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1 Introduction

Brane constructions in a decoupling limit [1] led to the idea that there are local, interacting,

6d QFTs [2]. These theories cannot be formulated in any known, conventional lagrangian

description, because they contain interacting two-form gauge fields, with self-dual field

strength: the challenge is that the charged objects would be string-like, with self-dual

electric-magnetic charges. Examples include the 6d N = (2, 0) theories, the N = (1, 0)

include the theory of N small E8 instantons1 [1, 6, 7] and many others, obtained from

decoupling limits of string, brane, M-theory, or F-theory constructions, see e.g. [8–15].

6d QFTs have chiral matter, so anomalies provide a useful handle. Gauge anomaly

cancellation highly constrains the matter content [2, 9, 12, 16–19]. The analog of ’t Hooft

anomalies, for global symmetries, usefully constrains the low-energy theory: these anoma-

lies must be constant along RG flows, and on the vacuum manifold, even if the symmetry

is spontaneously broken. In the broken case, as in 4d [20], anomaly matching can require

certain WZW-type low-energy interactions, to cancel apparent anomaly mismatches. This

was discussed for 6d theories in [21], and applied to the case of N = (2, 0) theories on the

Coulomb branch. We here apply analogous considerations to N = (1, 0) theories.

Consider a 6d, N = (1, 0) theory with a Coulomb branch moduli space of vacua,

associated with 〈φ〉 for the real scalar(s) of tensor multiplets. Let Sorigin denote the low-

energy theory at 〈φ〉 = 0. Moving to 〈φ〉 6= 0, the theory reduces at low-energy as

Sorigin → Saway + S[U(1)] + anomaly matching terms. (1.1)

Here S[U(1)] denotes a 6d N = (1, 0) tensor multiplet:2 i.e. a real scalar, φ, a 2-form

gauge field B with self-dual field strength H, and fermion superparters. The non-compact,

1Dimensionally reducing the small E8 instanton theory to d < 6 gives theories that can be related to

more conventional QFTs, e.g. [3–5].
2The notation is because it reduces, on an S1, to a 5d N = 1, U(1) vector multiplet.
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real φ is the dilaton of spontaneously-broken conformal symmetry. The details of the →

step in (1.1) involve integrating out poorly understood interactions, including effective

strings coupling Saway to the B in S[U(1)]), with string tension ∼ 〈φ〉 6= 0. The anomaly

matching terms in (1.1) are non-decoupling effects, regardless of how large φ is. Such

anomaly-matching-derived interactions can provide useful clues about the dynamics.

Let Iorigin8 be the anomaly polynomial 8-form of Sorigin, and Iaway,naive8 that of Saway +

S[U(1)]. Any apparent mismatch, ∆I8 ≡ Iorigin8 − Inaive,away8 must be balanced by some

remaining interactions in the low-energy theory. We here discuss an anomaly matching

mechanism, which cancels ∆I8 provided that it is a perfect square:

Iorigin8 − Iaway,naive8 ≡ ∆I8 =
1

2
X4 ∧X4. (1.2)

More generally, with multiple tensors, we need

∆I8 =
1

2
ΩIJX

I
4 ∧XJ

4 ≡
1

2
~X ∧ · ~X, (1.3)

where the I index runs over the tensor multiplets, and ΩIJ is a positive definite, symmetric

metric on the space of tensor multiplets, which is implicit in the ∧· product in (1.3).

The mechanism is analogous to that of [22, 23] for canceling anomalies of local sym-

metries. A reducible gauge anomaly I8 can be cancelled via an additional tensor multiplet

contribution ∆I8 of the form
3 (1.3). This is achieved by making XI

4 into electric / magnetic

sources for the tensor multiplet field strengths HI . Our sign conventions4 are such that

ΩIJ is positive definite. The full theory is then gauge anomaly free if I8 +∆I8 = 0.

We apply a similar mechanism to global symmetries; rather than canceling an unwanted

I8 of opposite sign, here the tensor multiplet’s ∆I8 provides the ’t Hooft anomaly matching

deficit. This is achieved by making ~X4 (the ~· is shorthand for multiple tensors, i.e. the I

index in (1.3)) act as electric / magnetic sources for the tensor multiplets, so

Seff,low ⊃ −

∫

M6

~B2 ∧ · ~X4, (1.4)

and the magnetic dual effect (see section 2 for details)

d ~H =
1

2
2π ~X4, so (1.5)

~H3 = d ~B2 + π ~X
(0)
3 , where ~X4 = d ~X

(0)
3 . (1.6)

Because ~X
(0)
3 in (1.6) is not invariant under global symmetry background gauge transfor-

mations, ~B2 must also correspondingly transform, such that H is invariant, δH = 0:

δ ~B2 = −π ~X
(1)
2 , where δ ~X

(0)
3 ≡ d ~X

(1)
2 . (1.7)

Then variation of (1.4) will compensate for the apparent discrepancy from (1.2).

3In [22, 23], the HI also includes the tensor from the gravity multiplet, which has opposite chirality from

those of the matter multiplets, and correspondingly enters into ΩIJ with opposite signature [23]. Here we

decouple gravity, so ΩIJ has a definite signature. We take it to be positive.
4We take matter fermions to contribute positively to I8, while gauginos contribute negatively. Then the

positive ∆I8 (1.3) from tensor multiplets can e.g. cancel a negative I8 gauge anomaly.
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Because ~B2 has quantized charges, the coefficients in ~X4 must be correspondingly

appropriately quantized. The general ~X4 can be expanded in characteristic classes

~X4 = ~ngrav
p1(T )

4
+ ~nSU(2)Rc2(FSU(2)R) +

∑

i

~nic2(Fi), (1.8)

p1(T ) is the Pontryagin class for the rigid, background spacetime curvature, p1(T ) ≡
1
2 tr(R/2π)2, c2(R) and c2(Fi) are Chern classes of the SU(2)R and Fi flavor symmetry

background field strengths. The Chern classes c2(R) and c2(Fi) will here always be nor-

malized to integrate to one for the minimal associated instanton configuration in the back-

ground gauge fields; as we will discuss, the corresponding statement for p1(T )/4 is less

clear. Such background gauge field instanton configurations are codimension 4 strings,5

with ~H charge given by ~nSU(2)R or ~ni (the i index runs over all global symmetries). These

charges must reside in an integral lattice, so there is a quantization condition

~nSU(2)R ∈ ~Z, and ~ni ∈ ~Z. (1.9)

We expect that ~ngrav in (1.8) is also quantized, but are uncertain about the normalization.

Note also that the susy completion of (1.4) will give terms Leff ∼ −φFµνF
µν , as in [2],

now coupling the real scalar φ of the tensor multiplets to the background field strengths.

The outline is as follows. In section 2, we elaborate on the above anomaly matching

mechanism. In section 3, we discuss the N = (2, 0) theories, from a N = (1, 0) perspective.

In section 4, we review the 6d N = (1, 0) theories associated with small E8 instantons, and

their recently-obtained anomaly polynomial [27]. In section 5, apply the anomaly matching

mechanism to the small E8 instanton theory on its Coulomb branch.

Note added: just prior to posting this paper, the outstanding paper [28] appeared. It

uses essentially the same kind of anomaly matching mechanism as discussed here, to derive

new results for anomaly polynomials for many classes of N = (1, 0) theories.

2 6d ’t Hooft anomalies, and a new mechanism for their matching

By the descent procedure [29–32], the anomalous variation of the effective action of a 6d

theory is given in terms of the anomaly polynomial6 8-form I8:

δSeff = 2π

∫

M6

I
(1)
6 , where I8 = dI

(0)
7 , and δI

(0)
7 = dI

(1)
6 , (2.1)

where δ denotes the variation, M6 is 6d spacetime,7 the subscript on X
(1)
6 is the form

number, and the superscript the order in the gauge or global symmetry variation parameter.

5It would be interesting to consider the codimension 4 BPS soliton string configurations [24], and the

analog of ’t Hooft anomaly matching for the 2d string worldsheet [25, 26].
6The normalization of Id+2 is such that a Weyl fermion contributes Â(T ) tr eiF/2π|d+2 .
7There would be a (−1)d/2 factor in (2.1) in Minkowski Md with mostly + signature [33]; we here use

Euclidean signature to avoid writing the − sign.
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Now suppose that the theory has a moduli space of vacua, and the theory at the origin

has anomaly polynomial Iorigin8 , while the theory away from the origin has a naively different

anomaly polynomial Iaway,naive8 . The naive difference leads to an apparent mismatch

∆(δSeff) ≡ δSorigin
eff −δSnaive,away

eff = 2π

∫

M6

∆I
(1)
6 , with ∆I8 ≡ Iorigin8 −Iaway,naive8 . (2.2)

The variation of the low-energy effective action must make up for this difference:

δSeff,low = 2π

∫

M6

∆I
(1)
6 . (2.3)

As an example, consider N = (2, 0) theories on their Coulomb branch:

T [G] → T [H]× T [U(1)] + anomaly matching interactions. (2.4)

Here T [G] denotes the N = (2, 0) theory of ADE group type G, and T [U(1)] denotes

a free N = (2, 0) tensor multiplet. The global Sp(2)R ∼= SO(5)R is broken in (2.4),

as SO(5)R → SO(4)R. The five real scalars φA=1...5 of T [U(1)] can be regarded as a

radial dilaton mode, for spontaneously broken conformal invariance, and Nambu-Goldstone

boson modes S4 ∼= SO(5)R/SO(4). The SO(5)R ’t Hooft anomaly naively does not match,

∆I8 = (c(G)− c(H))p2(FSO(5)R)/24, where p2(FSO(5)R) is the 2nd Pontryagin class of the

SO(5)R background field strength, and the needed term (2.3) comes from [21]

Seff,low ⊃ 2π
c(G)− c(H)

6

∫

M7

Ω3(φ,A) ∧ dΩ3(φ,A), (2.5)

with dΩ3 = φ∗(ω4) the volume form on the S4 Nambu-Goldstone manifold, and ∂M7 = M6.

It was conjectured in [21] that c(G) = |G|hG, which fits with the G = SU(N) cases [34],

and also SO(2N) [35], as derived via M- theory M5 branes and bulk anomaly inflow.

The interaction (2.5) remains even when the global symmetry background is turned

off, FSp(2) → 0. This is related to the fact that the ’t Hooft anomaly difference, ∆I8 ∝

p2(FSp(2)), is irreducible (i.e. it includes trF 4
Sp(2), not just (trF

2
Sp(2))

2). This is similar to

the 4d Wess-Zumino-Witten interaction [20] for matching the irreducible ’t Hooft anomaly

differences of non-Abelian SU(N ≥ 3) global symmetries. Reducible t Hooft anomaly

differences, on the other hand, lead to WZW-type interactions that become trivial when

the background symmetry gauge fields are set to zero. That will be the case for the

reducible differences (1.2) to be discussed here.

For ’t Hooft anomaly discrepancies of the form (1.2) on the Coulomb branch (1.1), the

needed compensating variation (2.3) is

δSeff,low = 2π

∫

M6

(
1

2
~X4 ∧ · ~X4

)(1)

= π

∫

M6

~X4 ∧ · ~X
(1)
2 , (2.6)

where we define ~X
(0)
3 and ~X

(1)
2 via the usual descent notation, as in (2.1):

~X4 ≡ d ~X
(0)
3 , δ ~X

(0)
3 ≡ d ~X

(1)
2 . (2.7)
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The variation (2.6) arises from the term (1.4) in the low-energy effective action. Un-

like (2.5), the interaction (1.4) does not require going to 7d, and it is only non-zero if

the global symmetry and metric background fields are non-zero; again, this is because

∆I8 here is reducible. Also, the compact global symmetries are unbroken, so there are no

Nambu-Goldstone bosons (though φ is a dilaton).

Note that a self-dual string’s charge ~Q is quantized as8

d ~H =
1

2
2π ~Q δ(Σ2 →֒ M6), ~Q ∈ ~Z, (2.8)

which expresses the compactness of the gauge invariance of B. More generally, the lattice of

allowed dyonic string charges must be self-dual [37]. The general 4-form ~X4 in (1.2) can be

expanded as in (1.8), in terms of properly normalized characteristic classes. So
∫
Σ4

c2(FG) =

1 for the minimal SU(2) ⊂ G instanton9, where Σ4 are the 4 Euclidean directions of an

instanton configuration, transverse to the Σ2 of a string in 6d. So c2(FSU(2)R) and c2(Fi)

are smoothed-out versions of the δ(Σ2 →֒ M6) in (2.8), and the ~nSU(2)R or ~ni in (1.8) give

the ~Q charge, hence their quantization conditions in (1.9).

The quantization of ~ngrav in (1.8) and (1.9) is less clear, as it depends on what are

the allowed gravitational analog of instanton configurations. For compact Σ4 without

boundary,
∫
Σ4

p1 ∈ 24Z if Σ4 is spin (this follows from the spin 1/2 index theorem, since

Â = 1 + p1/24 + . . . ); for compact Σ4 that is not necessarily spin,
∫
Σ4

p1 ∈ 3Z. But here

we are interested non-compact Σ4, or Σ4 with boundary, where the index theorems include

boundary contributions, η, and the quantization conditions are weaker, see e.g. [40]. The Q

contribution from ngrav could likewise have boundary contributions. We will not consider

the ngrav quantization issue further here. We will see that the E8 instanton example gives

ngrav = 1 with the normalization in (1.8).

3 N = (2, 0) theories, regarded as a special case of N = (1, 0)

A N = (2, 0) theory can be regarded as a special case of a N = (1, 0) theory, where

the global Sp(1)R enhances to Sp(2)R. As reviewed around (2.5), the full Sp(2)R has an

irreducible ∆I8. But ∆I8 becomes reducible from the N = (1, 0) perspective, as we then

only turn on background gauge fields in an SU(2)L × SU(2)R ⊂ SO(5)R, and then

∆I8 =
∆c

24
p2(FSO(5)R) →

∆c

24

(
c2(FSU(2)L)− c2(FSU(2)R)

)2
, (3.1)

where ∆c ≡ c(G)− c(H), and we take c(G) ≡ hG|G|. The ∆I8 in (3.1) can of course still

be matched via (2.5), taking the gauge fields there only in SU(2)L × SU(2)R.

More directly, we can write (3.1) as ∆I8 = 1
2X

2
4 , and match it as in (1.4) and (1.5).

Superficially, this does not fit with the quantization condition (1.9), since
√
∆c/12 /∈ Z;

e.g. for SU(N) → SU(N − 1) × U(1), ∆c/3 = N(N − 1), and for E8 → E7 × U(1),

∆c/6 = (29)2. A similar confusion appeared in [21] (with similar resolution as here), where

8The 1

2
here is from the 6d string’s Dirac quantization, eg = 1

2
2π n, see e.g. [26, 33, 36].

9I. e. c2(FG) = λ(G)−1 1

2
tr(FG/2π)

2, where λ(G) can be computed as in e.g. [38, 39].
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it was noted that (2.5) can be obtained by taking dΩ3 to source H3 with coefficient αm

and ⋆H3 with coefficient αe, see also [41]. This seemed to require ∆c/12 = αeαm, with

αe 6= αm, apparently in conflict with self-duality of H3, and unclear quantization of αe,m.

The point is simply that the metric ΩIJ , implicit in (1.2) and (1.3), is not δIJ . Actually,

ΩIJ = C−1
IJ , the inverse Cartan matrix of the ADE group G (this is also seen in the related

theories of five-branes at orbifold singularities, in [10]). E.g. for the G = SU(2) theory,

Ω = 1
2 , so (3.1) gives X4 =

√
∆c/6(c2(FSU(2)L)−c2(FSU(2)R)), which satisfies (1.9) because

here ∆c = 6. More generally, as noted in [42] (or [43], for 2d Toda), the Freudenthal and

de Vries strange formula implies that, for G = A,D,E, (where |G| = rG(hG + 1))

c(G)

12
≡

hG|G|

12
=

1

12
fabcf

abc = ρ̃ · ρ̃, (3.2)

where fabc are the group structure constants and ρ̃ = 1
2

∑
α>0 α̃ is the Weyl vector.

Then (3.1), with ΩIJ = C−1
IJ is indeed compatible with the quantization (1.9); it is just

obscured a bit by focusing on partial breaking G → H ×U(1).

4 Review: the small E8 instanton theory, E8[N ], and its anomaly poly-

nomial

We will illustrate the anomaly matching mechanism for the case Sorigin = E8[N ], i.e. the

theory of N small E8 instantons. Recall that the case of N = 1 small E8 instanton has a

Higgs branch MHiggs that is the 29 + 1 hypermultiplet-dimensional moduli space of an E8

instanton. The +1 hypermultiplet here is the translational zero mode of the codimension

4 instanton. Likewise, for all E8[N ], it is convenient to add a free hypermultiplet, for the

CM position of the N instantons. At the origin of the Higgs branch of E8[N ], there is an

interacting SCFT, with an N real-dimensional, tensor-multiplet, Coulomb branch.

This structure is evident in the M -theory realization, via N coincident M5 branes,

which are also coincident with the end-of-the-interval [44] M9 brane. The E8 gauge sym-

metry of the M9 brane becomes the global E8 symmetry of the 6d SCFT in the decoupling

limit. The 6d spacetime directions are x0,1,2,3,4,5, and the M9 brane is at say x11 = 0.

The Coulomb branch corresponds to moving the M5 branes to φ ∼ x11 6= 0 (the Higgs

branch corresponds to dissolving the M5s into E8 instantons, necessarily at x11 = 0). The

added free-hypermultiplet corresponds to the CM location of the M5 branes in the x6,7,8,9

directions. By considering anomaly inflow, as in [34] but including the effect of the M9

brane, the anomaly polynomial of this theory was obtained in [27] to be

I8[E8[N ] + f.h.] =
N3

6
χ2
4 +

N2

2
χ4I4 +N(

1

2
I24 −

1

48
Î8). (4.1)

Here +f.h. denotes “free-hyper:” The notation in (4.1) is much as in [27]

χ4 ≡ c2(FSU(2)L)− c2(FSU(2)R), (4.2)

I4 ≡ −
1

2
c2(FSU(2)R)−

1

2
c2(FSU(2)L) +

1

4
p1(T ) + c2(FE8

), (4.3)

Î8 ≡ χ2
4 + p2(T )−

(
c2(FSU(2)R) + c2(FSU(2)L)−

1

2
p1(T )

)2

. (4.4)
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Our normalization is such that all
∫
Σ4

c2(F ) = 1 for the minimal instanton configuration.

In this notation, the anomaly polynomial of the N = (2, 0) theory of N M5 branes,

keeping only SO(4) ⊂ SO(5)R background gauge fields, is [34]

I8[T [SU(N)]] + I8[T [U(1)]] =
N3

24
χ2
4 −

N

48
Î8. (4.5)

5 Anomaly matching for E8[N ] on its Coulomb branch

We consider the E8[N ] Coulomb branch associated with giving expectation value to just

one of the N tensor multiplets. In the M5 realization, we move a single M5 to x11 6= 0,

leaving the other N − 1 coincident with the M9 at x11 = 0. The breaking pattern is

E8[N ] + f.h. → E8[N − 1] + 2(f.h.) + S[U(1)] + anomaly matching terms. (5.1)

The f.h. on the l.h.s. of (5.1) is as in (4.1), and goes for the ride, and the other f.h. on the

RSH arises in the low-energy theory. The anomaly polynomial I8 of the l.h.s. of (5.1) is

given in (4.1), and likewise for the E8[N −1]+ f.h. on the r.h.s. , via N → N −1, while that

of f.h.+S[U(1)] = T [U(1)] is given by setting N = 1 in (4.5). Thus the naive difference in

anomalies between the l.h.s. and r.h.s. of (5.1) is

∆I8 =
1

24
(4N3 − 4(N − 1)3 − 1)χ2

4 +
1

2
(N2 − (N − 1)2)χ4I4 +

1

2
I24 ,

=
1

8
(2N − 1)2χ2

4 +
1

2
(2N − 1)χ4I4 +

1

2
I24

=
1

2

((
N −

1

2

)
χ4 + I4

)2

. (5.2)

It’s indeed a perfect square, as required. Moreover, writing this X4 as in (1.2), the coeffi-

cients are indeed integrally quantized (the 1
2 ’s in (5.2) all cancel or combine to 1)

X4 = (N − 1)c2(FSU(2)L)−Nc2(FSU(2)R) +
1

4
p1(T ) + c2(FE8

), (5.3)

i.e. nSU(2)L = N − 1, nSU(2)R = −N , and nE8
= 1: an SU(2)L instanton carries N − 1

units of B-charge, an SU(2)R instanton has −N units, and an E8 instanton has 1 unit of

B-charge. Also, ngrav = 1 here (recall the discussion at the end of sect. 2).

Consider e.g. the case of N = 1 small E8 instanton where the theory on the r.h.s.

of (5.1) is just the N = (1, 0) tensor multiplet S[U(1)] and two free hypermultiplets. An

SU(2)R instanton gives a string of B-charge −1, and an E8 instanton gives one of B-charge

+1. In the general N case, the E8[N − 1] theory at the origin evidently leads to an extra

contribution to the B-charge of ±(N − 1) for a SU(2)L,R instanton string.

Another breaking pattern is to give non-zero, coincident, expectation values to all N

tensor multiplets of the E8[N ]. In the M-theory realization, all N of the M5 branes are

moved, together, away from the M9 brane. This gives the breaking pattern

E8[N ] + f.h. → T [SU(N)] + T [U(1)] + anomaly matching terms, (5.4)

– 7 –
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where T denotes the N = (2, 0) theories. The anomaly matching terms are a non-

decoupling effect of the M9 brane. The rest of the low-energy theory on the r.h.s. of (5.4)

has an approximate enhancement of SO(4)R → S0(5)R, as part of the approximate, acci-

dental enhancement of N = (1, 0) → N = (2, 0); the anomaly matching terms spoil this

enhancement. The anomaly matching needed for (5.4), by (4.1) and (4.5), is

∆I8 =
N3

8
χ2
4 +

N2

2
χ4I4 +

N

2
I4 =

N

2

(
N

2
χ4 + I4

)2

. (5.5)

The N = 1 case of (5.4) and (5.5) coincides with the N = 1 case of (5.1) and (5.2). More

generally, all N tensor multiplets on the r.h.s. of (5.4) participate in the anomaly matching

mechanism, hence the overall N in (5.5), with an associated lattice of integral charges.
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