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Abstract In the paper the explicit conditions for stabil-
ity of linear fractional order h-difference systems with the
Grünwald–Letnikov-type operator are presented. The state
variables of the considered systems are taken from the plane.
As the tool the Z-transform, which can be considered as an
effective method for the stability analysis of linear systems,
is used. The main result gives the sufficient and necessary
condition for the asymptotic stability of the considered sys-
tem according to the entries of the given matrix associated
with the system.
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1 Introduction

The stability analysis is one of the most essential prob-
lems in dynamical systems as in control theory. Recently,
it has been investigated for the fractional systems in some
papers, see for example [1–3] for continuous-time case and
[4–6] for the discrete-time case. Contrary to the continuous
case, the stability theory of fractional difference equations is
less developed. In [7–9] Z-transform is used as an effective
method for stability analysis of linear discrete-time fractional
order systems. The explicit stability conditions for a linear

The results of this paper for the case h = 1 were presented at the
International Symposium on Fractional Signals and Systems 2015.

B Dorota Mozyrska
d.mozyrska@pb.edu.pl

Małgorzata Wyrwas
m.wyrwas@pb.edu.pl

1 Bialystok University of Technology, Faculty of Computer
Science, Białystok, Poland

fractional difference systemwith theCaputo-type operator of
order α ∈ (0, 1) are presented in [10]. The alternative (less
convenient for practical purposes compared to [10]) stability
conditions for the Caputo difference systems are presented in
[11]. Additionally, in [10] the discussion concerning the sta-
bility behaviour of systemswith theRiemann–Liouville-type
difference operator is given. In [10] the stability conditions
are considered as a direct extension of the classical results
given in [12] for the difference systems.

Our main goal is to formulate the explicit stability con-
ditions for the two–dimensional h-difference systems with
the Grünwald–Letnikov-type operator since in many appli-
cations one needs explicit criteria on the entries of the
matrix associated with the considered system. The formu-
lated alternative stability conditions could be considered as
an extension of Theorem 2.37 in [12] to the fractional sys-
tems.

The main results are stated in Theorem 1, where there are
given the exact conditions on elements of the matrix of the
considered system. The proposed method is not pretended to
be better than the other’s method available in the literature,
but it is stated as exact conditions on values of the matrix.
This method is restricted to two-dimensional system as it
is particularly often that some models are needed only for
two-dimensional systems.

It should be also stressed that the Grünwald–Letnikov-
type fractional h-difference operator is used in papers con-
nected with applications of fractional differences in circuit
systems, see for example [13].

The paper is organized as follows. In Sect. 2 the basic
definitions of h-difference fractional order operator are
given. Section 3 provides the properties of the Z-transform
acting on fractional operators, especially on the Grünwald–
Letnikov-type operator. In Sect. 4 the problem of stability
of linear multi-parameter fractional difference control sys-
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Explicit criteria for stability of fractional h-difference two-dimensional systems 5

tems with the Grünwald–Letnikov h-difference operator is
considered. Finally, Sect. 5 provides brief conclusions.

2 Preliminaries

Firstly, we recall some necessary definitions and notations
used in the sequel therein the paper. Let a ∈ R. Then
(hN)a := {a, a+h, a+2h, . . .}. Let x denote a real function
defined on (hN)a , i.e. x : (hN)a → R. Let us recall the defi-
nition of the Grünwald–Letnikov-type difference operators,
see for example [14–16] for cases h = 1 and extended for
general case h > 0 in [17]. Here we present basic results for
the case when h > 1.

Definition 1 Let α ∈ R. The Grünwald–Letnikov-type h-
difference operatoraΔα

h of order α for a functionx : (hN)a →
R is defined by

(
aΔα

h x
)
(t) := h−α

t
h −a∑

s=0

c(α)
s x(t − sh), (1)

where t ∈ (hN)a and c(α)
s = (−1)s

(
α
s

)
with

(
α

s

)
=

{
1 for s = 0
α(α−1)...(α−s+1)

s! for s ∈ N.

The Grünwald–Letnikov-type h-difference operator can
be extended to vector valued sequences in the component-
wise manner, i.e. for x = (x1, x2) : (hN)a → R

2 we have

aΔα
h x = (

aΔα
h x1,a Δα

h x2
)
. If a = 0, then we will write:

Δα
h :=0 Δα

h .
Let us recall that theZ-transformof a sequence {y(n)}n∈N0

is a complex function given by

Y (z) := Z[y](z) =
∞∑

k=0

y(k)

zk
,

where z ∈ C denotes a complex number for which this series
converges absolutely.More about one-sidedZ-transform can
be found in [18]. The Z-transform can be extended to vec-
tor valued sequences in the componentwise manner, i.e. for
y = (y1, y2) : N0 → R

2 we have Z[y] = (Z[y1],Z[y2]).
Then the inverse Z-transform addresses the reverse prob-
lem, i.e., given a function Y (z) and a region of convergence,
find the signal y(n) whose Z-transform is Y (z) and has the
specified region of convergence. The presented Z-transform
involves, by definition, only the values of y(n) for n ≥ 0.
Similarly as in the case of the classical Z-transform, the
sequence {y(n)}n∈N0 can be obtain from the function Y (z)
by a process called the inverse Z-transform. This process is
symbolically denoted as y(n) = Z−1[Y (z)](n).

Proposition 1 ([7]) For a ∈ R, α ∈ (0, 1] and x : (hN)a →
R
2 let us define y(k) := (

aΔα
h x

)
(t), where t ∈ (hN)a and

t = a + kh, k ∈ N0. Then

Z [y] (z) = h−α

(
z

z − 1

)−α

X (z), (2)

where X (z) = Z[x](z) and x(k) := x(a + kh).

3 Systems

In this section we investigate the stability of the linear nonau-
tonomous difference system with the Grünwald–Letnikov-
type h-difference operator given by

(
Δα

h x
)
((n + 1)h) = Ax(nh), n ∈ N0, (3)

where x : (hN)0 → R
2 and A is a 2 × 2 matrix, with the

initial condition

x(0) = x0 ∈ R
2. (4)

For the case h = 1 we writeΔα := Δα
1 . Since

(
Δα

h x
)
(sh) =

h−α (Δαx) (s), the system (3) can be rewritten as follows:

(
Δαx

)
(n + 1) = hα Ax(n), (5)

where x(n) := x(nh).
In many applications one needs explicit criteria on the

entries of the matrix for the zeros of the corresponding
characteristic equation to lie inside the unit disk. Therefore

consider the matrix A =
(

a11 a12
a21 a22

)
whose characteristic

polynomial is given by

pA(λ) := λ2 − (a11 + a22)λ + (a11a22 − a12a21)

= λ2 − (tr A)λ + det A (6)

and

phα A(λ) = h2α

[(
λ

hα

)2

− (tr A)
λ

hα
+ det A

]

, (7)

where tr A := a11 + a22 is the trace of matrix A and det A is
the determinant of A. Moreover, let

p(A,α,h)(z) := phα A

(
z

(
1 − 1

z

)α)

= h2α pA

(
z

(
z − 1

hz

)α)
. (8)
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6 D. Mozyrska, M. Wyrwas

Then p(A,α,h)(z) = det
(

I z
(
1 − 1

z

)α − hα A
)

. The func-

tion p(A,α,h)(z) is called the fractional characteristic func-
tion of matrixAfor orderαand step h > 0. And the equation

p(A,α,h)(z) = 0 (9)

is named as the fractional characteristic equation of matrix
Afor order αem and step h > 0. Using the results given
for the Grünwald–Letnikov difference systems of the form 3
presented in [7] we can state the following proposition:

Proposition 2 Let α ∈ (0, 1]. Then solution of (3) with ini-
tial condition (4) is given by

x(nh) = Z−1

[[
I z

(
1 − 1

z

)α

− hα A

]−1

x0

]

(n),

where I is the identity matrix and n ∈ N1.

4 Stability

At the beginning let us recall that the constant vector xeq =(
xeq1 , xeq2

)
is an equilibrium point of the fractional difference

system (3) if and only if

(
Δα

h xeq
)
((n + 1)h) = Axeq

for all n ∈ N0. Note that the trivial solution x ≡ 0 is an
equilibrium point of system (3). Of course, if the determinant
of the matrix A is nonzero, then system (3) has only one
equilibrium point xeq = 0.

Definition 2 The equilibrium point xeq = 0 of system (3) is
said to be

(a) stable if, for each ε > 0, there exists δ = δ (ε) > 0 such
that ‖x0‖ < δ implies ‖x(nh)‖ < ε, for all n ∈ N0.

(b) attractive if there exists δ > 0 such that ‖x0‖ < δ

implies lim
n→∞ x(nh) = 0.

(c) asymptotically stable if it is stable and attractive.

The fractional difference system (3) is called stable/
asymptotically stable if their equilibrium points xeq = 0
are stable/asymptotically stable.

Proposition 3 ([7]) Let R be the set of all roots of the equa-
tion

p(A,α,h)(z) = 0, (10)

where A is the square matrix in system (3). Then the following
items are satisfied.

(a) If all elements from R are strictly inside the unit circle,
then system (3) is asymptotically stable.

(b) If there is z ∈ R such that |z| > 1, then system (3) is
not stable.

Proposition 4 System (3) is asymptotically stable if and only
if

ϕi ∈
[
α

π

2
, 2π − α

π

2

]
∧ |λi | <

(
2h

∣
∣∣∣sin

ϕi − α π
2

2 − α

∣
∣∣∣

)α

(11)

for i = 1, 2 and where |λi | and ϕi are the modulus and
argument of the corresponding eigenvalue of the matrix A.

Proof The result is based on those presented in [9]. Here we
only use them for matrix hα A.

The main result that connects entries of the matrix A and the
stability of the system is stated in the following theorem.

Theorem 1 All elements from R are strictly inside the unit
circle if and only if one of the set of conditions holds:

1)

⎧
⎪⎨

⎪⎩

−2α+1 < hαtr A < 0

0 < det A ≤ 1
4 tr

2 A

4α + (2h)αtr A + h2α det A > 0

,

2)

⎧
⎨

⎩

tr A 
= 0

1
4 tr

2 A < det A <
(
2

∣∣∣sin
ψ−α π

2
2−α

∣∣∣
)2α ,

where ψ = arctan
√

4 det A−tr2 A
tr A or ψ = π + arctan√

4 det A−tr2 A
tr A ,

3)

{
tr A = 0

0 < det A <
(
2

∣∣∣cos π
2(2−α)

∣∣∣
)2α .

Proof The proof is based on the cases that for real roots of
p(A,α,h)(λ) = 0 elements of R are strictly inside the unit

circle if and only if λ = z
(

z−1
hz

)α

are from the interval

(−2α, 0). Hence we need to find the solution of the systems

of inequalities: p21 − 4p2 ≥ 0, −2α <
−p1±

√
p21−4p2
2 < 0,

with p1 = −hαtr A, p2 = h2αdet A that gives the set 1). The
parts 2) and 3) are the version of Proposition 4.

The interesting and less difficult statement we receive for the
order α = 1

2 and h = 1. Then

Corollary 1 Let α = 1
2 and h = 1. Then all elements from

R are strictly inside the unit circle if and only if one of the
set of conditions holds:

1)

⎧
⎨

⎩

−2
√
2 < tr A < 0

0 < det A ≤ 1
4 tr

2 A
2 + √

2tr A + det A > 0
,
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Explicit criteria for stability of fractional h-difference two-dimensional systems 7

Fig. 1 The solution of the
initial value problem for the
(asymptotically stable) systems
(3) with a = 0.66 and α = 0.5,
x0 = (0.2; 0.2). a The phase
trajectory of solution for
n = 300 steps. b The graph of
x1 for n = 300 steps. c The
graph of x2 for n = 300 steps

(a)

(b) (c)

2)

{
tr A 
= 0
1
4 tr

2 A < det A < 2
∣∣sin

(
2ψ/3 − π

6

)∣∣ ,

where ψ = arctan
√

4 det A−tr2 A
tr A or ψ = π + arctan√

4 det A−tr2 A
tr A ,

3)

{
tr A = 0
0 < det A < 1

.

Remark 1 It is known that for α = 1 the definition of
the fractional operator on the right hand side of Eq. (3)
(Δαx) (n +1) = ∑n+1

s=0 c(1)
s x(n +1− s) = x(n +1)− x(n),

as c(1)
0 = 1, c(1)

1 = −1 and c(1)
s = 0 for s > 1. More-

over, it is easy to notice that conditions 1), for real case, from
Proposition 1 coincide with those proposed in the book [12]
for classical difference equation, i.e. x(n+1) = (I + A)x(n).

Example 1 Let us consider the system with order α = 1
2 ,

h = 1 and matrix A =
[−a −1

1 −1

]
. Then tr A = −a − 1

and det A = a + 1. For 0 < a < 0.67 the corresponding
systems are asymptotically stable and for a > 0.67 they are
unstable. In Fig. 1 there are presented the phase trajectory
and graphs of two coordinates of solutions that are associ-
ated with the stable systems while one can see the graphs for
unstable systems in Fig. 2. Note that for a = 0.66 we have
that the smaller value 2

∣∣sin
(
2ψ/3 − π

6

)∣∣ = 1.672330968
and 1

4 tr
2 A = 0.688900. Then det A = 1.66 lies in the

interval from the point 3) in Proposition 1. Moreover for
a = 0.68 we have that 2

∣∣sin
(
2ψ/3 − π

6

)∣∣ = 1.676028757.
Then det A = 1.68 > 2

∣∣sin
(
2ψ/3 − π

6

)∣∣ and consequently,
the system is unstable.
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8 D. Mozyrska, M. Wyrwas

Fig. 2 The solution of the
initial value problem for the
(unstable) systems (3) with
a = 0.68 and α = 0.5,
x0 = (0.2; 0.2). a The phase
trajectory of solution for
n = 300 steps. b The graph of
x1 for n = 300 steps. c The
graph of x2 for n = 300 steps

(b)

(a)

(c)

5 Conclusion

The paper describes sufficient and necessary conditions
for the asymptotic stability of fractional difference two-
dimensional systems with the Grünwald–Letnikov operator.
These conditions depend on the entries of the given matrix
associated with the considered system.
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