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Abstract

Background: The filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer. Several
strains have been developed in the past using random mutagenesis, and despite impressive performance
enhancements, the pressure for low-cost cellulases has stimulated continuous research in the field. In this context,
comparative study of the lower and higher producer strains obtained through random mutagenesis using systems
biology tools (genome and transcriptome sequencing) can shed light on the mechanisms of cellulase production
and help identify genes linked to performance. Previously, our group published comparative genome sequencing
of the lower and higher producer strains NG 14 and RUT C30. In this follow-up work, we examine how these
mutations affect phenotype as regards the transcriptome and cultivation behaviour.

Results: We performed kinetic transcriptome analysis of the NG 14 and RUT C30 strains of early enzyme production
induced by lactose using bioreactor cultivations close to an industrial cultivation regime. RUT C30 exhibited both
earlier onset of protein production (3 h) and higher steady-state productivity. A rather small number of genes
compared to previous studies were regulated (568), most of them being specific to the NG 14 strain (319). Clustering
analysis highlighted similar behaviour for some functional categories and allowed us to distinguish between induction-
related genes and productivity-related genes. Cross-comparison of our transcriptome data with previously identified
mutations revealed that most genes from our dataset have not been mutated. Interestingly, the few mutated genes
belong to the same clusters, suggesting that these clusters contain genes playing a role in strain performance.

Conclusions: This is the first kinetic analysis of a transcriptomic study carried out under conditions approaching
industrial ones with two related strains of T. reesei showing distinctive cultivation behaviour. Our study sheds some light
on some of the events occurring in these strains following induction by lactose. The fact that few regulated genes have
been affected by mutagenesis suggests that the induction mechanism is essentially intact compared to that for the
wild-type isolate QM6a and might be engineered for further improvement of T. reesei. Genes from two specific clusters
might be potential targets for such genetic engineering.
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Background
Random mutagenesis followed by strain screening, using
either chemical substances or irradiation, has for de-
cades been the choice method for developing efficient
microbial industrial strains. The main drawbacks of ran-
dom mutagenesis are well known: accumulation of dele-
terious mutations leading to evolutionary dead ends or
unstable strains, limited or nonexistent ability to select
for synergistic mutations, due to the low probability that
the two or more suitable mutations appear in a single
clone, and finally few or no clues regarding the under-
lying cellular mechanisms involved [1]. Nevertheless, this
empirical approach has been very successful and remains
broadly used even more than 25 years after the advent
of recombination technologies. A spectacular example is
the filamentous fungus Trichoderma reesei, famous for
its high cellulase enzymes secretion capacity, which is of
high interest for the second generation biofuel industry
[2]. Industrial strains derived from the original QM6a
strain isolated on the canvas tents of US soldiers are able
to produce 40 to 100 g L-1 cellulase enzymes, which rep-
resent a more than 1,000-fold production improvement
[3]. T. reesei is the workhorse of cellulase production,
and these enzymes are essential for the economic feasi-
bility of biorefinery processes that rely on fermentation
of lignocellulosic biomass sugar monomers. However,
despite those high production titres, the specific prod-
uctivity (g/g.h-1) of the strains remains relatively low and
there is still a need for strains with higher productivities.
Earlier studies on cellulase production regulation have

identified the XYR1 transcription factor as a pivotal in-
ducer of cellulase production [4-6] and have also assessed
a role for the carbon catabolite repression mediated by the
CRE1 transcription factor [7-9]. Indeed, strains deleted for
CRE1 function show higher production levels [10]. More-
over, the RUT C30 strain, one of the most studied hyper-
producing strains, bears a truncated version of the cre1
gene that has been demonstrated to be inactive and to
allow higher cellulase production [11]. The presence of in-
ducers in extracellular media (cellulose, hemicellulose, cel-
lobiose, but also lactose and sophorose) leads to xyr1
transcription activation through a yet-to-be-discovered
transduction mechanism [12].
Other transcription factors and genes involved in regu-

lation have been identified, but their respective roles
remain enigmatic (ace1, ace2, ace3, lae1, creD) [13-17].
The importance of a low growth rate to reach a good
cellulase productivity was also pointed out [18]. Indeed,
most industrial protocols are based on a fed-batch of the
inducing carbon source, leading to cellulase production
and practically zero cellular biomass production [19].
The T. reesei genome was sequenced in 2005 [20],

followed by sequencing of high and low producer strains
by various groups [21-25]. These studies uncovered
many mutations, some of which affected genes that
could reasonably be associated with cellulase production
[21]. Indeed, other studies led to formal linking of some
of these genes with a higher cellulase production pheno-
type [17,23]. However, the majority of mutations have
not been characterized, owing to the somewhat labour-
intensive genetics of Trichoderma. Moreover, random
mutagenesis probably led to silent or unfavourable mu-
tations, making systematic assaying of each mutation an
unattractive strategy.
A way to further select target genes before switching

to labourious genetic validations is to perform transcrip-
tome or other systems biology analysis in conditions ap-
proaching industrial ones. A simple assumption would
be that a significant number of mutated genes will be
transcribed, induced or repressed under these condi-
tions, helping to define or refine the studied system fur-
ther. Microarrays give a reliable picture of induced or
repressed genes under given conditions, and RNA se-
quencing is even more powerful, as it allows more sensi-
tive and quantitative detection of a given transcript,
even if no expression variation is observed. Indeed some
transcriptome studies have been performed on T. reesei
[17,26-28], and some have led to the identification of
genes directly linked to cellulase production. Most of
these studies have been performed on the relatively low
producer strain QM9414 [26-28] and rely on batch cul-
tures, with the exception of [17], which has used chemo-
stat culture and the RUT C30 strain.
Despite identification of genes having an effect on cellu-

lase production, the performance of historical strains ob-
tained through random mutagenesis is still not matched
by strains modified solely by targeted genetic engineering.
The reason is probably that the ? roots of cellulase produc-
tion? have still not been properly understood.
In this study, a transcriptome analysis was performed

to identify genes involved specifically in protein produc-
tion by T. reesei under conditions close to those of an
industrial process (bioreactor, monitored pH, soluble
and cheap inducing carbon source like lactose in fed-
batch). In our opinion, these would be the most prob-
able candidates to have a genuine effect on productivity
in an industrial context when modified. We also wanted
to decipher the chain of events of early induction; there-
fore, a kinetic study was performed over the first 24 h
after the start of the induction. We chose to work with
the respectively moderate and higher producer strains
NG 14 and RUT C30, which our group previously se-
quenced [21]. This allowed us to perform a close com-
parison of transcriptomes and genomes from these two
strains and from other lineages.
We show that a smaller number of genes than previ-

ously reported are involved in cellulase production,
probably owing to well-controlled culture conditions.
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Moreover, the complexity of the kinetic pattern observed
and the differences between the two strains suggest that
inactivation of catabolic repression through cre1 deletion
may not be the only important genetic event that hap-
pens during the breeding of RUT C30. We also show
that only a small number of genes that have been mu-
tated during the obtention of these strains are differen-
tially expressed by the transcriptome analysis and that
they have the same regulation patterns.

Results
NG 14 and RUT C30 strains ? protein production in an
industrial cultivation regime
In order to study the early phase of induction by lactose
of T. reesei, we cultivated in duplicate strains RUT C30
and NG 14 in a bioreactor by following a previously de-
scribed protocol that mimics an industrial process
[19,29]. Each strain was grown on D-glucose during the
batch phase for around 24 h, until the glucose was de-
pleted. The glucose concentration decline was moni-
tored, and lactose fed-batch cultivation was started when
equal to or below 0.5 g L-1. This lactose pulse is tuned
in such a way that no lactose accumulates in the
medium, which favours cellulolytic enzymes production,
based on previous experience ([29,30]). This induction
step is called the fed-batch phase. Cultivations were car-
ried out up to 48 h after fed-batch start, except for one
NG 14 replicate that had to be stopped shortly after
24 h because of feeding pump failure and one for
RUT C30 that was conducted up to 148 h.
The cultivation data for each fermentation are pre-

sented in (Additional file 1: Figure S1). Carbon source
Figure 1 RUT C30 and NG 14 bioreactor culture profiles. Growth curve
(extracellular protein concentration g.L-1 (EC Prot. Conc.), as assayed by Bra
T. reesei strains. Time 0 h marks the start of lactose feeding. Negative value
of fed-batch culture with lactose. Each curve represents the average measu
deviation to give an estimate of replicates? quality (excluding technical rep
dispersion data is not available. Bradford method allows accurate assessme
underestimates actual values and is therefore not appropriate for carbon b
concentrations and biomass and protein production, fo-
cussed on the first 48 h after fed-batch are presented in
Figure 1, with merged cultivation duplicates. CO2 pro-
duction was monitored to achieve carbon balances,
which reached more than 0.90 gCproduced/gCconsumed

(data not shown). We chose to determine protein con-
centration using the Bradford method [31] to avoid
background protein with peptides contained in the corn
steep in the culture medium when protein concentration
is low. However, for cellulases, this method is known to
underestimate actual protein concentrations 3.5 to 5-fold
[32] compared to the Lowry method [33], which reflects
actual production. This conversion factor was used for
mass balancing and to compare specific productivities
with previous work (Jourdier et al. [29,30]). In addition,
Lowry protein measurements were made on the RUT C30
cultivation that lasted for 150 h to check the consistency
of the calculation (Additional file 2: Figure S2).
The batch phase resulted in a rapid consumption of

glucose in less than 24 h, in a similar fashion for all fer-
mentations (Figure 1). At the end of this phase, the aver-
age biomass of both the RUT C30 and NG 14 strains
increased up to 16 g L-1. Lactose injection was started
when the glucose concentration was below 1 g L-1. For
all cultivations, no galactose or lactose was detectable in
subsequent measurements during the fed-batch phase.
The glucose concentration remained between 0.2 and
0 g L-1 (Additional file 3: Table S5).
During fed-batch, the biomass concentration of the

RUT C30 and NG 14 strains remained fairly constant. A
difference is seen at 48 h with 24 g L-1 for NG 14 and
17 g L-1 for RUT C30. However, the measure for NG 14 is
s (dry biomass concentration g.L-1) and protein production levels
dford method (see Results), are displayed for NG 14 and RUT C30
s represent the 24 h of batch culture and positive values the first 48 h
re of two independent cultures; error bars show average standard
licates). One NG 14 replicate is lacking after 24 h lactose induction, so
nt of production start and comparison between strains but
alancing (see Results for detailed explanations).
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based on only one replicate, as the second culture for this
strain had to be stopped at 24 h, and we cannot conclude
that the observed difference has any significance.
Protein production starts sharply as early as 3 h after

lactose induction in the RUT C30 strain, with a steady
production rate. The protein production starts between
6 and 24 h after induction in NG 14. As the production
rate remains steady, it suggests that protein production
indeed started closer to 6 h than to 24 h. The overall
specific productivities of the strains between 4 h and
30 h were on average 1.2 mg/gcell/h and 3.98 mg/gcell/h
for NG 14 and RUT C30, respectively. Applying a
Bradford to Folin correction factor between 3.5 and 5
leads to actual estimated productivities between 4.2 and
6.0 mg/gcell/h for NG 14 and between 13.9 and 19.9 mg/
gcell/h for RUT C30. Accordingly, the protein concentra-
tion at the end of production (148 h) reached 32.5 g/L
for one of the RUT C30 strains, making a specific prod-
uctivity of 13.4 mg/gcell/h. All these date are in line with
the results of previously published work (up to 15 mg/
gcell/h) [29].
Filter paper activities were measured and show values

in line with data from previous work [19] and are homo-
geneous between strains and time points, suggesting no
dramatic differences in cocktail compositions (data not
shown).

Global transcriptome changes during protein production
We sampled the fungal biomass to extract the total RNA
after lactose addition to the medium. We wanted a focus
on early induction and therefore chose 1, 3, 6 h after
fed-batch. The choice of the final 24 h time points was
based on our previous study, as a very high induction of
cellulase genes was observed, suggesting that early in-
duction events are over at this time [34]. We also used
Figure 2 Differentially expressed genes of NG 14 and RUT C30 during
specific to each strain and the overlap between them. (B) The number of i
a bar chart. It displays the number of induced (red) and repressed (green)
induction in the RUT C30 and NG 14 strains compared to time 0. The differ
discovery rate cut-off and with an absolute log2 fold change greater than
one sample point just before lactose induction as a refer-
ence (time 0) for each culture. This sampling process
was carried out for the four independent bioreactor cul-
tures, and the total RNA for each time point was hybrid-
ized against the time 0 reference on a transcriptome
custom microarray designed for T. reesei. From a total
of four hybridizations for each kinetic point, the micro-
array results were normalized and a differential analysis
was performed.
After consolidation of duplicates and statistical ana-

lysis, we obtained 568 genes that were differentially
expressed compared to their corresponding time 0, both
strains considered. The differentially expressed genes
specific to each strain are indicated in Additional file 4:
Table S1. The numbers of differentially expressed genes
found specifically for each strain and shared in both
strains are shown in Figure 2A. Interestingly, RUT C30
showed five times fewer differentially expressed genes
than NG 14 and only 62 specific genes.
The number of differentially expressed genes for each

time point in each strain is shown in Figure 2B. We ob-
served that for both strains the number of induced and
repressed genes increases during induction, from 113
genes 1 h after induction to 422 after 24 h for NG 14.
For RUT C30, the increase is from 46 genes 1 h after in-
duction to 228 after 24 h.
The most striking difference between the strains is ob-

served in the first hours of induction (between 1 and 3 h
of induction). At those times, there is an increase in the
number of induced genes in NG 14 from 67 to 165,
while in RUT C30 this number remains about the same,
suggesting that no significant expression changes occur
in the early steps of induction in RUT C30. The increase
in the number of induced genes in RUT C30 correlates
with the start of active protein secretion 3 h after lactose
lactose induction. (A) Venn diagram indicates the number of genes
nduced or repressed genes during induction by lactose is depicted in
genes for the four time points (1, 3, 6 and 24 h) found during the
entially expressed genes have been selected using a 5% false
1.
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feeding onset. More surprisingly, the number of re-
pressed genes is quite high for the early induction stage
for NG 14, being 145 at 3 h, 141 at 6 h and 211 at 24 h.
In RUT C30, the repressed genes increase especially at
late induction stages, with 60 genes at 6 h and 124 genes
at 24 h.

Clustering analysis reveals kinetic differences between NG
14 and RUT C30
We applied clustering techniques to classify gene expres-
sion profiles into groups of similar patterns. From the
expression matrix containing 568 differentially expressed
genes, we were able to sort 532 of them into 9 clusters
according to their expression pattern (Figure 3). All clus-
ters can be classified as ? up-regulated ? (1, 5, 7 ? 9) or
? down-regulated? (2, 3, 4 and 6). Up-regulated clusters
include 256 genes (45.1% of the matrix) and down-
regulated gene clusters include 276 genes (48.6%).
Qualitative differences were observed in genes from

up-regulated clusters between NG 14 and RUT C30.
Cluster 7 group genes up-regulated at 6 h, only for NG
14. Conversely, cluster 5 group genes up-regulated later
at 24 h, only for RUT C30. Group 1 is the largest cluster
and shows early induction (1 h) for NG 14 with no
changes in the RUT C30 strain. Clusters 8 and 9 are
early up-regulated profiles that group genes showing up-
regulation as early as 1 h after lactose induction for both
strains. However, cluster 9 shows higher expression ra-
tios than cluster 8, especially for the NG 14 strain.
Regarding the down-regulated genes, we saw marked

differences in the kinetics between NG 14 and RUT
C30. Most of these genes in NG 14 have an early repres-
sion pattern, at 1 h (cluster 3), and at 3 h (clusters 2 and
4) after lactose induction. Most down-regulated genes in
the RUT C30 strain are found in cluster 2, with much
lower expression ratios and retarded compared to NG
14. In contrast, cluster 6 gathers the only genes that are
down-regulated in RUT C30 and with no noticeable ex-
pression variation in NG 14.
Only clusters 5 and 6 featured genes with an increase

or decrease in gene expression specific to the RUT C30
strain, with no changes observed in the NG 14 strain.
These clusters contain 59 of the 62 genes found specific
to RUT C30 (Figure 2A). All these differential expres-
sions take place at later times, when production has
already started, and they may be pivotal in explaining
the productivity differences observed. For the rest of the
clusters, the differences between the two strains consist
in up- or down-regulations that occur only in NG 14 or
are severely reduced in RUT C30 (except for cluster 8,
where the two strains share the same expression). Sev-
eral hypotheses can be drawn from these results: regula-
tion could have already occurred in RUT C30 before the
lactose induction, it could be constitutive in RUT C30,
or it could reflect genuine de-regulation regarding the
lactose induction signal.

Cluster characterization using functional categories
From a manual annotation of each up- or down-regulated
T. reesei gene (see Materials and methods), genes were
categorized according to the Functional Catalogue (Fun-
Cat) (Additional file 5: Table S2). The most representative
categories (categories with more than ten genes in the
whole dataset) and the number of genes found in each cat-
egory in each cluster are shown in Table 1. Genes related
to amino acid metabolism and ribosome biogenesis were
found more in cluster 1, up-regulated only in NG 14.
Genes linked to metabolism, lipid metabolism, energy
metabolism and extracellular protein degradation were
mostly found in clusters 2, 3 and 4. Cluster 2 contains
the majority of lipid metabolism genes, while most genes
for metabolism, energy metabolism and extracellular
protein degradation were found in cluster 4. In addition,
four proteasome components, pre2, pre5, pre6 and pre9
(Trire2:121009, Trire2:121343, Trire2:76010, Trire2:124031,
respectively), were found in cluster 4, and the gene phos-
phoenolpyruvate carboxykinase pck1 (Trire2:124115), key
in gluconeogenesis, was found in cluster 3.
CAZyme genes were more represented in clusters 8

and 9. These clusters group the most induced genes dur-
ing induction for both strains and gather most of the
genes encoding enzymes linked to cellulose degradation.
We found among them the main endoglucanase genes
cel7b, cel5a, cel12a, cel45a and cel74a (Trire2:122081,
Trire2:120312, Trire2:123232, Trire2:49976, Trire2:49081,
respectively), cellobiohydrolase cel6a (Trire2:72567) and
swollenin swo1 (Trire2:123992). The main cellobiohydro-
lase, cel7b, is absent from our dataset as induction is so
strong that a saturating signal was obtained under all con-
ditions. Also noteworthy is the presence of the lytic poly-
saccharide monooxygenase cel61a (now in the CAZy AA9
family) (Trire2: 73643) [35]. These clusters also include 12
other genes coding for glycoside hydrolases (GH) either
already characterized as ?-galactosidase bga1 (Trire2:80240)
[36], ?-glucosidases bgl2, cel1b, cel3c (Trire2:120749,
Trire2:22197, Trire2:82227, respectively) or putative ones
[23,37,38].
Genes related to secretion are found predominantly in

cluster 5 (only induced in RUT C30), and most of them
belong to the ERV and SEC families. Other well-known
genes that belong to the secretion system, bip1, pdi1,
cne1 and sar1 (Trire2:122920, Trire2:122415, Trire2:73678,
Trire2:61408, respectively), were identified in clusters 5
and 8. Concerning genes encoding transcriptional regula-
tors, most of them belong to cluster 5. They include the
xylanase regulator xyr1 (Trire2:122208) and two genes
(Trire2:77513 and Trire2:122523) whose overexpression
was shown to increase the cellulase activity at least



Figure 3 Clustering of differentially expressed genes during induction by lactose in both studied strains. From 568 genes identified as
significantly regulated among the several expression experiments performed, 532 were gathered in 9 clusters according to their changes during
the NG 14 and RUT C30 lactose induction. The average profile of each cluster is shown next to its heat map.
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Table 1 Main functional categories from transcriptome analysis in NG 14 and RUT C30 strains

Functional category FunCat
number

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Total
category

Ribosome biogenesis 12.01 52 (96%) 1 (2%) 1 (2%) 54

Metabolism 01.00 3 (7%) 4 (9%) 3 (7%) 22 (48%) 1 (2%) 7 (15%) 4 (9%) 2 (4%) 46

Extracellular metabolism
(CAZymes)

01.25 1 (2%) 2 (4%) 3 (7%) 5 (11%) 5 (11%) 7 (15%) 2 (4%) 9 (20%) 12 (26%) 46

Transported compounds 20.01 4 (9%) 6 (14%) (7%) 8 (19%) 4 (9%) 1 (2%) 10 (23%) 7 (16%) 43

Amino acid metabolism 01.01 10 (24%) 7 (17%) 6 (14%) 7 (17%) 7 (17%) 3 (7%) 1 (2%) 1 (2%) 42

Lipid, fatty acid and
isoprenoid metabolism

01.06 8 (22%) 13 (36%) 2 (6%) 9 (25%) 1 (3%) 1 (3%) 2 (6%) 36

Transcriptional control 11.2.3.4 2 (10%) 1 (5%) 5 (25%) 7 (35%) 4 (20%) 1 (5%) 20

Extracellular protein
degradation

01.25.03 1 (6%) 4 (24%) 2 (12%) 8 (47%) 2 (12%) 17

Energy metabolism 02.00 3 (19%) 4 (25%) 1 (6%) 7 (44%) 1 (6%) 16

Stress response 32.01 1 (7%) 1 (7%) 4 (29%) 3 (21%) 5 (36%) 14

Vesicular transport
(secretion)

20.09.07 1 (8%) 1 (8%) 1 (8%) 7 (54%) 3 (23%) 13

Cellular communication,
signal transduction

30.00 3 (23%) 2 (15%) 2 (15%) 4 (31%) 1 (8%) 1 (8%) 13

Secondary metabolism 01.20 2 (17%) 1 (8%) 2 (17%) 3 (25%) 1 (8%) 1 (8%) 2 (17%) 12

Detoxification 32.07 1 (9%) 3 (27%) 2 (18%) 4 (36%) 1 (9%) 11

Other categories 10 (26%) 4 (10%) 4 (10%) 7 (18%) 5 (13%) 3 (8%) 4 (10%) 2 (5%) 39

Unclassified 4 (13%) 1 (3%) 5 (16%) 13 (42%) 2 (6%) 5 (16%) 1 (3%) 31

Unknown protein 7 (9%) 14 (18%) 1 (1%) 18 (23%) 16 (20%) 14 (18%) 6 (8%) 3 (4%) 79

Total 113 67 35 124 59 50 40 32 12 532

Only the FunCat categories with more than ten genes in the whole dataset are considered main functional categories. The number of genes belonging to
categories is provided for each cluster. Category-associated genes found more abundantly (at least a 2-gene of difference between clusters) are indicated in bold.
Percentages in parentheses indicate the rounded percentage of genes from each category found in a cluster. Genes whose function could not be associated with
a category were annotated as Unclassified. Genes without a predicted function were annotated as Unknown.
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1.5-fold with lactose as inducer [17]. Gene Trire2:77513
was named ace3 by the authors because of its importance
in the cellulase induction and in the activation of other
cellulase genes. Outside cluster 5, a putative xylanase
repressor xpp1 (Trire2:122879) and a gene involved in
carbon catabolite repression and ubiquitination creD
(Trire2:81690) [39] were found in cluster 1.
Transporter genes were identified predominantly in

cluster 7, only induced in NG 14. However, those de-
scribed as sugar transporters [24] are mainly found in
cluster 8. Genes from primary metabolism and energy
metabolism were found mostly in cluster 4. Genes from
this category included the down-regulated gene aldose
epimerase aep1 (Trire2:22415), which is involved in the
catabolism of galactose via the Leloir pathway. In con-
trast, the D-xylose reductase xyl1 (Trire2:107776) from
the alternative galactose oxidoreductive pathway was
found in the up-regulated cluster 5 (specific to RUT C30).
Genes from the categories secondary metabolism, signal
transduction, detoxification and stress response were
also present and distributed among several clusters.
Except for cluster 9, no cluster was specific to a single
category. However, clusters can be characterized by two
or three main functional categories, suggesting a good
match between functional categories and expression pro-
files, except for clusters 3 and 6, which could not be re-
lated to a specific functional category. Cluster 3 shares
genes from the categories of clusters 2 and 4; therefore,
it is close to them both in terms of functional categories
as well as in terms of expression profile. Cluster 6
contains genes probably related to cellulase production,
as it was the only down-regulated cluster specific to
RUT C30 during protein production.

Few genes have a higher basal expression in RUT C30
As we were surprised by the large number of genes regu-
lated in the NG 14 strain, we attempted to explain the ap-
parent loss of up- and down-regulation in the RUT C30
strains. To achieve this, the time 0 references from RUT C30
and NG 14 were compared using RNA-seq experiments
(Additional file 6: Table S3). From the 568 differentially
expressed genes found using microarrays, we identified
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by RNA-seq only 23 whose expression was different be-
tween the two strains (Table 2), meaning that 95.9% of the
differentially expressed genes during the protein produc-
tion have the same basal level in these strains. The distri-
bution of these genes between each cluster shows that
most of them are included in clusters 8 and 9 (Figure 4).
Most of these genes are cellulase genes that have a higher
basal expression in RUT C30 and that represent 60% of
cluster 9 (seven genes) and 10% of cluster 8 (four genes).
This may explain the apparent lower induction of these
genes in RUT C30 and is compatible with our previously
published results positively correlating induction ratios
and protein production [34]. However, the small number
of genes induced or repressed prior to the lactose induc-
tion suggests that expression patterns observed between
the two strains indeed reflect different behaviours regard-
ing the lactose induction signal.

Mutations in NG 14 and RUT C30 marginally affected
regulated genes during lactose induction
In order to establish whether the differential expression
of some genes during production was linked to the
Table 2 Genes regulated after lactose induction with differen

Transcript ID Cluster Annotation

59272 1 Putative MFS transporter

82032 1 Putative protein of unknown func

121491 1 Putative glycosyltransferase family

61374 3 Putative MFS transporter

74156 3 Putative secreted pepsin PROA

3717 4 Putative 2-keto-3-deoxy-L-galacto

76155 4 Putative acid phosphatase

122582 4 Putative mitochondrial dihydrodip

69115 7 Putative dienelactone hydrolase

69944 8 Putative glycoside hydrolase fami

73643 8 Glycoside hydrolase family 61 EG

121127 8 Glycoside hydrolase family 3 BXL1

123967 8 Hydrophobin HFB3

69276 9 Putative glycoside hydrolase fami

72567 9 Glycoside hydrolase family 6 CBH

73638 9 Secreted cellulose induced protei

76210 9 Glycoside hydrolase family 62 AB

120312 9 Glycoside hydrolase family 5 EGL

120961 9 Glycoside hydrolase family 61 CEL

121418 9 Carbohydrate esterase family AES

60945 Not clustered Putative MFS transporter

79816 Not clustered Putative transcriptional regulator

123251 Not clustered Putative NADH-quinone oxidored

Samples from T0 (before lactose induction) from NG 14 and RUT C30 were compare
measured in reads per kilobase of exon per million mapped sequence reads (RPKM
identify differentially expressed genes.
mutations that had been accumulated during mutagen-
esis of QM6a to NG 14 and subsequently RUT C30, we
compared the gene expression profiles obtained in this
work with the mutations found in NG 14 and RUT C30
(Additional file 7: Table S4 [21,22,25,37]). We systemat-
ically scanned for genes in an 800-bp window around
each mutation. From the list of 165 mutations consid-
ered physically close enough to a gene to have a pheno-
typic effect, only 5 involved differentially expressed
genes in at least one strain. Four mutations were specific
to the mutagenesis towards RUT C30, which accounted
for a total of 76 mutations. Interestingly, all four muta-
tions relate to genes clustered in cluster 1 and cluster 5
(Table 3).
Because of the low correlation between genes that were

mutated in the RUT C30 lineage and their expression
data, we extended our comparison to mutations found in
other cellulase improved strains [23-25] (Table 3). We
found 14 mutations affecting differentially expressed genes.
Most of them were again found in cluster 1 (six genes) and
in cluster 5 (three genes), which is considerably higher than
those in the NG 14 RUT C30 lineage.
t basal expression between NG 14 and RUT C30

Ratio RUT C30/NG 14 Average reads

-4.78 17462

tion 4.46 32445

4 4.21 38826

-5.99 7537

-4.92 7152

nate aldolase -4.86 7427

-4.85 23883

icolinate synthase -4.38 8170

-5.11 27147

ly 31 7.01 1685

L4/CEL61A 4.34 4641

5.65 6623

6.8 2548

ly 30 4.15 556

2/CEL6A 4.64 10892

n CIP1 6.37 1326

F2 7.65 653

2/CEL5A 7.41 2331

61B 4.36 434

1 6.76 1027

-4.51 6194

GAL80 -9.6 59020

uctase 4.67 16873

d by means of RNA-seq experiments. The relative transcript abundance was
). The log2 ratio of the RPKM values between RUT C30 and NG 14 were used to



Figure 4 Differences in gene expression before induction of
protein production (T0) in NG 14 and RUT C30 identified by
RNA-seq. The percentage of genes with superior basal level (red
bars), inferior basal level (green bars) or equal basal level (grey) is
shown for each cluster.
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Discussion
A refined view of protein production by T. reesei under an
industrial regime
A number of transcriptome studies have already been
published on T. reesei cellulase production. However,
most of them have been performed with the low produ-
cer strain QM9414 [26-28]. In addition, most studies
have been conducted in batch mode, preventing separ-
ation between growth and enzyme production and mak-
ing carbon source availability difficult to control [26,37].
In addition, lactose, one of the preferred soluble sub-
strates for industrial cellulase production, has received
only limited interest [26,27]. One study was conducted
with strain RUT C30 in chemostat cultures and focussed
on the physiology of protein production [6]. These stud-
ies are a significant contribution to the fundamentals of
cellulase production by T. reesei. However, the events
that take place under industrial conditions (lactose as
carbon source, near-zero residual carbon source, near-
zero growth, constant pH) have not been studied yet.
This study presents for the first time a transcriptome
analysis of early induction by lactose in T. reesei under a
feeding regime mimicking an industrial protocol [19].
The use of these controlled conditions may also explain
the detection of a smaller number of genes responding
to the lactose induction (below 600, all strains and time
points considered) compared to previous studies that re-
port more than 1,000 regulated genes [26-28].
Despite quantitative differences in the number of genes

involved, our data are in agreement with previously pub-
lished studies, and the main actors of enzyme production
are found. Several genes encoding proteins belonging to
the secretion system (bip1, pdi1, cne1, sar1), several chap-
erones as well as SEC and ERV family proteins account
both for an induction of the secretion system and an en-
hancement of protein quality control (ERAD and UPR re-
sponses) [7-9]. Yet fewer CAZymes have been found in
our study than in previous studies, but those found are the
main components of the secretome. For example, we re-
trieved most CAZyme genes (19 of 26) from our results,
including all major cellulases, in a list of 63 CAZymes
from a transcriptome analysis of the strain QM9414
grown in a lactose medium [26]. These differences might
be due to the strain and culture conditions and the fact
that our study focussed on early induction. It is worth no-
ticing that a previous work on RUT C30 two-dimensional
electrophoresis already reported a secretome focussed on
the main enzymes [19], which is compatible with our re-
sults. However, the use of different experimental designs
or other analysis methods such as deep sequencing might
also be partly responsible.
Relatively few transcription factors are induced or re-

pressed, but while the main regulator xyr1 is strongly
induced, other known components of the cellulolytic en-
zymes regulon (ace1, ace2) have not been detected
[4,34]. This could be due to the fact that transcriptome
analysis has a limited sensitivity or that activation of
these factors is mainly post-translational. It is note-
worthy that the recently described ace3 transcription
factor is strongly induced [17]. Interestingly, the aldose
epimerase gene 1 aep1 is repressed in accordance with
previous studies that show that the ?-D-galactose originat-
ing from lactose is catabolized via the reductive galactose
catabolic pathway and does not require mutarotation to α-
D-galactose, which is a prerequisite for catabolism via the
Leloir pathway [40]. This coincides also with the observa-
tion that the gene encoding enzyme of the first step of the
alternative galactose pathway xyl1 is strongly induced. We
also confirm the induction of genes encoding putative lac-
tose transporters as recently reported [24,41]. Among
them, the crt1 gene (Trire2:3405) has been recently de-
scribed as having a pivotal role in the lactose induction of
cellulase genes, either as a lactose transporter or a cellu-
lose sensor [24,26,42]. Three other transporters were highly
up-regulated during growth on cellulose (Trire2:79202,
Trire2:56684 and Trire2:54632). Several intracellular β-
glucosidases were also regulated [23].
The relatively small number of detected genes and the

fact that the majority of genes already being reported as
having an impact on cellulase production are present in
our dataset prompt us to believe that the data presented
here is a very specific picture of cellulolytic enzymes in-
duction by lactose. This is especially true for the RUT C30
strain that does not grow at all during the process.
This study also presents a real-life picture of genes in-
volved in enzyme production under an industrial carbon



Table 3 Inventory of the mutations affecting genes regulated during induction by lactose

Transcript ID Cluster Annotation Strain Mutation Position Reference

NG 14 and RUT C30 strains

1751 1 Putative FAD monooxygenase RUT C30 SNV Promoter [21]

54511 5 Putative POZ domain protein RUT C30 SNV Promoter [21]

56077 5 Putative transcription factor RUT C30 SNV Promoter [21]

77513 5 Putative fungal C6 transcription factor RUT C30 SNV Exon [21]

121087 Not
clustered

Putative 4Fe-4S ferredoxin domain protein NG 14 & RUT C30 SNV Promoter [21]

Other cellulase improved strains

54736 1 Putative ATP-dependent RNA helicase DED1 KDG-12 PC-3-7 SNV Promoter [23]

58427 1 Putative ATP-dependent RNA helicase DBP2 PC-3-7 SNV Exon [24]

71380 1 Putative 3-hydroxy-3-methylglutaryl-coenzyme
A reductase

PC-3-7 SNV Exon [24]

78836 1 Putative mitochondrial phosphate carrier PC-3-7 SNV Exon [24]

82512 1 Putative 26S proteasome transcription factor RPN4 PC-3-7 SNV Promoter [24]

122036 1 Putative 40S ribosomal protein S2 RPS2 QM9414 KDG-12
PC-3-7

InDel & SNV Promoter &
Terminator

[25]

63882 4 Putative mitochondrial 3-hydroxyisobutyryl-CoA
hydrolase

PC-3-7 SNV Terminator [24]

124031 4 Putative 20S proteasome alpha 3 subunit PRE9 PC-3-7 SNV Promoter [24]

6108 5 Putative SAM binding domain protein QM9414 KDG-12
PC-3-7

InDel Intron Unpublished
data

112390 5 Putative WD40 repeat domain protein QM9414 KDG-12
PC-3-7

InDel Terminator Unpublished
data

120688 5 Putative protein of unknown function QM9414 KDG-12
PC-3-7

InDel Exon Unpublished
data

110853 6 Putative glutathione S-transferase PC-3-7 SNV Terminator [24]

77481 8 Putative D-xylulose 5-phosphate/D-fructose
6-phosphate phosphoketolase

PC-3-7 SNV Exon [24]

120749 8 Glycoside hydrolase family 1 BGL2 KDG-12 PC-3-7 SNV Exon [23]

We differentiate common mutations to RUT C30 and NG 14 strains from the mutations specific for RUT C30 strain. Mutations in regulated genes described in
other cellulase improved strains are shown. Mutations are described as single nucleotide variation (SNV) and deletions or insertions (InDel). Affected gene region
is also provided.
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feeding regime, in other words, those which most prob-
ably have an impact on process performances.

Comparison of NG 14 and RUT C30: a kinetic view of
enzyme production
We used a cellulase production protocol originally adapted
to a RUT C30 derivative, the strain CL847 [29,43]. This
protocol mainly uses tuning of lactose feeding to maintain
the strain under carbon limitation and thus ensures high
cellulase production. We have previously shown [34] that
this protocol could also be used for RUT C30 and may
lead to some protein production in the lower producer
strain QM9414 too, though with a more than 10-h lag
phase and some carbon source accumulation before the
start of production. The mutant strain NG 14 behaved dif-
ferently, displaying a much reduced lag phase before onset
of production, but - most importantly - was able to take
up lactose as efficiently as RUT C30, so that the growth of
both strains was carbon limited. This allowed us to inves-
tigate how the two strains reacted to the same inducing
carbon flux.
NG 14 and RUT C30 have seldom been compared for

their respective performances [3,44,45]. Our data showed
that RUT C30 has a specific productivity twice as high as
that of NG 14 during the first 50 h of the fed-batch phase.
Moreover, two main differences are reflected by the pro-
duction curves (Figure 1); RUT C30 starts production at
least 3 h earlier, and steady-state productivity during fed-
batch is higher than for NG 14. A comparison of differen-
tially expressed clusters found for each strain and sorted
by time point is shown in Figure 5. It is interesting to note
that no cluster is temporally correlated with the onset of
protein production.
We investigated if the differences in gene regulation

found in RUT C30 could be explained by the action of the
carbon catabolite repressor CRE1 (which is truncated in



Figure 5 Schematic view of gene expression kinetics in NG 14 and RUT C30. Approximate regulation timing for each cluster is shown, and
the number of each cluster is indicated inside each arrow. Red up-arrows and green down-arrows represent up- and down-regulated clusters
respectively. Black bold line indicates the start time of protein induction and production in each strain. Main functional categories found in each
cluster are indicated as Neo (gluconeogenesis), Rib (ribosome biogenesis), AA (amino acid metabolism), Lip (lipid metabolism), Caz (CAZymes), TP
(transporter), Met (metabolism), Pro (extracellular protein degradation), Sec (secretion) and Ctrl (transcriptional control).
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RUT C30, [11]) because it would regulate some genes in
NG 14 that are no longer regulated in RUT C30. Based on
our previous work on the cre1 regulon [9], we only found
66 genes in the present dataset to be potentially subject to
carbon catabolite repression (data not shown). However,
they were distributed in almost all the clusters, and have
no common expression pattern with our previous study.
While catabolite repression is probably operating in strain
NG 14 (see below), the complex effect of CRE1 prevents
us from formally identifying CRE1 ? fingerprints? in our
dataset. However, it is tempting to attribute the 3-h de-
layed production in NG 14 to the time needed to relief of
catabolite repression.
Clusters 8 and 9, which group genes induced early in

both strains (mainly cellulases and the xyr1 regulator),
do not explain by themselves the delay between NG 14
and RUT C30. However, genes from this cluster are
strongly down-regulated in NG 14 before lactose induc-
tion (Figure 4). This observation can probably be attrib-
uted to the cre1 truncation in RUT C30 [10,11,34], and
explains the counter-intuitive observation that cellulases
are more induced in NG 14 than in RUT C30. While the
induction kinetics is the same, the higher absolute tran-
script levels in RUT C30 may be related to the earlier se-
cretion of proteins in this strain, as previously suggested
[34], and reflect a clear CRE1 signature. The recent ob-
served effect of CRE1 on nucleosome positioning on the
cbh1 promoter suggests a broad role in chromatin re-
modelling for this regulator and thus alteration of the
expression of many genes besides direct targets such as
xyr1 and cellulase genes [46]. The same work and an-
other recently published one also present increasing evi-
dences that the cre1 truncation in RUT C30 is not
equivalent to a full deletion [47].
Basal induction level comparisons between the two
strains could not explain any other regulatory events
that would be specific to NG 14, such as the early down-
regulation of clusters 2 to 4, early up-regulation of clus-
ter 1 and late up-regulation of cluster 7. Down-regulated
clusters 2 to 4 comprise genes related to metabolism,
proteasome, gluconeogenesis and lipid metabolism. Down-
regulation of these genes in NG 14 could be an adaptation
to lactose feeding and end of carbon starvation. Also, a
large number of NG 14 up-regulated genes in cluster 1
(52) correspond to ribosome biogenesis. Note that riboso-
mal proteins were not identified in our previous study of
cre1-deletants [9], and therefore this effect appears to be
cre1-independent. However, without genetic engineering
of NG 14 or RUT C30, we cannot formally rule out a dir-
ect or indirect CRE1 effect.
Clusters 5 and 6 group most of the genes that are spe-

cific to RUT C30. Interestingly, a significant induction of
these clusters occurs after the onset of protein produc-
tion in RUT C30. Some of these genes might be respon-
sible for the higher productivity of this strain. Indeed,
these clusters feature the highest percentage of regula-
tors and secretion-related genes of our dataset. At these
later time points, with catabolite repression relieved in
both strains, it is possible to speculate that these differ-
ences are CRE1-independent. We have previously specu-
lated on an effect caused by a relief from CRE1-carbon
catabolite repression, and this can still not be ruled out
by the present data, but this effect is still weakly docu-
mented and poorly understood [9,34].
In conclusion, we observed transcriptional differences

between the T. reesei cellulase producer mutant strains
NG 14 and RUT C30 both before (genes that might be
involved in the start of production) and after (genes that
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might be involved in productivity phenotype) the start of
protein production. While the majority of these dif-
ferences may be attributable to the translation of a
truncated CRE1 protein in strain RUT C30, the gene ex-
pression kinetic patterns observed suggest that other
mutations may also have an effect on the strains ? perfor-
mances and/or transcriptomes. For instance, the bglr
Zn2C6 transcription factor, mutated in RUT C30 and in
a strain from an independent lineage PC-3-7 but not in
NG 14, was demonstrated to have an effect on cellulase
production [21,23]. Conversely, the study of clusters 8
and 9 points out a role for carbon catabolite relief inde-
pendently from lactose induction. The higher cellulase
transcript levels might play a role in the earlier set of se-
cretion in RUT C30.

The cellulase induction system was remotely altered by
the NG 14 to RUT C30 mutagenesis
In our previous work [21], complemented with new se-
quencing projects, we have been able to identify a nearly
complete list of genes impacted by mutations of NG 14
and RUT C30: 130 by single nucleotide substitutions, 3
by small insertions or deletions and 32 by large struc-
tural variations. We compared these data with transcrip-
tome data obtained in this work. Surprisingly, only
about 3% of genes affected by mutations (either in pro-
moter, terminator or coding sequence) are differentially
expressed during the early phase of induction by lactose.
This observation can be explained by the fact that many
mutations may or may not modify gene functions but do
not affect their expression. This is true in particular for
transcription factors, whose action is not necessarily reg-
ulated by transcription. Conversely, a gene can be af-
fected by a mutated transcription factor without being
mutated itself. Nevertheless, our previous study already
identified several genes involved in cellular processes
such as secretion or protein maturation. It is striking to
see that genes involved in the same processes are in-
duced during induction of protein production and yet
none of the mutated genes displayed a modified level of
expression. Only the ace3 gene (Trire2:77513) is a not-
able exception: it is at the same time induced in our
datasets (and in other teams? [17]), mutated in RUT C30,
and has been identified as having an effect on cellulase
production. The mutation in RUT C30 is a single
nucleotide variation leading to a premature stop codon
instead of a glutamine amino acid. This truncated
C-terminus region is probably of regulatory importance,
as in other Zn2Cys6 transcription factors [12]. This could
lead to a relief from a potential repression, mimicking the
effect of its overexpression [17]. It is interesting to note
that other mutations affect promoters, and that three of
them concern genes in cluster 5 that are specific to
RUT C30 and possibly linked to productivity.
Intriguingly, a larger number of genes affected by mu-
tations found in the independent lineages QM9414,
KGD-12 and PC-3-7 were found in our dataset as well,
and they are mostly located in clusters 1 and 5 [23-25].
This strengthens the importance of these clusters, par-
ticularly of cluster 1. It is possible that other uncharac-
terized genes in these clusters could be attractive targets
for further genetic engineering of the strains.
Conclusions
This study describes for the first time whole-genome
transcriptional events for cellulose-producing strains of
T- reesei in a protocol resembling industrial feeding con-
ditions. While confirming previous observations, more
than 500 genes have also been identified as involved in
the process. Some of them might be targeted for further
improvement of strains. This assumption is strengthened
by our observation that the identified induction system
is largely untouched in the NG 14-RUT C30 lineage by
previous mutagenesis experiments, potentially leaving room
for optimization, which was not guaranteed given the ex-
tensive work that was performed on these strains [48].
Random mutagenesis is and will remain a choice method

for strain improvement, especially for improving complex
phenotypes or poorly characterized organisms. Our data
show that a combination of these conventional approaches
together with genome and transcriptome analysis can help
to sort out mutations, improving strain performances, and
provide further targets for genetic engineering.
Materials and methods
Fungal strains and culture conditions
NG 14 (ATCC 56767) and RUT C30 (ATCC 56765) Tri-
choderma reesei strains were used in this study. Cultiva-
tions in the bioreactor were performed as previously
described [34]. Frozen spores were used to inoculate a
Fernbach flask containing 250 mL of the previously de-
scribed culture medium [19]. Cultivation was carried out
at 30?C with stirring at 150 rpm. After 72 h, the medium
containing mycelia was used as an inoculum for bioreactor
culture. The cellulase production was performed in a 4-L
bioreactor under a two-phase cultivation procedure:
strains were first grown in 2 L of medium containing 30 g.
L-1 glucose as carbon source, at 28?C and pH regulated at
4.8 with 5.5 M NH3. The air flow was adjusted at 0.5
VVM and initial stirring was set at 400 rpm. This param-
eter was gradually increased to maintain pO2 above 40%
oxygen saturation. When initial glucose was close to de-
pletion (<0.5 g L-1 of initial glucose content), the fed-batch
phase was initiated. During this second phase, a 250 g L-1

lactose solution was injected at a 0.98 g h-1 rate. Samples
were collected periodically to determine the biomass, car-
bon and protein concentrations.
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Analytical methods
Biomass concentrations were determined by gravimetric
analysis. 10 mL of the collected culture medium contain-
ing mycelia was filtrated on 1.2-μL GF/C glass micro-
fiber membranes. The biomass dry weight was measured
24 h after incubation of the membrane at 105?C. Mea-
sures were done in triplicate with a standard error of less
than 10%. Glucose concentration during the batch phase
was assessed by enzymatic reaction using an Analox
Glucose analyser GM10 (Imlab) to predict the conveni-
ent time to start fed-batch. All carbon source concentra-
tions were a posteriori quantified again by HPLC using
an HPX-87P column (Bio-Rad) maintained at 85?C. He-
degassed distilled water was used as an eluent at a flow
rate of 0.4 mL L-1. Measures were done in triplicate with
a standard error of less than 5%. Extracellular protein
concentration was measured against a BSA standard (0
to 1.5 g L-1 range with second-order regression) by the
Bradford method [31] using the Quick Start Bradford
Protein Assay kit (Bio-Rad) or by the Lowry method [33]
using DC Protein Assay (Bio-Rad). Measures were done
in triplicate with a standard error of less than 5%. The
overall cellulase activity of the samples was measured as
filter paper (FP) activities using the IUPAC-recommended
procedure [49].

RNA sample preparation
RNA samples were prepared from mycelia powder ob-
tained by grinding the filtrated biomass in liquid nitro-
gen. The powder was subjected to a phenol treatment
using TRI Reagent Solution (Applied Biosystems). The
extracted total RNA was then isolated with bromochlor-
opropane, precipitated with isopropanol, washed with
ethanol and solubilized in nuclease-free water following
the manufacturer ? s instructions. Samples were cleaned
up following the Qiagen RNeasy procedure and subjected
to an on-column DNase digestion with the RNase-Free
DNase Set (Qiagen).

Microarray hybridizations
The microarray data and related protocols are available
at the GEO website (http://www.ncbi.nlm.nih.gov/geo/),
under the study number [GSE60908]. Briefly, the RNAs
from each experiment were reverse-transcribed and la-
belled with Cy3 or Cy5 dyes using an indirect labelling
procedure and dye-switch on the two biological repli-
cates. Hybridization and scanner procedures for the T.
reesei DNA chip manufactured by Agilent and designed
using the Teolenn software have been described previously
[9,50].The data were normalized without background sub-
traction by the global lowess method performed with the
Goulphar software [51]. The background threshold was
calculated by adding two standard deviations to the aver-
age intensity of all the ? not found? features. For each
probe, the log2 hybridization ratio was linked to genome
annotation from the Joint Genome Institute (JGI) website
(http://genome.jgi-psf.org/Trire2/Trire2.home.html). The
final log2 ratio for each transcript was obtained by aver-
aging the ? detectable? hybridization values from all probes
located inside the coding sequence on the matching
strand. Transcripts with no probe marked as ? detectable?
were discarded from further analysis. For the two bio-
logical replicates on each of the four experiments, we ap-
plied to the pretreated results the linear modelling
approach implemented by lmFit and the empirical Bayes
statistics implemented by eBayes from the LIMMA R
package [52]. We selected the list of statistically regulated
genes using a 5% significance threshold. Finally, we kept
as the most highly regulated targets only transcripts with a
final log2 hybridization ratio greater than 1 or less than -1.

RNA-seq library preparation and analysis
Messenger (polyA+) RNAs were purified from 2 μg of
total RNA using oligo(dT). Libraries were prepared using
the strand non-specific RNA-seq library preparation Tru-
Seq RNA Sample Prep Kits v1 (Illumina). Libraries were
multiplexed by 2 on one single flowcell lane and subjected
to 50 bp paired-end read sequencing on a HiSeq 2000 de-
vice. A mean of 53 ? 12 million passing Illumina quality
filter reads was obtained for each of the two samples?
RNA-seq data analysis.
We performed RNA-seq analysis using the Eoulsan

pipeline [53]. Before mapping, poly N read tails were
trimmed, reads ≤11 bases were removed, and reads with
quality mean ≤12 were discarded. Reads were then
aligned against the T. reesei genome (version 2 from the
JGI website) using the Bowtie mapper (version 0.12.7)
[54]. Alignments from reads matching more than once
on the reference genome were removed using the Java
version of SAMtools [55]. To compute gene expression,
T. reesei genome annotation from JGI (version 2) was
used. All overlapping regions between alignments and
referenced exons were counted.
To analyse the gene expression level, the relative tran-

script abundance was measured in reads per kilobase of
exon per million mapped sequence reads (RPKM) [56].
The log2 ratios of the RPKM values were used to iden-
tify differentially expressed genes. To keep only the most
differentially expressed genes, a threshold of 4 for the
log ratio with a reads number greater than 100 was
chosen. The RNA-seq gene expression data and raw
fastq files are available in (Additional file 6: Table S3).

Cluster analysis of microarray results
An expression matrix was built from all the genes sorted
as strongly regulated in at least one time point and in one
strain. The GEPAS pipeline [57] was used to filter out
genes with 30% missing values, leading to 568 selected

http://www.ncbi.nlm.nih.gov/geo/
http://genome.jgi-psf.org/Trire2/Trire2.home.html
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genes. From these genes, a clustering analysis was per-
formed using the MultiExperiment Viewer software [58].
A combination of unsupervised hierarchical clustering and
K-means algorithms was used to sort genes into clusters.
First, an ascending hierarchical clustering was done using
the Euclidean distance metric and the average linkage
method. Results were used to determine the optimal num-
ber K of clusters (K = 10). The K-means algorithm was ap-
plied using Euclidean distance on the 568 gene expression
profiles. In order to improve the robustness of results, five
independent runs of K-means with a random initialization
were performed. Then, an aggregation method using a co-
occurrence threshold of 60% was used to obtain the final
clusters. 532 genes were classified in 9 clusters.

Gene identification, functional prediction and classification
Regulated genes were first identified according to their
ID number by reference to the T. reesei genome website
(http://genome.jgi-psf.org/Trire2/Trire2.home.html). In
the case of genes that were either poorly or not yet an-
notated, orthologous genes in other fungal taxa (mainly
Neurospora crassa, Saccharomyces cerevisiae and Asper-
gillus nidulans) were searched using the FUNGIpath
database (http://embg.igmors.u-psud.fr/fungipath/) and
the function predicted by similarity. Genes without
orthologs were annotated with their domains either from
the T. reesei genome website or from a search on Inter-
Pro (http://www.ebi.ac.uk/interpro/). Identified proteins
were categorized according to the Functional Catalogue
(FunCat [59]) and they were manually curated to include
only proteins with a clear function associated with a cat-
egory. Proteins whose function could not be associated
with a functional category were annotated as ? unclassi-
fied? . Genes without a predicted function were annotated
as ? unknown? . Full expert annotation of our expression
matrix is available in Additional file 5: Table S2.

Mutations analysis
For genome versus transcriptome comparison, a gene
was considered affected by a mutation when a mutation
fell within the window delimited by 800 bp before the
start codon and 800 bp after the stop codon. The RUT C30
and NG 14 mutations list (Additional file 7: Table S4) has
been set up with mutations identified in Le Crom et al.,
Koike et al. and Arvas et al. [21,22,37] and cleaned up by
comparison with mutations in other lineages (QM9414
Arvas et al. [37] and QM9136 Lichius et al. [12]).

Additional files

Additional file 1: Figure S1. Cultivation data for individual fermentations
of NG 14 and RUT C30 strains.

Additional file 2: Figure S2. Extracellular protein concentration of RUT
C30 strain measured by Lowry assay.
Additional file 3: Table S5. Analytical measurements during fermentation
of NG 14 and RUT C30 strains. Concentration measurements of biomass,
extracellular proteins, glucose, lactose and galactose are shown for each time
point of fed-batch cultures (see Materials and methods for details).

Additional file 4: Table S1. Differentially expressed genes found
specific for NG 14 or RUT C30 strains. The expression values columns are
expressed as log2 expression ratio compared to the reference time 0.
Headers indicate the experimental condition studied.

Additional file 5: Table S2. Differentially expressed genes annotation.
Genes identified as differentially expressed in at least one time point of
the global transcriptome analysis performed to study cellulase induction
in NG 14 and RUT C30 strains. Full expert annotation and FunCat
categories are indicated for each gene. The expression values columns
are expressed as log2 expression ratio compared to the reference time 0.
Headers indicate the experimental condition studied.

Additional file 6: Table S3. Gene expression values for all transcripts
from NG 14 and RUT C30 cultures at T0. Samples from T0 (before lactose
induction) from NG 14 and RUT C30 were compared by RNA-seq. The
relative transcript abundance was measured in reads per kilobase of exon
per million mapped sequence reads (RPKM). The log2 ratio of the RPKM
values between RUT C30 and NG 14 were used to identify differentially
expressed genes.

Additional file 7: Table S4. Updated list of mutations in NG 14 and
RUT C30 strains. We took into account published work as indicated in the
text. Only mutations close to genes are shown (see Materials and
methods for details).
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