
Building Modular Middlewares
for the Internet of Things with OSGi

Jakub Flotyński, Kamil Krysztofiak, and Daniel Wilusz

Department of Information Technology,
Poznań University of Economics

{flotynski,krysztofiak,wilusz}@kti.ue.poznan.pl

Abstract. The paper addresses an analysis of OSGi in the context of building
modular middlewares for the Internet of Things. The Internet of Things (IoT)
is an emerging approach to development of intelligent infrastructures combining
various devices through the network. OSGi is a framework providing a number
of specific mechanisms intended for building modular, fine-grained and loosely-
coupled Java applications. Although a number of works have been devoted to
OSGi, and several OSGi-based middlewares have been designed for the IoT, they
do not thoroughly utilize mechanisms of OSGi. In this paper rich OSGi func-
tions are analysed in terms of development middlewares for the IoT. An example
implementation of the system illustrates the presented considerations.

Keywords: Internet of Things, modular, multi-layer, event-based, middleware,
OSGi.

1 Introduction

Future Internet is a rapidly evolving phenomena, which significantly influence the busi-
ness and the society. It incorporates two modern application areas of the networking:
the Internet of Things (IoT), and the Service-Oriented Architecture (SOA) [1].

The IoT is a continuously developing concept introduced by MIT Auto-ID Center [2]
as an intelligent infrastructure linking objects, information and people via the computer
network. The IoT allows for universal coordination of physical resources through re-
mote monitoring and control by humans and machines [3]. Nowadays, the role of the
IoT is no more limited only to electronic identification of objects but it is perceived
as a way to fill the gap between objects in the real world and their representations in
information systems. According to [4] [5], the components of the IoT are participants
of business processes seamlessly integrated through independent services.

That is why powerful middleware solutions are required to integrate heterogeneous
devices and dynamic services for building complex systems for the IoT. The middleware
is a system connecting different components and/or applications [6] in order to build
complex layered applications [5]. The objective of the middleware is to hide details of
different technologies to avoid dealing with technical, low-level issues [5].

The appropriate middleware solution for the IoT should enable system modularity
to permit flexible management of devices and services. To facilitate development of
modular, fine-grained and loosely-coupled applications, a few frameworks for Java and

A. Galis and A. Gavras (Eds.): FIA 2013, LNCS 7858, pp. 200–213, 2013.
c© The Author(s). This article is published with open access at link.springer.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81586383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Building Modular Middlewares for the Internet of Things with OSGi 201

.NET environments have been designed (e.g., OSGi [7], Jini [8] or MEF [9]). Among
these platforms, OSGi (originally Open Services Gateway initiative) is currently the
most popular one, supporting a number of specific mechanisms useful for building both
desktop and IoT applications.

Although a number of tutorials have been devoted to OSGi, and several middlewares
have been designed for the IoT, these works focus mainly on the proposed systems
themselves and do not explain how to thoroughly utilize the diversity of OSGi features
for building middlewares for the IoT. The main contribution of this paper is an original
analysis of OSGi for building applications for the IoT. The considerations are illustrated
by an example implementation of a middleware. The system enables integration and
management of devices and services in IoT environments with a strong focus on the use
of the rich OSGi functionality. Systems built according to the hints given in this paper
can be used within secure houses, smart shops, cars, etc. However, it is not possible
to describe all mechanisms contained in OSGi very exhaustively. They are explained
in detail in the OSGi documentation [7] [16] [17]. In this paper, we explain some of
them—the functions especially useful in the context of building systems for the IoT. It
has not been our purpose to compare the presented example implementation to other
systems proposed in previous works, e.g., in terms of structure or efficiency.

The remainder of the paper is structured as follows. In Section 2, the state of the
art in the domain of OSGi-based middlewares is briefly described. Section 3 presents
the functionality of the OSGi framework that may be useful during development of IoT
systems. Section 4 addresses the requirements for the middleware for the IoT. In Sec-
tions 5, 6 and 7, the idea and an example implementation of the system are presented.
Finally, Section 8 concludes the paper and indicates possible directions of future works.

2 Middlewares for the Internet of Things

Several middlewares for the IoT have been designed and implemented [10]. In general,
these systems often address integration of RFID devices [11] [12] and sensor networks
[13], and provide integrated software development environments [14].

In [14] a cooperative web framework integrating Jini into an OSGi-based open home
gateway has been presented. The framework connects embedded mobile devices in het-
erogeneous network and enables discovery and management. Another solution inte-
grating heterogeneous devices has been presented in [13]. The authors utilize the OSGi
framework to provide a layer in high level of abstraction for communication with con-
centrators operating wireless sensors. The Arcada project [12] provides a middleware
for management of RFID devices. As a result, a more advanced system dealing with the
three characteristics of the IoT (heterogeneity, dynamicity and evolution) has been built
upon the previous version [15]. This middleware utilizes OSGi to provide modularity
and dynamicity and permits extending the system with hot deployment of components.

3 Selected Mechanisms of OSGi

OSGi [7] [16] [17] is a modular framework for Java applications facilitating software
componentization. OSGi supports numerous mechanisms useful for building applica-
tions for the IoT, which are described in this section.



202 J. Flotyński, K. Krysztofiak, and D. Wilusz

3.1 Modularity

OSGi-based Java applications are built from independent and separate modules referred
to as bundles. The bundle is a Java project containing packages and classes that may be
shared with other bundles as specified in a separated file assigned to the bundle. Bundles
have a lifecycle encompassing the following states:

– uninstalled (not included in the application),
– installed (included without satisfied dependencies),
– resolved (stopped but ready to be started),
– active (started),
– transitive states: starting and stopping.

Starting a set of bundles is performed with regard to the dependencies among them but
the lifecycles of the particular bundles may be managed independently. This feature is
especially useful when some modules must be exchanged without shutting down the
entire system (e.g., when new versions of modules are introduced). Once the state of a
bundle changes, other bundles may be notified of this fact using the BundleListener
service handling BundleEvents.

3.2 Runtime Configurations

The OSGi runtime configuration specifies a set of bundles to be started. Each bun-
dle as well as each configuration is assigned an integer specifying a start level.
Bundles are run in order from the lowest start level to the highest one. While start-
ing the configuration, only bundles with start levels lower or equal than the
configuration start level are launched. Such approach facilitates development
of applications covering a wide range of functions. Consecutive configurationsmay
be super-sets of bundles of their predecessors. Configurations with higher start lev-
els can include additional modules implementing extended functionality based on the
functionality of bundles contained in configurationswith lower start levels.

3.3 Configurations of Bundles

Besides configuring the entire application, also individual bundles may be configured. It
is performed by the Configuration Admin Service that decouples configurations
of particular bundles from their source code. Configurations are specified by a set of
properties stored, e.g., in files or in a database. Bundles whose configurations are spec-
ified by particular properties, implement methods listening for updates of these proper-
ties. Such methods properly modify the behaviour of the bundles.

3.4 Console

The OSGi framework has a built-in console that can be used to manage bundles and
services (e.g., to start and stop them). The console is similar to these implemented in
widely-used operating systems like Windows and Linux and may be accessed remotely
via SSH allowing developers to manage the framework in a flexible way.



Building Modular Middlewares for the Internet of Things with OSGi 203

3.5 Event-Based Communication

OSGi supports flexible event-based communication among bundles providing one-to-
many data exchange in both synchronous (with waiting for handling the event by all
interesting modules) and asynchronous modes. OSGi events are broadcasted by the
sender and may be filtered by their topics, hence delivered only to proper destination
bundles. Using events in OSGi-based applications excludes the necessity of speci-
fying direct dependencies between bundles, thus disabling cycles. The lack of cross-
references implies effective implementing of systems working like the Controller Area
Network (CAN) bus [18] in which event recipients do not need to be known in advance.

3.6 Local Services

OSGi services are classes implementing Java interfaces. They may be published,
discovered and invoked. Services are accessed synchronously and locally (from the
same machine). Alike message-passing, invoking services does not require keep-
ing references to bundles containing them. Using the service requires the knowl-
edge of the implemented interface. Customized instances of services are created by
the ServiceFactory and cached in the framework. Bundles interested in particular
services may be notified of registering, modifying and unregistering them through
handling appropriate ServiceEvents in the ServiceListener (likewise Bundle

Events handled by the BundleService). To obtain the service reference for a par-
ticular interface, the context of a bundle is used as a service repository.

Services are described by metadata specified as a set of properties (e.g., id,
description, vendor). The metadata may be changed at any time. Required values of
properties may be specified while discovering services using a query language pro-
vided by the OSGi framework, e.g., get references only to services from a given vendor,
that have been introduced not later than two month ago.

3.7 Web Services

OSGi supports also remote communication between bundles distributed across differ-
ent platforms. Web services may be implemented using Apache CXF [19] – a reference
implementation of the distribution provider component of the OSGi Remote Ser-
vices Specification [17]. Remote OSGi services can be exported by a Java Virtual Ma-
chine and imported by another one. Apache CXF supports both SOAP-based and REST-
ful web services. Obviously, Apache CXF services may be invoked by any web service
clients, enabling flexible and easy integration with other systems.

4 Motivations and Requirements for an OSGi-Based Middleware

OSGi, as a platform designed for building scalable dynamic and modular Java-based
systems, may be successfully utilized to develop multi-layer middlewares for the IoT.
Although, several works on middlewares for the IoT have been conducted, they do not
thoroughly explore the functionality of OSGi in the context of the IoT, instead they



204 J. Flotyński, K. Krysztofiak, and D. Wilusz

mainly focus on the proposed systems – their architectures and functionality. These
implementations primarily benefit from OSGi modularity and do not put stress on other
rich OSGi features and functions, as well as the way in which the framework can be
used for building complex middlewares.

The main contribution of this paper is an analysis how mechanisms of OSGi may be
utilized to develop modular, scalable and fine-grained middlewares for the IoT.

The following requirements in terms of modularity, service-oriented architecture and
communication between software components and devices have been specified for the
proposed middleware to illustrate the robustness of rich OSGi mechanisms described in
the previous section.

4.1 Modularity

1. The middleware is fine-grained, based on modules that compose the functionality
of devices connected to the environment, e.g., a module responsible for closing a
door can first obtain the state of a sensor to check whether the room is abandoned.

2. Complex modules are composed of simpler ones. For instance, close a door and turn
on an alarm are the services combined into a complex ’secure the house’ service.

3. The modules are loosely-coupled, they can exchange messages in relation one-to-
many without keeping direct references, e.g., the service ’secure the house’ does
not need to know all its sub-modules performing simple actions (like close the door
and turn on the alarm) to invoke them.

4. The modules perform actions with regard to the context of the interaction, e.g., the
door may be closed only when nobody is inside the room, lights may be switched
on only when it is dark outside.

5. Adding, restarting and updating versions of particular modules does not require
restarting the entire platform and does not interrupt the work of other modules.

6. Adding new modules to the system that have to cooperate with older modules re-
quire neither updating nor restarting the platform, e.g., a new sub-service closing
the door of a room should work as a part of the secure the house service regardless
of previous modules involved in it.

7. The modules are notified each time when a new module is introduced to the system,
e.g., a new thermometer has been added to report the temperature in a room.

8. The system may be started with various configurations of modules. The configura-
tions may be changed dynamically. For instance, first, only modules operating on
devices are started; second, interfaces and modules composing the functionality of
the devices are started as well.

9. The configuration of particular modules should be decoupled from their source
code and managed in a flexible way, e.g., to indicate that a particular number of
bulbs should be switched on by a module.

4.2 Service-Oriented Architecture

10. Services are built upon modules that are available for the user through various in-
terfaces, e.g., GUI, web services.



Building Modular Middlewares for the Internet of Things with OSGi 205

11. The middleware contains a service repository of references to services provided
and accessible among the modules. The repository is used for service discovery,
e.g., find services responsible for washing dishes.

12. The services are described by a set of properties that may be specified at service
discovery, e.g., find services using thermometers that are currently switched on.

13. The middleware may notify the user about some events, e.g., an email is sent always
when a temperature in a server room is high.

4.3 Communication with Devices

14. Diverse interfaces of devices incorporated in the middleware should be wrapped
with a uniform network interface to enable physical distribution of devices and
communication with them in a similar manner, i.e. each device is connected to a
proxy hiding its implementation details, e.g., the method of measuring the temper-
ature provided be a thermometer is wrapped with an analogous network service.

15. The interfaces do not limit the functionality of primary device interfaces, at most
they change semantics of their invocation, e.g., exchange method invocations with
create-read-update-delete (CRUD) services.

16. The devices may be queried by the modules as well as modules may be notified by
devices of some events they are interested in. Communication between the modules
and the devices is bi-directional, e.g., the thermometer can measure the tempera-
ture when invoked by a module, as well as notify interested modules of significant
changes on its own.

5 Architecture of the Middleware

Modular Multi-layer Middleware for the Internet of Things (MOMIT) has been pro-
posed based on the presented rich OSGi functionality. Functional components of the
platform originate from the proposal of S. Bandyopadhyay et al. [10]. In this section,
the middleware architecture is presented in detail with regard to the requirements and
the OSGi mechanisms depicted in the two previous sections. To provide separation of
concerns, the architecture of the system is multi-layer and fine-grained with loosely-
coupled components (Fig. 1). It consists of the following layers: the device layer, the
business logic layer and the interface layer.

5.1 The Device Layer

It is the bottom layer of the MOMIT that incorporates various independent devices.
In the presented middleware, it is assumed the devices communicate with one another
through the higher (business logic) layer. In fact, in IoT applications the machine-to-
machine (M2M) communication is sometimes a necessary and significant aspect. In
such cases the devices can communicate directly omitting other system components,
but the flexibility of such solution may be limited.

Primarily, the devices are accessible through heterogeneous interfaces whose diver-
sity may be a problem while building complex applications that utilize many of the



206 J. Flotyński, K. Krysztofiak, and D. Wilusz

Fig. 1. The MOMIT architecture

available devices. To overcome this inconvenience, as well as to enable distribution of
the devices and making them accessible via the network, each of them is associated
with a proxy. The proxies handle queries from the business logic layer, addressed to
the devices. The proxies wrap the device interfaces providing a single flexible and uni-
form interface for all the devices within the entire system (Sec. 4, req. 14), e.g., all the
proxies provide a RESTful interface or all the proxies provide a SOAP-based interface.
Moreover, the proxies do not limit the functionality of the devices they wrap. At most,
only the semantics of the interfaces can be exchanged (req. 15), e.g., invoking device
methods is translated to RESTful web service CRUD operations.

For instance, a RESTful web service receives a HTTP PUT request specifying the
URI of lights in a room and the value switched on, and translates it into the method
invocation lights.switchOn(true). Communication between a device and its proxy
depends on the specificity of the device and a particular application in terms of the
software and hardware used, and it is not addressed in the MOMIT architecture.

Sometimes, it is desirable to inform other system components when specific condi-
tions occur. In such case the communication is initiated by the proxy that has detected an
event coming from the associated device. To satisfy this requirement, the proxy includes
a web service client that notifies the business logic layer of the event (req. 16).

The Proxies may be implemented as individual OSGi bundles incorporating net-
work interfaces based on such lightweight platforms as [20] or Apache Tomcat [21].

5.2 The Business Logic Layer

It is the middle layer of the MOMIT that utilizes the mechanisms of OSGi very thor-
oughly. The main purpose of this layer is to combine the functionality of the devices
into complex services executed with regard to environmental conditions or the context



Building Modular Middlewares for the Internet of Things with OSGi 207

of the interaction between the client and the middleware. Individual elements of the
system are described below.

Modules. Primary entities of the business logic layer are modules implemented as
individual OSGi bundles. Two types: device and service modules are distinguished.
Both types are built according to the service-oriented approach but they are used for
different purposes and in different ways.

Device Modules. The device module serves as the proxy – it provides a uniform net-
work interface for the device (req. 14). Alike proxies, device modules do not limit the
functionality of the devices (req. 15). Every device module is associated with exactly
one proxy and thus with a single device.

The device module is used to query the device via its proxy, as well as to allow it to
notify other modules in the business logic layer of events coming from the associated
device. In the first case, the device module invokes the proxy via its web service. In the
second case, the device module provides a web service (req. 16) invoked every time
when data transmission is initialized by the proxy. After getting a notification, an OSGi
event is broadcasted, and it may be handled by all interested modules in the business
logic layer. Modules that are not interested in the event, ignore it. Such an approach
does not demand that the Device module knows all recipients and keeps references to
them (req. 3). If a module needs to process an event, its developer should be familiar
with this and implement its handling.

All the device modules of the MOMIT issue OSGi services wrapping the interface
of an associated proxy. The service is described by a set of properties that depict
the device and its current state (switched on/off) (req. 12). The services are created
by the ServiceFactory and discovered by the context bundle.

When a bundle implementing a device module changes its state, a BundleEvent is
generated to inform other modules (req. 7). Alike, a ServiceEvents are broadcasted
when services have been started or stopped. For instance, from this moment MOMIT
modules can start/stop invoking the services to which the event is related.

Service Modules. Orchestration of the functions of various devices accessible through
device modules into services (req. 1) is the objective of service modules. For instance,
a service module can use a motion sensor to check whether nobody is inside a room,
switch off lights and close the door. Analogously, complex service modules may be
built upon device modules, as well as other service modules (req. 2). Implementing
complex modules may be performed using OSGi events as well as services created
on demand by the ServiceFactory and discovered through the context (req. 11).

In some cases, it may be desirable to notify modules of a new device plugged in/out
the system (req. 7). For this purpose, modules interested in new devices should be
equipped with the ServiceListener handling events broadcasted when a Device
module has been started or stopped.

Communication among Modules. Three types of communication among bundles sup-
ported in OSGi have been used in the MOMIT. In most cases, broadcasting events is



208 J. Flotyński, K. Krysztofiak, and D. Wilusz

used to decouple modules, exempt them from knowing all recipients of the message,
exclude cyclic references among bundles, as well as enable one-to-may communication
and dynamic adding new modules without updating and restarting the entire system
(req. 3, 6). Event-based communication can be utilized in both synchronous and asyn-
chronous modes depending on particular software requirements.

The communication between service modules and device modules is synchronous
and based on OSGi services. As described earlier, the service is issued by the de-
vice module and described by metadata. Such an approach enables flexible discovery
without specified references to other modules. Hence the lack of cycles among bundles.

In some cases, direct method invocations may be used, in particular when the com-
munication between two modules should be effective and synchronous. As this kind of
communication requires direct references between the bundles, the destination module
should be utilized by few other modules to avoid cycles of dependencies.

Context of the Service Execution. All actions are performed by the MOMIT in a par-
ticular context determined by variables distributed among the modules, retrieved from
devices (e.g., temperature, battery level, etc.), as well as provided by people (e.g., ac-
tivity results, data obtained from devices not connected to the system). Each variable is
a pair [URI, value]. Modules connected to particular devices store variables obtained
from them on their own, whereas variables coming from other sources may be loaded
into modules designed especially for this purpose (e.g., equipped with a database).
While storing the context depends on particular modules, accessing it is unified for
the entire middleware. Execution of a service that demands a value from the context
is preceded by broadcasting a request event by the module implementing the service.
The event contains the URI of the required variable. It is handled by modules storing
the variable and ignored by others. It is a concern of the software developer to ensure
consistency of URIs and devices as well as to ensure unambiguous identification of
all the variables. After getting a response, the service is performed with regard to the
context (req. 4).

Return Channel. In some special cases it is necessary to inform the system admin-
istrator about some emergencies, e.g., a tap cannot be turned off or a fridge does not
freeze due to a fault. It is permitted by a return channel implemented as a client noti-
fier which is a service module handling events critical for the system reliability, and
informing the user if necessary. It is required to implement a web service or to provide
an email account on the client side to enable such notifications (req. 13).

5.3 The Interface Layer

It is the top layer of the MOMIT providing a multimodal-interface to allow users to
utilize system functionality using various clients, e.g., web browser, desktop and web
service clients (req. 10). The interfaces encompasses GUI, SOAP-based as well as
RESTful web services, but the platform could be also extended with other interfaces
such as CORBA or Java RMI. Each interface is implemented within an individual OSGi
bundle, thus the interfaces may be added, updated and removed independently without
affecting the work of other parts of the system.



Building Modular Middlewares for the Internet of Things with OSGi 209

All above interfaces enable the client-server interaction. For applications requiring
uninterrupted data exchange (e.g., real time streaming), new clients and interfaces could
be developed (e.g., based directly on TCP/IP).

6 Management of the Middleware

Management of the middleware includes the three aspects described below.

6.1 Lifecycles of Modules

Management of module lifecycles is performed using the OSGi console. It enables
adding, restarting and updating modules without restarting the whole middleware (req.
5). Commands related to the lifecycle of bundles may be performed also via Secure
Shell enabling remote execution of operating system commands.

6.2 Runtime Configurations

Runtime configurations encompassing different modules (OSGi bundles) may be cre-
ated depending on requirements for a particular application of the Internet of Thing.
Consecutive configurations are super-sets of their predecessors and may implement
increasingly complex applications (req. 8). For instance, modules with higher start lev-
els (started by higher configurations) implement complex functionality based on mod-
ules with lower start levels, which are run in advance. Starting a configuration with
a given start level is performed using the OSGi console.

6.3 Configurations of Modules

Configurations of individual modules are managed by the Configuration Admin

Service. The service is issued by a configuration manager service module imple-
mented in the business logic layer (req. 9). The configuration manager stores con-
figurations in a database and notifies other bundles on updates of the properties. The
properties may be changed by using a separate application accessing a database. Such
approach enables flexible and centralized management of the MOMIT modules.

7 Example Implementation of the Middleware

An example of the MOMIT system has been implemented to illustrate the presented
idea of the middleware based on the rich OSGi functionality. The system is used at the
Departament of Information Technology at the Poznan University of Economics. It is
intended mainly for educational purposes and during Internet of Things course. The
example implementation is depicted in Figure 2. Below, the system layers are described
in detail. The business logic layer is comprised of the following modules.



210 J. Flotyński, K. Krysztofiak, and D. Wilusz

1. Alarm module is a device module – that composes the functionality of an alarm

switch through an OSGi service. Methods provided by the alarm switch are
accessible through a RESTful web service issued by an alarm proxy. All REST-
ful web services implemented in the device layer of the presented example are
based on Restlet [20]. The RESTful web service translates requests from the alarm
module into the invocations of the alarm.switchOn(true) and alarm.switch-
On(false) methods provided by the alarm switch.

2. Alarm module v2 is an enriched version of the alarm module that extends its
functionality taking into account whether somebody is inside the room. Two ver-
sions of the alarm module have been introduced to present the possibility of au-
tomatic selection of one of them provided in OSGi.

3. Door module is a device module that composes the functionality of a door

locker through an OSGi service. Methods provided by the door locker are ac-
cessible through the RESTful web service of a door proxy. The RESTful web ser-
vice translates requests from the door module into the invocations of the door.op-
en(true) and door.open(false)methods provided by the door locker.

4. Light module is a device module that composes the functionality of a light

switch through an OSGi service. Methods provided by the light switch are
accessible through the RESTful web service of a light proxy. The RESTful
web service translates requests from the light module into the invocations of
the lights.switchOn(true) or lights.switchOn(false) methods provided
by the light switch.

Fig. 2. An example implementation of the MOMIT

5. Motion sensor module is a device module that composes the functionality of a
motion sensor through an OSGi service. Methods provided by the motion

sensor are accessible through the RESTful web service of a motion sensor

proxy. The RESTful web service translates requests from the motion sensor

module into the invocations of the motionSensor.check() method provided by
the motion sensor. The motion sensor module can be notified by the motion



Building Modular Middlewares for the Internet of Things with OSGi 211

sensor that somebody is inside the room. To enable such interaction, the motion
proxy includes a web service client. After receiving such notification, an OSGi
asynchronous event is broadcasted in the business logic layer. The alarm mod-

ule v2 handles the event and processes it by suspending the offered OSGi ser-
vice. The second module which handle the event is described below.

6. Secure the house module is a service module that invokes OSGi services
provided by the the following device modules: the alarm module, the alarm

module v2, the light module and the door module. To find an appropriate
OSGI service issued by an appropriate device, the secure the house module

specifies service properties while discovering, e.g., to find OSGi services respon-
sible for switching the alarm which are currently available in the system. In addi-
tion, the secure the house module handles the OSGi asynchronous event

when somebody is inside the room and invokes the OSGi service provided by
alarm module v2 instead of the alarm module. The ServiceListener has
been implemented to receive notifications of starting/stopping device modules.

The interface layer of the presented example contains a SOAP web service modu-

le that is integrated into an OSGi bundle using Apache CXF. The SOAP web service

module provides an interface to allow users to call the service of the secure the

house module using a web service client. After getting a user request, the SOAP web

service module broadcasts an OSGi event which is handled only by the secure

the house module. The runtime configuration of the example consists of the
following start levels:

1. Alarm module, alarm module v2, light module: first, all the device mod-
ules and OSGi services issued by them are registered for the further usage.

2. Secure the house module: second, the service module and OSGi services is-
sued by it are registered for the further usage for the SOAP web service module.

3. Motion sensor module: third, this module is registered for the further usage to
optionally send an OSGI event.

4. Big service module: the module enabling an interface to the client is registered.

The proposed example implementation is summarized in Table 1 covering the system
requirements satisfied by the considered OSGi mechanisms.

Table 1. Summary of the system requirements satisfied by the OSGi mechanisms

OSGi mechanisms\System requirements Modularity Service-oriented architecture Communications with devices
Modularity x x x
Runtime configurations x
Configurations of bundles x
Console x
Event-based communication x x x
Local services x x x
Web services x x



212 J. Flotyński, K. Krysztofiak, and D. Wilusz

8 Conclusions and Future Works

In this paper the Modular Multi-layer Middleware for the Internet of Things has been
presented. Providing scalable, modular, multi-layer middleware is crucial for devel-
opment of powerful applications for the IoT. OSGi, that is a framework for building
modular desktop Java applications, may be successfully used also in the area of the IoT
providing a number of specific mechanisms. Although various middlewares have been
proposed, they do not utilize these mechanisms very extensively. The main contribution
of this paper is the analysis of the OSGi functionality in terms of building scalable,
modular and fine-grained middlewares for the IoT.

Future works include the following aspects. First, the MOMIT will be secured
through introducing access control both for users and modules of the system. In the first
case, the middleware could be extended with a repository of user privileges. In the sec-
ond case, the event-based communication, in which both senders and receivers are not
known in advance, could be secured to protect modules against their malicious coun-
terparts [22], i.e. trusted receivers should be protected against untrusted content sent by
a malicious module, content sent by a trusted module should be protected against ac-
cess of untrusted receivers. Second, the functionality of the devices in the system could
be specified by an ontology to enable advanced querying device proxies by the system
modules. Furthermore, modules should be notified of updates of some service proper-
ties (e.g., a service has been modified to switch off different number of bulbs). Finally,
a repository of context properties can be introduced to be queried in order to obtain the
value of a particular context property or a reference to this property. In some cases (e.g.,
frequently read variables), it is eligible to inquire only proper modules to decrease the
system load.

Open Access. This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are credited.

References

1. Wilusz, D.: Privacy threats in the Future Internet and the ways of their limitation. In:
Kształcenie w zakresie Internetu Rzeczy, Uniw. im. Adama Mickiewicza w Poz, pp. 84–
103 (2011); in Polish: Zagrożenia dla prywatności w Internecie Przyszłości i możliwości jej
ochrony

2. Ashton, K.: That ‘Internet of Things’ Thing. RFID Journal (July 22, 2009),
http://www.rfidjournal.com/article/view/4986

3. Brock, D.L.: The Elect. Product Code (EPC). A Naming Scheme for Phys. Obj., Auto-
ID Center, http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf
(retr. June 8, 2012)

4. Haller, S., Karnouskos, S., Schroth, C.: The Internet of Things in an Enterprise Context. In:
Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 14–28. Springer,
Heidelberg (2009)

5. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. In: Computer Networks,
vol. 54, pp. 2787–2805. Elsevier (2010)

http://www.rfidjournal.com/article/view/4986
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf


Building Modular Middlewares for the Internet of Things with OSGi 213

6. Eisenhauer, M., Rosengren, P., Antolin, P.: A development platform for integrating wireless
devices and sensors into Ambient Intelligence systems. In: Giusto, D., Iera, A., Morabito,
G., Atzori, L. (eds.) The Internet of Things. Springer Science+Business, New York (2010)

7. OSGi, http://www.osgi.org/ (retrieved May 26, 2012)
8. Apache River, http://river.apache.org/ (retrieved June 9, 2012)
9. Managed Extensibility Framework, http://archive.msdn.microsoft.com/mef (retr.

June 8, 2012)
10. Bandyopadhyay, S., Sengupta, M., Maiti, S., Dutta, S.: A Survey of Middleware for Inter-

net of Things. Communications in Computer and Information Science 162(pt. 2), 288–296
(2011), doi:10.1007/978-3-642-21937-5 27

11. Puliafito, A., Cucinotta, A., Minnolo, A., Zaia, A.: Making the Internet of Things a Reality:
The Where X Solution. In: The Internet of Things: 20th Tyrrhenian Workshop on Digital
Communications, pp. 99–108. Springer Science+Business Media (2010)

12. Kefalakis, N., Leontiadis, N., Soldatos, J., Donsez, D.: Middleware Building Blocks for Ar-
chitecting RFID Systems. In: Granelli, F., Skianis, C., Chatzimisios, P., Xiao, Y., Redana, S.
(eds.) MOBILIGHT 2009. LNICST, vol. 13, pp. 325–336. Springer, Heidelberg (2009)

13. Vazques, J., Almeida, A., Doamo, I., Laiseca, X., Orduña, P.: Flexeo: An Architecture for
Integrating Wireless Sensor Networks into the Internet of Things. In: Corchado, J.M., Tapia,
D.I., Jose, J.B. (eds.) 3rd Symposium of Ubiquitous Computing and Ambient Intelligence.
ASC, vol. 51, pp. 219–228. Springer, Heidelberg (2009)

14. Chen, Z.-L., Liu, W., Tu, S.-L., Du, W.: A Cooperative Web Framework of Jini into OSGi-
based Open Home Gateway. In: Wu, Z., Chen, C., Guo, M., Bu, J. (eds.) ICESS 2004. LNCS,
vol. 3605, pp. 570–575. Springer, Heidelberg (2005)

15. Gama, K., Touseau, L., Donsez, D.: Combining heterogeneous service technologies for build-
ing an Internet of Things middleware. Computer Communications 35(4), 405–417 (2012)

16. The OSGi Alliance, OSGi Service Platform Core Specification,
http://www.osgi.org/Download/File?url=/download/r4v43/

osgi.core-4.3.0.pdf/ (retr. May 26, 2012)
17. The OSGi Alliance, OSGi Service Platform Service Compendium,

http://www.osgi.org/download/r4v43/osgi.cmpn-4.3.0.pdf (retrieved May 31,
2012)

18. Bosh, R.: CAN Specification Version 2.0,
http://www.gaw.ru/data/Interface/CAN_BUS.PDF (retrieved May 26, 2012)

19. Apache CXF, http://cxf.apache.org/ (retrieved May 26, 2012)
20. Restlet, http://www.restlet.org/ (retrieved May 21, 2012)
21. Apache Tomcat, http://tomcat.apache.org/ (retrieved May 21, 2012)
22. Flotyński, J., Picard, W.: Transparent Authorization and Access Control in Event-Based

OSGi Environments. In: Information Systems Archictecture and Technology, Service Ori-
ented Networked Systems. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, pp.
197-210 (2011) ISBN 978-83-7493-625-5

http://www.osgi.org/
http://river.apache.org/
http://archive.msdn.microsoft.com/mef
http://www.osgi.org/Download/File?url=/download/r4v43/osgi.core-4.3.0.pdf/
http://www.osgi.org/Download/File?url=/download/r4v43/osgi.core-4.3.0.pdf/
http://www.osgi.org/download/r4v43/osgi.cmpn-4.3.0.pdf
http://www.gaw.ru/data/Interface/CAN_BUS.PDF
http://cxf.apache.org/
http://www.restlet.org/
http://tomcat.apache.org/

	Building Modular Middlewaresfor the Internet of Things with OSGi
	1 Introduction
	2 Middlewares for the Internet of Things
	3 Selected Mechanisms of OSGi
	3.1 Modularity
	3.2 Runtime Configurations
	3.3 Configurations of Bundles
	3.4 Console
	3.5 Event-Based Communication
	3.6 Local Services
	3.7 Web Services

	4 Motivations and Requirements for an OSGi-Based Middleware
	4.1 Modularity
	4.2 Service-Oriented Architecture
	4.3 Communication with Devices

	5 Architecture of the Middleware
	5.1 The Device Layer
	5.2 The Business Logic Layer
	5.3 The Interface Layer

	6 Management of the Middleware
	6.1 Lifecycles of Modules
	6.2 Runtime Configurations
	6.3 Configurations of Modules

	7 Example Implementation of the Middleware
	8 Conclusions and Future Works
	References




