] , (F.18)

where V∗ stands for the contragredient 31 of the corresponding Verma module. The modules

denoted by U correspond to reducible auxilliary modules.

In CFTd language, the module D[s+d−2;(s)] and D[1−s;(s−1)] keep their interpretations

as conserved current and conformal Killing tensor. However, the pure gauge shadow field

corresponds now to the auxilliary module U[2−s;(s)] in (F.18). The reason underlying this

slight difference with d odd case is that the module generated by a pure gauge field is

reducible in even d because there exist conformally-covariant gauge-fixing conditions.32

31The contragredient module is defined in subsection 4.3 of [20]. Roughly speaking, it is the dual space

where the role of raising and lowering operators are interchanged. In CFT language, the contragredient

analogue of a primary field is a constant field since it is annihilated by the translations.
32The simplest example is s = 1 where the following descendant of a pure gauge field Aµ = ∂µε is also a

primary field: �
d

2
−1∂ ·A = �

d

2 ε.
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Therefore, the irreducible module D[2−s;(s)] can be interpreted as a pure gauge shadow field

obeying a suitable gauge-fixing condition corresponding to the quotient by V∗
[d+s−1;(s−1)]

in (F.17). Similarly, in odd dimension d the off-shell Weyl-like tensor of the spin-s shadow

field generates the irreducible module D[2;(s,s)] but in even dimension d, the off-shell Weyl-

like tensor is reducible since conformally-covariant equations of motion (corresponding to

the submodule V∗
[s+d−2;(s)]) in (F.16) can be imposed. Indeed, in even dimension d the

irreducible module D[2;(s,s)] correspond to the on-shell Weyl-like tensor for a shadow field

of spin s.

Given the chain (F.15)–(F.18) of isomorphisms, one may again compute recusively the

characters of all irreducible modules. The characters of the modules in the upper half of

the chain are unchanged, e.g., (F.10) holds, but the characters in the lower half are slightly

modified. For instance,

D[1−s;(s−1)](q, x) = V[1−s;(s−1)](q, x) + V[s+d−1;(s−1)](q, x)

−
(
V[2−s;(s)](q, x) + V[s+d−2;(s)](q, x)

)

+

d
2
−3∑

p=0

(−1)p
(
V[2+p;(s,s,1p)](q, x) + V[d−2−p;(s,s,1p)](q, x)

)

+ (−1)
d
2V

[ d
2
;(s,s,1

d
2−2)]

(q, x) (F.19)

=

[
(qs+d−1 + q1−s)χ(s−1)(x)− (qs+d−2 + q2−s)χ(s−1)(x)

+

d
2
−3∑

p=0

(−1)p(q2+p + qd−2−p)χ(s,s,1p)(x)+(−q) d
2χ

(s,s,1
d
2−2)

(x)

]
P (q, x)

Due to the identification of U[2−s;(s)] with the module of gauge transformations for a spin-s

shadow field, one finds that the character of the module S[2−s;(s)] generated by the shadow

field itself is given by

S[2−s;(s)](q, x) = V[2−s;(s)](q, x)− U[2−s;(s)](q, x) . (F.20)

Notice that the important relation (F.13) for S[2−s;(s)](q, x) (the counterpart of the

prescription for Z− s proposed in the introduction) holds also for d even, as can be seen

from (F.20) and (F.18). The explicit expression for this character can be easily computed

from (F.3) and (F.19). By making use of the isomorphisms (F.16)–(F.18) together with

the equalities (F.10) and (F.20), one can prove the following remarkable identity (the

counterpart of the relation in (1.7))

D[2;(s,s)](q, x) = S[2−s;(s)](q, x)−D[s+d−2;(s)](q, x) . (F.21)

It is consistent with the expected isomorphism

D[2;(s,s)] = S[2−s;(s)]/D[s+d−2;(s)] , (F.22)
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where the quotient by D[s+d−2;(s)] is the translation of the imposition of the equations of

motion of order d+2s−4 on the spin-s shadow field, or, equivalently, of the conformal higher

spin equations corresponding to (1.2) [1, 4] (see also [5, 24]). Another way to understand

the appearance of D[s+d−2;(s)] is that the natural source term for such equations is indeed

a conformal current that we set to zero when we impose them.

The equations (F.19), (F.20) and (F.21) allow us to find the important character of

the on-shell conformal field:

D[2;(s,s)](q, x) = 2
(
V[s+d−1;(s−1)](q, x)− V[s+d−2;(s)](q, x)

)
+ (−1)

d
2V

[ d
2
;(s,s,1

d
2−2)]

(q, x)

+

d
2
−3∑

p=0

(−1)p
(
V[2+p;(s,s,1p)](q, x) + V[d−2−p;(s,s,1p)](q, x)

)

=

[
2 qs+d−2

(
q χ(s−1)(x)− χ(s−1)(x)

)

+

d
2
−3∑

p=0

(−1)p(q2+p + qd−2−p)χ(s,s,1p)(x) + (−q) d
2χ

(s,s,1
d
2−2)

(x)

]
P (q, x) .

(F.23)

Finally, let us note also that there is the following relation between the relevant characters

of so(d, 2) and so(d+ 2) for the finite-dimensional representations

D[1−s;(s−1)](q, x1, . . . , x d
2
) = χ(s−1,s−1)(q, x1, . . . , x d

2
) , (F.24)

where χ(s−1,s−1)(y1, y2, . . . , y d
2
, y d+2

2
) is the character of 2-row (s − 1, s − 1) ≡ (s − 1, s −

1, 0, . . . , 0) representation of so(d+ 2) defined in appendix E.
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