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Abstract

Transcriptome assemblers aim to reconstruct full-length transcripts from RNA-seq data. We present TransComb, a
genome-guided assembler developed based on a junction graph, weighted by a bin-packing strategy and paired-
end information. A newly designed extension method based on weighted junction graphs can accurately extract
paths representing expressed transcripts, whether they have low or high expression levels. Tested on both simulated
and real datasets, TransComb demonstrates significant improvements in both recall and precision over leading
assemblers, including StringTie, Cufflinks, Bayesembler, and Traph. In addition, it runs much faster and requires less
memory on average. TransComb is available at http://sourceforge.net/projects/transcriptomeassembly/files/.
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Background
Recent research has revealed the immense complexity
and diversity of transcriptomes in eukaryotes [1]. To
understand the exact mechanism of alternative splicing
in multi-exon protein coding genes, researchers have
conducted both computational and experimental studies.
A recent publication [2] showed that proteins translated
along with alternative splicing can be captured by an
electron microscope, which clearly provides some in-
sights into the mechanism of alternative splicing. How-
ever, it remains a highly challenging task to elucidate the
alternative splicing mechanism in eukaryotic species.
The technology of RNA-seq is rapidly changing our

ability to explore the very complex transcriptomic land-
scape as it can provide unprecedented accuracy in quan-
tifying mRNA expression levels [3]. This technology also
accurately elucidates all splicing events, including those
that are rare and expressed at a low level. This opens a
new door to study the mechanism of complex diseases
related to abnormal splicing or expression levels, such as
cancers. However, it has been observed [4–6] that

alternative splicing events may produce various isoforms
in eukaryotic tissues and, moreover, there are many
kinds of splicing events, including retained introns,
skipped exons, and mutually exclusive exons, and some
exons may even be partially spliced, so-called partial
exons. In addition, an RNA-seq run may produce more
than 200 million short reads, each of which consists of
only 50–150 bp. Therefore, it is highly challenging to ac-
curately assemble the huge amount of short reads into
full-length transcripts computationally.
There are two main strategies for transcriptome assem-

bly, genome-guided and de novo [3, 7]. Genome-guided
assemblers, such as StringTie [8], Bayesember [9],
Cufflinks [10], Scripture [11], IsoInfer [12], IsoLasso [13],
iReckon [14], CEM [15], Traph [16], and CIDANE [17],
usually first map short reads to a reference genome using
an alignment tool, such as TopHat [18], TopHat2 [19],
SpliceMap [20], or GSNAP [21], to cluster the reads into
gene loci based on which the so-called splicing graph or
overlap graph can be constructed for each individual
cluster. Then, a well-studied mathematical model, e.g.,
minimum-cost minimum path cover, can be applied to
search for transcript-representing paths in each splicing
graph, as it does in Cufflinks [10]. As stated in [9], how-
ever, minimum-cost minimum path cover may not be a
good choice because this strategy may lack a biological
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foundation and more complex solutions may better ex-
plain the full graph coverage. Pertea et al. [8] demon-
strated that Scripture has very low precision because it
tends to predict a large number of splice variants for each
gene, most of which are false positives. StringTie uses a
greedy algorithm to search for transcript-representing
paths in splicing graphs without effectively solving the am-
biguities caused by exons with multiple splicing junctions.
Moreover, StringTie updates the current splicing graph
based on estimated expression level of the current assem-
bled transcript, which may lead to successively erroneous
predictions once an erroneous assembled transcript is en-
countered because the splicing graph will be wrongly up-
dated later on. Traph uses a minimum-cost flow model
combined with a greedy algorithm in the assembling pro-
cedure, which is easily collapsed especially for complicated
splicing graphs. Others, such as IsoLasso, IsoInfer, CEM
and iReckon, predict transcripts and estimate their expres-
sion levels as well using regularization-based methods.
However, these methods achieve sparsity by thresholding
transcript expression levels, which results in penalizing
low expression transcripts. Bayesembler is a very recently
published probabilistic method for both transcriptome as-
sembly and expression level estimation. It uses a probabil-
istic model to simulate the RNA sequencing process
without penalizing lowly expressed transcripts. However,
an enumeration strategy was employed in its procedure,
which makes it extremely time consuming. CIDANE is a
newly published assembler which was developed based on
genome annotation. However, it is not included as a com-
parator in this study as TransComb and the other com-
pared tools only take as input the alignment of RNA-seq
data.
De novo assemblers, such as BinPacker [22], Bridger

[23], Trinity [7], ABySS [24], SOAPdenovo-Trans [25],
Oases [26], and IDBA-Tran [27], assemble transcripts
directly from short reads without using a reference gen-
ome. However, the presence of gene homology, splicing
event diversity, and sequence coverage unevenness
makes the de novo strategy even more challenging,
which usually results in a lower accuracy in comparison
with the genome-guided strategy. Although an increas-
ing number of transcriptome assemblers have been de-
veloped to be either genome-guided or de novo, they are
all limited by their accuracy in practical applications. As
claimed in a recent study [28], even if all the exact exons
of a gene are given, they are often unable to assemble
the exons into correct isoforms. Therefore, it is impera-
tive to develop novel algorithms for accurate recovery of
transcriptomes in eukaryotic species.
In this article, we introduce TransComb, a new

genome-guided transcriptome assembler. The basic idea
behind TransComb is to subtly extract transcript-
representing paths on so-called junction graphs weighted

on both their nodes and edges. The weighted junction
graph is defined with the nodes representing the edges
of a splicing graph and an edge representing a pair of in-
cident edges of the splicing graph. Each node in the
junction graph is assigned a weight by the coverage of
the corresponding edge of the splicing graph, while each
edge in the junction graph is assigned a weight of 0, 1,
or 2 defined by novel utilization of the two techniques,
bin-packing strategy and paired-end information. It de-
serves mention that the bin-packing strategy was first
developed in our previous de novo assembler BinPacker
for combing splicing graphs, but it is subtly employed in
TransComb along with the paired-end information to
guide the accurate extraction of all the full-length tran-
scripts over the so-called weighted junction graphs
mentioned above. Tested on both simulated and real
datasets from multiple species, TransComb performs
better than all the four compared leading assemblers, in-
cluding StringTie, Cufflinks, Bayesembler, and Traph on
all datasets. For example, TransComb correctly assem-
bled 23 % more full-length transcripts than Bayesembler,
the next best assembler, on the human K562 dataset,
12 % more on the human H1 cell dataset, and 13 %
more on the mouse dendritic cell dataset. In addition, it
runs much faster than Cufflinks and Bayesembler and
requires less memory, on average, than all the other
assemblers.

Results and discussion
We first present an overview of our transcriptome re-
covery model with a detailed description in the
“Methods” section, followed by a comparison of Trans-
Comb to the state-of-the-art assemblers of the same
kind on both simulated and real datasets.

The TransComb model
TransComb first constructs the splicing graphs ab
initio from the alignments of RNA-seq reads to the
reference genome. Theoretically, each gene locus is
represented by a splicing graph and each exon is rep-
resented by a node in the graph and two nodes are
connected by a directed edge if and only if there is a
splicing junction between them. The coverage of each
edge is defined as the number of reads spanning the
corresponding junction.
In order to construct more accurate splicing graphs,

which would largely improve the performance of an as-
sembler, TransComb utilizes the paired-end reads to re-
pair the fragmented exons due to low expression levels
of the gene and further slides a window to correct the
wrongly merged exons due to sequencing or mapping
errors. Based on the splicing graphs, we develop a rigor-
ous mathematical model to determine the transcripts
most likely to be expressed.

Liu et al. Genome Biology  (2016) 17:213 Page 2 of 9



Resolving the ambiguities in linking in- and out-
splicing junctions at each exon with multiple splicing
junctions is the toughest task in the development of as-
semblers. Most of the existing assemblers suffer from
this, resulting in their low assembly accuracies (see an
example in Additional file 1: Figure S4). To alleviate this,
we designed a new assembly strategy by introducing an-
other directed acyclic graph, termed a junction graph,
with nodes representing edges in the splicing graph and
edges representing two incident edges in the splicing
graph. Each node in the junction graph is weighted by
the coverage of its corresponding edge in the splicing
graph, while each edge is weighted by 0, 1, or 2 defined
by employing two techniques, bin-packing strategy and
paired-end information. A weight of 0 on an edge is
considered as no information supporting this edge being
included in any expressed transcript, i.e., it will never
exist in any predicted transcript of TransComb. A
weight of 1 on an edge means that the information from
the bin-packing strategy supports this edge being in-
cluded in some expressed transcripts with high credibil-
ity. In some special cases, the above ambiguities are hard
to solve by the bin-packing strategy; e.g., the strategy will
have a problem when two transcripts sharing an exon
have very similar expression levels. Paired-end informa-
tion subtly involved in junction graphs could then effect-
ively be used to refine the solution from the bin-packing
strategy. Thus, a weight of 2 on an edge implies that the
information from paired-end reads supports this edge
with high credibility. Benefiting from bin-packing and
paired-end information, TransComb can more accur-
ately link in- and out-splicing junctions at each exon
(i.e., adjacent nodes in the junction graph) and therefore
overcome ambiguities to a great extent. The substantial
difference between TransComb and other assemblers
lies in their methodological aspects. TransComb simul-
taneously integrates coverage and paired-end informa-
tion by jointly applying bin-packing and paired-end
techniques to a so-called junction graph rather than
working from the splicing graph as the other assemblers
do. In addition, we have also developed a novel ex-
tension strategy for transcript-representing paths over
the junction graphs, by which each predicted path
has a very high probability to represent an expressed
transcript no matter whether its expression level is
low or high (see the “Methods” section and Fig. 1 for
more details).

Performance evaluation
We compared TransComb with four other leading
genome-guided assemblers—StringTie, Cufflinks, Baye-
sembler, and Traph—on both simulated and real data-
sets using their default and some other parameters on
the same server (see Additional file 1 for details of the

parameter setups for the compared assemblers). In our
experiments, the alignments of RNA-seq reads generated
by TopHat2 (see Additional file 1 for download informa-
tion for the TopHat2 index files) and the reference tran-
scripts downloaded from the Ensembl Genome Browser
(see Additional file 1 for download information) were
used to evaluate the assemblers on real datasets. A refer-
ence transcript is considered to have been correctly re-
covered if it has the same number of exons as an
assembled transcript as well as exactly matched intron
boundaries. In this study, Cuffcompare [10] was applied
to detect the correctly assembled transcripts. A refer-
ence transcript is called a true positive for an assembler
if it was exactly recovered by the assembler. Accuracy is
measured by recall and precision, where recall is defined
as the fraction of true positives out of all expressed ref-
erence transcripts in the experiment and precision is de-
fined as the percentage of all assembled transcripts that
correctly match a reference transcript. We use recall and
precision to evaluate the assembly accuracy of each
compared assembler.

Performance comparisons on simulated data
We first tested TransComb against the other four as-
semblers on the simulated dataset used in CIDANE [17]
for their performance evaluation (see Additional file 1
for download information for the simulated data). This
dataset was generated by Flux Simulator [29] using all
known transcripts from the UCSC hg19 gene annota-
tion, which contains approximately 80 million strand-
specific RNA-seq paired-end reads of 100-bp length.
Testing the five assemblers, TransComb, StringTie,

Cufflinks, Bayesembler, and Traph, with their default
settings, TransComb performed the best in transcript
recovery, with 10,528 true positives versus 9988 for
StringTie, 8281 for Cufflinks, 9835 for Bayesembler, and
8299 for Traph (Additional file 1: Table S1). Broadly,
TransComb recovered 5 % more true positives than the
next best assembler, StringTie, and the large differences
between TransComb and the others can be expected on
large real datasets. So it is demonstrated from the com-
parison results that TransComb achieves higher recall
than the other assemblers.
Comparison results for precision show that TransComb

reaches 62.83 % versus StringTie with 55.09 %, Cufflinks
with 52.36 %, Bayesembler with 68.08 %, and Traph with
42.32 %, where Bayesembler seems to perform the best.
However, the better precision of Bayesembler comes from
the fact that it filters too many candidates with the default
setting, while TransComb does not, making the number
of candidates generated by TransComb much larger than
that generated by Bayesembler. To make a fair compari-
son between Bayesembler and TransComb, we filtered the
candidates of TransComb using a filtering parameter
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(see Additional file 1 for details) close in size to that
of Bayesembler. The comparison results in Fig. 2a
demonstrate that the recall and precision achieved by
TransComb are both higher than by those achieved
by Bayesembler when filtering their candidates to the
same level (see Additional file 1: Table S1 for details
of their filtered candidates).
To evaluate the overall performance of the various as-

semblers, we computed their precision and recall by
adjusting their filtering parameters (Fig. 2a; see Additional
file 1 for details), showing that TransComb always outper-
forms the others. So it is concluded that TransComb has
the best accuracy amongst the assemblers tested on the
simulated dataset.
An ideal assembler should be able to recover more

expressed transcripts no matter with low or high expres-
sion levels. To evaluate the assemblers in terms of ex-
pression levels, we computed their recall distributions
against transcripts expression levels in Fig. 2b, showing

that TransComb is superior over other compared assem-
blers across all the expression levels.

Performance comparisons on real data
Tests on real data should better evaluate the essence of
an assembler because the data have properties that can-
not be accurately captured by simulations. In this study,
two strand-specific datasets from human K562 cells and
H1 cells and one strand-specific dataset from mouse
dendritic cells were used for evaluating the performance
of the compared assemblers. These three datasets con-
tain 125 million, 41 million, and 53 million paired-end
reads, respectively. The human K562 cell and H1 cell
RNA-seq datasets were collected from the NCBI Se-
quence Read Archive (SRA) database with accession
codes SRX110318 and SRX082572, respectively. The
mouse dendritic cell dataset was also collected from the
NCBI SRA database with accession code SRX062280.
Unfortunately, Traph does not work on real datasets due

Fig. 1 Methodological aspects of TransComb. For the two numbers of an edge in the splicing graph, the number above the edge represents the
coverage of the edge and the circled number below represents the index of the edge. The number on each node of the junction graph
represents the weight of this node, which is the coverage of the corresponding edge on the splicing graph
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to instability, so we only evaluated TransComb against
StringTie, Cufflinks, and Bayesembler. Just as presented
in [8], it is impossible for us to know all the genuine
transcripts encoded in the sample. However, we may
consider those assembled as true positives if they cor-
rectly match a reference one, or false positives otherwise,
without substantially affecting their comparative per-
formance. We thus compared TransComb against the
other three assemblers on the three real datasets on this
basis and the precision and recall from the simulated
dataset were used to evaluate the accuracies of the as-
semblers on real datasets.
Running the four assemblers with their default settings

on the three real RNA-seq datasets, TransComb recov-
ered more true positives than the other three assemblers
for each (Additional file 1: Tables S2, S3, and S4). Trans-
Comb recovered 12,948, 12,135, and 11,117 true posi-
tives for the human K562 and H1 cell and mouse
dendritic cell datasets, respectively, versus 10,507,
10,832, and 9874 recovered by the second best assem-
bler, Bayesembler. In comparison with Bayesembler,
TransComb recovered 23 % more true positives on hu-
man K562 cell data, 12 % more on human H1 cell data,
and 13 % more on mouse dendritic cell data. The com-
parison results thus demonstrate that TransComb
achieves the highest recall among all the compared
assemblers.
As for precision, TransComb achieved 24.5, 24.23, and

32.04 % on the human K562 and H1 cell and mouse
dendritic cell data, respectively, versus 17.69, 20.64, and
38.26 % for StringTie, 13.43, 15.33, and 32.95 % for
Cufflinks, and 21.3, 23.72, and 28.18 % for Bayesembler.

The comparison results show that TransComb performs
better than all the other assemblers on the human K562
cell and H1 cell datasets. For the mouse dendritic cell
dataset, as stated in the last section, TransComb does
not filter its candidates with its default setting while
other assemblers all filter their candidates with their de-
fault settings, leading to their precision being higher
than that of TransComb, with the filtering used by
StringTie and Cufflinks filter resulting in the highest
precision on the mouse dendritic cell dataset. As with
the simulation data, we filtered the candidates of
TransComb after setting its filtering parameter (see
Additional file 1 for details) to a size close to that of
StringTie and Cufflinks. The comparison results in
Fig. 3c demonstrate that TransComb also achieved recall
and precision levels higher than all the other compared
assemblers on the mouse dendritic cell dataset when fil-
tering their candidates to the same level (see Additional
file 1: Table S4 for details of their filtered candidates).
As with the simulation, we also compared the preci-

sion and recall values when using different filtering pa-
rameters (see Additional file 1 for details) on the three
real datasets (Fig. 3), showing that TransComb is con-
sistently superior over the other assemblers on all tested
real datasets. Therefore, we conclude that TransComb
has the best accuracy among all the assemblers tested on
both simulated and real datasets.

Other comparisons on both simulated and real datasets
In addition to the comparisons above, we further
compared correctly identified genes and unique true
positives (see Additional file 1 for definitions of these

Fig. 2 Comparison results on the simulated dataset. a Precision and recall values for each assembler. Solid circles/squares represent the precision
and recall values derived using the default settings of the assemblers. Empty circles/squares represent the precision and recall values using non-
default settings of the assemblers. The crossed circle represents the precision and recall values of TransComb when filtering its candidates to the
same level as Bayesembler. b Recall distributions against transcript expression levels

Liu et al. Genome Biology  (2016) 17:213 Page 5 of 9



criteria) on both simulated and real datasets. The results
(Additional file 1) showed that TransComb performs
much better than all the compared assemblers according
to these criteria, while it is only slightly inferior to
StringTie in terms of correctly identified genes on the
human H1 cell dataset (see Additional file 1 for further
details).
For expression level estimation, we developed a very

simple but unusual method which maintains accuracy
levels comparable to the other tools but much better
than Traph (see Additional file 1 for detailed comparison
results). It may provide ideas for scientists interested in
developing more powerful estimators.

Comparison of running time and memory usage
We show the running time and memory usage of the
four assemblers only for the human K562 cell dataset,

which contains the largest number of reads (approxi-
mately 125 million reads) among all the tested datasets
(Fig. 4; detailed in Additional file 1: Table S10). StringTie
used the least CPU time (23 minutes) and TransComb
used the second least CPU time (56 minutes), more than
seven times faster than Cufflinks (429 minutes) and nine
times faster than Bayesembler (537 minutes). StringTie
used less time than the other assemblers because it sim-
ply applied a greedy algorithm to extend paths in the
splicing graphs. In addition, the current version of
TransComb was developed to run on one single CPU
while StringTie runs on multiple CPUs. We will
parallelize TransComb in the near future in order to in-
crease its throughput when multiple CPUs are available.
For memory usage, all four assemblers have a large

memory footprint (Additional file 1: Table S10) due to
the large RNA-seq dataset to be processed, especially on

Fig. 3 Comparison results on the three real datasets: a human k562 cells, b human H1 cells, and c mouse dendritic cells. Solid circles/squares
represent precision and recall values achieved using default settings. Empty circles/squares represent precision and recall values achieved using
different filtering parameters. The crossed circle in c represents TransComb’s precision and recall values when filtering its candidates to the same
level as StringTie and Cufflinks

Fig. 4 CPU time and memory usage of the four assemblers on the human K562 cell dataset. a CPU times of the four assemblers. b Memory
usage ranges of the four assemblers; the horizontal black lines represent the average memory usage for each assembler
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the highly expressed transcripts. We see from Fig. 4b
that TransComb uses less memory than all the others,
on average, while Bayesembler suffers the worst memory
usage, and StringTie and Cufflinks consume similar
memory resources on average.

Conclusions
We present TransComb, a novel genome-guided compu-
tational tool for transcriptome assembly from short
RNA-seq reads. Compared to other leading assemblers
on both simulated and real datasets, TransComb consist-
ently performs the best. First, in comparison with other
genome-guided assemblers, TransComb more accurately
identifies the boundaries of gene loci, as well as exons
and junction sites within a gene. In lowly expressed
genes, some exons may not be fully covered by reads,
which results in an exon or a gene being separated into
two or more parts. Using paired-end information,
TransComb is able to repair some of the broken gene
loci and even exons which are not spanned by reads and
thus builds more accurate splicing graphs. Second,
TransComb is able to recognize pseudo exons, each con-
sisting of two consecutive exons and the intron between
them, which may result from wrongly mapping reads to
the intron areas, and is capable of distinguishing the ac-
tual exons from the pseudo ones. Third, it exploits a
combing strategy to search for a path cover on a so-
called weighted junction graph, but not a minimum path
cover, which has been found to be not always optimal.
In contrast, StringTie and Traph were developed based
on a network flow model along with a greedy approach
for assembling transcripts, which are fragile especially in
complicated splicing graphs. Fourth, TransComb subtly
integrates paired-end information into its process in
order to correct errors caused by either sequencing or
mapping. In addition, TransComb is also superior to the
assemblers compared here with regard to computational
resource usage. It runs the fastest except for StringTie
and uses the least memory.
TransComb is comparable to the other assemblers in

transcript expression level estimation, just slightly infer-
ior to StringTie but much superior to Traph. It has been
observed that exclusively using the seed edges reduces
the adverse impact of unexpected errors and biases on
the estimation of expression levels of assembled
transcripts to some extent. We believe that our com-
binatorial approach in conjunction with the statistical
normalization model will further improve the estimator
in the future.
In conclusion, TransComb is essentially distinct from

any previous transcriptome assembler. It attempts to
achieve a global solution by (1) combing in- and out-
edges at each node of splicing graphs; (2) guiding deci-
sion at each edge in a so-called weighted junction graph

using paired-end reads; and (3) extending the current
path based on the weighted junction graph. The software
has been developed to be user-friendly. It may play a
crucial role in new discoveries in transcriptome studies
using RNA-seq, especially in complicated human dis-
eases related to abnormal splicing events and expression
levels, such as cancers.

Methods
Construction of splicing graphs
Splicing graphs have played a fundamental role in the
development of TransComb, which are constructed at
each gene locus based on alignments of mapping reads
to a reference genome using TopHat2. Aligned reads are
first clustered into different gene loci and then the
exon–intron boundaries and exon–exon junctions for
each gene are derived from junction reads or paired-end
reads. Paired-end reads are also used to repair fragmen-
ted exons due to low gene expression levels and a sliding
window technique is developed to correct the wrongly
merged exons due to sequencing or mapping errors.
Then, for each gene locus, an exon is represented by a
node and two nodes are connected by a directed edge if
and only if there is a splicing junction between them.
The coverage of each edge is defined as the number of
reads which span the corresponding junction. Paired-end
information between every two incident edges is also re-
corded for further use (Additional file 1: Figure S2a). In an
ideal case, the splicing graphs would correspond one-to-
one to all the (expressed) genes.
Theoretically, a splicing graph captures all possible al-

ternative splicing events, with the nodes in the graph
corresponding to continuous regions in the genome that
are uninterrupted by any splicing event and directed
edges corresponding to splicing junctions between
exons. It is worth mentioning that a node in splicing
graphs does not necessarily correspond to a true exon in
a gene; instead, it may be only a partial exon as illus-
trated in Additional file 1: Figure S2b.

Recovery of a set of paths from a splicing graph
Based on the splicing graphs constructed above,
TransComb recovers the most likely expressed tran-
scripts by combing the junction edges on each spli-
cing graph. The combing strategy is achieved by the
following steps (see Additional file 1: Figure S1 for a
flow chart).

Construction of junction graphs
To resolve the ambiguities in linking the in- and out-
splicing junctions at each exon with multiple splicing
junctions, we define another directed acyclic graph J,
named the junction graph, weighted on both its nodes
and edges. In J, each node i represents a junction edge
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in the splicing graph and two nodes i and j are con-
nected by a directed edge (i, j) if and only if i and j cor-
respond to two incident edges in the splicing graph (as
shown in Fig. 1, edges 1 and 2 are incident edges, while
edges 1 and 3 are not). Each node is weighted by the
coverage of its corresponding edge in the splicing graph,
while each edge is suitably weighted based on the novel
use of a bin-packing strategy and paired-end informa-
tion, described in the following two sections.

Weighting edges in junction graphs by the bin-packing
strategy
To decide whether or not two consecutive nodes in a
junction graph come from a common transcript, we de-
veloped a rule to assign to each edge in the junction
graph a weight of either 0 or 1, with 1 meaning that the
two nodes of the edge would possibly come from a sin-
gle transcript and 0 meaning they will never do so. The
rule was designed by using a variant of the traditional
bin-packing model which has been well studied in the
field of operations research.
For each node v with both in-edges and out-edges in a

splicing graph, it is required to optimally link between
in-edges and out-edges such that two linked edges in the
splicing graph which correspond to two nodes in the
junction graph come from a common transcript with a
higher probability of being correct. Assume that node v
has n in-edges and m out-edges with n ≥m, then Trans-
Comb identifies each in-edge as an item with its size sj
being the coverage of the in-edge and each out-edge as a
bin with its capacity ci being the coverage of the out-
edge. The optimum link between in-edges and out-edges
is then achieved by optimally packing the items (in-
edges) into the bins (out-edges). To solve this optimal
packing problem, we define a binary variable xij, with
xij = 1 if item j is packed into bin i, and 0 otherwise. This
problem can be reduced to find an optimum solution {xij}
to minimize the following quadratic function on the con-
dition that each item goes into one and only one bin and
each bin receives at least one item:

z ¼
X

i¼1;…;m

ci−
X

j¼1;…;n

sjxij

 !2

s:t:

X

i¼1;…;m

xij ¼ 1 ∀j ¼ 1;…; n
X

j¼1;…;n

xij ≥ 1 ∀i ¼ 1;…;m
xij ∈ 0; 1f g

8
>>><

>>>:

ð1Þ

The same formula was used in BinPacker, a de novo
transcriptome assembler. As stated in BinPacker, this
quadratic programming can be quickly solved. Based on
the solution {xij} of Eq. 1, we assign to each edge con-
necting nodes i and j in the junction graph the weight
w(i, j) = xij. Intuitively, two nodes connected by an edge
of weight 1 would come from a common transcript with

a higher probability of correctness, while an edge of
weight 0 is considered as having no information support-
ing this edge being included in any expressed transcript
and so it will never exist in any predicted transcript.

Updating edge weights in junction graphs using paired-end
information
All paired-end information between two incident edges
in each splicing graph was recorded, as were constructed
splicing graphs. We are guided by this kind of paired-
end information to update the edge weights of the corre-
sponding junction graph as follows. For each two inci-
dent edges i and j in a splicing graph, if at least two
mate pairs supporting these two edges are recorded (see
Additional file 1: Figure S2A for details), then the weight
of the edge connecting these two corresponding nodes in
the junction graph is replaced by 2. Therefore, two nodes
connected by an edge of weight 2 in the junction graph
are most likely to come from a common transcript.
Clearly, the weighted junction graph defined above will

guide us to more accurately extract the full-length tran-
scripts. Based on the junction graph, TransComb is able
to more accurately link the in- and out-splicing junctions
at each exon. The substantial difference between Trans-
Comb and the other assemblers is that TransComb works
on the junction graphs rather than the splicing graphs on
which the others do. On the other hand, the extension
strategy developed for TransComb is another unique fea-
ture distinguishing it from the other assemblers.

Recovery of full-length transcripts from weighted junction
graphs
To extract a transcript-representing path in the junction
graph, we first choose a node with the largest weight as
the seed node, which is excluded from any predicted
path. The seed node is then extended to one of its right
neighboring nodes according to the weights of their cor-
responding edges. An edge of weight 2 has the first pri-
ority and an edge of weight 1 has the second priority for
extension. We keep extending towards the right until we
encounter a node without out-going edges. Similar ex-
tension is done towards the left and then a transcript-
representing path is predicted. This procedure is re-
peated until all the nodes in the junction graph have
been included in predicted paths (see Additional file 1
for detailed description of the path extension procedure
via pseudo code).
It is clear that in each extension towards left or right,

TransComb always extends the current path to the
neighboring node supported by either bin-packing or
paired-end information and so each predicted path has a
very high probability to represent an expressed tran-
script no matter whether its expression level is low or
high.
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Estimation of expression levels of the recovered
transcripts
Based only on the seed nodes used during the path ex-
tension from the junction graph, we developed a very
simple but unusual method for expression level estima-
tion (see Additional file 1 for a detailed description of
this method).

Additional file

Additional file 1: Supplementary materials. This file contains details of
splicing graph construction, additional comparisons with other methods,
and supplementary figures and tables. (PDF 7353 kb)
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