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We report a simple differential modulation scheme for quasi-orthogonal space-time block codes. A new class of quasi-orthogonal
coding structures that can provide partial transmit diversity is presented for various numbers of transmit antennas. Differential
encoding and decoding can be simplified for differential Alamouti-like codes by grouping the signals in the transmitted matrix
and decoupling the detection of data symbols, respectively. The new scheme can achieve constant amplitude of transmitted signals,
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to more than four transmit antennas is also considered.
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1. INTRODUCTION

Transmit diversity techniques that can provide effective ro-
bustness over fading channels have been extensively inves-
tigated in recent years [1–13]. Orthogonal space-time block
codes (O-STBCs) were reported in [1, 2], aiming at achieving
maximum diversity gain. Later, in order to satisfy the high
data rate requirement, a family of quasi-orthogonal space-
time block codes (QO-STBCs) has been proposed in [3],
which can obtain full rate but partial diversity by mapping
the input data to one fixed constellation, and simulation re-
sults suggest that these codes can provide very useful re-
sults at low SNR. At high SNR, they perform worse than O-
STBC due to the reduced diversity. Recently, improved quasi-
orthogonal space-time block codes for four transmit anten-
nas were reported in [4, 5], which can provide both full rate
and full diversity. However, this is achieved at the cost of sig-
nificant signal constellation expansion and thus further in-
crease in the computational complexity.

All the above work assumes that the channel can be read-
ily tracked at the transmitter or receiver. In order to com-
bat the environment with poor channel information, [6, 7]
differential orthogonal space-time block codes (D-O-STBCs)

and [8–10] differential space-timemodulation (DSTM) were
developed based on the orthogonal properties of the trans-
mission matrices. However, the transmission rate is still
low for more than two transmit antennas. Recently, several
full-rate, full-diversity differential QO-STBC (D-QO-STBC)
schemes have been investigated in [11–13], yielding good
performance at very high SNR. However, all these schemes
involve the rotation of signal constellations and result in sig-
nificant constellation expansion in spite of the promising
performance. Moreover, it is also worth pointing out that
the approaches for D-QO-STBC cannot be extended to the
partial-diversity codes in [3] to obtain differential partial-
diversity QO-STBC, otherwise all zero transmission matrices
might be generated. To the best of our knowledge, there is no
corresponding differential scheme so far proposed in the lit-
erature.

In this paper, we propose a simple quasi-orthogonal cod-
ing structure, which can be used to build up a differential
partial-diversity QO-STBC scheme. Encoding and decoding
can be carried out by grouping signals in the transmission
matrix and decoupling the detection of data symbols. As a
result, our method is very general and robust and has very
low computational complexity: the decoder complexity is
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linear on the constellation size, as for O-STBC. It can provide
half diversity and full rate without constellation expansion,
using only one constellation. Note that we would not expect
that our scheme could outperform those in [7–13] since only
half diversity can be obtained by QO-STBC. However, just as
QO-STBC [3] gives better results at relatively low SNR, such
as often occurs in practice, our scheme can provide promis-
ing results in a useful range of SNR compared to the work
in [7–13]. Note that [8] employs exhaustive search decoding,
which has a prohibitive complexity, and [11–13] also have
high complexity in both encoding and decoding and cause
significant constellation expansion. Hence, from the encod-
ing and decoding complexity point of view, our differential
partial-diversity QO-STBC scheme is very promising.

2. PRELIMINARIES

2.1. Systemmodel

For simplicity and without loss of generality, we first con-
sider a system with four transmit antennas and one receive
antenna operating in a Rayleigh fading environment. At time
t, symbols si,t, i = 1, . . . , 4, are transmitted from the four an-
tennas simultaneously and rt is the received signal. The sys-
tem is modelled by

rt =
4∑

i=1
hisi,t + nt, (1)

where hi is the path gain from transmitter i to the receive
antenna. Here we assume that the channel is constant dur-
ing a frame period and varies from one frame to another.
The noise nt consists of independent samples of a zero-mean
complex Gaussian random variable with variance E/(2SNR).
E denotes the total power of transmitted signals.

2.2. Partial-diversity quasi-orthogonal
space-time block codes

In this part, we first consider the following new quasi-
orthogonal space-time block codes based on a Hadamard
transformation for four transmit antennas at time 4t:

S4t =
(
S124t S344t
S124t −S344t

)
, (2)

where S
i j
4t =

(
si,4t s j,4t
−s∗j,4t s∗i,4t

)
. Note that S

i j
4t has a form similar

to the Alamouti scheme. The differential encoding described
later is based on these blocks. This code has rate one, but
diversity order two, since each symbol passes through only
two of the four transmit antennas. Note that the codes in (2)
differ from the QO-STBC used in [3–5]: the Alamouti sub-
group in (2) appears on the same group of transmitter anten-
nas, which is a very useful property since it results in very low
complexity decoding, as we will see in the next section. But
the Alamouti group in [3–5] is distributed in the different
column of the matrix.

3. DIFFERENTIAL ENCODING ANDDECODING

3.1. Differential encoding process

In this section, we discuss how to obtain each subblock, S
i j
4t+4,

by our simple encoding method. At time interval 4t + 4, a
block of 4b bits at the encoder, denoted by d14t+4, d

2
4t+4, d

3
4t+4,

and d44t+4 (where each di4t+4, i = 1, . . . , 4, represents a binary
b-tuple), is modulated onto four symbols. For convenience,
letM1

4t+4,M
2
4t+4,M

3
4t+4, andM

4
4t+4 refer to the resulting mod-

ulated signals from the constellation M. The differential en-
coder then produces the transmission matrix S4t+4 using the
following subblock encoding:

s
i j1
4t+4 =

m
i j
4t+4S

i j
4t

C
i j
4t

, (3)

where s
i jk
4t+4 represents the kth row of S

i j
4t+4, vectorm

i j
4t+4 con-

sists of the ith and jth outputs from the “mapper” at time

4t + 4,m
i j
4t+4 = [Mi

4t+4 M
j
4t+4], C

ij
4t =

√
trace(S

i j
4tS

i jH
4t ), and H

denotes complex conjugate transpose. Note that normaliza-

tion by a factor of C
ij
4t is required in order to avoid large peak

power variations in the transmitted signals. The rest of S4t+4
can be built up according to the structure of (2).

Note that the simple differential encoding process is
based on each Alamouti block in (2). If the input is mod-
ulated onto four symbols taken from the PSK constellation
and then the power of each constellation symbol is normal-
ized to 0.5, the differentially encoded signals can maintain

constant amplitude. In this case, C
ij
4t = 1 and thus the nor-

malization is clearly not required. Other than this, the trans-
mitted signals in our scheme, like those in [11–13], have
nonconstant matrix norm.

3.2. Differential decoding process

The received signals for time 4t + 4 can be written as

r4t+4 = S4t+4h + n4t+4, (4)

where r4t+4 = [r4t+1 · · · r4t+4]T and the channel state ma-
trix h = [h1 · · · h4]T , where T denotes transpose, n4t+4

consists of the noise terms. By further transformation, we can
obtain

R12
4t+4 = 2S124t+4H12 +N12

4t+4, (5)

R34
4t+4 = 2S344t+4H34 +N34

4t+4, (6)

R12
4t+4 =

(
r4t+1 + r4t+3

(
r4t+2 + r4t+4

)∗
(
r4t+2 + r4t+4

)∗ −(r4t+1 + r4t+3
)
)
, (7)

R34
4t+4 =

(
r4t+1 − r4t+3

(
r4t+2 − r4t+4

)∗
(
r4t+2 − r4t+4

)∗ −(r4t+1 − r4t+3
)
)
, (8)

whereHi j =
(hi h∗j
h j −h∗i

)
.
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Recalling the encoding process in (3), we can reach

s1214t+4

(
S124t
)H =m12

4t+4S
12
4t

(
S124t
)H = C12

4tm
12
4t+4I2, (9)

s3414t+4

(
S344t
)H =m34

4t+4S
34
4t

(
S344t
)H = C34

4tm
34
4t+4I2, (10)

where I2 is a 2×2 identity matrix. By differentially combining
received signals from the previous time slots and then using
(7)–(10) we have

r1214t+4r
121H
4t = C12

4t C3M
1
4t+4 + n14t,4t+4, (11)

r1214t+4r
122H
4t = C12

4t C3M
2
4t+4 + n24t,4t+4, (12)

r3414t+4r
341H
4t = C34

4t C4M
3
4t+4 + n34t,4t+4, (13)

r3414t+4r
342H
4t = C34

4t C4M
4
4t+4 + n44t,4t+4, (14)

where r
i jk
4t denotes the values in the kth row of R

i j
4t, C3 =

4
∑2

i=1 |hi|2, and C4 = 4
∑4

i=3 |hi|2.
For convenience, let T = C12

4t C3 and Q = C34
4t C4. Obvi-

ously, if T and Q are available at the receiver, an exhaustive
search over all combinations ofM1 toM4 can be carried out
to recover the most likely mapping signals in (11)–(14). The
received signals can be rewritten in a matrix form as

r1 = h1s1 + h2s2 + h3s3 + h4s4 + n1,

r3 = h1s1 + h2s2 − h3s3 − h4s4 + n3,
(15)

where vector si contains all the signals transmitted by an-
tenna i in each trial and the length of those signals at each an-
tenna is equal to L. We can derive the average channel power,
neglecting the noise, by the following transformation:

C3 =
(
rH1 r1 + rH3 r3

)

L
, C4 =

(
rH1 r1 − rH3 r3

)

L
. (16)

We can then multiply the received signal vector by its Hermi-
tian transpose:

r1214t r121H4t = (C12
4t

)2
C3 + n′1. (17)

Similarly, we have

r3414t r341H4t = (C34
4t

)2
C4 + n′3, (18)

where n′1 and n′3 denote the corresponding noise terms. So,
the estimate of combined channel power and signal power
can then be written as

T ≈
√
r1214t r121H4t C3, Q ≈

√
r3414t r341H4t C4. (19)

Note that the additional complexity in the above detector
comes only from the channel power and amplitude power
estimation, which can be neglected. Next, we discuss the fi-
nal decoding algorithm for differential partial-diversity QO-
STBC according to the differential encoding schemes.

3.3. Decoding algorithms

3.3.1. Differential partial-diversity QO-STBCwith
QAM constellations

Now, we have all the results needed for differential decod-
ing. In (11), for example, the decision signal r1214t+4r

121H
4t is a

function only of input signals M1
4t+4. Then by using a cor-

responding least square decoder, we can recover the signals
from these constellations:

m̂ = arg min
M1

4t+4∈M

∣∣r1214t+4r
121H
4t − TM1

4t+4

∣∣2. (20)

The detector described above can be further simplified to

m̂1 = arg min
M1

4t+4∈M

{
T
∣∣M1

4t+4

∣∣2 − 2Re
((
r1214t+4r

121H
4t

)∗
M1

4t+4

)}
.

(21)

We can also use a similar method to decode other inputs:

m̂2 = arg min
M2

4t+4∈M

{
T
∣∣M2

4t+4

∣∣2 − 2Re
((
r1214t+4r

122H
4t

)∗
M2

4t+4

)}
,

m̂3 = arg min
M3

4t+4∈M

{
Q
∣∣M3

4t+4

∣∣2 − 2Re
((
r2214t+4r

221H
4t

)∗
M3

4t+4

)}
,

m̂4 = arg min
M4

4t+4∈M

{
Q
∣∣M4

4t+4

∣∣2 − 2Re
((
r2214t+4r

222H
4t

)∗
M4

4t+4

)}
.

(22)

The complexity of this process is linear and proportional to
2b, since this is the number of combinations of constellation
points to be examined. In practice it could be replaced by
a slicing operation with even less complexity. The decoder
in [8] has computational complexity 24b, and [11–13] have
complexity about 22b+1. Note that theQAM constellation has
better Euclidean distance than PSK , such that it can give a
relatively better performance.

3.3.2. Differential partial-diversity QO-STBCwith
PSK constellations

If M is a PSK constellation, which has constant amplitude,
the distribution of the combined received signals in (21) and
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(22) will not be affected by the real constant values T and Q,
which can be removed in the final detection. The major ad-
vantage of the use of the PSK constellation is that it allows
the use of a very low complexity and can also obtain a rea-
sonable system performance.

4. EXTENSIONS

4.1. Four transmit antennas

There are other possible structures that can provide be-
haviour similar to that of (2). A couple of examples is given
below

S4t =
⎛
⎝
S124t −S344t
S124t S344t

⎞
⎠ ,

S4t =
⎛
⎝
S124t −S344t
S12

∗
4t S34

∗
4t

⎞
⎠ ,

S4t =
⎛
⎝

S124t S344t

−S12∗4t S34
∗

4t

⎞
⎠ .

(23)

The principle here is to ensure that a given Alamouti block

S
i j
4t appears on the same group of transmitter antennas (i.e.,
in the same column of thematrix), such that they can provide
similar performance as the codes defined in (2).

4.2. Eight transmit antennas

While coherent quasi-orthogonal schemes exist for eight
transmit antennas, it is not trivial to derive differential tech-
niques directly from the existing literature, and very few
schemes have so far been devised. In this section, following
the ideas introduced before, we derive the differential scheme
for partial-diversity QO-STBC for eight transmit antennas.
Structures similar to that in (2) can be used to build up a
rate 3/4 transmission matrix based on the rate 3/4 orthogo-
nal space-time block code. An example is given below

S8t =
⎛
⎝
S1238t S4568t

S1238t −S4568t

⎞
⎠ , (24)

where

S
i jk
8t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

si,8t 0 s j,8t −sk,8t
0 si,8t s∗k,8t s∗j,8t

−s∗j,8t −sk,8t s∗i,8t 0

s∗k,8t −s j,8t 0 s∗i,8t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

which can be encoded as a whole at the transmitter end. At
time 8t + 8, S

i jk
8t+8 is differentially encoded as

S
i jk
8t+8 =

M
i jk
8t+8S

i jk
8t

C
i jk
8t

, (26)

M
i jk
8t+8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mi
8t+8 0 −Mj∗

8t+8 −Mk∗
8t+8

0 Mi
8t+8 Mk

8t+8 −Mj
8t+8

M
j
8t+8 −Mk∗

8t+8 Mi∗
8t+8 0

Mk
8t+8 M

j∗
8t+8 0 Mi∗

8t+8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

C
ijk
8t =

√
S
i jk
8t S

i jkH
8t . (28)

Then, S8t+8 can be generated according to (24). We now dis-
cuss how to derive the corresponding decoding algorithm.
The received signals for time 8t + 8 can be written as

r8t+8 = S8t+8h + n8t+8, (29)

where r8t+8 = [r8t+1 · · · r8t+8]T and h = [h1 · · · h8]T .
Similar to the four transmit antenna cases, we can further

transform (29) as

r18t+8 = 2S1238t+8h1 + n1
8t+8,

r28t+8 = 2S4568t+8h2 + n2
8t+8,

r18t+8=
[
r8t+1 + r8t+5 r8t+2 + r8t+6 r8t+3 + r8t+7 r8t+4 + r8t+8

]
,

r28t+8 =
[
r8t+1−r8t+5 r8t+2−r8t+6 r8t+3−r8t+7 r8t+4−r8t+8

]
,

(30)

where h1 = [h1 h2 h3 h4] and h2 = [h5 h6 h7 h8].
Recalling (26)–(30), the received signals at time 8t+8 can

be combined as

r18t+8r
1H
8t = C123

8t+8C1M123
8t+8 + n1

8t+8r
1H
8t ,

r28t+8r
2H
8t = C456

8t+8C2M456
8t+8 + n2

8t+8r
2H
8t ,

(31)

where C1 = 4
∑4

i=1 |hi|2 and C2 = 4
∑8

i=5 |hi|2. Also, for con-
venience, let T = C123

8t+8C1 and Q = C456
8t+8C2.

So far, we can clearly see that the differential encod-
ing and decoding process for eight transmit antennas is al-
most identical to the process for four transmit antennas.
Therefore, by following the power estimation and detection
procedure in Section 3.2, we can obtain the signal decoder
for partial-diversity QO-STBC.
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(1) Differential partial-diversity QO-STBC decoder

m̂1 = arg min
M1

8t+8∈M

{
T2
∣∣M1

8t+8

∣∣2

− 2Re
(
T
(
r11

∗
8t+8r

11
8t + r12

∗
8t+8r

12
8t

+ r138t+8r
13∗
8t + r148t+8r

14∗
8t

)
M1

8t+8

)}
,

m̂2 = arg min
M2

8t+8∈M

{
T2
∣∣M2

8t+8

∣∣2

− 2Re
(
T(r11

∗
8t+8r

13
8t + r128t+8r

14∗
8t

− r138t+8r
11∗
8t − r14

∗
8t+8r

12
8t )M

2
8t+8

)}
,

m̂3 = arg min
M3

8t+8∈M

{
T2
∣∣M3

8t+8

∣∣2

− 2Re
(
T
(
r11

∗
8t+8r

14
8t − r128t+8r

13∗
8t

+ r13
∗

8t+8r
12
8t − r148t+8r

11∗
8t

)
M3

8t+8

)}
,

m̂4 = arg min
M4

8t+8∈M

{
Q2
∣∣M4

8t+8

∣∣2

− 2Re
(
Q
(
r21

∗
8t+8r

21
8t + r22

∗
8t+8r

22
8t

+ r238t+8r
23∗
8t + r248t+8r

24∗
8t

)
M4

8t+8

)}
,

m̂5 = arg min
M5

8t+8∈M

{
Q2
∣∣M5

8t+8

∣∣2

− 2Re
(
Q
(
r21

∗
8t+8r

23
8t + r228t+8r

24∗
8t

− r238t+8r
21∗
8t − r24

∗
8t+8r

22
8t

)
M5

8t+8

)}
,

m̂6 = arg min
M6

8t+8∈M

{
Q2
∣∣M6

8t+8

∣∣2

− 2Re
(
Q
(
r21

∗
8t+8r

24
8t − r228t+8r

23∗
8t

+ r23
∗

8t+8r
22
8t − r248t+8r

21∗
8t

)
M6

8t+8

)}
,

(32)

where r
i j
8t is the jth element of ri8t. When a PSK constellation

is applied, the above detectors can be further simplified with-
out the need of power estimation like those in Section 3.3.2.

(2) Sixteen transmit antennas

For sixteen transmitter antennas, rate 1/2 O-STBC with par-
tial diversity is given by

S =
(

S1234 S5678
−S1234 S5678

)
, S =

(
S1234 S5678
−S∗1234 S∗5678

)
, (33)

where

Si jkl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

si s j sk 0 sl 0 0 0
−s∗j s∗i 0 sk 0 sl 0 0
−s∗k 0 s∗i −s j 0 0 sl 0
0 −s∗k s∗j si 0 0 0 sl
−s∗l 0 0 0 s∗i −s j −sk 0
0 −s∗l 0 0 s∗j si 0 −sk
0 0 −s∗l 0 s∗k 0 si s j
0 0 0 −s∗l 0 s∗k −s∗j s∗i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)
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Figure 1: Differential QO-STBC schemes at rate 2 bps/Hz, four
transmit antennas.

and the resulting codes have partial diversity. Similar meth-
ods can be used to establish the differential encoding and de-
coding process for partial-diversity QO-STBC.

5. SIMULATION RESULTS

Simulation results have been obtained assuming a wireless
system with one receive antenna in a Rayleigh slow and flat
fading channel. Performance is studied in comparison with
the corresponding coherent detection results and the work in
[7, 8, 12], whose results are independently simulated in our
environment, and hence the same simulation parameters are
used. Note that although [10] proposed low complexity de-
coding algorithm for DSTM, the corresponding performance
cannot match that in [8]. Hence, only the results in [8] will
be adopted for comparison. A block of symbols in the format
of (2) or (24) is sent first as the reference, which carries no
information and is unknown to the receiver. Note that these
schemes are simulated with a relatively slowly time-varying
channel, but since the decoding algorithm does not rely on
channel coherence over more than two time slots, the perfor-
mance will not be significantly affected by much more rapid
time variance.

5.1. Differential partial-diversity QO-STBC at
rate 2 bps/Hz, four transmit antennas

There is no purpose in applying BPSK with partial-diversity
QO-STBC for transmission rate 1 bps/Hz, since differential
O-STBC with a real constellation has been reported in [7].
In this part, QPSK constellations are used to generate a full-
rate (two bits per symbol) transmission, half-diversity code.
In this case, as shown in Figure 1, our scheme outperforms
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Figure 2: Differential QO-STBC schemes at rate 1.5 bps/Hz, eight
transmit antennas.

DSTM [8] in the SNR region below 26 dB and D-O-STBC
[7] for SNR below 24 dB. At higher SNR, [7, 8] are better,
since at very high SNR, performance largely depends on the
diversity of the system. Note that in many communication
systems, the lower SNR range, below 20 dB, is more practi-
cally useful, assuming that an outer FEC code is used to en-
sure low enough BER for useful services. Comparing with
full-diversity QO-STBC [12], we can observe that for SNR
below 18 dB, our scheme provides almost the same perfor-
mance. At high SNR, full-diversity QO-STBC begins to give
better performance since it can obtain full diversity and full
rate; however its complexity is much higher than the scheme
considered here. Moreover, our scheme can avoid signal con-
stellation expansion.

5.2. Differential partial-diversity QO-STBC at
rate 1.5 bps/Hz, eight transmit antennas

Figure 2 gives the simulation results of rate 3/4 differen-
tial partial-diversity QO-STBC with eight transmit anten-
nas at transmission rate 1.5 bps/Hz employing QPSK con-
stellation. A similar conclusion can be also drawn that in
the low SNR region, below 19 dB and 20 dB, it can provide
better performance than the corresponding D-O-STBC with
8QAM and 8PSK constellations, respectively. But at high
SNR, D-O-STBC begins to perform better. In comparison
to full-diversity D-QO-STBC in [12], at SNR below 15 dB,
partial-diversity D-QO-STBC can obtain a little better per-
formance because of the comparatively robust coding struc-
ture in (24). But at high SNR, full-diversity D-QO-STBC ob-
tains lower BER. Again, the major advantage of our scheme
is that it has low complexity and avoids signal constellation
expansion.

6. CONCLUSIONS

In this paper we present a QO-STBC-based differential mod-
ulation scheme formultiple antenna systems. Themajor con-
tributions of themethod are that the transmission signals can
maintain constant amplitude, and avoid signal constellation
expansion. They also have a linear signal detector with very
low complexity. Simulation results show that these codes can
provide very useful results in the practical range of SNR for
current systems.

Note that it would be impossible to derive full-rate, full-
diversity complex orthogonal space-time codes for more
than two transmit antennas by our proposed coding struc-
ture using one constellation. Although recent work in [14,
15] describes the construction of full-rate, full-diversity com-
plex orthogonal space-time codes for four transmit antennas,
the code design is complicated, and exhaustive search decod-
ing is required at the receiver end and the resulting perfor-
mance cannot outperform those in [4, 5]. Hence, in this pa-
per, we do not use the codes in [14, 15] for comparison.
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