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Abstract This article provides an overview of the current state of agent-based

modeling in managerial science. In particular, the aim is to illustrate major lines of

development in agent-based modeling in the field and to highlight the opportunities

and limitations of this research approach. The article employs a twofold approach:

First, a survey on research efforts employing agent-based simulation models related

to domains of managerial science is given which have benefited considerably from

this research method. Second, an illustrative study is conducted in the area of

management accounting research, a domain which, so far, has rarely seen agent-

based modeling efforts. In particular, we introduce an agent-based model that allows

to investigate the relation between intra-firm interdependencies, performance

measures used in incentive schemes, and accounting accuracy. We compare this

model to a study which uses both, a principal-agent model and an empirical ana-

lysis. We find that the three approaches come to similar major findings but that they

suffer from rather different limitations and also provide different perspectives on the

subject. In particular, it becomes obvious that agent-based modeling allows us to

capture complex organizational structures and provides insights into the processual

features of the system under investigation.
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1 Introduction

In the last two decades a new approach of research in the social sciences has

emerged: agent-based modeling (ABM)—often synonymously termed as agent-

based computational models, agent-based simulations, multi-agent systems or

multi-agent simulations (e.g. Squazzoni 2010). According to Gilbert (2008) ABM

‘‘is a computational method that enables a researcher to create, analyze, and

experiment with models composed of agents that interact within an environment’’

(p. 2). ABM is used to derive findings for the system’s behavior (‘‘macro level’’)

from the agents’ behavior (‘‘micro level’’) (Bonabeau 2002; Epstein 2006a). This

gives reason to believe that ABM could lead to ‘‘generative social science’’ (Epstein

2006a) or to ‘‘social science from the bottom-up’’ (Epstein and Axtell 1996).

ABM involves constructing a computational model of the system under

investigation and ‘‘observing’’ the behavior of the agents and the evolving

properties of the system in time by extensive experimentation by means of computer

simulation. Agent-based simulation in the social sciences can serve several purposes

like, for example, predicting consequences, performing certain tasks (which is

typically the case in the domain of artificial intelligence), or discovering theory

(Axelrod 1997a, b). The latter means that simulation is used to develop structural

insights and gain understanding of fundamental processes within a certain area of

interest (e.g. Davis et al. 2007; Dooley 2002; Harrison et al. 2007; Gilbert and

Troitzsch 2005). Axelrod regards simulation ‘‘a third way of doing science’’ (1997a,

p. 3) or a ‘‘third research methodology’’ (1997b, p. 17) which has in common with

deduction the explicit set-up of assumptions (though it does not prove theorems by

the ‘‘classical’’ mathematical techniques) and which generates data from a set of

rules (rather than from measurement of real world data as it is typical for induction).

According to Gilbert and Troitzsch (2005), to develop a model the researcher has

‘‘to iterate between a deductive and inductive strategy’’ (p. 26), starting with a set of

assumptions, generating data by an experimental method and analyzing the data

inductively. Ostrom (1988) regards simulation as a third symbol system, apart from

natural language and mathematics, for representing and communicating (theoret-

ical) ideas; in particular, he argues that any theory which can be formulated in either

mathematics or natural language can also be expressed by the means of a

programming language.

ABM can be called a rather interdisciplinary field of research since researchers

from various subject areas such as sociology, economics, managerial science,

computer sciences, and evolutionary biology have contributed to the development

of methods for ABM and have applied agent-based models to their domains of

research as an approach to gaining theoretical insights. As such, in economics the

term ‘‘Agent-based Computational Economics’’ has been established for the

‘‘computational study of economies modeled as evolving systems of autonomous

interacting agents’’ (Tesfatsion 2001, p. 281). However, it is worth mentioning that

ABM is not only characterized by a certain methodological approach but some

assumptions of, in particular, neoclassical economics related to agents’ behavior are

also relaxed. For example, in ABM it is common to assume that agents show some

form of bounded rationality in terms of bounded information and bounded
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computing power (e.g. Epstein 2006a; Axelrod 1997a). As a consequence, in agent-

based models agents are usually not able to find the global optimum of a solution

space ‘‘instantaneously’’; rather they discover the solution space stepwise in a

process of searching for better solutions (e.g. Safarzyńska and van den Bergh 2010;

Chang and Harrington 2006). Hence, the processes by which organizations evolve

or technological changes diffuse, for example, based on the behavior of interacting

agents, are a major concern in ABM.

This article attempts to provide an overview of the current state of ABM as a

research approach for developing theory in the area of managerial science, and, in

particular, to illustrate and discuss the potential contributions to and limitations of

ABM in managerial science. For this, we take a twofold approach: On the one hand,

we focus on research topics in managerial science which have been rather

extensively studied using agent-based models to serve as examples. On the other

hand, there are also areas of managerial science which, to the very best of the

author’s knowledge, have rarely employed ABM so far, as in management

accounting research. Hence, in order to explore the perspectives of ABM in this area

of managerial science, we apply ABM to a well-studied question in management

accounting, namely when to apply aggregate measures (in terms of firm-related

performance measures) rather than measures related to the business unit. In

particular, we compare a ‘‘classical’’ approach in economics based on a principal-

agent model and a related empirical study, both conducted by Bushman et al.

(1995), with an agent-based simulation model.

The remainder of the paper is organized as follows. In Sect. 2 we give a short

overview of the main properties of agent-based computational models. Section 3

provides a brief review of the use of ABM in various fields of managerial science

while Sect. 4 comprises a comparison of an analytical, an empirical and an agent-

based research approach in the area of management accounting. Section 4 is

intended to illustrate potential contributions and shortcomings of ABM as research

approach in managerial science by way of example in order to serve as a basis for

Sect. 5 where we discuss the opportunities and limitations of ABM for managerial

science in a broader perspective.

2 Structural features of agent-based models

Agent-based computational models consist of three central building blocks at their

very core, (1) the agents, (2) the environment in which the agents reside, and (3)

interactions among the agents (e.g. Tesfatsion 2006; Epstein and Axtell 1996). In

Sect. 2.1, these are described in more detail, followed by a short overview of typical

setups for the simulation experiments applied in ABM in Sect. 2.2.

2.1 Building blocks of agent-based models

Agent-based models are intended to allow for deriving insights into a system’s

behavior from the micro level, i.e. the agents’ behavior. Hence, agents are at the

heart of agent-based modeling. Agents are autonomous, decision-making entities

Agent-based modeling in managerial science 137

123



pursuing certain objectives (e.g. Bonabeau 2002; Safarzyńska and van den Bergh

2010; Tesfatsion 2006). Autonomy in this sense means that the individual behavior

of the agents is not determined directly (‘‘top-down’’) by a central authority,

irrespective of interaction with a possibly existing central unit or feedback from the

macro- to the micro-level (Epstein 2006a; Chang and Harrington 2006). The agents

receive information from their environments and about other agents, and react to the

information; however, they also pro-actively initiate actions in order to achieve their

objectives (Wooldridge and Jennings 1995). Hence, from the perspective of

implementing an agent-based model, an agent is a set of data reflecting the agent’s

knowledge about the environment and other agents and a set of methods describing

the agent’s behavior (Tesfatsion 2006).

In an agent-based model, agents may represent individuals like, for example,

workers, business unit managers or board members of a firm or, in other contexts,

for example, consumers or family members. They may also represent a group of

individuals. For example, it might be appropriate to regard a department or a family

as a single agent. Grouping individual agents to ‘‘aggregate’’ agents is particularly

interesting in managerial science since, for example, it allows hierarchical structures

to be mapped (Chang and Harrington 2006; Anderson 1999). However, agents do

not necessarily have to be human or, at least, solely composed of humans; rather

they can be biological entities (e.g. animals or flocks, forests) or technical entities

(e.g. robots).

With respect to agents’ behavior, a common assumption is that agents show some

form of bounded rationality (Simon 1955). In particular, agents are assumed to

decide on basis of bounded information such that they do not have global

information about the entire search space and have limited computational power

(Epstein 2006a; Safarzyńska and van den Bergh 2010; Anderson 1999). Hence,

although agents are usually modeled as pursuing certain goals, they are not global

optimizers. Instead agents merely conduct local search processes, meaning that only

solutions which differ but slightly from recent solutions are discovered and

considered as alternative options. Thus, agents are assumed to carry out ‘‘myopic’’

actions to achieve their goals (Axtell 2007; Safarzyńska and van den Bergh 2010).

Another important feature of ABM is that the models typically comprise agents

which differ in their characteristics, i.e. which are heterogeneous (Safarzyńska and

van den Bergh 2010; Epstein 2006a). Agents may show differences with respect to

several dimensions such as knowledge, objectives, rules for the formation of

expectations, decision rules or information processing capabilities.1 Thus, in ABM

agents are reflected in their diversity (Kirman 1992; Hommes 2006; Epstein 2006a;

Axtell 2007) rather than relying on a representative agent, i.e. the ‘‘representative’’

individual that, when maximizing utility, chooses the same options as the aggregate

choice of the heterogeneous population of individuals as often employed in

economic models (Kirman 1992). According to Stirling (2007), ‘‘diversity’’ or

heterogeneity of agents could show up in three dimensions, i.e. variety, balance, and

1 For example, in agent-based models of financial markets two types of agents could be represented:

fundamentalists, whose expectations are founded on fundamental market data and economic factors like

profit and growth rates, as compared to chartists, who base their expectations about the future on

historical patterns of prices (Hommes 2006).
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disparity. While variety relates to the number of categories into which the agents are

subdivided, balance means the ratios which the categories have in the population of

agents and disparity qualifies the level of distinctiveness of the categories

(Safarzyńska and van den Bergh 2010; Stirling 2007).

In agent-based models, the agents ‘‘reside’’ in an environment which captures the

second core component of ABM. In a rather abstract formulation, the environment

characterizes the tasks or problems the agents face, and, in this sense, the

environment also represents the constraints the agents have to respect when

fulfilling their tasks (Chang and Harrington 2006). Depending on the subject of the

model, the environment might be given by the physical space (i.e. the geographical

location and time of agents and artifacts) or the conceptual space (i.e. the ‘‘location’’

in a figurative sense so that ‘‘neighbored’’ agents are more likely to interact)

(Axelrod and Cohen 1999). Inspired by evolutionary biology, other authors use the

term ‘‘fitness landscape’’ to characterize the environment: ‘‘A fitness landscape

consists of a multidimensional space in which each attribute (gene) of an organism

is represented by a dimension of the space and a final dimension indicates the fitness

level of the organism’’ (Levinthal 1997, p. 935). The landscapes may be highly

rugged with numerous peaks and the agents (e.g. organisms or organizations) search

for higher levels of fitness. We will return to this aspect in Sects. 2.2 and 4.2.

Hence, the term environment in ABM is used in rather a broad sense and could

denote, for example, a landscape of renewable resources (Epstein and Axtell 1996),

a dynamic social network, a set of interrelated tasks or just an n-dimensional lattice

in which agents are located. However, in ABM two aspects should be clearly stated:

First, the environment allows us to determine whether agents are ‘‘neighbored’’,

either literally or in a figurative sense, and, thus, whether agents interact ‘‘locally’’

and search ‘‘locally’’ for superior solutions to their concerns. Second, in ABM the

environment is usually represented in an explicit space, i.e. the environment is

explicitly given (Epstein 2006a), and the agents—due to bounded rationality—

usually do not have perfect knowledge of the entire environment.

Capturing the task and the constraints agents have to meet, the environment can

be characterized with respect to various aspects: For example, the task might be

simple or complex, in terms of being decomposable or not (Chang and Harrington

2006), or the environment could be stable or dynamic over the observation period

(Siggelkow and Rivkin 2005). For dynamic environments, various causes of change

could be modeled, like the occurrence of new agents (e.g. new firms entering a

market) and increasing competition or new technologies being invented (Chang and

Harrington 2006).

Interactions among agents constitute the third core building block of agent-based

models and can be categorized with respect to different dimensions. With respect to

the mode of communication among agents, agent-based models could comprise

direct and/or indirect interactions (Safarzyńska and van den Bergh 2010; Weiss

1999; Tesfatsion 2001). Direct interaction requires some kind of communication

between the agents. For example, agents might inform each other about the actions

they intend to take. In the indirect scenario, agents interact with each other through

the environment. For example, agents may observe each other, note how the

environment is affected by the actions other agents carry out and react to the
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changes in the environment. Moreover, by observing other agents, they could learn

from each other and might imitate each other.

Moreover, interactions could be classified according to the form of coordination

(Tesfatsion 2001; Weiss 1999): For example, in an agent-based model agents could

cooperate (e.g. share their knowledge and other resources) in order to achieve a

common goal or compete due to conflicting goals. However, it should be mentioned

that ABM also allows the exploration of more complex cooperative interactions

like, for example, friendship (Klügl 2000).

In agent-based models, the local interactions among agents induce effects on the

macro-level of the system which cannot be directly linked to the individual behavior

of the agents. Hence, properties of the system ‘‘emerge’’ from the local interactions

of agents which cannot be derived in terms of a ‘‘functional relationship’’ from the

individual behaviors of those agents (Epstein 2006a; Epstein and Axtell 1996;

Tesfatsion 2006). In order to explain macroscopic regularities, like norms or price

equilibria, the question is whether and how they might be the result of simple,

decentralized local interactions between heterogeneous autonomous agents. In this

sense, Epstein and Axtell (1996, p. 33) define the rather multifaceted term

‘‘emergent structure’’ as ‘‘a stable macroscopic or aggregate pattern induced by the

local interaction of the agents’’. From the interactions of both the agent-to-agent and

the agent-to-environment type, self-organization might evolve (Tesfatsion 2001;

Epstein and Axtell 1996).

2.2 Simulation approaches in ABM

A characteristic feature of ABM is the extensive exploitation of computational tools

like object-oriented programming and computational power in order to carry out the

simulation experiments (Tesfatsion 2001; Chang and Harrington 2006). Hence, even

though ABM is sometimes regarded as ‘‘a mindset more than a technology’’

(Bonabeau 2002, p. 7280), some remarks from a more technical perspective of

simulation seem appropriate.

In line with Law (2007), simulation models could be categorized according to

three dimensions: (1) whether the system under investigation is represented for a

certain point in time (static) or whether the system can evolve over time (i.e. static

vs. dynamic); (2) whether the model contains random components or not (i.e.

stochastic vs. deterministic); and (3) whether in the representation of the system

modeled the state variables can change continuously with respect to time or

instantaneously at certain points in time (i.e. continuous vs. discrete) where in the

latter case different time-advance mechanisms have to be distinguished.

Agent-based simulation models usually include probabilistic components and are

dynamic and discrete in nature: agent-based models are often employed to study

processes of, for example, adaptation, diffusion, imitation or learning, and to

analyze the processes that lead to increased performance in detail, e.g. with respect

to the speed of improvement or the diversity of search processes. Accordingly, this

is reflected in dynamic simulation models. The processes to be studied are

represented in discrete periods. In particular, in each period of the observation time,

agents assess the current situation, search for options, evaluate the options and make
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their choices as defined in the behavioral rules, all potentially in interaction with

each other. Then, these actions and events are aggregated to that period’s end state

in the system, which is the initial state for the next period. Stochastic components in

agent-based models might be, for example, the initial state of the system, external

shocks (e.g. the occurrence of a new competitor or radical innovations), the options

which the agents discover in a certain period (remember that in agent-based models,

decision-makers are not able to survey the entire search space at once and, thus,

stepwise discover new solutions) or the agents’ choice of options depending on

propensities (rather than definite preferences) modeled via the probability of taking

a certain option and, for example, subject to learning (Duffy 2006).

In agent-based simulations, time mostly is modeled in discrete time steps with a

fixed-increment time advance, and, thus, leading to equidistant time steps (Gilbert

2008, p. 28). According to Gilbert (2008), an event-driven simulation is an

alternative, in particular, when it is not required that all agents have the chance to

act at each time step, i.e. a next-event time advance mechanisms brings the

simulation clock forward until the next event occurs, for example, when a decision

is made by an agent.

Beyond these rather ‘‘formal’’ classifications, Davis et al. (2007), in studying the

potential contributions and pitfalls of simulation methods for theory development,

argue that the choice of the simulation approach is crucial ‘‘because of its framing of

research questions, key assumptions, and theoretical logic’’ (p. 485). The authors

distinguish between structured and non-structured simulation approaches. The

former contain some built-in properties, like, for example, key assumptions about

the system to be modeled. In contrast, non-structured approaches are customizable,

offering more flexibility to the modeler. However, a structured approach has the

advantage that it has been used and, thus, vetted by other researchers, and that the

approach does not represent ‘‘an idiosyncratic world tailor-made by the modeler.

This reduces the fear that the model is rigged to produce the desired result’’ (Rivkin

2001, p. 280). Davis et al. (2007) provide an extensive overview of structured

simulation approaches used in the area of managerial science—for simulation

studies in general, not only for ABM—and, in particular, mention system dynamics,

NK fitness landscapes, genetic algorithms, cellular automata and stochastic

processes. From these approaches, cellular automata and NK fitness landscapes

are outlined more into detail in the following—cellular automata since, according to

Dooley (2002; see also Fioretti 2013), they could be regarded as a rather simple

form of ABM and thus are helpful to demonstrate the idea of ABM, and NK fitness

landscapes since they were widely used in agent-based models in managerial

science (see Sect. 3) and serve as basis in our illustrative study in Sect. 4.

Cellular automata (Wolfram 1986) consist of a grid where each agent ‘‘resides’’

in a cell and, hence, the lattice reflects a spatial distribution of the agents. The cells

can take various states (most simply just the states ‘‘0’’ or ‘‘1’’). The state sj,t of cell

j at time t depends on its own state in the previous period t - 1 and the previous

state of the neighbored cells, for example, cells sj-1, t-1 and sj?1, t-1. From this, the

two main aspects of cellular automata for ABM can be seen (Walker and Dooley

1999). First, a central idea is that the impact of agents on each other depends on the

distance between the agents, i.e. the closer the neighborhood, the greater the
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influence on each other. Second, the dependence from which the state of a cell

(agent) evolves is specified in rules representing the agent’s behavior. For example,

one rule might be ‘‘if the sum of left and right neighbors is two, change to a 1’’ and

another ‘‘if the sum of left and right neighbors is lower than 2, change to a 0’’.

Hence, starting from a randomly chosen initial configuration, the states of the cells

in the grid change over time according to the specified rules. From the macro

perspective of the grid, i.e. the system to be investigated, the researcher is interested

in whether and, if so, how certain patterns occur from the spatial interaction

processes. The researcher can mainly change two variables within the simulation

experiments, i.e. the behavioral rules of the agents and the ‘‘radius’’ of

neighborhood (e.g. if only direct neighbors affect each other). Agent-based models

implemented via cellular automata mainly seek to study the emergence of macro-

level patterns resulting from local interactions like competition, diffusion or

segregation in a set of agents (Davis et al. 2007). For example, Lomi and Larsen

(1996) apply cellular automata for investigating the characteristics of global

dynamics in a branch (e.g. founding or mortality rates) resulting from local

competition among organizations.

While cellular automata mainly allow the mapping of evolutionary processes, NK

fitness landscapes might be regarded as an approach for representing adaptive

search and optimization processes (Davis et al. 2007). NK fitness landscapes were

originally developed in evolutionary biology (Kauffman 1993; Kauffman and Levin

1987) to study how effectively and how fast biological systems adapt to reach an

optimal point. NK fitness landscapes were initially introduced to managerial science

by Levinthal (1997). Since our exemplary agent-based model presented in Sect. 4 is

based on NK fitness landscapes, including further details of the formal specifica-

tions, at this point we confine our remarks to the main ideas of this approach. The

term NK fitness relates to the number N of attributes (e.g. genes, nodes, activities,

decisions), and the level K of interactions among these attributes. Each attribute

i can take two states di 2 {0, 1}, i = 1, …, N and, hence, the overall configuration

d is given by an N-dimensional binary vector. The state di of attribute i contributes

with Ci to the overall fitness V(d) of configuration d. However, depending on the

interactions among attributes, Ci is not only affected by di, but also by the state of

K other attributes dj,j=i. In the case of K = 0, the fitness landscape is single-peaked.

If K is raised to the maximum, i.e. K = N - 1, altering one single state dj affects the

fitness contributions of all other attributes and, usually, this leads to highly rugged

fitness landscapes with numerous local maxima for V(d) (Altenberg 1997; Rivkin

and Siggelkow 2007).

The explicit modeling of interactions among attributes might be regarded as the

core feature of NK fitness landscapes, explaining its value for research in

managerial science: Controlling parameter K, the approach allows to study systems

with variable complexity in terms of interdependencies among subsystems (e.g.

among subunits or decisions in an organization) with respect to overall fitness. In

particular, with the fitness landscape for all possible configurations d specified

according to the structure of interactions, the system under investigation searches

for higher levels of fitness (performance) by applying certain search strategies like

incremental moves (i.e. only one of the i bits switched) or long jumps. Agent-based
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models using the idea of NK fitness landscapes mainly allow study of the speed and

effectiveness of the adaptation processes of modular systems controlling for the

interactions among the modules. In managerial science there have been numerous

applications of this simulation approach (for overviews see, e.g. Ganco and Hoetker

2009; Sorenson 2002), as might also become apparent in the next section.

3 Selected applications of ABM in managerial science

3.1 Some remarks on the selection of studies

In this section we seek to illustrate the potential of agent-based modeling for

research in managerial science by way of example. Given the rather vast literature

related to ABM in managerial science, the decision is required which literature to

attend to. For this, we find it helpful to start with the particular strengths that

simulation-based research is regarded to unfold in managerial science. As such, it

has been argued that simulation in general, not only the agent-based approach, is

particularly effective for developing theory ‘‘when the research question involves a

fundamental tension or trade-off’’ (Davis et al. 2007, p. 485) like, for example,

short- versus long-term or chaos versus order, and when ‘‘multiple interdependent

processes operating simultaneously’’ occur (Harrison et al. 2007, p. 1229; in a

similar vein Davis et al. 2007, p. 495).

Against this background, we decided to base our selection2 on whether one or

both of two rather prominent tensions in managerial science are captured in the

research question: ‘‘exploration versus exploitation’’ (March 1991) and ‘‘differen-

tiation versus integration’’ (Lawrence and Lorsch 1967). We focus on these tensions

since they have been widely studied in managerial science, show up in various

domains of managerial science and found numerous manifestations in agent-based

models.3

2 However, we also applied a formal criterion in that we decided to focus mainly on articles published in

academic journals in the area of managerial science and journals dedicated to computational economics

and, of course, to follow citations within these articles. It is worth mentioning that we also tried to employ

a more structured approach (Petticrew and Roberts 2006) involving the search for relevant terms in

literature databases as, for instance, conducted by Hauschild and Knyphausen-Aufseß (2013) or

Hutzschenreuter et al. (2012). We found that a considerable number of articles which apparently employ

ABM in managerial science and which are published in well-known scientific management journals do

not use terms like ‘‘agent-based model’’ or ‘‘agent-based simulation’’ in the title, keywords or abstract—

or not even in the entire text (e.g., Denrell and March 2001; Ethiraj and Levinthal 2004; Knudsen and

Levinthal 2007). Of course, relying on a less structured approach for the selection of articles included in a

survey involves the risk of a selection bias (Petticrew and Roberts 2006). However, given that we aim to

provide an illustrative overview on the applications, contributions and pitfalls of ABM in managerial

science and that data base search on our topic appears problematic we decided to follow the approach as

described above.
3 It appears worth mentioning, that according to Smith (1995) it does not reflect the perception of

managers to categorize ‘‘management problems’’ according to the domains of managerial science (e.g.

‘‘marketing problem’’) and that it was argued that dealing with tensions (trade-offs) is in the core of

managerial problems (Nikitin 2013).
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In particular, we selected agent-based simulation studies addressing ‘‘exploration

versus exploitation’’ and/or ‘‘differentiation versus integration’’ from those fields in

managerial science which (a) have seen a remarkable stream of agent-based

modeling efforts and (b) are of general interest in managerial science (and, for

example, are not related to a certain functional specialization4). Given these criteria,

we focus on the domains of strategic management, innovation, and organizational

structuring and design—where each of which has seen a vast number of studies

employing ABM.5

Moreover, we decided to address agent-based modeling efforts which are related

to the internal of organizations, e.g. decision-making or structures within

organizations, rather than entire organizations (firms)—or for being more concrete:

in the research efforts introduced, with only some very few exceptions,6 the agents

represent entities within an organization (e.g. departments, managers) and not entire

firms. Beside the valuable effect of further limiting the research efforts to be

reported on in this survey, another motivation for this decision is that it allows for

keeping a similar level of analysis as provided in our illustrative study in Sect. 4.

This gives also reason to a further decision: We limit7 the exemplary presentation of

modeling efforts to those employing NK fitness landscapes (Sect. 2.2) which is also

the simulation approach chosen in our illustrative study.

The research efforts which we describe subsequently more into detail are also

summarized in Table 5 in the ‘‘Appendix’’, including the publishing journal, the

research question, (appearance of) the core tensions addressed and the main

explanatory variables and parameters as well as the major outcome variable under

investigation.

3.2 Agent-based models addressing the tension of ‘‘exploration

versus exploitation’’

Since the seminal work of March (1991) the terms ‘‘exploration’’ and ‘‘exploita-

tion’’ were increasingly used in domains like, for example, organizational learning,

innovation, competitive advantage, organizational design, and technological

diffusion. According to March (1991) the ‘‘essence of exploitation is the refinement

and extension of existing competences, technologies, and paradigms’’, the ‘‘essence

of exploration is experimentation with new alternatives’’ (p. 85). Exploitation is

4 For example, a considerable body of research employing ABM has been carried out in the fields of

logistics and supply chain management (for an overview Hilletofth and Lättilä 2012).
5 For example, reviews on ABM in the domain of innovation and technological change can be found in

Dawid (2006), Dosi et al. (1997), Garcia (2005), Kiesling et al. (2012), Pyka and Fagiolo (2007),

Silverberg and Verspagen (2005), Wakolbinger et al. (2013) or Zenobia et al. (2009), surveys on ABM in

the area of behavior of organizations and factors affecting organizational performance are given by Chang

and Harrington (2006), Carroll and Burton (2000), Fioretti (2013), and Sorenson (2002); surveys on ABM

employed for so-called ‘‘organizational engineering’’ are provided by Carley (1995, 2002) and Carley and

Gasser (1999).
6 Some few exceptions are made in so far as they are helpful to stress the lines of development of ABM

in managerial science as it is case with the study of Levinthal (1997).
7 An exception is made for the simulation model of March (1991) for its fundamental relevance in

research on the exploration versus exploitation issue.
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associated, for instance, with incremental innovation, local search, and stepwise

improvement around known solutions whereas exploration includes things like

radical innovation, distant search, and identification of new solutions. After

reviewing numerous definitions and conceptualizations of the two terms, Gupta

et al. (2006) based on March (1991), conclude that both, exploitation and

exploration, require some kind of learning, improvement and acquisition of new

knowledge, but while exploitation occurs around the same ‘‘trajectory’’, exploration

is directed towards entirely different trajectories. As March (1991) points out, there

is a fundamental tension between exploration and exploitation since both compete

for scarce resources and organizations decide between the two either explicitly or

implicitly: explicit choices between the two show up in investment decisions or

decisions between alternative competitive strategies; implicit decisions between

exploitation and exploration are incorporated, for example, in organizational

structures and procedures which affect the balance between the two.

In his seminal work, March (1991) also presents a simulation-based study on

‘‘exploration versus exploitation’’ which is based on the idea of stochastic processes

according to the classification of Davis et al. (2007, p. 486) (and not on NK

landscapes as in the center here). In the model, agents learn from the organizational

code (i.e. wisdom accepted in the organization about how to do things) due to

socialization and education; in turn, the code evolves according to the behavior of

those agents within the organization whose beliefs correspond better to reality. The

diversity of agents’ beliefs and learning speed is critical for the dynamics of the

organizational code and agents’ behavior which in turn affect in how far the

organizational code reflects reality.

March’s (1991) model allows for the general finding that exploitation is

beneficial in the short run but problematic in the long run. However, it was argued

that the model lacks some richness, particularly, with respect to properties of the

underlying landscape, (i.e. the ‘‘reality’’ as more or less accurately reflected in the

organizational code and agents’ beliefs) (Chang and Harrington 2006). Subse-

quently, we illustrate the agent-based stream of research related to the balance of

exploration versus exploitation building on the idea of NK fitness landscapes

(Kauffman and Levin 1987; Kauffman 1993) and, with that, in particular, the

complexity of interactions within the underlying fitness landscapes is inevitably a

core issue.

The idea of NK fitness landscapes was initially introduced by Levinthal (1997)8

in the field of management science. In Levinthal’s model the tension ‘‘exploration

versus exploitation’’ shows up in the form of ‘‘local search versus long jumps’’ or

‘‘local adaptation versus radical organizational change’’ of organizations searching

for superior levels of fitness (or likelihood of survival). Hence, in a rather general

perspective, organizations are regarded as agents acting in and reacting to their

8 From a rather ‘‘technical’’ point of view one might argue that Levinthal’s (1997) model comprises a

situation with one single agent interacting with the environment, and, hence, does not fully reflect the

characteristics of an agent-based model (Chang and Harrington 2006). Moreover, this model regards

entire organizations as the agents and not departments or managers as agents and this sense does not meet

the criteria as stated in Sect. 3.1. However, due to its fundamental relevance in the field we report on this

research effort.
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competitive environment and seeking to generate competitive advantages which

could be described in terms of selection and fitness (Hodgson and Knudsen 2010).

Levinthal’s analysis aims to figure out whether the initial configuration of an

organization persists and, by that, affects firm heterogeneity. According to the idea

of NK fitness landscapes, in Levinthal’s model the fitness of an organization is

regarded to depend on its N characteristics (‘‘genes’’) which could, for example,

represent features of its organizational form or strategic policy; moreover, in line

with the NK framework, the K interactions between the firm’s characteristics are

taken into account where highly interactive characteristics lead to highly rugged

fitness landscapes with multiple peaks of nearly similar fitness. The organizations

conduct a form of local search meaning that in each period they have the choice of

keeping up with the status quo of its N characteristics or to choose one of N other

configurations where just one of the N features is changed. Additionally, in each

period the organizations discover one radically different configuration of the

N characteristics in the sense that each of the N dimensions are specified new at

random. Whether the status quo configuration is abandoned in favor of one these

N ? 1 alternatives depends on whether a higher level of fitness can be achieved.

When organizations are in the beginning of their adaptation radical changes occur

rather frequently, but when organizations have achieved a rather high level of fitness

in highly rugged landscapes (i.e. complex interrelations among the N dimensions)

radical changes become rare since it is relatively unlikely that a promising radically

changed alternative is discovered. The results suggest that the initial characteristics

of an organization have a persistent effect on its future form if the fitness landscape

is highly rugged. Hence, firm heterogeneity, rather than being induced by the

different environments the firms are operating in, emerges by processes of local

search and adaptation from the starting configuration when the firm was founded.

Levinthal (1997) concludes with the finding that tightly coupled organizations (i.e.

organizations with highly interrelated characteristics or high levels of K) ‘‘can not

engage in exploration without foregoing the benefits of exploitation’’ while ‘‘more

loosely coupled organizations can exploit the fruits of past wisdom while exploiting

alternative bases of future viability’’ (p. 949).

Based on Levinthal’s seminal work (1997), Rivkin (2000) aims at identifying the

optimal level of complexity within a firm’s strategy in order to prevent imitation.

Inimitability is regarded a major cause of competitive advantage in prominent

schools of thought in strategic management. For instance, according to the

‘‘resource-based view of the firm’’ inimitability could result from causal ambiguity

or tacit knowledge (e.g. Powell et al. 2006); according to the ‘‘market-based view of

the firm’’ as based on industrial economics, high barriers could prevent competitors

from market entrance even if imitation is feasible in principle (e.g. (Caves and

Porter 1977). In contrast to these hypotheses, Rivkin (2000), employing an agent-

based model, argues that imitation could be effectively hampered by the sheer

complexity of a strategy. In this study, the tension of exploration versus exploitation

occurs in the form of different imitation strategies of the imitator: incremental

improvement in terms of stepwise adoption of the strategy to be imitated versus

informed copying in the sense that the imitator reconfiges radically the own strategy

in the direction of the leading firm’s strategy. In particular, based on the framework
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of NK landscapes Rivkin (2000) provides evidence on the imitation-preventing

effect of complexity in three steps: First, he shows that the complexity of

interactions among elements leads to intractability with respect to finding the global

optimum, since even for a moderate time required for the evaluation for newly

discovered configurations, an exhaustive search is too time-consuming (NP

completeness). In the second step, a simulation is applied to show that an imitator

who engages in incremental improvements in order to copy a successful firm is

doomed to failure in the face of complexity. Third, Rivkin shows by simulation that

even a more advanced form of imitation, i.e. copying on the basis of careful

observation of the high-performing leader, is prone to failure if complexity is high.

The reason is that in the case of highly coupled decisions, some of the leader’s

decisions tend to catapult the imitator into a performance basin rather than to the

desired performance peak.

Another strand of research is directed towards the design and structure of new

products and processes relying on NK fitness landscapes. In particular, the level of

modularity (complexity) of design and the implications for firm performance as well

as the persistence of competitive advantages have been analyzed. Ethiraj and

Levinthal (2004)—regarding modularization as a way to deal with complexity—

study the implications of over- or under-modularity compared to some ‘‘true’’ level

of modularity as given by the structure of interdependencies within the design

problem. The tension between exploration and exploitation appears in form of two

distinct key processes of how product design could evolve: by local search or/and by

recombination, i.e. substituting one module by another (either from within the

organization or from copying a module of another firm). Obviously, recombination

provides the opportunity of new (‘‘distant’’) solutions in terms of exploration. The

authors find that too extensive modularization may induce designers’ ignorance

toward relevant interdependencies between modules and may potentially lead to

inferior designs. Moreover, potential speed gains from a modular (i.e. parallelized)

design might be balanced out by an inefficient integration and testing phase, cyclic

behavior and low performance improvements.

In a similar vein, Ethiraj et al. (2008) analyze how the modularity of new

products affects the trade-off between innovation and imitation by competitors. In

this modelling effort the tension of ‘‘exploration versus exploitation’’ occurs in a

trade-off between the incremental innovation of an innovation leader and the

imitation of a low-performing firm. In particular, innovation is represented as a

process of incremental local search where managers seek to enhance the

performance of product modules by incremental intra-module changes; imitation

by competitors has the form of distant search: the imitator, substitutes a subset of the

own choices and/or interdependencies among choices with an equivalent set of

choices and/or interdependencies copied from the innovation leader. The authors

find that modularity of design induces a trade-off between innovation performance

and deterrence to be imitated. The experimental results indicate that nearly modular

structures yield persistent performance differences between innovation leaders and

imitators.

The research efforts introduced exemplarily so far focus mainly on ‘‘exploration

versus exploitation’’ in the context of complexity versus modularity of strategy,
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products or processes without going more into detail of how managers make their

choices. The studies that we present briefly in the following address managerial

decision-making more in detail.

In this sense, the research effort of Gavetti and Levinthal (2000) addresses the

tension between exploration and exploitation in form of different modes of strategic

decision-making. In particular, the authors distinguish forward-looking search

processes from backward-looking ones. In the forward-looking search, the decision

maker relies on ‘‘beliefs about the linkage between the choice of actions and the

impact of those actions on outcomes’’ (Gavetti and Levinthal 2000, p. 113). The

decision maker disposes of a (simplified) cognitive representation of the (true)

fitness landscape allowing for identifying those areas in the fitness landscape that

promise high fitness levels and thus ‘‘moving’’ to these areas at once in a ‘‘long

jump’’ (i.e. altering many characteristics of the N-dimensional configuration of an

organization’s strategy at once). In contrast, experiential search is represented as a

process of local search, meaning that only one or some attributes of the current state,

i.e. the actual experience, are changed, and, should this change appear to be

productive, it is used as a basis for a new local search. Gavetti and Levinthal (2000)

focus on situations where the cognitive representation of the fitness landscape is a

simplified version of the true landscape. In particular, the cognitive representation

includes fewer dimensions of actions than the true landscape incorporates. Hence,

by applying a forward-looking search in the perceived landscape, the decision

maker seeks to identify a superior region in the true landscape, and then tries to

exploit this region with the experiential search, i.e. local search as described above.

Gavetti and Levinthal find that even simplified representations of the actual

landscape provide powerful guidance for subsequent experiential searches in the

actual landscape.

In a similar vein, the ‘‘exploration versus exploitation’’ tension shows up in the

study of Gavetti et al. (2005). The study addresses the question of how effective so-

called analogical reasoning is in situations of novelty and complexity compared to

‘‘deductive reasoning and rational choice’’ on the one side and the idea that ‘‘firms

discover effective positions through local, boundedly rational search and luck’’ (p.

692) on the other side. While the former enables decision makers to directly identify

and move to the global optimum—however ‘‘distant’’ from the status quo it is—

does the latter allow for stepwise improvements related to the status quo only.

Analogous reasoning is regarded as something in between meaning that, when

facing a new situation, decision makers apply insights developed in one context to a

new setting (p. 693). The authors study the effects of certain managerial

characteristics on the contribution of analogical reasoning to firm performance.

They find that analogical reasoning especially contributes to firm performance when

managers are able to effectively distinguish similar industries from different ones.

Moreover, analogical reasoning appears to become less effective with depth of

managerial experience but more effective with increasing breadth of experience.

Sommer and Loch (2004), focusing on complexity in innovation projects and

unforeseeable uncertainty, investigate the contributions of trial and error learning in

contrast to so-called ‘‘selectionism’’. Complexity refers to the number of parts

(variables) and the interactions among them while unforeseeable uncertainty is
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defined ‘‘as the inability to recognize and articulate relevant variables and their

functional relationships’’ (p. 1334). Two approaches to dealing with complexity and

unforeseeable uncertainty are studied with respect to the effects on project payoff.

Trial and error learning means ‘‘flexibly adjusting project activities and targets to

new information, as it becomes available’’ (p. 1335) via local search. If an

organization implements selectionism, several solutions are developed in parallel

and the most appropriate one is selected ex post. However, ex post identifying the

most appropriate solution requires employing a test for the solutions developed.

Hence, apart from the complexity of the system to be designed, the quality of the

test is the second factor to be considered. The results indicate that trial and error

learning is the more robust approach since it yields higher pay-offs in the case of

imperfect tests, in particular, when the project incorporates a manifold of

interactions; moreover, trial and error learning turns out to be more advantageous

even in the case of a perfect ex ante test when the system size is large.

Ghemawat and Levinthal (2008) argue that a strategy is specified by two

complementary approaches, i.e. ex ante design and ex post adjustment. The first

represents a top-down pre-specification of some major principles and some

particular policy choices; the latter describes the emergence of strategic positions

and tactical alignment. Hence, in terms of fitness landscapes, top-down pre-

specification means strategic guidance for positioning an organization in one or

another region of the landscape whereas the latter is related to stepwise

improvement. Hence, top-down pre-specification is associated with long jumps

(exploration) whereas tactical alignment relates to local search (exploitation). The

balance between these two elements of strategic specification also shapes the

requirements for strategic planning: if, for example, only a few higher-level choices

make subsequent lower-level decisions more or less self-evident, than strategic

planning is subject to relatively modest requirements compared to a situation where

the strategic action plan has to be completely specified in advance. In modifying the

symmetric structure as given in the standard NK model, Ghemawat and Levinthal

(2008) take into account that some choices might be more influential (‘‘strategic’’)

than others. The simulation results reveal, first, that it is beneficial with respect to

long-term performance to ex ante focus on the more influential choices rather than

on a random selection of choices; second, the results indicate that tactical

adjustments could compensate for mis-specified strategic choices if these are highly

interactive with other strategic decisions but not if they have low levels of

interactions with other policy choices. Hence, in this model, in a way the tension of

‘‘exploration versus exploitation’’ is studied with respect to the sequence in time of

how the two are considered in decision-making.

Another strand of research addresses the relevance of attitudes in favor of

innovation taking place. Denrell and March (2001) in an simulation-based study

(employing stochastic processes) show that adaptive processes tend to reproduce

success and, thus, lead to a bias against risky and novel alternative options unless,

for example, adaptation is based on some erroneous information. Baumann and

Martignoni (2011) extend this idea in analyzing whether a systematic pro-

innovation bias could increase firm performance. The ‘‘exploration versus

exploitation’’ tension is addressed in a way that decision-makers intend to conduct
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exploitation in terms of incremental improvement but where exploration happens

‘‘accidentally’’ due to a systematic pro-innovation bias. The authors motivate their

analysis with observations that several ‘‘mechanisms’’ at the individual as well as

organizational level tend to prevent rather than foster innovations and change like,

for example, the status quo bias in individual decision making (Kahneman et al.

1982) or inadequate applications of standard financial tools like the discounted cash

flow method (Christensen et al. 2008). Building on the idea of NK fitness

landscapes, Baumann and Martignoni (2011) find that a moderate systematic bias in

favor of innovation could increase performance in the long run in the case of

complex and stable environments, since a pro-innovation bias enhances exploration;

however, in most cases an unbiased evaluation of options turns out to be most

effective.

3.3 Agent-based models addressing the tension of ‘‘differentiation

versus integration’’

‘‘Differentiation versus integration’’ is the second prominent tension we consider in

our illustrative survey. These notions are widely used in managerial science and

they date back to the seminal work of Lawrence and Lorsch (1967), notwithstanding

the fact that the notions capture issues which were connected ever since and

inevitably to organizational structuring. In particular, differentiation denotes ‘‘the

state of segmentation of the organizational system into subsystems, each of which

tends to develop particular attributes in relation to the requirements posed by its

relevant external environment’’ (Lawrence and Lorsch 1967, pp. 3–4); integration

‘‘is defined as the process of achieving unity of effort among the various subsystems

in the accomplishment of the organization’s task’’ where a task is regarded as ‘‘a

complete input-transformation-output cycle involving at least the design, produc-

tion, and distribution of some goods or services’’ (p. 4). Differentiation is associated

with issues like division of labor, specialization and delegation; integration is

related to, for example, coordination by hierarchies, incentives or sharing of norms.

Lawrence and Lorsch (1967) point out, that ‘‘differentiation and integration are

essentially antagonistic, and that one can be obtained only at the expense of the

other’’ (p. 47) and, hence, the need for specialization is to be balanced with the need

for coordination. Several studies apply an agent-based approach to figure out core

issues of the ‘‘differentiation versus integration’’ tension. Subsequently, we report

on some research efforts building on the framework of NK fitness landscapes.

In their agent-based approach Dosi et al. (2003) construe differentiation as a

‘‘division of cognitive labour’’ (p. 413), meaning that it affects how new solutions

are generated (e.g. which scope the search process has for new solutions and who

searches); integration is regarded as the determination of how and which solutions

are selected. At the heart of Dosi et al.’s paper is the relation between

decomposition (i.e. how search in the organization is configured) on the one hand

and incentives (related to individual, team or firm performance) and the power to

veto the decisions of other agents as selection mechanism on the other hand. In this

modeling effort, the N ‘‘genes’’ of the N-dimensional ‘‘genom’’ of the NK

framework represent the decisions which an organization has to make in order to
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fulfil its task; hence, the organizations face an N-dimensional binary decision

problem which, in the course of differentiation, is partitioned with the partitions

assigned to organizational sub-units. Interactions within the decomposed overall

decision problem of the organization are mapped according to the framework of NK

fitness landscapes. However, it is of interest whether interactions across partitions

assigned to sub-units occur. In particular, in the case that the organizational

decomposition and assignment to sub-units does not perfectly reflect the true

interactions between decisions (meaning that cross-unit decisional interactions

occur), according to Dosi et al. (2003) incentives could induce sub-units to mutually

perturb each other’s search processes, in which case hierarchical or lateral veto

power turns out to be useful in preventing endless perturbations.

How well different organizational forms can cope with changes in the

environment while searching for higher levels of performance is a major issue in

Siggelkow and Rivkin (2005). They introduce an agent-based model which has

some features in common with the model of Dosi et al. (2003) as sketched above.

However, two distinctive features in Siggelkow and Rivkin’s model deserve closer

attention. First, to represent environmental turbulence, the authors let the fitness

landscapes undergo correlated shocks at periodic intervals. Second, with respect to

coordination—or integration in terms of Lawrence and Lorsch (1967), Siggelkow

and Rivkin do not only take the incentive system (firmwide versus departmental

incentives) and veto power into account but also distinguish a variety of

intermediate coordination mechanisms between centralized and completely decen-

tralized decision-making. Thus, keeping the decomposition of decisions fixed (two

sub-units of equal decisional scope), the turbulence and the complexity of the

environment (in terms of interactions between the decisions) for the different

coordination modes is varied. Complexity stresses the importance of a broad search

for superior solutions, while turbulence raises the relevance of speedy adjustments.

Furthermore, the results indicate that in the most demanding case of highly turbulent

plus complex environments, two organizational forms turn out to have the best

balance for a speedy and broad search: first, an organization relying on lateral

communication and firm-wide incentives and, second, a centralized organization

where both forms are required to have considerable information processing

capabilities to evaluate alternatives.

This brings us to the third focal aspect of this section, a reflection on information

processing in organizations in agent-based models. In the two models sketched so

far, the decision makers have limited information about the entire landscape of

solutions they are operating in and, thus, have to explore the solution space stepwise

in order to find superior configurations. Moreover, the information processing

capacities of organizational members are integrated in the model in terms of how

many alternatives can be evaluated at once (e.g. Siggelkow and Rivkin 2005).

However, another aspect is that the decision makers might have difficulties

evaluating the consequences of alternative solutions, once discovered.

Some agent-based models have been introduced which seek to fill this gap. In this

sense, the tension of ‘‘differentiation versus integration’’ is analyzed from the angle

of information processing capabilities in organizations. As such, the research of

Knudsen and Levinthal (2007) should be mentioned. Knudsen and Levinthal build
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on the seminal works of Sah and Stiglitz (1988, 1986, 1985), which provide

fundamental insights into the robustness of different organizational structures

against Type I errors (accepting inferior options) and Type II errors (rejecting

superior options) in a project-selection framework. In particular, Knudsen and

Levinthal (2007) introduce path dependence and interactions into the project-

selection framework: While in the original framework, the projects to decide on are

randomly drawn from a fixed distribution of options, in Knudsen and Levinthal’s

model, the availability of alternative project proposals depends on the current state

of the organization. Relying on the idea of local search and NK fitness landscapes,

the authors draw alternative projects from the ‘‘neighborhood’’ of the current

practice, i.e. alternative options only differ in a few attributes from the current state.

The so-called ‘‘task environment’’ describes whether changing one attribute from

the current state in favor of an alternative option also has an effect on the

performance contributions of other attributes or not. Knudsen and Levinthal (2007)

investigate how the imperfect screening capabilities of evaluators, i.e. imperfect

capabilities to assess the consequences of alternatives, affect the performance

achieved in search processes and under the regime of different organizational forms

between hierarchies and polyarchies. With respect to the tension of ‘‘differentiation

versus integration’’ the study of Knudsen and Levinthal (2007) reveals that with

delegation of decision-making the mode of integration (in terms of polyarchies

versus hierarchies) should be seen in the light of the accuracy of the screening

capabilities. For example, hierarchies tend to be efficient in case of rather inaccurate

evaluations and are particularly prone to stick to local maxima in case of perfect

evaluators.

These findings motivated further agent-based simulation studies on the imper-

fections of ex ante evaluations and under various organizational arrangements,

whether the imperfections are of an unsystematic nature (Wall 2010, 2011) or due to

systematic errors (biases) (Tversky and Kahneman 1974) when evaluating

alternatives (e.g. as already reported on Baumann and Martignoni 2011; Behrens

et al. 2014).

3.4 Agent-based models addressing both tensions

In this section we seek to introduce studies which employ ABM to address the

‘‘exploration versus exploitation’’ and the ‘‘differentiation versus integration’’

tension in conjunction with each other. This is of interest, for example, to

investigate which organizational forms foster innovation.

In their widely recognized paper, Rivkin and Siggelkow (2003) raise a similar

question, i.e. how to balance the search for good solutions and stability around good

solutions once discovered in an organization where the former addresses ‘‘explo-

ration’’ and the latter ‘‘exploitation’’ according to March (1991, see also Sect. 3.2).

The authors identify five organizational components affecting organizational

performance, (1) the allocation (decomposition) of decisional tasks to sub-units,

(2) the authority of a central office, (3) the alternative possible solutions the sub-

units discover and inform a central authority about, (4) the incentive system which

might reward sub-units for firm performance or for their departmental performance,
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(5) the information-processing abilities of the central authority. In particular, Rivkin

and Siggelkow’s (2003) analysis is put forward in four steps: First, the authors

investigate the effects that an active central authority has on the search process and

on performance. They find that, in line with conventional wisdom, central authority

is not helpful in the case of low interactions between sub-units’ decisions but for

moderate levels of interaction, a central authority appears to increase organizational

performance. However, contrary to conventional wisdom, if interactions are dense,

centralization turns out to be harmful since the central authority tends to lead the

organization to one of the many bad local optima in which the organization is then

likely to be trapped. In the second step, the effects of the sub-units’ managers’

capabilities for a broad search of solutions are investigated. The results show that,

contrary to conventional wisdom, centralization is more valuable if managers are

highly capable of excessive searching and interactions are dense since then the

central authority has a stabilizing effect. This corresponds to the results of Dosi

et al. (2003) as reported in Sect. 3.3. The third step of analysis reveals some results

that run contrary to intuition of the ‘‘differentiation versus integration’’ tension:

Intuition suggests that central authority (i.e. refraining from delegation) and firm-

wide incentives (i.e. increasing integration) could serve as substitutes to each other;

however, results indicate that they are rather complements: firm-wide incentives can

coordinate the intentions of sub-units to act in the firm’s best interests (integration)

but do not necessarily coordinate decentralized choices: ‘‘Capable subordinates can

engage in aggressive, well-intentioned search that results in mutually destructive

‘improvement́’’ (Rivkin and Siggelkow 2003, p. 306). The fourth step of analysis

confirms conventional wisdom that centralization provides no additional benefit if

no interactions between sub-units’ decisions exist; however, decomposing the

overall organizational task in such a way that some interactions remain, induces

additional search efforts on the sub-units’ site which could be beneficially exploited

by a capable central authority.

Another question of organizational structure that might be particularly relevant

for innovation is raised by Siggelkow and Rivkin (2006): Does extensive searching

at lower levels of an organization increase exploration? Building on the framework

of NK-landscapes, the overall N-dimensional decision problem of the organization

is split into two parts of equal size with each of this partitions assigned to one of two

subunits. In this structure, the subunits’ capability for exploration is captured by the

number of alternatives that each subunit is able to evaluate (and this, in particular, is

given by the number of single decisions in the subunits’ decisional vectors which

could be changed at once). Siggelkow and Rivkin (2006) find that extensive

decentralized exploration does not universally increase exploration at firm level. In

particular, if cross-departmental interactions exist, departmental managers tend to

screen out those solutions that are not in line with their preferences. In consequence,

innovative and preferable solutions from the firm’s perspective might remain

unknown at the company level. Marengo and Dosi (2005), as well as Rivkin and

Siggelkow (2006), also apply agent-based simulations to come to similar

conclusions.

In the models sketched so far, the structural settings of the organizations are kept

stable over time. Siggelkow and Levinthal (2003) investigate whether it might be
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useful to temporarily change the organizational form, i.e. to transiently modify the

configuration of differentiation and integration. In particular, the authors compare a

permanently centralized organization (all decisions of an N-dimensional binary

decision-problem are made by a central authority without any delegation) and a

permanently decentralized organization (the firm’s decisions are decomposed into

two parts of equal size and delegated to two subunits) with an organization which

starts as a decentralized structure and after a certain time becomes reintegrated into

a centralized one. In non-decomposable settings (meaning that decisions assigned to

one subunit also affect the outcome of decisions of another subunit), the reintegrated

form outperforms the permanently decentralized and the permanently centralized

structure. With respect to the decentralized form, this is caused by two patterns in

the search process: firstly, cyclic ‘‘self-perturbance’’ may occur when each sub-unit

modifies its decisions for improving performance and, because of cross-unit

interactions, affects the performance of the other unit, which then starts modifying

its choices and so on. In this situation, reintegration could stop the cycling behavior.

The second pattern which might occur is that the sub-units have found the optimal

solution given the choices of the other mutually dependent department, and, hence,

sub-units might have found a Nash equilibrium which might, however, be low-

performing with respect to firm performance. Then, reintegration could ‘‘disturb’’

the situation and lead to higher levels of overall performance. Moreover, the study

of Siggelkow and Levinthal (2003) views the ‘‘differentiation versus integration’’

tension from an angle of environmental dynamics by asking which organizational

structure is able to achieve high levels of performance after it has gone through an

external shock. Then, a centralized organization with rather a large ‘‘distance’’ to

the optimal solution is likely to stick to an inferior local maximum, especially when

the distance between the initial point and the optimal solution is high. Compared to

that, starting with a decentralized search allowing for local exploration and

switching to a centralized organization after some periods allowing for refinement

and improvement (exploitation), leads to a higher long-term performance on

average. The more general conclusion from this is that organizations facing a highly

complex decision-making problem could be centralized in a steady state but should

temporarily turn to a decentralized form if they go through major environmental

changes. Hence, in the temporarily decentralized organization the tension between

exploration and exploitation, is ‘‘resolved’’ into a sequence in time, i.e. local

exploration first and then global exploitation, and for each of these phases the

appropriate balance between differentiation and integration is implemented.

4 ABM in management accounting research: firm-wide versus business
unit-related performance measures in the compensation of business
unit managers

In the previous sections we gave an exemplary overview of how agent-based

modeling contributed to research on two fundamental issues (‘‘tensions’’) of

managerial science. In this section, by employing an example related to the
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‘‘differentiation versus integration’’ tension, we seek to illustrate how agent-based

simulation could contribute to research in the domain of management accounting.

There is some evidence that simulation as a research method is still only of minor

relevance in the domain of management accounting. Hesford et al. (2007) analyzed

916 articles published from 1981 to 2000 in the ten most influential journals in

management accounting with respect to research topic and method applied, and only

three of the 916 papers were built on a simulative approach.9 Even though, since

then, some further simulation-based studies have been conducted (e.g. Labro and

Vanhoucke 2007; Leitner 2014), the dissemination of simulation and agent-based

simulation, in particular, in the domain of management accounting research, appears

rather low.

Against this background, the purpose of this section is to illustrate the potential

benefits as well as the possible shortcomings of ABM in the domain of management

accounting research. For this, we proceed as follows: As an illustration we refer to

the study by Bushman et al. (1995), which analyzes whether interactions between

business units affect the (optimal) incentive system of business unit managers, in

particular, when compensation is based on firm performance or on the performance

of business units.

First, the relation of this topic to the ‘‘differentiation versus integration’’ tension

as discussed in Sects. 3.3 and 3.4 merits a comment: The tension occurs in the

question of how the reward structure, inevitably based on noisy performance

measures, as a way of integration should be designed in face of different levels of

interdependencies between business units resulting from differentiation.

For our purpose, the Bushman et al. study is of particular interest since it applies

a twofold research method: In the first part a closed-form model is introduced and

afterwards the results of an empirical study are presented. Hence, the idea behind

our procedure is to provide some indication as to how agent-based simulation

models could contribute to filling the ‘‘sweet spot’’ (p. 497) between analytical

modeling and empirical studies in the area of management accounting, as Davis

et al. (2007) expects simulation techniques to do so.

Subsequently, we briefly report on the analytical and empirical part of the

Bushman et al. study (Sect. 4.1). In Sect. 4.2 we introduce an agent-based

simulation model which takes up major aspects of the closed-form model by

Bushman et al. (1995). Section 4.3 presents and discusses the results of our agent-

based model. In Sect. 4.4 we discuss the agent-based approach as applied to our

exemplary topic in comparison to the two research approaches employed by

Bushman et al.

9 Hesford et al. find that in the field of management accounting research, four research methods

predominate. These are analytical studies, surveys and experiments as well as what the authors call

‘‘frameworks’’, i.e., the development of new conceptual frameworks providing new perspectives, drawing

from, and combining, ‘‘multiple perspectives and information sources such as empirical facts, theoretical

or practical observations, prior literature (in other areas or disciplines), supplemented with the authors’

own synthesis and perspectives’’ (Hesford et al. 2007, p. 7).
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4.1 Study by Bushman et al. (1995)

4.1.1 Theoretical part

By means of a principal-agent model, Bushman et al. ‘‘show that the use of

aggregate performance measures is an increasing function of intra-firm interdepen-

dencies’’ (1995, p. 101). The model considers the contracts between a risk-neutral

firm (principal) employing a number m of risk-averse business unit managers k as

agents (each with a negative exponential utility function). For mapping cross-unit

interdependencies, manager k’s effort not only affects the performance of this

manager’s own business unit Dk but also the performance of other units. In

particular, the performance of unit k is given by an additive function as

Dk ¼
Xm

l¼1

fklel þ ~hk; k ¼ 1; . . .;m ð1Þ

with fkl C 0 denoting the marginal product of a manager l’s effort el on unit k’s

performance, fkk[ 0 for all k = 1, …, m and with hk being a normally distributed

random variable with mean zero, variance rk, and covariance (hk, hl) = rkl. It is
worth mentioning that, due to fkl C 0, only positive but no negative side effects on

other business units are incorporated in the model. As a measure for the possibilities

for spillover effects caused by manager k, the authors define the set

Mk ¼ ljfkl [ 0 for any l 6¼ kf g. Then |Mk| = m - 1 means that manager k can affect

the performance of all other business units, while with |Mk| = 0 themanager canmerely

influence the performance of the own unit. The performance of the firm is given as

A ¼
Xm

k¼1

Dk: ð2Þ

The model considers a linear incentive scheme with compensation wi given by

wk ¼ ak þ bkDk þ ckA: ð3Þ

Hence, given the components of interdependencies and incentives, the model is set up

from the ‘‘familiar ingredients’’ of principal-agent models, i.e. the principal maxi-

mizing his/her utility function in terms of the difference between overall performance

A and the sum of compensation wk subject to opportunity wage constraints and the

rational action choice constraints of business unit managers (e.g. Lambert 2001). The

solution of the model leads to the following findings (Bushman et al. 1995, pp. 108):

(1) The relative use [ck/(ck ? bk)] of the aggregate performance measure A in the

optimal incentive system for manager k increases

• with the increasing possibilities |Mk| of the manager to affect the

performance of other units

• for |Mk| C 1 given, with an increasing marginal impact fkl on other units

• for |Mk| C 1 given, with a decreasing number of business units m
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(2) The ratio ck/bk of the relative weights of the business units’ and the aggregate

performance in the optimal contract depends

• on the correlation between business unit k and the rest of the firm: In

particular, if the units’ performances are correlated with each other, noise

could be filtered out of the manager’s contract by putting more weight on

the ‘‘non-k’’ performance measures

• on the noise of the overall performance A: With increasing noise related to

A its relative weight ck decreases

4.1.2 Empirical part

The empirical part of Bushman et al.’s study is based on a sample of 246 firms

which participated in a survey on compensation plans. However, with respect to the

explanatory variables, it is worth mentioning here that the authors do not examine

the second part of their theoretical findings, i.e. those related to the information

quality (noise) of the performance measures, due to the unavailability of appropriate

data.

To measure the level of intra-firm interdependencies, Bushman et al. (1995) use

firm-wide characteristics like diversification or intersegment sales. In particular,

high diversification across product lines is assumed to lead to business units that are

rather independent from each other. The authors distinguish between related

diversification (within an industry) and unrelated diversification (sales distributed

across unrelated industries). Accordingly, they hypothesize that the use of aggregate

performance measures is negatively related to product-line diversification—with an

even stronger negative relation to unrelated diversification. The same is predicted

for geographical diversification, which is assumed to be negatively related to the use

of aggregated performance measures in compensation plans. Furthermore, intra-firm

sales are regarded as a proxy for intra-company interdependencies since they could

occur if the output of one unit serves as the input of other units. Consequently, it is

hypothesized that the use of aggregate performance measures is positively related

with intra-firm sales.

To empirically capture the use of aggregate versus business unit performance

measures, Bushman et al. (1995) determine two distinct aspects, first, the

hierarchical level a manager is assigned to, and, second, the levels of aggregation

of performance measures. For the first aspect, on the basis of the underlying

empirical survey, Bushman et al. distinguish four hierarchical levels in terms of

‘‘Corporate CEO’’, ‘‘Group CEO’’, ‘‘Division CEO’’ and ‘‘Plant Manager’’;

accordingly, for the second aspect, i.e. the aggregation of performance measures,

the authors differentiate between corporate, group, division, and plant performance.

The data available from the underlying survey reflect the relative weights that firms

give to these performance measures for each managerial level. This allows the

weights to be summed up of those performance measures used in the annual bonus

plans of a certain hierarchical level that are ‘‘more aggregate’’ than the
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organizational level of the respective manager. With respect to long-term

incentives, Bushman et al. analyze the extent to which incentives like stock

options are tied to performance measures above the organizational level of the

managers.

The empirical part of Bushman et al.’s (1995) study is more differentiated than

the theoretical part with regard to, at least, two aspects: the number of hierarchical

levels (i.e. four vs. two levels) and the time structure of the incentives (annual and

long-term incentives vs. not determined time-horizon). However, a general finding

of the theoretical part—namely that with increasing cross-unit interactions, all else

equal, it is more useful to base compensation on aggregate performance measures—

is broadly supported by the empirical results. In particular, intra-firm sales and

geographical diversification, serving as proxies for intra-firm interdependencies,

turn out to be highly relevant for the annual bonuses in the predicted manner. In

contrast, product-line diversification appears to be marginally relevant for the

annual compensation plans, and even the differentiation between related and

unrelated product-line diversification does not improve the explanatory power. The

general finding of the theoretical part is also supported with respect to the long-term

incentives which turned out to be nearly entirely tied on corporate performance (i.e.

tied to an aggregate performance measure): they are positively associated with intra-

firm sales and negatively associated with product-line and geographic diversifica-

tion. While the general finding of Bushman et al.’s theoretical part also holds for the

different hierarchical levels captured in the empirical part, the proxies for intra-firm

interactions turn out to have different explanatory power at different hierarchical

levels.

4.2 An agent-based simulation model

In this section, we describe an agent-based model which reflects major features of

the Bushman et al.’s (1995) principal-agent model as there are interdependencies

between business units, linear additive incentive schemes based on the business unit

or more aggregate performance measures and linear additive errors related to

performance measures. However, given the characteristic properties of agents in

ABM (see Sect. 2.1), there are also major differences compared to Bushman et al.’s

formal model like, for example, the ‘‘solution strategy’’ of the unit managers (i.e.

stepwise improvement rather than maximization) due to limited information about

the solution space.

The central issue of our illustrative subject of investigation is the intersection of

interdependencies between business units on the one hand and performance

measures used in the incentive scheme for business unit managers on the other.

Hence, the simulation model has to allow for the representation of different

structures of interdependencies. For this, the concept of NK fitness landscapes

(Kauffman 1993; Kauffman and Levin 1987, see Sect. 2.2) provides an appropriate

simulation approach (Davis et al. 2007) as it allows interactions between attributes

to be mapped in a highly flexible and controllable way.

In our model, artificial organizations, consisting of business units and a central

office, including an accounting department, search for solutions providing
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superior levels of organizational performance for an N-dimensional decision

problem. In particular, at each time step t (t = 1, …, T) in the observation

period, our artificial organizations face an N-dimensional decision problem d!t,

d2t, …, dNt. Corresponding to the formal platform of the NK model, the N single

decisions are binary decisions, i.e. dit 2 0; 1f g; ði ¼ 1; . . .;NÞ. With that, over all

configurations of the N single decisions, the search space at each time step

consists of 2N different binary vectors dt � ðd1t; . . .; dNtÞ. Each of the two states

dit 2 {0; 1} makes a certain contribution Cit (with 0 B Cit B 1) to the overall

performance Vt of the organization. However, in accordance with the NK

framework, the contribution Cit to overall performance may not only depend on

the single choice dit; moreover, Cit may also be affected by K other decisions,

K 2 {0, 1, …, N - 1}. Hence, parameter K reflects the level of interactions, i.e.

the number of other choices djt, j = i which also affect the performance

contribution of decision dit. For simplicity’s sake, it is assumed that the level of

interactions K is the same for all decisions i and stable over observation time

T. More formally, contribution Cit is a function ci of choice dit and of K other

decisions:

Cit ¼ ciðdit; d1it; . . .; dKit Þ ð4Þ

In line with the NK model, for each possible vector (di, di
1, …, di

K) the contribution

function ci randomly draws a value from a uniform distribution over the unit

interval, i.e. U [0, 1]. The contribution function ci is stable over time. Given Eq. 4,

whenever one of the choices dit, dti
1, …, dit

K is altered, another (randomly chosen)

contribution Cit becomes effective. The overall performance V(dt) of a configuration
dt of choices is represented as the normalized sum10 of contributions Cit, which

results in

Vt ¼ VðdtÞ ¼
1

N

XN

i¼1

ci dit; d
1
it; . . .; d

K
it

� �
: ð5Þ

Vice versa, depending on the interaction structure, altering dit might not only affect

Cit, but also the contribution of Cjt,j=i to ‘‘other’’ decisions j = i. Hence, altering dit
could provide further positive or negative contributions (i.e. spillover effects) to

overall performance Vt. In the most simple case, no interactions between the single

choices dit exist, i.e. K = 0, and the performance landscape has a single peak. In

contrast, a situation with K = N - 1 for all i reflects the maximum level of inter-

actions, and the performance landscape would be maximally rugged (e.g. Altenberg

1997; Rivkin and Siggelkow 2007).

So far, the model describes interactions between decisions but not between

business units. For this, we assume that decisions i are delegated to business units.

In particular, our organizations have M business units indexed by r = 1, …, M. Let

each business unit r have primary control over a subset with Nr decisions of the N

10 Due to normalization by N and since Cit is drawn from an interval [0; 1], the overall performance V(dt)

ranges between 0 and 1.
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decisions with the units’ subsets being disjoint so that
PM

r¼1 N
r ¼ N. The overall

organizational N-dimensional decision problem dt � ðd1t; . . .; dNtÞ can then also be

expressed by the combination of ‘‘partial’’ decision problems as dt ¼
d1t . . .d

r
t . . .d

M
t

� �
with each unit’s decisions related only to its own partial decision

problem drt � ðdr1t; . . .; drNrtÞ.
According to the basic behavioral assumptions of agent-based models as

sketched in Sect. 2, our decision-making units do not have the cognitive capabilities

to survey the whole solution space, i.e. the entire performance landscape, at once.

Rather they are limited to exploring the performance landscape stepwise. As

familiar in ABM, this is reflected in our model by a form of local search combined

with a hill-climbing algorithm (e.g. Levinthal 1997; Chang and Harrington 2006;

Levinthal and Posen 2007). In every period, each of the business units makes a

choice out of three options: keeping the status quo, i.e. the choice dr�t�1 made by the

department r in the last period, or opting for one of two adjacent alternatives

discovered randomly. These alternatives are ‘‘neighbors’’ of dr�t�1, i.e. the status quo

of the partial configuration, where ‘‘neighborhood’’ is specified in terms of the

Hamming distance, i.e. the number of dimensions in which two vectors differ. In

particular, each department randomly discovers one alternative dr1t which differs

with respect to one of the single decisions that unit r is responsible for and which

has a Hamming distance h equal to 1 with hðdr�t�1; d
r1
t Þ ¼

PNr

i¼1 dr�i;t�1 � dr1i;t

���
��� ¼ 1 . A

second option dr2t is discovered in which two bits are altered compared to the

(partial) status quo configuration, i.e. with hðdr�t�1; d
r2
t Þ ¼

PNr

i¼1 dr�i;t�1 � dr2i;t

���
��� ¼ 2.

From the three options, dr�t�1, d
r1
t and dr2t , each unit’s manager seeks to identify the

best configuration while assuming that the other units q do not change their prior

sub-configuration dq�t�1; q 6¼ r; q ¼ 1; . . .;M.

Which configuration is most preferable from a unit head’s perspective is

determined by her/his preferences. We assume that managers are interested in

increasing their compensation compared to the status quo salary according to the

incentive scheme given. The compensation in each period t is based on a linear

additive function with possibly two components: First, the rewards depend on the

normalized sum BrOWN
t of those contributions Cit resulting from the subset drt of

decisions delegated to the unit and this reflects unit r’s ‘‘own’’ performance

contribution—corresponding to a unit’s performances in Bushman et al. (1995):

BrOWN
t ðdrt Þ ¼

1

N
�
XNr

i¼1þp

Cit with p ¼
Xr�1

s¼1

Ns for r[ 1 and p ¼ 0 for r ¼ 1: ð6Þ

Second, to harmonize the interests of head of unit r with the organization’s per-

formance, the performances achieved through the subset of decisions dqt assigned to

other units q = r could be part of the value base of compensation of unit r. Hence,

similar to Bushman et al. (1995), the compensation might also depend on the firm’s

performance as given by
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Vt ¼ VtðdtÞ ¼
XM

r¼1

BrOWN
t ð7Þ

which leads to the overall basis for compensating business unit r’s head

Br
t ðdtÞ ¼ a � BrOWN

t ðdrt Þ þ b � VtðdtÞ ð8Þ

Thus, similar to Bushman et al.’s (1995) model, it depends on the values of a and b
to which extent unit r’s performance and/or firm performance—as an aggregate

performance measure in terms of Bushman et al.—is rewarded.

Our baseline model allows for one mode of coordination, which reflects most

purely the form of coordination applied in Bushman et al.’s (1995) model: In a fairly

decentralized mode, in each period each unit’s head chooses one of the three

optional partial vectors dr�t�1, d
r1
t and dr2t related to the decisions the unit head is in

charge of, and the overall configuration dt results as a combination of these

decentralized decisions—without any intervention from central office or any

consultation with the other unit (for this and further modes of coordination, see

Siggelkow and Rivkin (2005) and Dosi et al. (2003)). Hence, similar to Bushman

et al. (1995), only the incentive system is at work for coordination, and the role of

central office is confined to ex post evaluation of the performance of choices made

by the unit managers.

Ex post evaluation of the unit managers’ choices is supported by an accounting

department which provides the central office and the units with performance

information about the choices made, i.e. about the status quo configurations. In

particular, at the end of period t - 1 and before making the decision in period t, the

unit managers receive the compensation for period t - 1 according to the incentive

scheme, and in the course of being rewarded they are informed about the dr�t�1 s’

performances as measured by the accounting department. However, the accounting

department is not able to measure dr�t�1 s’ performances perfectly. Instead, the

accounting department makes measurement errors yðdr�t�1Þ, which we assume to be

independent and normally distributed random variables—each with mean zero,

variance rr and stable within the observation period T. Hence, the measured value

base for unit r’s ‘‘own’’ performance contribution to their status quo option—in

deviation from Eq. 6—is given by

~BrOWN
t ðdr�t�1Þ ¼ BrOWN

t ðdr�t�1Þ þ yðdr�t�1Þ ð9Þ

which principally corresponds to Bushman et al.’s (1995) model (see Eq. 1).

Accordingly, firm performance and the overall value base for compensation

resulting from the status quo configuration, as measured by the accounting

department are afflicted by errors. Thus, Vtðdr�t�1Þ and Br
t ðdr�t�1Þ are modified to

~Vtðdr�t�1Þ and ~Br
t ðdr�t�1Þ, respectively, corresponding to Eqs. 7, 8 and 9.

Hence, we assume that the unit managers in a period t, when choosing one out of

options dr�t�1, d
r1
t and dr2t , remember the compensation they received in the last

period t - 1 and, from that, infer the value base ~Br
t ðdr�t�1Þ for the compensation of
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dr�t�1 as imperfectly measured by the accounting department. Additionally, our

managers have some memorial capacities: Whenever, in the course of the search

process, an option dr1t or dr2t is discovered which had already been chosen in periods

Bt-2, each unit manager remembers the compensation received for that period and,

thus, the imperfectly measured value base for the compensation based on that

configuration.

Let us summarize the information structure captured in the agent-based model: In

the search process, the decision-making agents, i.e. the unit heads, stepwise discover

the space of configurations d and the performances related to those configurations.

Further, the heads of unit r stepwise learn about the measurement errors which the

accounting numbers are afflicted with in relation to each configuration that has been

implemented.11 Moreover, the unit heads remember these (potentially imperfectly)

measured performance numbers which are assumed to be stable in time. However,

the unit heads have limited knowledge of each other’s actions. In particular, they

assume that the other units stay with the status quo of their partial decisions.

4.3 Results and discussion

4.3.1 Simulation experiments and parameter settings

In the simulation experiments, artificial organizations are randomly ‘‘thrown’’

somewhere in the performance landscape and observed while searching for superior

levels of performance in a given observation time. In order to be clear and concise,

we find it helpful to conduct the simulation experiments in three steps: First, we

investigate some baseline scenarios for parameter settings (Sect. 4.3.2) before a

robustness analysis is carried out with respect to the cross-unit complexity of

interactions and the level of accounting errors (Sect. 4.3.3). Finally, we discuss

some model extensions and present results standing for a more intense coordination

mode (Sect. 4.3.4).

The simulation experiments are carried out for parameter settings as summarized

in Table 1. Our parameter settings deserve some further explanations which we seek

to give subsequently.

The organizations we simulate face a ten-dimensional binary decision vector, i.e.

N = 10. The organizations consist of two business units at the first level under the

central office (i.e. M = 2) where the business units are of equal size in terms of

scope of single decisions di delegated to them. We decided for this organizational

configuration for the sake of simplicity: Focusing on this most simple configuration

allows to concentrate on decisional interactions, incentives and accounting errors,

which are in the center of this analysis without having the results being mixed with

11 In a way, given the behavioral ideas incorporated in ABM, this comes closest to the information

structure as assumed in Bushman et al.’s (1995) principal-agent model: In that model the business unit

managers know in advance about the true performance and the distribution of measurement errors that

their choices will be afflicted with. In our agent-based model, the agents neither know the solution space

in advance nor the measurement errors but they have some capabilities for memorizing. This allows unit

managers to remember the ‘‘historic’’ accounting numbers once a certain configuration has been

implemented at least once within the observation period.
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the number and size of departments. However, it is worth mentioning that this is not

a principle point related to ABM; on the contrary, it would be a natural extension to

the results presented here to additionally investigate the effect of the number and

size of departments.

Since even relatively small numbers N of single decisions can lead to a vast space

of interaction structures,12 it is useful to focus the analysis on significant interaction

structures which apparently have empirical relevance (Rivkin and Siggelkow 2007)

and which are particularly relevant for the aspect under investigation. As such, in

the baseline scenarios we distinguish between two types of interaction structures as

Table 1 Parameter settings

Parameter Meaning Values/types

Number of

decisions

Number of single decisions the

organizations have to make, i.e.

dimensions of the binary decision

problem of the organizations

N = 10

Number of

business

units

Number of business units at the second

managerial level, i.e. at the first level

under central office in the organizations

M = 2 with unit 1 in charge of partial

vector d1 = (d1, …, d5) and unit 2 in

charge of partial vector

d2 = (d6, …, d10)

Interaction

structure

Number of decisions assigned to a business

unit which are affected by other units

Baseline scenarios:

SELF: K� ¼ 0

FULL: K� ¼ 5

Robustness analysis:

K� varied from 0 to 5 in steps of 1

Incentive

structure

Ratio at which units’ performance

contribution and firm performance are

rewarded

Units’ performance rewarded only:

a = 1 and b = 0

Firm performance rewarded:

a = 0 and b = 1

Level of

accounting

error

(In)Accuracy of accounting information

about units’ performance contributions in

terms of standard deviation rr (with

mean zero)

Baseline scenarios:

rr 2 f0; 0:05; 0:1g
Robustness analysis:

rr varied from 0 to 0.1 in 0.01 steps

Coordination

mode

Mode in which decisions of the business

units are coordinated among units and

central office

Baseline scenarios:

DECENTRALIZED

Model extension in Sect. 4.3.4: CENTRAL

Observation

period

Number of time steps given to the

organizations for improving firm

performance, i.e. length of the search

process

T = 250

12 With N = 10 decisions as in our simulation experiments, an interaction matrix has 100 entries, of

which those on the main diagonal are always set to x. Therefore, 90 other elements remain, each of which

could be filled or not, and, hence, with N = 10 principally 290 = 1.2379 9 1027 different interaction

structures are possible.
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indicated in Fig. 1a, b which are of particular relevance in the literature of

organizational design.

The interaction structure in Fig. 1a shows two groups of decisions di and

contributions Ci with highly intense intra-unit interactions, but without inter-group

interactions. Hence, Fig. 1a represents a decomposable decision problem, and the

choices of one unit do not affect the performance contributions the other business

unit has primary control over. We denote the level of cross-unit interactions by K*,

which in the case of Fig. 1a is equal to zero. This type of interaction appears as a

‘‘block-diagonal’’ (Rivkin and Siggelkow 2007; Chang and Harrington 2006).

However, the specific aspect indicated in Fig. 1a results from the combination with

the delegation to business units (i.e. differentiation in terms of Lawrence and Lorsch

(1967)): Not only, that it is possible to decompose the decision problem into two

disjoint partial problems; these partial problems are each delegated to a distinct

business unit. This combination of decisional structure and delegation corresponds

to a ‘‘self-contained’’ organization structure (Galbraith 1974) and comes close to a

pooled interdependence (Thompson 1967; Malone and Crowstone 1994). Self-

contained structures are feasible, in particular, for organizations pursuing strategies

of geographical diversification or which create their units according to products in

terms of product divisions and the coordination need across the units is limited

(Galbraith 1973). Subsequently, this structure is named SELF for short.

While Fig. 1a could represent a structure where an organization’s overall task is

differentiated (Lawrence and Lorsch 1967) according to products or geographical

areas, the structure in Fig. 1b could stand for an organization with functional

specialization with its typical high level of interrelations between units and, in

consequence, high level of coordination need (Galbraith 1973, p. 41) (i.e. need for

integration in terms of Lawrence and Lorsch (1967)). In this sense, Fig. 1b

represents the extreme case where all decisions affect the performance contributions

of all other decisions and this situation comes closest to reciprocal interdependence
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Fig. 1 Interaction structures in the baseline scenarios
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according to Thompson’s classification of interdependencies in organizations

(Thompson 1967; Malone and Crowstone 1994). Hence, in this situation, decisional

interdependence is raised to a maximum and, in particular, the cross-unit

interference is raised to a maximum, i.e. K� ¼ 5. This structure is named FULL

for short. However, it is to be mentioned that we restrict our analysis in the baseline

scenarios to the SELF and FULL structure in order to be concise in the presentation of

the main results—and not due to a shortcoming of ABM as might become obvious

by the robustness analysis (Sect. 4.3.3) where we simulate further interaction

structures (see Table 1).

With respect to the incentive schemes, we restrict the presentation of results to

two distinct parameter settings13: In the case of a = 1 and b = 0 only units’

performance is rewarded while in the case of a = 0 and b = 1 firm performance as

an aggregate performance measure in terms of Bushman et al. is compensated. We

chose these two incentive schemes for the detailed presentation of results for the

following reason: As illustrated in Sect. 3, ABM is particularly helpful for

investigating situations in which a certain tension is efficient and this gave reason

for these parameter settings. With the two interaction structures selected for the

baseline scenarios (i.e. SELF and FULL) and the delegation of decisions to business

units (differentiation), the cross-unit coordination need is specified and the two

incentives schemes simulated might be regarded as two means for integration which

most purely direct managers’ attention either merely towards intra-unit coordination

or broaden it towards cross-unit interactions. Hence, in a way, in these parameter

settings for the baseline scenarios the tension between differentiation and

integration is captured in a rather polarizing set-up.14

After thrown randomly somewhere in the performance landscape, the organi-

zations are observed for T = 250 periods in searching for higher levels of

organizational performance. The main reason for choosing this observation time

results from the main purpose of this part of the paper, i.e. to exemplary compare an

ABM to the two methodical approaches (theoretical and empirical) of the Bushman

et al. (1995) paper. The major theoretical finding of Bushman et al. is that in the

equilibrium, achieved by the contracting parties in the principal-agent model, with

increasing (decreasing) cross-unit interactions—all else equal—it becomes more

(less) useful with respect to firm performance (i.e. the principal’s performance in the

principal-agent model) to base compensation on aggregate performance measures.

In order to see whether this finding, in principle, is reproduced in the agent-based

model we seek to give the simulated search processes ‘‘enough time’’—particularly,

since our model implies that our decision-makers show some kind of learning of the

measurement errors made by the accounting system, in order to make our model

even more comparable to the fairly gifted decisions-makers of Bushman et al.’s

(1995) principal-agent model. We chose an observation time of 250 periods with

respect to the results in the FULL interaction structure for perfect accounting

13 However, it is to be mentioned that the simulations were also carried out for further intermediate

incentive schemes which is mentioned briefly in Sect. 4.3 within note 17.
14 The simulations were also carried out for further levels of cross-unit interactions which is reported in

Sects. 4.3.3 and 4.3.4.
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information: In t = 250, the two incentive systems lead to approximately similar

levels of performance. For the other scenarios we find that the performance levels

achieved appear to be rather stable even before t = 250.

(Agent-based) Simulations have the potential to reveal characteristics of the

processes by which, for example, adjustments take place or higher levels of

performance are achieved (e.g. Davis et al. 2007). Hence, in our analysis of the

simulation experiments, we apply some measures which are mainly directed

towards procedural aspects (see also Tables 2 and 3):

Final_Perf reports the final performance achieved in the last period of the

observation time, T = 250. Avg_Perf denotes the averaged performance level

during the observation time. The difference between Final_Perf and Avg_Perf

might be regarded as a condensed indicator for the speed of performance

enhancement. Final_Perf and Avg_Perf are relative, i.e. they are given in relation

to the global maximum of the respective performance landscapes (otherwise the

results could not be compared across performance landscapes). Speed_t5 gives the

increase in performance gained in the first five time steps of the search process and

measures speed, without being ‘‘mingled’’ with search effects, in a rather pure

manner (Rivkin and Siggelkow 2002). Freq_GlobMax reports how often the global

maximum is found in the final observation period relative to the total number of

simulation experiments with the same parameter settings. A problem in adaptive

search processes is that they may stick to local maxima since no configurations with

a higher performance can be found in the neighborhood of a local peak (Rivkin and

Siggelkow 2002). Therefore, an interesting measure is how many alterations of the

decisional vector d are realized within the search process. Freq_AltConf gives the

ratio of periods in which an altered configuration of the decisional vector d is

realized to the total number of observation periods (averaged over all simulations

with identical parameter settings). Hence, in a way, this measure might serve as an

indicator for the diversity of the search process. With respect to imperfect

accounting information, an interesting aspect is how many of the alterations are

directed towards ‘‘false positive’’ configurations, i.e. moves in favor of an

alternative which, in fact, does not increase but rather decreases overall performance

compared to the status quo. Ratio_FalsePos gives the ratio of false positive

alterations to the number of alterations (also averaged over all simulation runs with

the same parameter settings).

4.3.2 Analysis of baseline scenarios

We analyze the results as displayed in Table 2 in three steps:We present the results for

each of the two interaction structures separately, and afterwards we discuss the major

findings in more detail and with respect to the results of Bushman et al. (1995).

4.3.2.1 Results in the case of no cross-unit interactions (SELF) Comparing the

results for the two incentive schemes reveals that—besides the case of perfect

accounting numbers (Acc_err = 0)—the final and average performance is higher if

only unit performance is rewarded. Moreover, with increasing levels of accounting
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error the differences between the two incentive structures increase. Furthermore,

when rewarding unit performance rather than firm performance, the search

processes with noisy accounting numbers are apparently more effective: the speed

of performance enhancements in the early search periods is higher, the global

maximum in the solution space is found more often. Obviously, the organization

makes more movements in the sense that more configurations are implemented

(Freq_AltConf) although the ratio of false positive movements is higher than when

firm performance is rewarded. To sum up:

Without cross-unit interactions it appears more appropriate to reward unit

managers for their particular unit’s performance rather than according to firm

performance and this is more advantageous the higher the accounting errors.

4.3.2.2 Results in the case of maximum cross-unit interactions (FULL) To a certain

extent things seem to be different in the case of maximum cross-unit interactions.

Interestingly, we find that the final performance achieved is—more or less—the same

(0.797) for the two incentive schemes under investigation for a high level of

accounting errors (i.e. rr = 0.1 for all r). However, the search processes obviously

differ substantially with the two incentive systems and, in particular, the search

processes when firm performance is rewarded are more effective: The average

performance is higher, although differences between the two incentive systems

decrease with an increasing level of accounting error. Moreover, when firm

performance is rewarded, the speed of performance improvements in the early

periods of the search process is remarkably higher, the search processes require fewer

alterations to achieve the final performance and go less frequently in a false positive

direction. However, the global maximum is found even less frequently in the case of

firm performance being rewarded. We summarize these findings as follows:

In the case of maximum cross-unit interactions, rewarding unit managers for

firm performance rather than on the basis of their particular unit’s performance

leads to more effective search processes although the advantages decrease

with increasing accounting errors.

4.3.2.3 Discussion Both conventional wisdom and prior research suggest using

aggregate performance measures rather than unit-related measures for compensating

unit managers in the case of intense cross-unit interactions (Bushman et al. 1995;

Eisenhardt 1989; Siggelkow and Rivkin 2005). The reason is that departmental

incentives would not encourage decision makers to consider the external effects of

decisions on the rest of the organization (Siggelkow 2002). In this sense the

incentive system itself can be a source of ‘‘misperception’’ since it might create

‘‘ignorance’’ or ‘‘myopia’’ where a broad perspective is required (Siggelkow 2002;

Siggelkow and Rivkin 2005). Transferred to our model, this suggests the following:

With cross-unit interactions (FULL) and unit performance rewarded, units ignore the

external (negative or positive) effects of their choices, and, reasonably, this slows

down performance enhancement (scenario b1 in Table 2 shows that 50 % of the

alterations made even with perfect accounting information are false positive ones).
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Using aggregate performance measures as a basis for compensation would ensure

that unit heads consider the external effects of their decisions on the rest of the

organization; due to the firm-wide incentives, unit heads have no conflicting

interests and this should lead to fast performance enhancements. In contrast, without

cross-unit interactions (SELF), no externalities exist for departmental decisions, and,

therefore, it does not matter whether firm-wide incentives are given or not. The

results provide broad support for this intuition since all measures reported in

Table 2 for the SELF structure (blocks a1 and a2) and perfect accounting numbers

show similar values—regardless of the incentive scheme.

However, with increasing levels of accounting error, final and average

performances decline for all combinations of interaction structure and incentive

structure, which is in line with intuition, but not generally in line with prior research.

Moreover, it appears worthwhile commenting that in three of the four scenarios with

noisy accounting numbers, the frequency of alterations, i.e. the diversity of the

search, decreases with increasing error level. In a way this may be regarded as

counterintuitive and also contradicts other findings indicating that errors, especially

forecasting errors, increase the diversity of search processes, and as such might even

lead to better results than with perfect information (Levitan and Kauffman 1995;

Knudsen and Levinthal 2007; Wall 2010). To explain this effect we argue that in our

model the accounting numbers stepwise replace the actual performance numbers in

the unit managers’ perception: For time period t-1 the unit managers receive

compensation that, due to accounting errors, might be too low or too high with

respect to the actual performance their choices produced, and which our unit

managers know. In case the compensation was too low, this probably makes the

alternatives dr1t and dr2t discovered in period t even more attractive than staying at

status quo dr�t�1 and this might lead to false positive decisions in favor of dr1t and dr2t .
(This is broadly reflected in the high ratios of false positive decisions in Table 2 in

the case of imperfect accounting numbers.15) However, in case the compensation for

status quo dr�t�1 was too high compared to the actual performance, this probably

makes it attractive for unit managers to retain the status quo. In the course of the

search process, the unit managers learn more and more about the landscape of the

rewarded performance (which is a combination of the actual performance plus

accounting errors; see Eq. 9). The landscape of rewarded performance is more

rugged the higher the level of accounting errors—and it is well known that the more

rugged the landscape, the more likely it is to stick to local peaks (e.g. Altenberg

1997; Rivkin and Siggelkow 2007), which reduces the frequency of alterations.

Hence, we argue that accounting errors related to performance measures used for

compensation reduce the actual performance achieved in two ways: First, these

accounting errors make it more likely that choices are made which are advantageous

from the unit managers’ perspective in terms of compensation but which might

actually reduce performance (‘‘false positive decisions’’); second, accounting errors

15 For perfect accounting numbers in the FULL interaction structure combined with an incentive system

which rewards unit performance only, we also find a high level of false positive decisions: This is due to

myopia or ignorance of spillover effects on the part of the unit managers induced by the inappropriate

incentive structure—and not due to accounting errors.
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make it more likely that the search process sticks to a (local) maximum of

compensation which, in particular, does not necessarily coincide with a (local)

maximum of actual organizational performance, and this ‘‘inertia’’ prevents what

would actually be superior solutions from being implemented.

4.3.3 Robustness analysis

In the baseline scenarios two rather extreme structures of cross-unit interactions are

analyzed: Either the units do not affect each other at all (SELF, K� ¼ 0) or the

interactions are maximal (FULL, K� ¼ 5), meaning that each decision of unit r

affects the outcome of every decision of the other unit. Hence, it is interesting to see

to what extent the findings could be generalized for ‘‘intermediate’’ levels of cross-

unit interactions. In order to gain some indications on this aspect, we ran further

simulations for all intermediate levels of interactions (i.e. for K� ¼ 1; . . .; 4), each
with the two incentive structures under investigation (units versus firm performance

rewarded). Moreover, we simulated further levels of accounting errors (from 0 to

0.1 in steps of 0.01). For each of the 132 scenarios16 (see also Table 1 for the

parameter settings) we simulated 5,000 adaptive walks (5 walks on 1,000 distinct

landscapes).

To compare the two alternative incentive structures against each other

comprehensively (i.e. rewarding the units’ versus firm’s performance), we compute

the difference in average performance Avg_Perf achieved in the observation time

under the two incentive structures. In particular, for each level of accounting error

given and for each level of cross-unit interactions, the difference in the average

performance achieved in the observation period for rewarding company perfor-

mance minus the units’ performance is computed. Figure 2 shows the three-

dimensional structure of the results: values on the vertical axis greater (lower) than

zero indicate that it is advantageous (detrimental) to compensate unit managers

based on the firm performance rather than on the basis of the relevant units’

performances.

The results displayed in Fig. 2 suggest that rewarding unit managers according to

their units’ performance is advantageous not only in the case of K� ¼ 0, i.e. when

no cross-unit interactions exist. Rather, the results indicate that even with higher

levels of cross-unit interactions, it may be beneficial to rely on units’ performance

for compensation or—to put it bluntly—to generate ignorance on the part of the unit

managers relating to the external effects of their decisions; in particular, according

to the simulation results for levels of cross-unit interactions K� ¼ 1 and K� ¼ 2, it

depends on the level of accounting error as to whether to use the units’ or firm

performance as value base for compensation. For levels of cross-unit interaction

K� � 3, it is advantageous to reward according to firm performance for all levels of

accounting errors simulated. However, it appears worthwhile to notice that the

advantage of using aggregate performance measures seems to decline with

16 For the robustness analysis, 132 scenarios were simulated resulting from 6 levels K� of cross-unit

interactions, 11 levels of accounting errors and 2 incentive structures.
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increasing levels of accounting errors.17 This corresponds to findings of the

principal-agent model in Bushman et al. (1995, p. 108), suggesting that with

increasing noise in the performance measures related to the rest of the organization,

it becomes less useful to base compensation on aggregate rather than unit

performance.18

Hence, this lets us summarize the findings as follows: With lower levels of cross-

unit interactions it is more appropriate to base unit managers’ compensation on

units’ performance. For higher levels of cross-unit interactions it becomes

advantageous to reward according to firm performance; however, advantages of

rewarding firm performance could be (over-)compensated by negative effects of

increasing levels of noise in the accounting numbers.

4.3.4 Intensifying coordination and further potential extensions of the model

So far, the only coordination mechanism our artificial organizations apply is the

incentive system: once the business units have decided on their preferences among

the three optional vectors dr�t�1, d
r1
t and dr2t each manager implements that option

which corresponds with the manager’s preferences at the best and without any

further coordination. While this complies with the coordination mode mapped in the

principal-agent model in Bushman et al. (1995), obviously, the coordination could

be more intense, and various other forms of coordination are feasible (e.g.

Christensen and Knudsen 2010; Sah and Stiglitz 1986; Siggelkow and Rivkin

2005)—or in other words: the tension between differentiation and integration could

be balanced in favor of a higher level of integration.

For example, our organizations could employ a rather centralized mode of

coordination (subsequently named ‘‘CENTRAL’’ for short): In every period each unit

is allowed to propose an ordered list with entries of the two most preferred partial

configurations of the three optional vectors dr�t�1, d
r1
t and dr2t . The central office

combines these partial configurations to an overall configuration and selects the

combination which promises the highest aggregate performance V. Hence, in this

mode of coordination, the units shape the search space for central office by making

17 Further simulations were carried out for intermediate forms of the incentive schemes compared to the

two schemes reported above. In particular, for each level of accounting error rr and each level of cross-

unit interactions K�, additionally, three further incentive schemes were simulated with combinations of a
and b of (1; 0.5), (1; 1) and (0.5; 1). We compared the results for each of these incentive structures with

the reward structure of a = 1 and b = 0 similar to the analysis introduced in Fig. 2 done for the setting of

a = 1 and b = 1. This means that for each of the three intermediate reward structures we computed the

difference of average performance achieved against compensating unit performance only. The principle

results regarding the effects of level of cross-unit interactions and noise are in line with those presented in

Fig. 2 and the related text. Moreover, we compared the results across the four incentive schemes where

firm performance is rewarded (i.e. where b[ 0): We find that with increasing relative use of firm

performance in the reward structure and increasing levels of accounting error, the higher the loss against

rewarding merely unit performance—or put in terms of the graph in Fig. 2: with increasing relative

weight put on firm performance in the incentives system the three-dimensional structure becomes steeper.
18 In Sect. 4.4 we go more into detail regarding the comparison between the optimizing approach in the

theoretical part of Bushman et al. (1995) and the simulation experiments.
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their proposals and, in doing so, affect the configuration finally chosen. However,

each proposal is evaluated by the central office, which makes the final choice.

Table 3 reports the condensed results for the SELF and the FULL interaction

structure and Fig. 3 indicates the differences in average performance for the two

reward structures for different levels of accounting error and cross-unit interac-

tions—corresponding to Fig. 2.

The results for CENTRAL coordination confirm the general findings as proposed for

the decentralized coordination mode and as stated by Bushman et al. (1995) in their

formal analysis: compensating according to units’ performances is more appropriate

in the case of low levels of cross-unit interactions while rewarding firm performance

becomes advantageous with increasing levels of interactions. This finding seems to

be rather robust against different coordination modes. Moreover, this robustness

may contribute to explaining why Bushman et al. (1995) confirm their major finding

(the higher the level of intra-firm interactions, the more aggregate performance

measures should be used) in their empirical study without controlling for the

coordination mechanisms applied beyond the incentive system.

However, Fig. 3 suggests that in the case of CENTRAL coordination, the choice of

the appropriate incentive structure is less relevant than for the DECENTRALIZED mode

(the wins and losses reported on the vertical axis in Fig. 3 are rather low—or, in

other words, the three-dimensional structure is remarkably flat compared to Fig. 2).
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of the units’ performances in the decentralized coordination mode
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In this sense, the configuration ‘‘FULL; unit’s performance rewarded only’’ (scenario

b1 in Tables 2 and 3) is rather interesting: In this case the incentive structure leads

to each units’ ignorance of the rest of the organization, although external effects

should be taken into account—inducing a rather low average performance.

However, with the central office involved in decision making, each (potentially

myopic) proposal from the units is evaluated by a second instance, which takes an

organization-wide perspective. Hence, in a way the central coordination mode might

be regarded as a substitute for the inappropriate incentive system.

Moreover, involving the central office in decision making apparently changes the

search processes, as characterized by the frequency of alterations and the ratio of

false positive alterations and, in a way, seems to widely immunize organizations

against noisy accounting information. Comparing the respective numbers in Table 3

to those in Table 2 shows that with central coordination fewer alterations tend to

take place and the ratio of false positive alterations is reduced considerably. This

corresponds broadly to findings which Sah and Stiglitz (1986) state in their seminal

work on organizations endowed with imperfect information for the evaluation of

project alternatives: hierarchies tend to reduce errors in terms of ‘‘false positive’’

decisions (a certain option is only accepted in case it is positively evaluated by each

instance involved).
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Fig. 3 Wins and losses in average firm performance from rewarding firm performance instead of units’
performance in the ‘‘Central’’ mode of coordination

174 F. Wall

123



Hence, this aspect leads to further potential extensions of the model. First, it is

worth mentioning that—apart from the decentralized and the central mode of

coordination as introduced here—various other forms of coordination could be

analyzed like, for example, lateral coordination between business units (e.g.

Christensen and Knudsen 2010; Sah and Stiglitz 1986; Siggelkow and Rivkin 2005).

Hence, it might also be promising to integrate costs of information processing and

costs of intra-organizational communication into the model: The idea behind that is

that, while more intense coordination, i.e. more integration, could reduce ‘‘false

positive’’ alterations as our simulations exemplarily show, integration usually comes

at a price since more communication is required and more instances ‘‘work’’ on the

decision-making process.

A further extension could be to integrate the cost of effort into the model.19 A

rather ‘‘natural’’ way of doing this could be to regard keeping the status quo dr�t�1 as

being associated with no or negligible effort for business unit managers, whereas

altering one or even two of the single decisions, i.e. opting for dr1t or dr2t
respectively, increases the effort involved.20 With respect to the cost of effort

induced by alterations, in particular, the potentially beneficial effects of the diversity

of the search as mentioned above are put into perspective.

Moreover, in our basic model, ‘‘false positive’’ alterations could occur because of

two sources: First, due to ignorance of negative spillover effects induced by the

incentive system, and, second because of errors made in ex post evaluations of

performance which the unit managers ‘‘learn’’ and remember when evaluating a

certain option again later on. An additional source of false positive decisions could

be imperfect ex ante evaluations by unit managers: unlike in Bushman et al.’s

(1995) model and as an extension of our basic model, the unit managers might have

imperfect knowledge of the ‘‘production function’’ and, hence, the decision-

facilitating information (Demski and Feltham 1976) might be erroneous too. In

particular, which performance contributions results from configurations dr1t or dr2t
under consideration might be known imperfectly ex ante (Knudsen and Levinthal

2007)—regardless of the errors made by the accounting system in ex post

evaluations. Integrating imperfect ex ante evaluations allows for a broad range of

further extensions of the model.

Moreover, further dynamics could be captured in the model. As such, for

example, it might be interesting to investigate to what extent improving ex post

evaluations due to learning capabilities in the accounting department pays off. More

broadly, the entire performance landscape could underlie certain dynamics in the

sense that the environment is instable, causing the performance contributions of

19 As is familiar in principal-agent models, business unit managers could be seeking to maximize a utility

function where not only the compensation but also the cost of effort is of relevance.
20 In further simulation experiments we modeled and simulated the cost of effort in such a way that the

more single decisions are altered, the higher the cost of effort. In line with intuition, the cost of effort

reduces movements in the search process and slows down performance enhancements.

Agent-based modeling in managerial science 175

123



configurations d to change over time (e.g. Siggelkow and Rivkin 2005). An

interesting aspect, then, is the extent to which the incentive structure, which

interferes with the complexity of the interactions structure, allows for fast

performance enhancements in dynamic environments, possibly combined with

imperfect ex ante and ex post evaluations by the accounting systems.

4.4 Comparing the research approaches

In short, the major result of Bushman et al.’s (1995) paper is that with increasing

(decreasing) cross-unit interactions—all other things being equal—it becomes more

(less) useful to base compensation on aggregate performance measures. The authors

derive this finding from a formal analysis and provide empirical evidence. The

agent-based model presented in this paper confirms the main result of the Bushman

et al. (1995) paper. Hence, we have three methodological approaches at hand

leading, in principle, to the same result. Of course, on the one hand this is good

news for the agent-based simulation approach; however, on the other hand the

question arises as to whether the agent-based model yields additional insights which

are captured neither in the formal analysis nor in the empirical study by Bushman

et al. (1995)—or in other words: What is the marginal contribution of the agent-

based model in our illustrative investigation? This section aims to answer this

question by comparing the three research approaches in order to highlight their

specific features for our example. In the following, we discuss major aspects on

rather a condensed level; additionally Table 4 provides a comparative overview of

the components as captured in the three approaches.

Bushman et al.’s (1995) formal analysis, based on a principal-agent model,

solves an optimization problem and yields the ratio of weights of aggregate-to-unit

performance measures in the optimal contract in an explicit form. In particular, the

weight ratio of performance measures is given as a function of both interactions

among business units and (in-)accuracy (noise) related to performance measures as

explanatory variables (Bushman et al. 1995, p. 107). From this, the form of how

results of the agent-based simulations are given differs substantially: the results are

generated by (extensive) numerical experiments and, in this sense, we simulated

further parameter settings in order to gain deeper insights into the relation between

the relative weights of aggregate-to-unit performance measures, level of intra-firm

interactions, accounting error and overall firm performance.21 However, as Chang

and Harrington (2006) put it, simulation results ‘‘ultimately are a collection of

examples, perhaps many examples… but still noticeably finite’’ (p. 1277).

Nevertheless, results of simulation experiments and extensive sensitivity analyses

can be used to derive regression models (Leombruni and Richiardi 2005; Epstein

2006a).

21 For this, see note 17.
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With respect to the (in-)accuracy of performance measures, first of all, it should

be mentioned that this aspect is not captured in the empirical study of Bushman

et al. (1995) due to limitations of data availability (p. 110). On the other side, the

principal-agent model of Bushman et al. allows for a detailed analysis of the effects

of the measures’ (in-)accuracy on the optimal contract: In particular, the authors

derive that in the optimal contract the relative weights of aggregate to unit-related

performance measures equals the ratio of signal-to-noise-ratios of the aggregate to

unit-related measures which, in a way, reproduces the general finding of Banker and

Datar (1989) for the optimal weighting of multiple performance measures in linear

contracts. In a further case discrimination, Bushman et al. (1995) investigate the

situation where the covariance between the performance measures related to the

business units is zero and this case corresponds to our agent-based model where the

measurement errors related to the measures of units’ performance are independent

(see also Lambert 2001, p. 22). For this case, Bushman et al. find that, as mentioned

before, the relative use of aggregate performance measures in the optimal contract

increases if the cross-unit impact of business units increases and the noise in the

aggregate performance measures decreases which corresponds to results of our

agent-based model. Moreover, Bushman et al.’s principal-agent model allows for

further insights for cases where the correlation between units’ performance

measures is not zero. However, this case is not captured in our agent-based model.

Notwithstanding this difference another aspect merits a comment: In the principal-

agent model the unit managers are assumed to be well informed about the signal-to-

noise-ratios related to the performance measures in advance (i.e. before contract-

ing). In contrast, unit managers in our agent-based model stepwise learn about the

measurement errors. These differences in the knowledge about errors related to

performance measures in a way also reflect the different assumptions about the

decision makers’ (bounded) rationality in ‘‘traditional’’ economic modeling versus

ABM.

To figure out potential further insights yielded by the agent-based approach, we

find it useful to furthermore address those aspects which are additionally reflected or

controlled for in the model presented here.

The principal-agent model maps a rather reduced form of organizational

structure, meaning, in particular, that no coordination mechanisms other than

incentives are used, which corresponds to the DECENTRALIZED mode in our

simulation model. In contrast, the empirical analysis presumably includes compa-

nies which apply various mechanisms of coordination—in addition to the incentive

systems under investigation—but does not control for these coordination mecha-

nisms. Hence, the fact that the major theoretical insight (i.e. the more cross-unit

interactions there are, the more weight there is on aggregate performance measures)

is supported by the empirical part may be regarded as an indication that this finding

is robust against richer coordinative forms. However, the question arises as to under

which circumstances and to what extent this is the case. Using an agent-based

simulation model allows an explicit analysis of richer organizations with, for

example, more sophisticated modes of intra-firm coordination (which might be

hardly tractable in formal models). We tried to illustrate this by introducing the

CENTRAL mode of coordination. In particular, analyzing the CENTRAL mode indicates
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that the general finding of Bushman et al.’s paper holds but that, first, the relevance

of the incentive system seems to be reduced compared to the DECENTRALIZED mode

and, second, the search processes differ substantially too.

The agent-based model allows further insights resulting from the underlying

behavioral assumptions compared to those of the principal-agent model in Bushman

et al. (1995), who assume a utility-maximizing individual who is able to survey the

whole solution space and to identify the individually optimal solution instanta-

neously. However, when the researcher is interested in how alternative incentive

schemes, accounting errors and intra-firm interdependencies affect solutions

discovered by less gifted decision makers, an agent-based model, as presented in

this paper, could provide some further insights. For example, our model allows an

investigation of procedural aspects like the speed of performance enhancements, the

frequency of discovering the global maximum, or how many ‘‘wrong’’ decisions are

made during the search process. Findings of this procedural nature are more or less

precluded in the principal-agent model and would be particularly difficult to obtain

in an empirical analysis (Davis et al. 2007). In particular, when the speed and costs

of adaptations are of interest, e.g. due to turbulent environments, these findings may

be particularly useful.

In this sense, ABM might also bear the potential to investigate to what extent

findings provided by analytical models hold if some of the underlying assumptions

are relaxed (e.g. Axtell 2007; Davis et al. 2007; Leitner and Behrens 2013). Our

exemplary study might be regarded as an attempt in this direction, since it indicates

that a major finding of the related principal-agent model is robust against relaxing

assumptions about the cognitive capabilities of the decision-making agent and even

holds for rather myopic agents which, however, are equipped with some foresight as

to the outcomes of options and memory of accounting numbers.

Hence, against the background of our modeling effort and the extensions as

discussed in Sect. 4.3.4, the potential contributions of ABM for research in

management accounting could be summarized in five items: (1) Agent-based

models allow the investigation of management accounting issues in rich organi-

zational contexts including, for example, various coordination mechanisms,

heterogeneous agents, and various forms of intra-organizational complexity. (2)

ABM could help to study the effects of different errors in accounting numbers in

interaction with each other and with respect to organizational performance. (3)

When procedural aspects of management accounting are of interest—be it due to

turbulence in the environment, the learning capabilities of the agents or since the

development of the management accounting system itself is to be investigated—

agent-based models allow us to study the relevant processes into detail. (4) The

‘‘micro–macro interaction’’ as incorporated in agent-based models enables

researchers in management accounting to derive consequences for the system’s

overall performance which result from, for example, the use of accounting

techniques on the micro level. (5) ABM might allow us to investigate to what extent

findings of, for example, principle-agent models hold if some of the underlying

assumptions are relaxed. However, there are various shortcomings of ABM which

we subsequently address in a broader perspective.
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5 Opportunities and limitations of ABM in managerial science

In the preceding sections we sought to give an overview of core features of ABM

and its applications for discovering theory in managerial science. In this section we

outline recent criticisms as well as potential contributions of ABM in managerial

science from a more general point of view. For this, it is helpful to remember that

ABM is a multi-facetted approach which incorporates two aspects to be addressed at

this point: First, ABM in its very methodical core means conducting computer

experiments by simulation which, in itself, entails certain strengths and weaknesses.

Second, ABM incorporates certain concepts (for example, of agents’ behavior)

which provide interesting opportunities for research but also certain pitfalls.

5.1 ABM as simulation-based research

Agent-based models are ‘‘solved’’ by extensive computational experimentation by

means of simulation. Hence, ABM could be regarded in the light of simulation-

based research in general as a method for theory development. According to

Harrison et al. (2007) simulation modeling allows researchers to capture ‘‘complex

multilevel, and mathematically intractable phenomena’’ (p. 1240) by taking prior

management theories and empirical data into account within the model and using

computational technology; the computational experiments produce data which

could bring about new empirical research (not least for validating and testing the

simulation model) and new management theories—and these could be subject to

further simulation research. Davis et al. (2007) argue that simulation is especially

useful ‘‘in the ‘sweet spot’ between theory-creating research using such methods as

inductive multiple case studies… and formal modeling…, and theory-testing

research using multivariate, statistical analysis’’ (p. 481), when the research

question addresses some fundamental tensions as exemplified in Sect. 3 and in our

illustrative study.

Furthermore, simulation-based research is viewed as valuable for revealing the

boundary conditions of empirical findings or to investigate longitudinal phenomena,

which are often difficult to study empirically due to problems in the availability of

data. In this sense, simulation-based research might help to generate empirically

relevant data and, as Epstein argues (2006a) with respect to agent-based simulations

in particular, could provide ideas of counterintuitive behavior to be analyzed more

into detail in laboratory research or could reveal effects on the macro-level resulting

from micro-level behavior as investigated in laboratory experiments (p. 21).

Moreover, simulation particularly allows non-linear phenomena to be explored like

thresholds or tipping points or disaster scenarios.

In any case, since simulation requires putting the system under investigation into

a computational form, this also means that the models are precisely formalized (for

a further debate on this point see Leombruni and Richiardi 2005; Epstein 2006b;

Harrison et al. 2007; Richiardi 2012). However, formalization and computational

representation inevitably require finding abstract formulations of the system under

investigation. For example, employing the idea of NK fitness landscapes requires

that the underlying optimization problem can be appropriately represented in terms
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of an N-dimensional binary vector optimization problem, which is obviously a

strong abstraction of many real-world problems. Hence, a major question of

simulation is the extent to which the simplifications and abstraction which are

prerequisites of a computational representation may induce a critical lack of

external validity (Harrison et al. 2007; Davis et al. 2007).

Simulation-based research is often regarded as suffering from what is called a

‘‘black box’’, meaning that the models and results often suffer from not being

comprehensible and transparent to other researchers (Lorscheid et al. 2012; Harrison

et al. 2007; Reiss 2011; Barth et al. 2012): Simulation models allow more complex

phenomena to be studied than ‘‘traditional’’ formal models, and this, in

consequence, would require rather extensive descriptions of data, rules, and

parameter settings, etc. However, this is often not done in order to avoid

overloading the reader or to meet the publisher’s space limitations (Lorscheid et al.

2012). Moreover, the major findings of a simulation study often are to be

differentiated with respect to parameter settings within a given study, which makes

it even more difficult to be conclusive without providing too many details (Axelrod

1997a). In order to overcome these somewhat ‘‘built-in’’ problems of simulation-

based research, there is a strong claim to make use of standardization—be it in the

process of simulation modeling, in the data structures or in the algorithms (Richiardi

et al. 2006; Lorscheid et al. 2012; Müller et al. 2014).

5.2 Issues specifically related to ABM

While the aforementioned aspects pertain to simulation-based research in general,

some issues specifically related to agent-based models require closer attention

within this paper. For this, first of all, it should be pointed out that ABM as a

research method is not free of criticism, particularly in an economic context

(overviews are given in Leombruni and Richiardi 2005; Richiardi 2012; Waldherr

and Wijermans 2013). Subsequently, we discuss benefits and criticisms relating to

ABM with respect to managerial science, and, in particular, we address aspects

resulting from (1) assumptions related to agents as familiar in ABM, (2) the mode of

‘‘solving’’ a model, and (3) the focus of analysis in agent-based models.

As described more into detail in Sect. 2.1, a core feature of agent-based models is

to map heterogeneous decision-making agents with richer internal cognitive

structures and more complex interactions than conventionally captured in economic

models. With these features, ABM bears the potential to flexibly map organizations

consisting of diverse agents (e.g. knowledge, capabilities, attitudes towards social

norms, preferences) with various communication and coordination patterns,

allowing for the investigation of the emergent behavior of the organization as it

results from interactions between these heterogeneous agents (Harrison et al. 2007;

Midgley et al. 2007). Hence, ABM allows depicting more realistic scenarios than, in
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particular, those captured in neoclassical economics (Kirman 1992; Chang and

Harrington 2006; Axtell 2007).

For managerial science, these features of ABM provide some interesting research

opportunities as well as challenges. First, relaxing the assumptions of neoclassical

economics on agents’ cognitive capabilities provides the opportunity to study to

what extent the principal findings of a research effort conducted on the basis of these

assumptions are robust in settings with agents showing more cognitive limitations

(e.g. Axtell 2007; Davis et al. 2007; Leitner and Behrens 2013). This methodo-

logical approach is called ‘‘agentization’’ (Guerrero and Axtell 2011). However, it

turns out that it is not difficult to model agents with rather limited cognitive

capabilities (e.g. myopia and fairly simple search processes), ‘‘but to extend their

intelligence to the point where they could make decisions of the same sophistication

as is commonplace among people’’ (Gilbert 2008, p. 16). Second, Chang and

Harrington (2006) argue that ABM could provide a trade-off between richness on

the one hand and rigor on the other, since, for example, organization theory is

traditionally either broad, institutionally rich and vague, or narrow though

mathematically precise using formal logic. ABM allows researchers to deal with

complex entities while maintaining rigor and formality. Nevertheless, this requires

weighing up the complexity and simplicity of an agent-based model (Harrison et al.

2007).

However, the high flexibility incorporated in ABM also causes problems when

employing ABM as a research method. In particular, Safarzyńska and van den

Bergh (2010) criticize that in agent-based models behavioral rules are often

introduced ad hoc due to a lack of empirical data for validating model assumptions,

and that the behavioral rules are justified merely by stylized facts. In this sense,

Richiardi et al. (2006) argue that the high flexibility which ABM grants to

researchers ‘‘has often generated in a sort of anarchy… For instance, there is no

clear classification of the different ways in which agents can exchange and

communicate: every model proposes its own interaction structure’’ (no. 1.5). In

order to overcome this ‘‘anarchy’’ and increase the acceptance of ABM among

‘‘traditional’’ economists, the claim has been made to develop a common framework

for ABM (Richiardi et al. 2006; Janssen et al. 2008).

Compared to neoclassical economics, the way of ‘‘solving’’ an agent-based

model differs substantially, since not proofs but extensive numerical derivation

produces the results (Chang and Harrington 2006). Moreover, agent-based models

often incorporate a considerable number of parameters, allowing for the study of

various settings of the system under investigation. In doing so, the boundary

conditions of certain regularities can be explored, and creative experimentation can

be used to fathom regularities. Extensive numerical experimentation allows the

identification of non-linear phenomena typical for many agent-based models and the

results often provide evidence for multiple optima, suggesting the existence of

multiple equilibria rather than a single-peak prediction (Tesfatsion 2006).
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However, this could be regarded as a virtue and a pitfall of ABM too. In

particular, in conjunction with the aforementioned lack of justification of model

assumptions, the results provided by ABM might suffer from low traceability

(Richiardi et al. 2006; Leombruni and Richiardi 2005; Chang and Harrington 2006).

In particular, while traditional economic modeling is based on formulating

equations and produces algebraic solutions (Epstein 2006a), the results of

computational models stem from numerical experiments (ideally) ‘‘sweeping the

parameter space… and conducting extensive sensitivity analysis’’ (Epstein 2006a,

p. 28) allowing for deriving a regression model (Leombruni and Richiardi 2005;

Epstein 2006a). However, a scepticism against ABM results from the possibility

that the data produced by simulation may not represent all outcomes which the

model could produce since it might be possible that for certain configurations of

parameters the results change dramatically (Leombruni and Richiardi 2005, p. 107).

ABM differs from traditional economic modeling with respect to the focus of

analysis too. The latter models are usually directed at an analysis of the state of a

system when it has converged to an equilibrium which often means that the

perspective is rather long-termed and related to a steady state; in contrast, ABM

often is directed to the study of medium-run dynamics due to adaptation (Chang and

Harrington 2006). In this sense, ABM might be regarded as a more realistic way of

modeling since its primary focus is not to analyze—in reality rarely occurring

stable—equilibria but processes of adaptation. For example, for high environmental

dynamics (e.g. in terms of technological change, competitive situation) ABM might

be regarded as an appropriate way of modeling since it allows for investigating how

fast organizations adapt to the dynamic environment. These aspects also became

apparent in our illustrative study: The solution of the principal-agent model in

Bushman et al. (1995) consists in the explicit form for the optimal incentive scheme

in equilibrium; our agent-based modeling effort provided information about the

adaptation processes towards higher levels of organizational performance and the

performance achievable in a long-run perspective; moreover, as mentioned before,

among the obvious model extensions it would be to study adaptation processes with

instable performance landscapes. Therefore, as Tesfatsion (2006) puts it, ABM

should be regarded ‘‘a complement, not a substitute, for analytical and statistical

modeling approaches’’ (p. 864).

6 Conclusion

The aim of this paper has been to highlight applications of ABM for developing

theory in managerial science by way of example and to elaborate the research

opportunities as well as the limitations of ABM as a research approach in

managerial science. A particular emphasis has been placed on an exemplary study
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of ABM in the domain of management accounting research—a domain which, so

far, has seen few efforts in the spirit of ABM.

Our review of ABM in research on two fundamental trade-offs of managerial

science (i.e. ‘‘exploration vs. exploitation’’ and ‘‘differentiation vs. integration’’)

reveals that agent-based models have contributed to a multi-facetted understanding

of these issues—may it be related to product design, design of the organizational

structure or a firm’s strategy, to short-term versus long-term effects, to the

importance of complexity and turbulence or to the relevance of different modes of

decision-making in organizations. Further, we set up an agent-based model for an

exemplary question in the domain of management accounting, i.e. whether to use

aggregate or business unit performance measures for compensating unit managers in

face of intra-company interactions. When comparing the results of our agent-based

simulation with those provided by a closed-form model and an empirical study, we

found that ABM could provide valuable additional insights which would be hard to

gain analytically or empirically. Moreover, a promising application of ABM is

studying to what extent the findings of principal-agent models are robust when

typical assumptions incorporated in those models, for example relating to agents’

information processing capabilities, are relaxed.

While ABM promises interesting research opportunities it is worth mentioning

that it also bears certain perils in terms of the traceability and transparency of

results. A major cause for these perils is the high flexibility that ABM grants to the

researcher when modeling agents, environments and interactions from which the

system’s behavior under investigation results. In this sense, ABM’s flexibility and

potential to study micro–macro interactions might be regarded a blessing and a

curse at the same time.
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See Table 5.
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