
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 42168, Pages 1–15
DOI 10.1155/ES/2006/42168

Modeling and Design of Fault-Tolerant and Self-Adaptive
Reconfigurable Networked Embedded Systems

Thilo Streichert, Dirk Koch, Christian Haubelt, and Jürgen Teich

Department of Computer Science 12, University of Erlangen-Nuremberg, AmWeichselgarten 3, 91058 Erlangen, Germany

Received 15 December 2005; Accepted 13 April 2006

Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain
purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems.
In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hard-
ware/software codesign online. Based on field-programmable gate arrays (FPGAs) in combination with CPUs, we allow migrating
tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are
available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through
services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive
systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable
networked embedded system running automotive applications.

Copyright © 2006 Thilo Streichert et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Nowadays, networked embedded systems consist of several
control units typically connected via a shared communica-
tion medium and each control unit is specialized to execute
certain functionality. Since these control units typically con-
sist of a CPU with certain peripherals, hardware accelerators,
and so forth, it is necessary to integrate methods of fault-
tolerance for tolerating node or link failures. With the help of
reconfigurable devices such as field-programmable gate ar-
rays (FPGA), novel strategies to improve fault tolerance and
adaptability are investigated.

While different levels of granularity have to be consid-
ered in the design of fault-tolerant and self-adaptive recon-
figurable networked embedded systems, we will put focus on
the system level in this article. Different to architecture or
register transfer level, where the methods for detecting and
correcting transient faults such as bit flips are widely ap-
plied, static topology changes like node defects, integration
of new nodes, or link defects are the topic of this contri-
bution. A central issue of this contribution is online hard-
ware/software partitioning which describes the procedure of
binding functionality onto resources in the network at run-
time. In order to allow for moving functionality from one
node to another and execute it either on hardware or software
resources, we will introduce the concepts of task migration

and task morphing. Both task migration as well as task mor-
phing require hardware and/or software checkpointing mech-
anisms and an extended design flow for providing an appli-
cation engineer with common design methods.

All these topics will be covered in this article from a for-
mal modeling perspective, the design methodology perspec-
tive, as well as the implementation perspective. As a result,
we propose an operating system infrastructure for networked
embedded systems, which makes use of dynamic hardware
reconfiguration and is called ReCoNet.

The remainder of the article is structured as follows.
Section 2 gives an overview of related work including dy-
namic hardware reconfiguration and checkpointing strate-
gies. In Section 3, we introduce our idea of fault-tolerant
and self-adaptive reconfigurable networked embedded sys-
tems by describing different scenarios and by introducing a
formal model of such systems. Section 4 is devoted to the
challenges when designing a ReCoNet-platform, that is, the
architecture and the operating system infrastructure for a Re-
CoNet. Finally, in Section 5 we will present our implementa-
tion of a ReCoNet-platform.

2. RELATEDWORK

Recent research focuses on operating systems for single
FPGA solutions [1–3], where hardware tasks are dynamically

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81587018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EURASIP Journal on Embedded Systems

assigned to FPGAs. In [1] the authors propose an online
scheduling system that assigns tasks to block-partitioned de-
vices and can be a part of an operating system for a reconfig-
urable device. For hardware modules with the shape of an ar-
bitrary rectangle, placement methodologies are presented in
[2, 3]. A first approach to dynamic hardware/software parti-
tioning is presented by Lysecky and Vahid [4]. There, the au-
thors present a warp configurable logic architecture (WCLA)
which is dedicated for speeding up critical loops of embed-
ded systems applications. Besides the WCLA, other architec-
tures on different levels of granularity have been presented
like PACT [5], Chameleon [6], HoneyComb [7], and dy-
namically reconfigurable networks on chips (DyNoCs) [8]
which were investigated intensively too. Different to these re-
configurable hardware architectures, this article focuses too
on platforms consisting of field-programmable gate arrays
(FPGA) hosting a softcore CPU and free configurable hard-
ware resources.

Some FPGA architectures themselves have been devel-
oped for fault tolerance targeting on two objectives. One di-
rection is towards enhancing the chip yield during produc-
tion phase [9] while the other direction focuses on fault tol-
erance during runtime. In [10] an architecture for the latter
case that is capable of fault detection and recovery is pre-
sented. On FPGA architectures much work has been pro-
posed to compensate faults due to the possibility of hard-
ware reconfiguration. An extensive overview of fault mod-
els and fault detection techniques can be found in [11].
One approach suitable for FPGAs is to read back the con-
figuration data from the device while comparing it with
the original data. If the comparison was not successful the
FPGA will be reconfigured [12]. The reconfiguration can
further be used to move modules away from permanently
faulty resources. Approaches in this field span from remote
synthesis where the place and route tools are constrained
to omit faulty parts from the synthesized module [13] to
approaches, where design alternatives containing holes for
overlying some faulty resources have been predetermined
and stored in local databases [14, 15].

For tolerating defects, we additionally require check-
pointing mechanisms in software as well as in hardware. An
overview of existing approaches and definitions can be found
in [16]. A checkpoint is the information necessary to recover
a set of processes from a stored fault-free intermediate state.
This implies that in the case of a fault the system can re-
sume its operation not from the beginning but from a state
close before the failure preventing a massive loss of compu-
tations. Upon a failure this information is used to rollback
the system. Caution is needed if tasks communicate asyn-
chronously among themselves as it is the case in our pro-
posed approach. In order to deal with known issues like the
domino effect, where a rollback of one node will require a
rollback of nodes that have communicated with the faulty
node since the last checkpoint, we utilize a coordinated check-
pointing scheme [17] in our system. In [18] the impact of
the checkpoint scheme on the time behavior of the system
is analyzed. This includes the checkpoint overhead, that is,
the time a task is stopped to store a checkpoint as well as the

latencies for storing and restoring a checkpoint. In [19], it
is examined how redundancy can be used in distributed sys-
tems to hold up functionality of faulty nodes under real-time
requirements and resource constraints.

In the FPGA domain checkpointing has been seldomly
investigated so far. Multicontext FPGAs [20–22] have been
proposed, that allow to swap the complete register set (and
therefore the state) among with the hardware circuit between
a working set and one or more shadow sets in a single cy-
cle. But due to the enormous amount of additional hard-
ware overhead, they have not been used commercially. An-
other approach for hardware task preemption is presented in
[23], where the register set of a preemptive hardware mod-
ule is completely separated from the combinatorial part. This
allows an efficient read and write access to the state by the
cost of a low clock frequency due to routing overhead aris-
ing by the separation. Some work [24, 25] has been done to
use the read back capability of Xilinx Virtex FPGAs in order
to extract the state information in the case of a task preemp-
tion. The read back approach has the advantage that typically
hardware design-flows are nearly not influenced. However,
the long configuration data read back times will result in an
unfavorable checkpoint overhead.

3. MODELS AND CONCEPTS

In this article, we consider networked embedded systems
consisting of dynamically hardware reconfigurable nodes.
The nodes are connected via point-to-point communication
links. Moreover, each node in the network is able, but is not
necessarily required, to store the current state of the entire
network which is given by its current topology and the dis-
tribution of the tasks in the network.

3.1. ReCoNetmodeling

For a precise explanation of scenarios and concepts an ap-
propriate formal model is introduced in the following.

Definition 1 (ReCoNet). A ReCoNet (gt, ga,βt,βc) is repre-
sented as follows.

(i) The task graph gt = (Vt,Et) models the application
implemented by the ReCoNet. This is done by com-
municating tasks t ∈ Vt. Communication is modeled
by data dependencies e ∈ Et ⊆ Vt ×Vt .
(ii) The architecture graph ga = (Va,Ea) models the
available resources, that is, nodes in the network n ∈
Va and bidirectional links l ∈ Ea ⊆ Va×Va connecting
nodes.
(iii) The task binding βt : Vt → Va is an assignment of
tasks t ∈ Vt to nodes n ∈ Va.
(iv) The communication binding βc : Et → Ei

a is an
assignment of data dependencies e ∈ Et to paths
of length i in the architecture graph ga. A path p of
length i is given by an i-tuple p = (e1, e2, . . . , ei) with
e1, . . . , ei ∈ Ea and e1 = {n0,n1}, e2 = {n1,n2}, . . . ,
ei = {ni−1,ni}.

Thilo Streichert et al. 3

t1

t2

n1

n2 n3

n4

t1t3

t2

n1

n2 n3

n4

t1

t2

n1

n2 n3

n4

t1

t2

n1

n2 n3

Ne
w
tas
k t

3
at
n 1

Broken link (n1,n4)

Node defect n
4

(a)

(b)

(c)

(d)

Figure 1: Different scenarios in a ReCoNet. (a) A ReCoNet consisting of four nodes and six links with two communicating tasks. (b) An
additional task t3 was assigned to node n1. (c) The link (n1,n4) is broken. Thus, a new communication binding is mandatory. (d) The defect
of node n4 requires a new task and communication binding.

Example 1. In Figure 1(a), a ReCoNet is given. The task
graph gt is defined byVt={t1, t2} and Et={(t1, t2)}. The ar-
chitecture graph consists of four nodes and six links, that is,
Va={n1,n2,n3,n4} and Ea={{n1,n2}, {n1,n3}, {n1,n4},
{n2,n3}, {n2,n4}, {n3,n4}}. The shown task binding is
βt = {(t1,n1), (t2,n4)}. Finally, the communication binding
is βc = {((t1, t2), ({n1,n4}))}.

Starting from this example, different scenarios can occur.
In Figure 1(b) a new task t3 is assigned to node n1. As this as-
signment might violate given resource constraints (number
of logic elements available in an FPGA or number of tasks
assigned to a CPU), a new task binding βt can be demanded.
A similar scenario can be induced by deassigning a task from
a node.

Figure 1(c) shows another important scenario where the
link (n1,n4) is broken. Due to this defect, it is necessary to
calculate a new communication binding βc for the data de-
pendency (t1, t2) which was previously routed over this link.
In the example shown in Figure 1(c), the new communi-
cation binding is βc((t1, t2)) = ({n1,n3}, {n3,n4}). Again a
similar scenario results from reestablishing a previously bro-
ken link.

Finally, in Figure 1(d) a node defect is depicted. As node
n4 is not available any longer, a new task binding βt for task

t2 is mandatory. Moreover, changing the task binding im-
plies the recalculation of the communication binding βc.
The ReCoNet given in Figure 1(d) is given as follows:
the task graph gt with Vt = {t1, t2} and Et = {(t1, t2)},
the architecture graph consisting of Va = {n1,n2,n3} and
Ea={{n1, n2}, {n1,n3}, {n2,n3}}, the task binding βt =
{(t1,n1), (t2,n2)} and communication binding βc = {((t1,
t2), ({n1,n2}))}.

From these scenarios we conclude that a ReCoNet given
by a task graph gt, an architecture graph ga, the task bind-
ing βt, and the communication binding βc might change or
might be changed over time, that is, gt = gt(τ), ga = ga(τ),
βt = βt(τ), and βc = βc(τ), where τ ∈ R+

0 denotes the ac-
tual time. In the following, we assume that a change in the
application given by the task graph as well as a change in the
architecture graph is indicated by an event e. Appropriately
reacting to these events e is a feature of adaptive and fault
tolerant systems.

The basic factors of innovation of a ReCoNet stem from
(i) dynamic rerouting, (ii) hardware and software task mi-
gration, (iii) hardware/software morphing, and (iv) online
partitioning. These methods permit solving the problem of
hardware/software codesign online, that is, at runtime. Note
that this is only possible due to the availability of dynamic
and partial hardware reconfiguration. In the following, we

4 EURASIP Journal on Embedded Systems

discuss the most important theoretical aspects of these meth-
ods. In Section 4, we will describe the basic methods in more
detail.

3.2. Online partitioning

The goal of online partitioning is to equally distribute the
computational workload in the network. To understand this
particular problem, we have to take a closer look at the no-
tion of task binding βt and communication binding βc. We
therefore have to refine our model. In our model, we distin-
guish a finite number of the so-called message types M. Each
message type m ∈ M corresponds to a communication pro-
tocol in the ReCoNet.

Definition 2 (message type). M denotes a finite set of mes-
sage typesmi ∈M.

In a ReCoNet supporting different protocols and band-
widths, it is crucial to distinguish different demands. Assume
a certain amount of data has to be transferred between two
nodes in the ReCoNet. Between these nodes are two types
of networks, one which is dedicated for data transfer and
supports multicell packages and one which is dedicated for,
for example, sensor values and therefore has a good pay-
load/protocol ratio for one word messages. In such a case,
the data which has to be transferred over two different net-
works would cause a different traffic in each network. Hence,
we associate with each data dependency e ∈ Et the so-called
demand valueswhich represent the required bandwidth when
using a given message type.

Definition 3 (demand). With each pair (ei,mj) ∈ Et × M,
associate a real value di, j ∈ R+

0 (possibly ∞ if the message
type cannot occur) indicating the demand for communica-
tion bandwidth by the two communicating tasks t1, t2 with
ei = (t1, t2).

Example 2. Figure 2 shows a task graph consisting of three
tasks with three demands. While the demand between t1 and
t2 as well as the demand between t1 and t3 can be routed over
all two message types (|M| = 2), the demand between t2 and
t3 can be routed over the network that can transfer message
typem2 only.

On the other hand, the supported bandwidth is modeled
by the so-called capacities to each message typem ∈M asso-
ciated with a link l ∈ Ea in the architecture graph ga.

Definition 4 (capacity). With each pair (li,mj) ∈ Ea × M,
associate a real value ci, j ∈ R+

0 (possibly 0, if the message type
cannot be routed over li) indicating the capacity on a link li
for message typemj .

In the following, we assume that for each link li ∈ Ea
exactly one capacity ci is greater than 0.

Example 3. Figure 2 shows a ReCoNet consisting of four
nodes and four links. While {n1,n3} and {n3,n4} can

t1

t3

t2

n1

n2 n3

n4

d2,1 = 10
d2,2 = 15

d1,1 = 15
d1,2 = 20

d3,2 = 10

c1,1 =
30

c2,2 = 15
c3,2 =

10
c 4,
1
= 2

0

Figure 2: Demands are associated with pairs of data dependencies
and message types while capacities are associated with pairs of links
and message types.

transfer the message type m1, {n2,n3} and {n2,n4} can
handle message type m2. As the data dependency (t1, t3) is
bound to path ({n1,n3}, {n3,n2}), node n3 acts as a gate-
way. The gateway converts a message of typem1 to a message
of typem2. Note that only capacities with c > 0 and demands
with d <∞ are shown in this figure. In our model, we assign
exactly one capacity with c > 0 to each communication link
l ∈ Ea in the architecture graph ga and at least one demand
with d <∞ to the data dependencies e ∈ Et in the task graph
gt .

Depending on the type of capacity, a demand of the cor-
responding type can be routed over such an architecture
graph link. With this model refinement of a ReCoNet, it is
possible to limit the routing possibilities, and moreover, to
assign different demands to one problem graph edge.

Beside the communication, tasks have certain properties
which are of most importance in embedded systems. These
can be either soft or hard, either periodic or sporadic, have
different arrival times, different workloads, and other con-
straints, see, for example, [26]. For online partitioning a pre-
cise definition of the workload is required which is known to
be a complex topic. As we are facing dynamically and par-
tially reconfigurable architectures, we have to consider two
types of workload, hardware workload and software workload,
which are defined as follows.

Definition 5 (software workload). The software workload
wS(t,n) on node n produced by task t implemented in soft-
ware is the fraction of execution time to its period.

This definition can be used for independent periodic and
preemptable tasks. Buttazzo [26] proposed a load definition
where the load is determined dynamically during runtime.
The treatment of such definitions in our algorithm is amatter
of future work.

Definition 6 (hardware workload). The hardware workload
wH(t,n) on node n produced by task t is defined as a frac-
tion of the required area and maximal available area, respec-
tively, configurable logic elements in case of FPGA imple-
mentations.

Thilo Streichert et al. 5

As a task t bound to node n, that is, (t,n) ∈ βt, can be
implemented partially in hardware and partially in software,
different implementations might exist.

Definition 7 (workload). The workload wi(t,n) on node n
produced by the ith implementation of task t is a pair
wi(t,n) = (wH

i (t,n),w
S
i (t,n)), where w

H
i (t,n) (w

S
i (t,n)) de-

notes the hardware workload (software workload) on node n
produced by the ith implementation of task t.

The overall hardware/software workload on a node n
in the network is the sum of all workloads of the tith im-
plementation of tasks bound to this node, that is, w(n) =∑

(t,n)∈βt wti(t,n). Here, we assume constant workload de-
mands, that is, for all t ∈ T ,wi(t,n) = wi(t).

With these definitions we can define the task of online
partitioning formally.

Definition 8 (online partitioning). The task of online parti-
tioning solves the followingmultiobjective combinatorial op-
timization problem at runtime:

min

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

max
(
Δn(wH(n)

)
,Δn

(
wS(n)

))

∣
∣
∣
∣
∣

∑

n

wH(n)−
∑

n

wS(n)

∣
∣
∣
∣
∣

∑

n

wH(n) +wS(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1)

such that

wH(n),wS(n) ≤ 1,

βt is a feasible task binding,

βc is a feasible communication binding.

(2)

The first objective describes the workload balance in
the network. With this objective to be minimized, the
load in the network is balanced between the nodes, where
hardware and software loads are treated separately with
Δn(wH(n))=maxn(wH(n))−minn(wH(n)) and Δn(wS(n))=
maxn(wS(n))−minn(wS(n)).

The second objective balances the load between hard-
ware and software. With this strategy, there will always be a
good load reserve on each active node which is important for
achieving fast repair times in case of unknown future node
or link failures.

The third objective reduces the total load in the network.
Finally, the constraints imposed on the solutions guarantee
that not more than 100% workload can be assigned to a sin-
gle node. The two feasibility requirements will be discussed
in more detail next.

A feasible binding guarantees that communications de-
manded by the problem graph can be established in the allo-
cated architecture. This is an important property in explicit
modeling of communication.

Definition 9 (feasible task binding). Given a task graph gt and
an architecture graph ga, a feasible task binding βt is an as-
signment of tasks t ∈ Vt to nodes n ∈ Va that satisfies the
following requirements:

(i) each task t ∈ Vt is assigned to exactly one node n ∈
Va, that is, for all t ∈ Vt, |{(t,n) ∈ βt | n ∈ Va}| = 1;
(ii) for each data dependency e ∈ (ti, t j) ∈ Et with
(ti,ni), (t j ,nj) ∈ βt a path p from ni to nj exists.

This definition differs from the concepts of feasible bind-
ing presented in [27] in a way that communicating processes
require a path in the architecture graph and not a direct link
for establishing this communication. This way, we are able
to consider networked embedded systems. However, consid-
ering multihop communication, we have to regard the ca-
pacity of connections and data demands of communication.
This step will be named communication binding in the fol-
lowing.

Definition 10 (feasible communication binding). The task of
communication binding can be expressed with the following
ILP formulation. Define a binary variable with

xi, j =
⎧
⎪⎨

⎪⎩

1 data dependency ei is bound on link l j ,

0 else,
(3)

and a mapping vector −→mi = (mi,1, . . . ,mi,|Va|) for each data
dependency ei = (tk, t j) with the elements

mi,l =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if (tk,nl) ∈ βt,

−1 if (t j ,nl) ∈ βt,

0 else.

(4)

Then, the following two kinds of constraints exist.

(i) For all i = 1, . . . , |Et|,C · −→xi = −→mi, with C being the
incidence matrix of the architecture graph and −→xi =
(xi, j , . . . , xi,|Ea|)T .
This constraint literally means that all incoming and
outgoing demands of a node have to be equal. If a
demand producing or consuming process is mapped
onto an architecture graph node, the sum of incoming
demands differs from the sum of outgoing demands.
(ii) The second constraint restricts the sum of demands
di, j bound onto a link l j to be less than or equal to the
edge’s capacity cj , where di, j is the demand of the data

dependency ei. For all j = 1, . . . , |Ea|,
∑|Et|

i=1 di, j · xi, j ≤
cj .

The objective of this ILP formulation is to minimize the total
flow in the network: min(

∑|Et|
i=1
∑|Ea|

j=1 di, j · xi, j). A solution to
this ILP assigns data dependencies e in the task graph gt to
paths p in the architecture graph ga. Such a solution is called
a feasible communication binding βc.

6 EURASIP Journal on Embedded Systems

ZS

TS

TS�1

Z

ZM
TH

TH�1

ZH

Figure 3: Hardware/software morphing is only possible in the
morph states ZM ⊆ Z. These states permit a bijective mapping of
refined states (ZS and ZH) of task t to Z.

3.3. Taskmigration, taskmorphing, and
replica binding

In order to allow online partitioning, it is mandatory to sup-
port the migration and the morphing of tasks in a ReCoNet.
Note that this is only possible by using dynamically and par-
tially reconfigurable hardware.

A possible implementation to migrate a task t ∈ Vt

bound to node n ∈ Va to another node n′ ∈ Va with n �= n′

is by duplicating t on node n′ and removing t from n, that
is, βt ← βt\{(t,n)} ∪ {(t,n′)}. The duplication of a task t
requires two steps: first, the implementation of t has to be in-
stantiated on node n′ and, second, the current context C(t)
of t has to be copied to the new location.

In hardware/software morphing an additional step, the
transformation of the context CH(t) for a hardware imple-
mentation of t to an appropriate context CS(t) for the soft-
ware implementation of t or vice versa, is needed. As a basis
for hardware/software morphing, a task t ∈ Vt is modeled by
a deterministic finite state machinem.

Definition 11. A finite state machine (FSM) m is a 6-tuple
(I ,O, S, δ,ω, s0), where I denotes the finite set of inputs, O
denotes the finite set of outputs, S denotes the finite set
of states, δ : S × I → S is the state transition function,
ω : S × I → O is the output function, and s0 is the initial
state.

The state space of the finite state machine m is described
by the set Z ⊆ E × O × S. During the software build process
and the hardware design phase, state representations, ZS for
software and ZH for hardware, are generated by transforma-
tions TS and TH , see Figure 3, for instance. After the refine-
ment of Z in ZS or ZH it might be that the states z ∈ Z do not
exist in ZS or ZH . Therefore, hardware/software morphing is
only possible in equivalent states existing in both, ZH and
ZS. For these states, the inverse transformation TH−1

, respec-
tively, TS−1 must exist. The states will be called morph states
ZM ⊆ Z in the following (see Figure 3). Note that a morph
state is part of the context C(t) of a task t.

In summary, both task migration and hardware/software
morphing are based on the idea of context saving or check-
pointing, respectively. In order to reduce recovery times, we
create one replica t′ for each task t ∈ Vt in the ReCoNet. In

case of task migration, the contextC(t) of task t can be trans-
ferred to the replica t′ and t′ can be activated, assuming that
the replica is bound to the node n′ the task t should be mi-
grated to. Thus, our ReCoNet model is extended towards a
so-called replica task graph g′t .

Definition 12 (replica task graph). Given a task graph gt =
(Vt,Et), the corresponding replica task graph g′t = (V ′

t ,E
′
t) is

constructed by V ′
t = Vt ∪ Ṽt and E′t = Et ∪ Ẽt. Ṽt denotes

the set of replica tasks, that is, for all t ∈ Vt there exists a
unique t′ ∈ Ṽt and |Vt| = |Ṽt|. Ẽt denotes the set of edges
representing data dependencies (t, t′) resulting from sending
checkpoints from a task t to its corresponding replica t′, that
is, Ẽt ⊂ Vt × Ṽt .

The replica task graph g′t consists of the task graph gt, the
replica tasks Ṽt, and additional data dependencies Ẽt which
result from sending checkpoints from tasks to their replica.
With the definition of the replica task graph g′t , we have to
rethink the concept of online partitioning. In particular, the
definition of a feasible task binding βt must be adapted.

Definition 13 (feasible (replica) task binding). Given a
replica task graph g′t and a function r : Vt �→ Ṽt that assigns
a unique replica task t′ ∈ Ṽt to its task t ∈ Vt . A feasible
replica task binding is a feasible task binding βt as defined in
Definition 9 with the constraint that

∀t ∈ Vt ,βt(t) �= βt
(
r(t)

)
. (5)

Hence, a task t and its corresponding replica r(t) must
not be bound onto the same node n ∈ Va. In the follow-
ing, we use the term feasible task binding in terms of feasible
replica task binding.

3.4. Hardware checkpointing

Checkpointing mechanisms are integrated for task migration
as well as morphing to save and periodically update the con-
text of a task. In [16], checkpoints are defined to be consistent
(fault-free) states of each task’s data. In case of a fault or if the
tasks’ data are inconsistent, each task restarts its execution
from the last consistent state (checkpoint). This procedure
is called rollback. All results computed until this last check-
point will not be lost and a distributed computation can be
resumed. As mentioned above, several tasks have to go back
to one checkpoint if they depend on each other. Therefore,
we define checkpoint groups.

Definition 14 (checkpoint group). A checkpoint group is a
set of tasks with data dependencies. Within such a group, one
leader exists which controls the checkpointing.

For each checkpoint group the following premise holds:
(1) each member of a checkpoint group knows the whole
group, (2) the leader of a checkpoint group is not necessar-
ily known to all the others in a group, and (3) overlapping
checkpoint groups do not exist. As the developer knows the
structure of the application, that is, the task graph gt at design

Thilo Streichert et al. 7

time, checkpoint groups can be built a priori. Thus, proto-
cols for establishing checkpoint groups during runtime are
not considered in this case.

Model of Consistency

Assume a task graph gt with a set of tasks Vt = {t0, t1, t2}
running on different nodes in a ReCoNet. The first task t0
produces messages and sends them to the next task t1 which
performs some computation on the message’s content and
sends them further to task t2. Our communication model is
based on message queues for the intertask communication.
Due to rerouting mechanisms, for example, in case of a link
defect, it is possible that messages were sent over different
links. Hence, the order of messages in general cannot be as-
sured to stay the same.

But if messages arrive at a task t j , we have to ensure that
these were processed in the same order they have been cre-
ated by task t j−1. As a consequence, we assign a consecutive
identifier i to every generated message. Let us assume that
the last processed message by a task t j was mi produced at
task t j−1, then task t j has to process message mi+1 next. If
the message order arranged by task t j−1 has changed during
communication this will be recognized at task t j by an iden-
tifier larger than the one to be processed next. In this case
all messages mi+k, for all k > 1 will be temporarily stored in
the so-called local data set of task t j to be processed later in
correct order.

If task t j receives a message to store a checkpoint by the
leader of a checkpoint group it will stop to process the next
messages and consequently t j will stop to produce new out-
put messages for node t j+1. In the following, all tasks of this
checkpoint group will start to move incoming messages into
their local data set. In addition, all tasks of the checkpoint
group will store their internal states on the local data set. As
a consequence, all tasks of the checkpoint group will reach a
consistent state.

Hence, we define a checkpoint as follows.

Definition 15 (checkpoint). A checkpoint is a set of local data
sets. It can be produced if all tasks inside a checkpoint group
are in a consistent state. This is when (i) all message pro-
ducing tasks are stopped and (ii) after all message queues are
empty.

The checkpoint is stored in a distributed manner in the
local data sets of all tasks belonging to their checkpoint
group. All tasks t ∈ Vt of the task graph gt will have to copy
their current local data set to their corresponding replica task
t′ ∈ V ′

t of the replica task graph g′t . If a node hosting a task t
fails, the corresponding replica task t0 takes over the work of t
and all tasks of the checkpoint group will perform a rollback
by restoring their last checkpoint.

Hardware checkpointing

As we model tasks’ behavior by finite state machines and
we have seen how to handle input and output data to keep
checkpoints consistent, we are now able to present a new

model for hardware checkpointing. An FSM m that allows
for saving and restoring a checkpoint can also be modeled by
an FSM cm. Subsequently, we denote cm as checkpoint FSM
or for short CFSM. In order to construct a corresponding
CFSM cm for a given FSM m, we have to define a subset of
states Sc ⊆ S that will be used as a checkpoint. Using Sc ⊂ S
might be useful due to optimality reasons. First, we define a
CFSM formally.

Definition 16. Given an FSM m = (I ,O, S, δ,ω, s0) and a set
of checkpoints Sc ⊆ S, the corresponding checkpoint FSM
(CFSM) is an FSM cm = (I′,O′, S′, δ′,ω′, s′0), where

I′ = I × Sc × Isave × Irestore with Isave = Irestore = {0, 1},
O′ = O × Sc, S′ = S× Sc.

(6)

In the following, it is assumed that the current state is given
by (s, s′) ∈ S′. The current input is denoted by i′. The state
transition function δ′ : S′ × I′ → S′ is given as

δ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(s, i), s′

)
if i′ = (i,−, 0, 0),

(
δ(s, i), s

)
if i′ = (i,−, 1, 0)∧ s ∈ Sc,

(
δ(s, i), s′

)
if i′ = (i,−, 1, 0)∧ s /∈ Sc,

(
δ
(
ic, i
)
, s′
)

if i′ = (i, ic, 0, 1
)
,

(
δ
(
ic, i
)
, s
)

if i′ = (i, ic, 1, 1
)∧ s ∈ Sc,

(
δ(s, i), s′

)
if i′ = (i, ic, 1, 1

)∧ s /∈ Sc.

(7)

The output function ω′ is defined as

ω′ =
⎧
⎨

⎩

(
ω(s, i), s′

)
if i′ = (i,−,−, 0),

(
ω
(
ic, i
)
, s′
)

if i′ = (i, ic,−, 1
)
.

(8)

Finally, s′0 = (s0, s0).

Hence, a CFSM cm can be derived from a given FSM m
and the set of checkpoints Sc. The new input to cm is the orig-
inal input i and additionally an optional checkpoint to be re-
stored as well as two control signals isave and irestore. These ad-
ditional signals are used in the state transition function δ′. In
case of isave = irestore = 0, cm acts like m. On the other hand,
we can restore a checkpoint sc ∈ Sc if irestore = 1 and using sc
as additional input, that is, ic = sc. In this case, ic is treated as
current state, and the next state is determined by δ(ic, i). It is
also possible to save a checkpoint by setting isave = 1. In this
case, the current state s is set to the latest saved checkpoint.
Therefore, the state space of cm is given by the current state
and the latest saved checkpoint (S× Sc). Note that it is possi-
ble to swap two checkpoints by setting isave = irestore = 1. The
output function is extended to output also the latest stored
checkpoint s. The output function is given by the original
output function ω and s′ as long as no checkpoint should be
restored. In case of a restore (irestore = 1), the output depends
on the restored checkpoint ic and the input i. The initial state
s′0 of cm is the initial state s0 of m where s0 is used as latest
saved checkpoint, that is, s′0 = (s0, s0).

8 EURASIP Journal on Embedded Systems

0 1

23

/0

/1

/2

/3

(a)

0, 0 1, 0

2, 03, 0

0, 2

3, 2

1, 2

2, 2

(�

,0
,0
)/
(3
,0
)

(�, 0, 0)/(0, 0)

(�, 0, 0)/(2, 0)

(�

,0
,0
)/
(1
,0
)

(�, 1, 0)/(0, 2)
(�

,0
,0
)/
(3
,2
)

(�, 1, 0)/(2, 0)

(�, 0, 0)/(0, 2)

(�

,0
,0
)/
(1
,2
)

(�, 0, 0)/(2, 2)

(0, 0, 1)/(0, 0)

(2, 0, 1)/(2, 0)

(0, 0, 1)/(0, 2)

(2, 0, 1)/(2, 2)

(b)

Figure 4: (a) FSM of a modulo-4-counter. (b) Corresponding
CFSM for Sc = {0, 2}, that is, only in states 0 and 2 saving of the
checkpoint is permitted. The state space is given by the actual state
and the latest saved checkpoint.

Example 4. Figure 4(a) shows a modulo-4-counter. Its FSM
m is given by I = ∅,O = S = {0, 1, 2, 3}, δ(s) = (s + 1)%4,
ω(s) = s, and s0 = 0. The corresponding CFSM cm for
Sc = {0, 2} is shown in Figure 4. For readability reasons, we
have omitted the swap state transitions. The state space has
been doubled due to the two possible checkpoints. To be pre-
cise, there are two copies of m, one representing s′ = 0 to
be the latest stored checkpoint and one representing s′ = 2
being the latest stored checkpoint. We can see that there ex-
ist two state transitions connecting these copied FSMs when
saving a checkpoint, that is, ((2, 0), (3, 2)) and ((0, 2), (1, 0)).
Of course it is possible to save the checkpoints in the states
(0, 0) and (2, 2) as well. But the resulting state transitions do
not differ from the normal mode transitions. The restoring
of a checkpoint results in additional state transitions.

4. ARCHITECTURE ANDOPERATING SYSTEM
INFRASTRUCTURE

All previously mentioned mechanisms for establishing a
fault-tolerant and self-adaptive reconfigurable network have
to be integrated in an OS infrastructure which is shown
in Figure 5. While the reconfigurable network forms the
physical layer consisting of reconfigurable nodes and com-
munication links, the top layer represents the application
that will be dynamically bound on the physical layer. This
binding of tasks to resources is determined by an online
partitioning approach that requires three main mechanisms:

Application

Dynamic hardware/software partitioning

Dynamic rerouting

Hardware/software
task migration

Hardware/software
morphing

Hardware/software checkpointing

Basic network services

Local operating system

Dynamic hardware
placement

Dynamic software
scheduling

Reconfigurable network

Figure 5: Layers of a fault-tolerant and self-adaptive network. In
order to abstract from the hardware, a local operating system runs
on each node. On top of this local OS, basic network tasks are de-
fined and used by the application to establish the fault-tolerant and
self-adaptive reconfigurable network.

(1) dynamic rerouting, (2) hardware/software task migra-
tion, and (3) hardware/software morphing. Note that the dy-
namic rerouting becomes more complex because messages
will be sent between tasks that can be hosted by different
nodes. The service provided by task migration mechanisms
are required for moving tasks from one node to another
while the hardware/software morphing allows for a dynamic
binding of tasks to either reconfigurable hardware resources
or a CPU. The task migration and morphing mechanisms re-
quire in turn an efficient hardware/software checkpointing
such that states of tasks will not get lost. Basic network ser-
vices for addressing nodes, detecting link failures, and send-
ing/receiving messages are discussed in [28]. In connection
with the local operating system the hardware reconfigura-
tion management has to be considered. Recent publications
[3, 29, 30] have presented algorithms for placing hardware
functionality on a reconfigurable device.

4.1. Online partitioning

The binding of tasks to nodes is determined by a so-called
online hardware/software partitioning algorithm which has
to (1) run in a distributed manner for fault-tolerance rea-
sons, (2) work with local information, and (3) improve the
binding concerning objectives presented in the following. In
order to determine a binding of processes to resources, we
will introduce a two-step approach as shown in Figure 6. The
first step performs a fast repair that reestablishes the func-
tionality and the second step tries to optimize the binding of
tasks to nodes such that the system can react upon a changed
resource allocation and newly arriving tasks.

Fast repair

Two of the three scenarios presented in Figure 1 will be
treated during this phase. In case of a newly arriving task the
decision of task binding is very easy. Here, we use discrete

Thilo Streichert et al. 9

t1

t2

n1

n2 n3

n4

Event:
node defect
broken link
new task

� � �

gt
ga

βt

βc

Fa
st
re
pa
ir

Optimization

Repartitioning

Bipartitioning

Discrete diffusion

No Yes

Is
partition

ok?

R
er
ou

ti
n
g

t1

t2

n1

n2 n3

βt βc

Figure 6: Phases of the two-step approach: while the fast repair step reestablishes functionality under timing constraints, the optimization
phase aims on increasing fault tolerance.

diffusion techniques that will be explained later. Due to the
behavior of these techniques, the load of all nodes is almost
equally balanced. Hence, the new task can be bound on an
arbitrary node.

In the third scenario a node defect occurs. So, tasks
bound onto this node will be lost and replicas will take over
the functionality. A replicated task t′ will be hosted on a dif-
ferent node than its main task t ∈ Vt. Periodically, a repli-
cated task receives a checkpoint by the main task and checks
whether the main task is alive. If the main task is lost, the
replicated task becomes a main task, restores the last check-
point, and creates a replica on one node in its neighborhood.
The main task checks either if its replicated task is still alive.
If this is not the case, a replica will be created in the neigh-
borhood again.

Bipartitioning

The applied heuristic for local bipartitioning first determines
the load ratio between a hardware and a software implemen-
tation for each task ti ∈ Vt , that is, wH(ti)/wS(ti). According
to this ratio, the algorithm selects one task and implements
it either in hardware or software. If the hardware load is less
than the software load, the algorithm selects a task which will
be implemented in hardware, and the other way round. Due
to the competing objectives that (a) the load on each node’s
hardware and software resources should be balanced and (b)
the total load should be minimized, it is possible that tasks
are assigned, for example, to software although they would
be better assigned to hardware resources. These tasks which
are suboptimally assigned to a resource on one node will be
migrated to another node at first during the diffusion phase.

Discrete diffusion

While bipartitioning assigns tasks to either hardware or
software resources on one node, a decentralized discrete
diffusion algorithm migrates tasks between nodes, that is,
changing the task binding βt. Characteristic to the class of

diffusion algorithms, first introduced by Cybenko [31] is that
iteratively each node is allowed to move any size of load to
each of its neighbors. The quality of such an algorithm is
measured in terms of the number of iterations that are re-
quired in order to achieve a balanced state and in terms of
amount of load moved over the edges of the graph.

Definition 17 (local iterative diffusion algorithm). A local it-
erative load balancing algorithm performs iterations on the
nodes of ga determining load exchanges between adjacent
nodes. On each node ni ∈ Va, the following iteration is per-
formed:

yk−1c = α
(
wk−1
i −wk−1

j

) ∀c = {ni,nj
} ∈ Ea,

xkc = xk−1c + yk−1c ∀c = {ni,nj
} ∈ Ea,

wk
i = wk−1

i −
∑

c={ni ,nj}∈Ea
yk−1c .

(9)

In (9),wi denotes the total load on node ni, y is the load to be
transferred on a channel c, and x is the total transferred load
during the optimization phase. Finally, k denotes the integer
iteration index.

In order to apply this diffusion algorithm in applications
where we cannot migrate a real-valued part of a task from
one node to another, an extension is introduced. With this
extension, we have to overcome two problems.

(1) First of all, it is advisable not to split one process and
distribute it to multiple nodes.

(2) Since the diffusion algorithm is an alternating iterative
balancing scheme, it could occur that negative loads
are assigned to computational nodes.

In our approach [32], we first determine the real-valued con-
tinuous flow on all edges to the neighboring nodes. Then,
the node tries to fulfill this real-valued continuous flow for
each incident edge, by sending or receiving tasks, respectively.
By applying this strategy, we have shown theoretically and
by experiment [32, 33] that the discrete diffusion algorithm

10 EURASIP Journal on Embedded Systems

121086420

Iteration

0.001

0.01

0.1

1

10

100

D
is
ta
n
ce

100 load
150 load
200 load

250 load
500 load

(a)

121086420

Iteration

0.01

0.1

1

10

100

D
is
ta
n
ce

10 tasks
20 tasks
50 tasks

100 tasks
500 tasks
1000 tasks

(b)

Figure 7: Presented is the distance between the solutions of our
distributed online hardware/software partitioning approach and an
algorithm with global knowledge. In (a) tasks are bound to network
nodes such that each node has a certain load. In (b) a certain num-
ber of tasks is bound to each node and each task is implemented in
the optimal implementation style.

converges within provable error bounds and as fast as its con-
tinuous counterpart.

In Figure 7 the experimental results are shown. There,
our distributed approach has been evaluated by comparing it
with a centralized methodology that possesses global knowl-
edge. The centralized methodology is based on evolution-
ary algorithms and determines a set R of reference solutions
and calculates the shortest normalized distance d(s) from the
solution s found by the online algorithm to any reference

solution r ∈ R:

d(s) = min
r∈R

{∣
∣
∣
∣
s1 − r1
rmax
1

∣
∣
∣
∣ +

∣
∣
∣
∣
s2 − r2
rmax
2

∣
∣
∣
∣

}

. (10)

In the first experiment, we are starting from a network which
is in an optimal state such that all tasks are implemented op-
timally according to all objectives. Now, we assume that new
software tasks arrive on one node. Starting from this state,
Figure 7(a) shows how the algorithm performs for different
load values. In the second experiment, the initial binding
of tasks and load sizes were determined randomly. For this
case, which is comparable to an initialization phase of a net-
work, we generated process sets with 10 to 1000 processes,
see Figure 7(b). In this figure, we can clearly see that the al-
gorithm improves the distribution of tasks already with the
first iteration leading to the best improvement. We can see in
Figure 7 that the failure of one node causes a high normal-
ized error. Interestingly, the algorithm finds global optima
but due to local information our online algorithm cannot de-
cide when it finds a global optimum.

4.2. Hardware/software taskmigration

In case of software migration, two approaches can be con-
sidered. (1) Each node in the network contains all software
binaries, but executes only the assigned tasks, or (2) the bi-
naries are transferred over the network. Note that the second
alternative requires that binaries are relocatable in the mem-
ory and only relative branches are allowed. With these con-
straints, an operating system infrastructure can be kept tiny.
Besides software functionality, it is desired to migrate func-
tionality implemented in hardware between nodes in the re-
configurable network. Similar to the two approaches for soft-
ware migration, two concepts for hardware migration exist.
(1) Each node in the network contains all hardware modules
preloaded on the reconfigurable device, or (2) FPGAs sup-
porting partial runtime reconfiguration are required. Com-
parable to location-independent software binaries, we de-
mand that the configuration data is relocatable, too. In [34],
this has been shown for Xilinx Virtex E devices and in [35],
respectively, for Virtex 2 devices. Both approachesmodify the
address information inside the configuration data according
to the desired resource location.

4.3. Hardware/softwaremorphing

Hardware/software morphing is required to dynamically as-
sign tasks either to hardware or software resources on a node.
Naturally, not all tasks can be morphed from hardware to
software or vice versa, for example, tasks which drive or read
I/O-pins. But those tasks that are migratable need to fulfill
some restrictions as presented in Section 3.3.

Basically, the morph process consists of three steps. At
first, the state of a task has to be saved by taking a check-
point in a morph state. Then, the state encoding has to be
transformed such that the task can start in the transformed
state with its new implementation style in the last step.

Thilo Streichert et al. 11

A requirement to morphable tasks is that they have to be
equivalent such that the surrounding system does not rec-
ognize the implementation style of the morphable task. Also
the transformation depends heavily on the implementation
which especially leads to problems when transforming data
types. While it is possible to represent numbers in hardware
with almost arbitrary word width, current processors per-
form computations on 16 bit or 32 bit wide words. Thus,
the numbers have to be extended or truncated. This modi-
fication causes again difficulties if numbers are presented in
different representations. The representation which can ei-
ther be one’s complements, two’s complement, fixed point,
or floating point numbers needs to be transformed, too.
Additional complexity arises if functionality requires a se-
quential computation in software and a parallel computation
in hardware. Due to these implementation-dependent con-
straints, we currently support an automatedmorph-function
generation only for bit vectors in the hardware that are in-
terpreted as integers in the software. The designer needs to
give information about the possible morph states and to-
gether with the help of the automated insertion of check-
points into hardware/software tasks, the morphing becomes
possible.

4.4. Hardware checkpointing

In Section 3, we have shown how to model checkpoints for
tasks modeled by FSMs. Here, we are introducing and an-
alyzing the overhead of three possibilities for extracting the
state of a hardware module.

(i) Scan chain. As shown in Figure 8(a), an extra scan
multiplexer in front of each flip-flop in the circuit
switches between a regular execution mode and a scan
mode. In the latter one, the registers are linked together
to form a shift register chain. If the output of the regis-
ter chain is connected to the input forming a ring shift,
the module can continue regular execution immedi-
ately after the checkpoint has been read. In the case of
a rollback, the last error-free state is shifted into the
module.

(ii) Scan chain with shadow registers. Each flip-flop of the
original circuit is duplicated and connected to a chain,
see Figure 8(b). The multiplexer in front of the main
flip flop can either propagate the value of the combina-
torial circuit or the value of the corresponding shadow
register. Hence, it is possible to store, restore, or swap
a checkpoint within one single clock cycle.

(iii) Memory mapping. As shown in Figure 8(c), each flip-
flop is directly accessible by the CPU via an address and
a data bus. Depending on the data bus width several
flip-flops can be grouped together to one word.

All three state extraction architectures can be used for
automatically modifying a given RTL design. But due to
the optimization during the synthesis process from an RTL
to a netlist description, it is advantageous to integrate the
hardware checkpointing techniques on netlist level. Starting
from the netlist, we can directly identify flip-flops by the

Lo
gi
c

Lo
gi
c

Chain
Chain

R

R

(a)

Lo
gi
c

Chain

R R

RS RS

DDD DQ Q

(b)

Logic R
DD Q

C
P
in

From flip-flops
CP restore mux

CP read mux
Select

SoC-bus

� � �

(c)

Figure 8: Hardware checkpointingmethodologies: (a) the flip-flops
are connected to form a scan chain, (b) each flip flop is replicated
with a so-called shadow register which are connected to a scan chain
again, (c) a set of flip-flops can be directly accessed via an address
and a data port of a CPU.

instantiated primitives. These primitives are replaced with
primitives for dedicated extended flip-flops that support sav-
ing and restoring a checkpoint, see Figure 9. Finally, the con-
nections between the replaced flip-flops and the interface
have to be determined and integrated.

In our experiments, we used the Synopsis design com-
piler to generate an EDIF netlist consisting of GTECH prim-
itives. The identified GTECH flip-flops are replaced by our
extended flip-flops allowing for hardware checkpointing.
For our approach, we evaluated the different state extrac-
tion mechanisms discussed above according to the following
properties.

(i) Checkpoint hardware overhead. The checkpoint hard-
ware overhead H specifies the amount of additional
resources required by a certain checkpointing mecha-
nism. Here, we distinguishHL andHF being the check-
point hardware overhead in terms of look up tables
and flip-flops, respectively.

(ii) Checkpoint performance reduction. The checkpoint per-
formance reduction R specifies the reduction of the
maximal achievable clock frequency. As additional
logic needs to be included into the original control and
data paths, routing distances will slightly increase lead-
ing to a reduced clock frequency of the design.

(iii) Checkpoint overhead. The checkpoint overhead C spec-
ifies the amount of time a module is interrupted when
storing a checkpoint which leads to an increase in the
execution time.

12 EURASIP Journal on Embedded Systems

Design entry

HDL-source

Front-end synthesis
(Synopsis design compiler)

GTECH-netlist

State access
Register

description file

Interface template
(VHDL) GTECH-netlist

GTECH�-library
(VHDL)

Initial system
(VHDL)

Back-end synthesis
and place & route

(Altera Quartus, Xilinx ISE)

Config. bitstream

Figure 9: Design flow for integrating hardware checkpoints. Starting from the netlist, the StateAccess tool replaces flip-flops in the design
by extended flip-flops that support saving and restoring of checkpoints.

(iv) Checkpoint latency. The checkpoint latency L specifies
the amount of time required until the complete check-
point data has arrived at the node hosting the specific
replica task.

Table 1 presents measured values of a DES cryptographic
hardware module from [36] that was automatically modified
for checkpointing and tested on an Altera NIOS2 system. The
table points out that each state extraction strategy is optimal
in the sense of one of the defined properties. The shadow
scan chain method leads in the case of high checkpoint rates
to a higher throughput by the cost of almost doubling of
the required logic resources. The simple scan chain approach
demonstrates that it is possible to enhance a hardware mod-
ule to be capable of checkpointing with an overhead of about
20% as compared to the original module.

5. IMPLEMENTATION AND APPLICATION

The previously described methods have been implemented
on the basis of a network consisting of four FPGA-based
boards with a CPU and configurable logic resources. As
an example, we implemented a driver assistant system that
warns the driver in case of an unintended lane change and
is implemented in a distributed manner in the network.
As shown in Figure 10, a camera is connected to node n4.
The camera’s video stream is then processed in basically
three steps: (a) preprocessing, (b) segmentation, and (c) lane
detection. Each step is implemented as one task. The result
of the lane detection is evaluated in a control task that gets in

Table 1: Results obtained by our approach by implementing the
different state extraction mechanisms: scan chain, scan chain with
shadow registers, and memory mapping.

#LUTs/HL #Flip-Flops/HF

Original DES 2015/100% 984/100%

Scan chain 2414/120% 1138/116%

Shadow chain 3937/195% 2023/205%

Memory mapped 2851/141% 1026/105%

Fmax [MHz] / P C L

Original DES 116/100% — —

Scan chain 110/95% 10354 24979

Shadow chain 99/85% 0 16813

Memory mapped 107/92% 1306 16931

addition the present state of the drop arm switch. If the driver
changes the lane without switching on the correct turn signal,
an acoustic signal will warn the driver of an unintended lane
change.

5.1. Architecture and local OS

As depicted in Figure 10, our prototype implementation of
a ReCoNet consists of four fully connected FPGA boards.
Each node is configured with a NIOS-II softcore CPU [37]
running MicroC/OS-II [38] as a local operating system. The

Thilo Streichert et al. 13

n1

n2

n3

n4

Cockpit

Accelerator

Video stream

Drop-arm
switch

ReCoNet
link

CPU
(NIOS) MEM IO

HW-
module

HW-
module

Figure 10: Schematic composition of a ReCoNet demonstrator: on the basis of four connected FPGA boards, we implemented a distributed
operating system infrastructure which executes a lane detection algorithm. This application warns the driver acoustically in case of an
unintended lane change.

local OS supports multitasking through preemptive schedul-
ing and has been extended to a message passing system. On
top of this extended MicroC/OS-II, we implemented the dif-
ferent layers as depicted in Figure 5. In detail, these are func-
tions for checkpointing, task migration, task morphing and
online hardware/software partitioning.

As Altera FPGAs do not support dynamic partial hard-
ware reconfiguration, we configured each node with a set of
hardware modules. This allows us to emulate the dynamic
reconfiguration processes by selectively enabling hardware
modules.

Although the MicroC/OS-II has no runtime system that
permits dynamic task creation, we enabled the software task
migration by transferring binaries to other nodes and linking
OS functions to the same address such that tasks can access
these functions on each node. This methodology reduces the
amount of transferred binary data drastically compared to
the alternative that the OS functions are transferred either.
Also, this methodology avoids implementing a complex run-
time system and the operating system keeps tiny.

5.2. Communication

For fault-tolerance reasons, the ReCoNet is based on a point-
to-point (P2P) communication protocol [28]. As compared
to a bus, we will produce some overhead by the routing
on the one side while omitting the problem of bus arbitra-
tion.

The routing allows us to deal with link failures by chang-
ing the routing tables in such a way that data can be sent via
alternative paths. Besides the fault tolerance, P2P networks
have the advantage of an extremely high total bandwidth. In
the present implementation, we set the physical data transfer
rate of a single link to 12.5Mbps and measured a maximum
throughput of 700 kbps allowing even to transfer the video
stream in our driver assistant application.

Each node stores a so-called task resolution table that al-
lows a mapping from the task layer to the network layer,
where the communication is performed with respect to the
given node addresses. The task resolution is the key function
for the task-2-task communication, allowing tasks to com-
municate among themselves regardless of there present host-
ing node. In the case of links, we have to distinguish between
intermediate and long term failures. A single bit flip, for ex-
ample, is an intermediate failure that will not demand ad-
ditional care with respect to the routing, while a link down
should be recognized as fast as possible in order to determine
a new routes. As the link state is recognized in the transceiver
ports of our implementation, we chose the advantageous
variant to perform the line detection in hardware.

6. CONCLUSIONS

In this article, we presented concepts of self-adaptive net-
worked embedded systems called ReCoNets. The particular-
ities and novelties of such self-balancing and self-healing ar-
chitectures stem from three central algorithmic innovations
that have been proposed here for the first time and verified
on a real platform for real applications, namely;

(i) fully decentralized online partitioning algorithms for
hardware and software tasks;

(ii) techniques and overhead analysis for migration of
hardware and software tasks between nodes in a net-
work; and finally

(iii) morphing of the implementation style of a task from
hardware to software and vice versa.

Although some of these techniques rely on existing prin-
ciples of fault tolerance such as checkpoint mechanisms, we
believe that their extension and the combination of the above
three mechanisms is an important step towards self-adaptive
and organic computing networks.

14 EURASIP Journal on Embedded Systems

ACKNOWLEDGMENT

This work was supported in part by the German Science
Foundation (DFG) under project Te/163-ReCoNets.

REFERENCES

[1] H. Walder and M. Platzner, “Online scheduling for block-
partitioned reconfigurable devices,” in Proceedings of Design,
Automation and Test in Europe (DATE ’03), pp. 290–295, Mu-
nich, Germany, March 2003.

[2] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich,
“Task scheduling for heterogeneous reconfigurable comput-
ers,” in Proceedings of the 17th Symposium on Integrated Ci-
cuits and Systems Design (SBCCI ’04), pp. 22–27, Pernambuco,
Brazil, September 2004.

[3] A. Ahmadinia, C. Bobda, and J. Teich, “On-line placement for
dynamically reconfigurable devices,” International Journal of
Embedded Systems, vol. 1, no. 3/4, pp. 165–178, 2006.

[4] R. Lysecky and F. Vahid, “A configurable logic architecture
for dynamic hardware/software partitioning,” in Proceedings of
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’04), vol. 1, pp. 480–485, Paris, France, February
2004.

[5] V. Baumgarte, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt, “PACT XPP—a self-reconfigurable data processing ar-
chitecture,” in Proceedings of 1st International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA
’01), Las Vegas, Nev, USA, June 2001.

[6] Chameleon Systems, CS2000 Reconfigurable Communications
Processor, Family Product Brief, 2000.

[7] A. Thomas and J. Becker, “Aufbau- und Strukturkonzepte
einer adaptive multigranularen rekonfigurierbaren Hard-
warearchitektur,” in Proceedings of Organic and Pervasive Com-
puting, Workshops (ARCS ’04), pp. 165–174, Augsburg, Ger-
many, March 2004.

[8] C. Bobda, D. Koch, M. Majer, A. Ahmadinia, and J. Teich, “A
dynamic NoC approach for communication in reconfigurable
devices,” in Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL ’04), pp. 1032–
1036, Antwerp, Belgium, August-September 2004.

[9] Altera, “FLEX 10K Devices,” November 2005, http://www.
altera.com/products/devices/flex10k/f10-index.html.

[10] P. Zipf, A fault tolerance technique for field- programmable
logic arrays, Ph.D. thesis, Siegen University, Siegen, Germany,
November 2002.

[11] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating
faults in SRAM-based field programmable gate arrays: a sur-
vey,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 11, no. 3, pp. 386–405, 2003.

[12] CERN, “FPGA Dynamic Reconfiguration in ALICE and be-
yond,” November 2005, http://alicedcs.web.cern.ch/alicedcs/.

[13] W. Xu, R. Ramanarayanan, and R. Tessier, “Adaptive fault re-
covery for networked reconfigurable systems,” in Proceedings
of the 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’03), p. 143, IEEE Com-
puter Society, Los Alamitos, Calif, USA, April 2003.

[14] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Effi-
ciently supporting fault-tolerance in FPGAs,” in Proceedings
of the ACM/SIGDA 6th International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’98), pp. 105–115, ACM Press,
Monterey, Calif, USA, February 1998.

[15] W.-J. Huang and E. J. McCluskey, “Column-based precom-
piled configuration techniques for FPGA,” in Proceedings of the

9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’01), pp. 137–146, IEEE Com-
puter Society, Rohnert Park, Calif, USA, April-May 2001.

[16] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing sys-
tems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375–408,
2002.

[17] K. M. Chandy and L. M. Lamport, “Distributed snapshots: de-
termining global states of distributed systems,” ACM Transac-
tions on Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[18] N. H. Vaidya, “Impact of checkpoint latency on overhead ratio
of a checkpointing scheme,” IEEE Transactions on Computers,
vol. 46, no. 8, pp. 942–947, 1997.

[19] S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of
Replica Determinism, Kluwer Academic, Boston, Mass, USA,
1996.

[20] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-
multiplexed FPGA,” in Proceedings of 5th IEEE Symposium on
FPGA-Based Custom Computing Machines (FCCM ’97), pp.
22–29, IEEE Computer Society, Napa Valley, Calif, USA, April
1997.

[21] S. M. Scalera and J. R. Vázquez, “The design and implementa-
tion of a context switching FPGA,” in Proceedings of the IEEE
Symposium on FPGAs for CustomComputingMachines (FCCM
’98), p. 78, IEEE Computer Society, Napa, Calif, USA, April
1998.

[22] K. Puttegowda, D. I. Lehn, J. H. Park, P. Athanas, andM. Jones,
“Context switching in a run-time reconfigurable system,” Jour-
nal of Supercomputing, vol. 26, no. 3, pp. 239–257, 2003.

[23] G. Brebner, “The swappable logic unit: a paradigm for virtual
hardware,” in Proceedings IEEE Symposium on FPGAs for Cus-
tom Computing Machines, K. L. Pocek and J. Arnold, Eds., pp.
77–86, IEEE Computer Press, Napa Valley, Calif, USA, April
1997.

[24] H. Simmler, L. Levinson, and R. Männer, “Multitasking on
FPGA coprocessors,” in Proceedings of the 10th International
Workshop on Field-Programmable Logic and Applications (FPL
’00), pp. 121–130, Villach, Austria, August 2000.

[25] H. Simmler, “Preemptive Multitasking auf FPGA Prozes-
soren,” Dissertation, University of Mannheim, Mannheim,
Germany, 2001, page 279.

[26] G. C. Buttazzo, Hard Real-Time Computing Systems, Kluwer
Academic, Boston, Mass, USA, 2002.

[27] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using
evolutionary algorithms,” in Design Automation for Embedded
Systems, R. Gupta, Ed., vol. 3, pp. 23–62, Kluwer Academic,
Boston, Mass, USA, January 1998.

[28] D. Koch, T. Streichert, S. Dittrich, C. Strengert, C. D. Haubelt,
and J. Teich, “An operating system infrastructure for fault-
tolerant reconfigurable networks,” in Proceedings of the 19th
International Conference on Architecture of Computing Systems
(ARCS ’06), pp. 202–216, Frankfurt/Main, Germany, March
2006.

[29] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template
placement for reconfigurable computing systems,” IEEE De-
sign and Test of Computers, vol. 17, no. 1, pp. 68–83, 2000.

[30] H. Walder and M. Platzner, “Fast online task placement on
FPGAs: free space partitioning and 2D-hashing,” in Proceed-
ings of the 17th International Parallel and Distributed Processing
Symposium (IPDPS ’03) / Reconfigurable Architectures Work-
shop (RAW ’03), p. 178, Nice, France, April 2003.

[31] G. Cybenko, “Dynamic load balancing for distributed mem-
ory multiprocessors,” Journal of Parallel and Distributed Com-
puting, vol. 7, no. 2, pp. 279–301, 1989.

http://www.altera.com/products/devices/flex10k/f10-index.html
http://www.altera.com/products/devices/flex10k/f10-index.html
http://alicedcs.web.cern.ch/alicedcs/

Thilo Streichert et al. 15

[32] T. Streichert, C. D. Haubelt, and J. Teich, “Distributed
HW/SW-partitioning for embedded reconfigurable systems,”
in Proceedings of Design, Automation and Test in Europe Con-
ference and Exposition (DATE ’05), pp. 894–895, Munich, Ger-
many, March 2005.

[33] T. Streichert, C. D. Haubelt, and J. Teich, “Online hard-
ware/software partitioning in networked embedded systems,”
in Proceedings of Asia South Pacific Design Automation Confer-
ence (ASP-DAC ’05), pp. 982–985, Shanghai, China, January
2005.

[34] E. L. Horta, J. W. Lockwood, and S. T. Kofuji, “Using par-
bit to implement partial run-time reconfigurable systems,” in
Proceedings of the Reconfigurable Computing Is Going Main-
stream, 12th International Conference on Field-Programmable
Logic and Applications (FPL ’02), pp. 182–191, Springer, Mont-
pellier, France, September 2002.

[35] H. Kalte, G. Lee, M. Porrmann, and U. Rückert, “REPLICA:
a bitstream manipulation filter for module relocation in par-
tial reconfigurable systems,” in Proceedings of 19th IEEE In-
ternational Parallel and Distributed Processing Symposium—
Reconfigurable Architectures Workshop, p. 151, Denver, Colo,
USA, April 2005.

[36] OpenCores, 2005, http://www.opencores.org.
[37] Altera, “Nios II Processor Reference Handbook,” July 2005.
[38] J. Labrosse, Micro-C/OS-II, CMP Books, Gilroy, Calif, USA,

2nd edition, 2002.

Thilo Streichert received the Diploma de-
gree in electrical engineering and com-
puter science from the University of Han-
nover, Germany, in 2003. Beside his stud-
ies, he gained industrial research expe-
rience at the Multimedia Research Labs
of NEC in Kawasaki (2002), Japan, and
in the Semiconductor and ICs Advanced
Engineering-DesignMethodology Group of
Bosch (2003), Germany. He is currently a
Ph.D. degree candidate in the Department of Computer Science
at the University or Erlangen-Nuremberg, Germany. His research
interests include reconfigurable computing and networked embed-
ded systems.

Dirk Koch received his Diploma degree in
electrical engineering from the University
of Paderborn, Germany, in 2002. During
his studies, he worked on neural networks
on coarse-grained reconfigurable architec-
tures at Queensland University of Technol-
ogy, Brisbane, Australia. In 2003, he joined
the Department of Computer Science of the
University of Erlangen-Nuremberg, Ger-
many. His research interests are distributed
reconfigurable embedded systems and reconfigurable hardware ar-
chitectures.

Christian Haubelt received his Diploma
degree in electrical engineering from the
University of Paderborn, Germany, in 2001,
and received his Ph.D. degree in computer
science from the Friedrich-Alexander Uni-
versity of Erlangen-Nuremberg, Germany,
in 2005. He leads the System-Level Design
Automation Group in the Department of
Hardware-Software Codesign at the Univer-
sity of Erlangen-Nuremberg. He serves as
a Reviewer for several well-known international conferences and
journals. His special research interests focus on system-level de-
sign, design space exploration, and multiobjective evolutionary al-
gorithms.

Jürgen Teich received his Master’s degree
(Dipl. Ing.) in 1989 from the University of
Kaiserslautern (with honors). From 1989 to
1993, he was a Ph.D. student at the Uni-
versity of Saarland, Saarbrücken, Germany,
from where he received his Ph.D. degree
(summa cum laude). His Ph.D. thesis en-
titled “A compiler for application-specific
processor arrays” summarizes his work on
extending techniques for mapping compu-
tation intensive algorithms onto dedicated VLSI processor arrays.
In 1994, he joined the DSP Design Group of Prof. E. A. Lee and D.
G. Messerschmitt in the Department of Electrical Engineering and
Computer Sciences (EECS) at UC Berkeley, where he was work-
ing in the Ptolemy Project (postdoc). From 1995 to 1998, he held
a position at the Institute of Computer Engineering and Commu-
nications Networks Laboratory (TIK) at ETH Zürich, Switzerland,
finishing his habilitation entitled “Synthesis and optimization of
digital hardware/software systems” in 1996. From 1998 to 2002, he
was a Full Professor in the Electrical Engineering and Information
Technology Department of the University of Paderborn, holding
a Chair in computer engineering. Since 2003, he is appointed a
Full Professor in the Computer Science Institute of the Friedrich-
Alexander University Erlangen-Nuremberg holding the Chair of
Hardware-Software Codesign. He has been a Member of multiple
program committees of well-known conferences and workshops.
He is a Member of the IEEE and the author of a textbook edited by
Springer in 1997. His research interests aremassive parallelism, em-
bedded systems, codesign, and computer architecture. Since 2004,
he also has been an elected reviewer for the German Science Foun-
dation (DFG) for the area of computer architecture and embedded
systems. He is involved in many interdisciplinary national basic re-
search projects as well as industrial projects. He is supervising 19
Ph.D. students currently.

http://www.opencores.org

	Introduction
	Related Work
	Models and Concepts
	ReCoNet modeling
	Online partitioning
	Task migration, task morphing, andreplica binding
	Hardware checkpointing
	Model of Consistency
	Hardware checkpointing

	Architecture and Operating System Infrastructure
	Online partitioning
	Fast repair
	Bipartitioning
	Discrete diffusion

	Hardware/software task migration
	Hardware/software morphing
	Hardware checkpointing

	Implementation and Application
	Architecture and local OS
	Communication

	Conclusions
	Acknowledgment
	REFERENCES

