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Fractal methodology provides a general frame for the understanding of real-world phe-
nomena. In particular, the classical methods of real-data interpolation can be generalized
by means of fractal techniques. In this paper, we describe a procedure for the construc-
tion of smooth fractal functions, with the help of Hermite osculatory polynomials. As a
consequence of the process, we generalize any smooth interpolant by means of a fam-
ily of fractal functions. In particular, the elements of the class can be defined so that the
smoothness of the original is preserved. Under some hypotheses, bounds of the interpo-
lation error for function and derivatives are obtained. A set of interpolating mappings
associated to a cubic spline is defined and the density of fractal cubic splines in �2[a,b]
is proven.

Copyright © 2006 M. A. Navascués and M. V. Sebastián. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Fractal interpolation techniques provide good deterministic representations of complex
phenomena. Barnsley [2, 3] and Hutchinson [8] were pioneers in the use of fractal func-
tions to interpolate sets of data. Fractal interpolants can be defined for any continuous
function defined on a real compact interval. This method constitutes an advance in the
techniques of approximation, since all the classical methods of real-data interpolation can
be generalized by means of fractal techniques (see, e.g., [5, 10, 12]).

Fractal interpolation functions are defined as fixed points of maps between spaces
of functions using iterated function systems. The theorem of Barnsley and Harrington
(see [4]) proves the existence of differentiable fractal interpolation functions. However,
in some cases, it is difficult to find an iterated funcion system satisfying the hypothe-
ses of the theorem, mainly whenever some specific boundary conditions are required
(see [4]). In this paper, we describe a very general way of constructing smooth fractal
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functions with the help of Hermite osculatory polynomials. The proposed method solves
the problem with the help of a classical interpolant. The fractal solution is unique and the
constructed interpolant preserves the prefixed boundary conditions. The procedure has
a computational cost similar to that of the classical method.

As a consequence of the process, we generalize any smooth interpolant by means of
a family of fractal functions. Each element of the class preserves the smoothness and the
boundary conditions of the original. Under some hypotheses, bounds of the interpolation
error for function and derivatives are obtained. Assuming some additional conditions on
the scaling factors, the convergence is also preserved.

In the last section, a set of interpolating mappings associated to a cubic spline is de-
fined, in the general frame of functions whose second derivative has an integrable square.
In particular, the density of fractal cubic splines in �2[a,b] is proven.

2. Construction of smooth fractal interpolants

2.1. Fractal interpolation functions. Let t0 < t1 < ··· < tN be real numbers, and I =
[t0, tN ] ⊂ R the closed interval that contains them. Let a set of data points {(ti,xi) ∈
I ×R : i = 0,1,2, . . . ,N} be given. Set In = [tn−1, tn] and let Ln : I → In, n ∈ {1,2, . . . ,N},
be contractive homeomorphisms such that

Ln
(
t0
)= tn−1, Ln

(
tN
)= tn, (2.1)

∣
∣Ln

(
c1
)−Ln

(
c2
)∣∣≤ l

∣
∣c1− c2

∣
∣ ∀c1,c2 ∈ I (2.2)

for some 0≤ l < 1.
Let −1 < sn < 1, n= 1,2, . . . ,N , and F = I ×R, let N be continuous mappings, let Fn :

F →R be given satisfying

Fn
(
t0,x0

)= xn−1, Fn
(
tN ,xN

)= xn, n= 1,2, . . . ,N , (2.3)
∣
∣Fn(t,x)−Fn(t, y)

∣
∣≤ ∣∣sn

∣
∣|x− y|, t ∈ I , x, y ∈R. (2.4)

Now define functions

wn(t,x)=
(
Ln(t),Fn(t,x)

) ∀n= 1,2, . . . ,N , (2.5)

and consider the following theorem.

Theorem 2.1 [2, 3]. The iterated function system (IFS) {F,wn : n = 1,2, . . . ,N} defined
above admits a unique attractor G. G is the graph of a continuous function f : I →R which
obeys f (ti)= xi for i= 0,1,2, . . . ,N .

The previous function f is called a fractal interpolation function (FIF) corresponding
to {(Ln(t),Fn(t,x))}Nn=1. f : I → R is the unique function satisfying the functional equa-
tion

f
(
Ln(t)

)= Fn
(
t, f (t)

)
, n= 1,2, . . . ,N , t ∈ I , (2.6)
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or

f (t)= Fn
(
L−1n (t), f ◦L−1n (t)

)
, n= 1,2, . . . ,N , t ∈ In =

[
tn−1, tn

]
. (2.7)

Let � be the set of continuous functions f : [t0, tN ]→R such that f (t0)= x0, f (tN )=
xN . Define a metric on � by

d( f ,g)= ‖ f − g‖∞ =max
{∣∣ f (t)− g(t)

∣
∣; t ∈ [t0, tN

]} ∀ f ,g ∈�. (2.8)

Then (�,d) is a complete metric space.
Define a mapping T : �→� by

(T f )(t)= Fn
(
L−1n (t), f ◦L−1n (t)

) ∀t ∈ [tn−1, tn
]
, n= 1,2, . . . ,N. (2.9)

Using (2.1)–(2.4), it can be proved that (T f )(t) is continuous on the interval [tn−1, tn]
for n= 1,2, . . . ,N and at each of the points t1, t2, . . . , tN−1. T is a contractive mapping on
the metric space (�,d),

‖T f −Tg‖∞ ≤ |s|∞‖ f − g‖∞, (2.10)

where |s|∞ =max{|sn|; n = 1,2, . . . ,N}. Since |s|∞ < 1, T possesses a unique fixed point
on �, that is to say, there is f ∈� such that (T f )(t)= f (t) for all t ∈ [t0, tN ]. This func-
tion is the FIF corresponding to wn.

The most widely studied fractal interpolation functions so far are defined by the fol-
lowing IFS:

Ln(t)= ant+ bn,

Fn(t,x)= snx+ qn(t)
(2.11)

with

an =
(
tn− tn−1

)

(
tN − t0

) , bn =
(
tN tn−1− t0tn

)

(
tN − t0

) . (2.12)

sn is called the vertical scaling factor of the iterated function system and s = (s1,
s2, . . . ,sN ) is the scale vector of the transformation. If qn(t) are linear for t ∈ [t0, tN ] then
the FIF is called affine (AFIF) (see [2, 11]). The cubic FIF (see [10, 13]) is constructed
using qn(t) as a cubic polynomial.

In many cases, the data are evenly sampled, then

h= tn− tn−1,

tN − t0 =Nh.
(2.13)

In the particular case, sn = 0 for all n= 1,2, . . . ,N , then

Fn(t,x)= qn(t) (2.14)

and f (t)= qn ◦L−1n (t) for all t ∈ In.
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2.2. Differentiable fractal interpolation functions. In this section, we study the con-
struction of smooth fractal interpolation functions. The theorem of Barnsley and Har-
rington [4] proves the existence of differentiable FIFs and gives the conditions for their
existence. We look for IFS satisfying the hypotheses of this theorem.

Theorem 2.2 (Barnsley and Harrington [4]). Let t0 < t1 < t2 < ··· < tN and Ln(t), n =
1,2, . . . ,N , the affine function Ln(t)= ant+ bn satisfying the expressions (2.1)-(2.2). Let an =
L′n(t)= (tn− tn−1)/(tN − t0) and Fn(t,x)= snx+ qn(t), n= 1,2, . . . ,N , verifying (2.3)-(2.4).
Suppose for some integer p ≥ 0, |sn| < a

p
n , and qn ∈�p[t0, tN ]; n= 1,2, . . . ,N . Let

Fnk(t,x)= snx+ q(k)n (t)
akn

, k = 1,2, . . . , p, (2.15)

x0,k = q(k)1

(
t0
)

ak1− s1
, xN ,k = q(k)N

(
tN
)

akN − sN
, k = 1,2, . . . , p. (2.16)

If Fn−1,k(tN ,xN ,k)= Fnk(t0,x0,k) with n= 2,3, . . . ,N and k = 1,2, . . . , p, then

{(
Ln(t),Fn(t,x)

)}N
n=1 (2.17)

determines a FIF f ∈�p[t0, tN ] and f (k) is the FIF determined by

{(
Ln(t),Fnk(t,x)

)}N
n=1 (2.18)

for k = 1,2, . . . , p.

From here on, we consider a uniform partition in order to simplify the calculus. In this
case,

an = 1
N
. (2.19)

If we consider a generic polynomial qn, for instance, the equality proposed in the the-
orem implies the resolution of systems of equations. Sometimes the system has no solu-
tion, mainly whenever some boundary conditions are imposed on the function (see [4]).
We will proceed in a different way. In order to define an IFS satisfying Theorem 2.2, we
consider the following mappings:

Ln(t)= ant+ bn,

Fn(t,x)= snx+ qn(t),
(2.20)

where

qn(t)= g ◦Ln(t)− snb(t), (2.21)

g is a continuous function satisfying

g
(
ti
)= xi, i= 0,1, . . . ,N , (2.22)
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and b(t) is a real continuous function, b �= g, such that

b
(
t0
)= x0, b

(
tN
)= xN . (2.23)

The IFS satisfies the hypotheses (2.1)–(2.5) of Barnsley’s theorem (see [11]). In [11], we
proved some properties of this fractal function.

Definition 2.3. Consider g ∈ �(I) and a partition of the closed interval I = [t0, tN ], Δ :
t0 < t1 < ··· < tN . Let b be defined as before and let s= (s1, . . . sN ) be the scaling vector of
the IFS defined by (2.11) and (2.21).

The corresponding FIF gsΔb, g
s
b, g

s
Δ or simply gs is called s-fractal function of g with

respect to the partition Δ and the function b.

Theorem 2.4 (see [11]). The s-fractal function gsb of g with respect to Δ and b satisfies the
inequality

∥
∥gsb− g

∥
∥∞ ≤

|s|∞
1−|s|∞ ‖g − b‖∞, (2.24)

where |s|∞ =max1≤n≤N{|sn|}. Besides, gsb interpolates to g, that is to say,

gsb
(
tn
)= g

(
tn
) ∀n= 0,1, . . . ,N. (2.25)

Consequence 2.5. If s= 0, then gsb = g.

Remark 2.6. By (2.7), for all t ∈ In, n= 1,2, . . . ,N ,

gsb(t)= g(t) + sn
(
gsb− b

)◦L−1n (t). (2.26)

The first step is to check which conditions should satisfy b(t) in order to fulfill the
hypotheses of the theorem of Barnsley and Harrington.

Let us consider p ≥ 0, |sn| < 1/N p, and qn(t)∈�p[t0, tN ], n= 1,2, . . . ,N .
The prescribed conditions are

Fn−1,k
(
tN ,xN ,k

)= Fnk
(
t0,x0,k

)
, (2.27)

where n= 2,3, . . . ,N , k = 1,2, . . . , p.
We have from the assumptions (2.15) of the theorem,

Fnk(t,x)= snx+ q(k)n (t)
akn

. (2.28)

In this particular case,

qn(t)= g ◦Ln(t)− snb(t) (2.29)

as Ln(t)= (1/N)t+ bn and L′n(t)= 1/N = an, we have for all k = 0,1, . . . , p,

q(k)n (t)= 1
Nk

g(k)
(
Ln(t)

)− snb
(k)(t) (2.30)
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so that (2.27) becomes

Nksn−1
g(k)
(
tN
)−NksNb(k)

(
tN
)

1−NksN
− sn−1Nkb(k)

(
tN
)

=Nksn
g(k)
(
t0
)−Nks1b(k)

(
t0
)

1−Nks1
− snN

kb(k)
(
t0
)
.

(2.31)

If we consider constant scale factors sn = s1 for all n= 1, . . . ,N ,

g(k)
(
tN
)− b(k)

(
tN
)= g(k)

(
t0
)− b(k)

(
t0
)
. (2.32)

A sufficient condition in order to satisfy this equality is

b(k)
(
t0
)= g(k)

(
t0
)
,

b(k)
(
tN
)= g(k)

(
tN
) (2.33)

for k = 0,1,2, . . . , p. In this case, we look for a function b which agrees with g at the ex-
tremes of the interval until the pth derivative.

The conditions (2.33) will be satisfied if a Hermite interpolating polynomial b is con-
sidered, with nodes t0, tN and p derivatives at the extremes. In this case, (see [14]),

b(t)=Hg(t)=
p∑

k=0
g(k)
(
t0
)
�0k(t) +

p∑

k=0
g(k)
(
tN
)
�Nk(t). (2.34)

The functions �ik are defined by means of intermediate lik, for i= 0,N and 0≤ k ≤ p,

l0k(t)=
(
t− t0

)k

k!

(
t− tN
t0− tN

)p+1

, lNk(t)=
(
t− tN

)k

k!

(
t− t0
tN − t0

)p+1

(2.35)

so that

�0p(t)= l0p(t),

�Np(t)= lN p(t),
(2.36)

and for k = p− 1, p− 2, . . . ,0,

�0k(t)= l0k(t)−
p∑

ν=k+1
l(ν)0k

(
t0
)
�0ν(t),

�Nk(t)= lNk(t)−
p∑

ν=k+1
l(ν)Nk

(
tN
)
�Nν(t).

(2.37)

The mappings �ik satisfy

�(σ)
ik

(
t j
)=

⎧
⎨

⎩
1 if i= j, k = σ ,

0 otherwise.
(2.38)
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The degree of Hg(t) is 2p + 1. The function g is an interpolant of the data such that
g ∈�p.

According to the theorem of Barnsley and Harrington, the IFS associated with the kth
derivative of a FIF is expressed by

Ln(t)= 1
N
t+ bn,

Fnk(t,x)=Nks1x+Nkq(k)n (t), k = 0,1,2, . . . , p.
(2.39)

In our case,

qn(t)= g ◦Ln(t)− s1b(t), (2.40)

where b(t) is a Hermite interpolating polynomial of degree 2p+1 of g. The derivatives of
qn(t) become

q(k)n (t)= 1
Nk

g(k)
(
Ln(t)

)− s1b
(k)(t), k = 0,1,2, . . . , p, (2.41)

so that the IFS defining the kth derivative of gsb is (2.15),

Ln(t)= 1
N
t+ bn,

Fnk(t,x)=Nks1x+ g(k) ◦Ln(t)−Nks1b
(k)(t), k = 0,1,2, . . . , p,

(2.42)

that is to say, the map qnk corresponding to Fnk is

qnk(t)= g(k) ◦Ln(t)−Nks1b
(k)(t), k = 0,1,2, . . . , p, (2.43)

so that the kth derivative of the s-fractal function of g with respect to s and b, gsb, agrees
with the fractal function of g(k) with respect to the scaling vectorNks and b(k) (Definition
2.3):

(
gsb
)(k) = (g(k))Nks

b(k) , k = 0,1,2, . . . , p. (2.44)

Proposition 2.7. (gsb)
(k) interpolates to g(k) at the nodes of Δ, for 0≤ k ≤ p.

Proof. The ordinates of (gsb)
(k) at the extremes of the interval are given in the theorem of

Barnsley and Harrington. Applying (2.16), (2.33), and (2.41),

(
gsb
)(k)(

t0
)= x0,k = q(k)1

(
t0
)

ak1− s1
= 1

ak1− s1

(
1
Nk

g(k)
(
L1
(
t0
))− s1b

(k)(t0
)
)

= 1
1− s1Nk

(
g(k)
(
t0
)− s1N

kb(k)
(
t0
))= g(k)

(
t0
)
.

(2.45)

In the same way,

(
gsb
)(k)(

tN
)= g(k)

(
tN
)
. (2.46)
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Now, applying the fixed point equation (2.26) corresponding to kth IFS at tn,

(
gsb
)(k)(

tn
)= Fnk

(
L−1n
(
tn
)
,
(
gsb
)(k) ◦L−1n

(
tn
))

=Nks1
(
gsb
)(k) ◦L−1n

(
tn
)
+ g(k)

(
tn
)−Nks1b

(k) ◦L−1n
(
tn
)= g(k)

(
tn
) (2.47)

since

L−1n
(
tn
)= tN ,

(
gsb
)(k)(

tN
)= g(k)

(
tN
)= b(k)

(
tN
)
.

(2.48)

�

The properties of gsb are as the following.
(i) (gsb)

(k) interpolates to g(k) at the nodes of the partition Δ, for 0≤ k ≤ p.
(ii) gsb may be close to g (choosing suitably the scale vector according to (2.24)).
(iii) gsb preserves the p-smoothness of g.
(iv) gsb preserves the boundary conditions of g.
(v) If s= 0, gsb = g, that is to say, g is a particular case of gsb.

Note. Despite the similarity between gsb and g, in general, they do not agree. In fact, if
s �= 0 and b �= g, then gsb �= g.

Let us assume that gsb = g. If s1 �= 0, applying (2.26) for Ln(t)∈ In,

g ◦Ln(t)= g ◦Ln(t) + s1(g − b)(t),

g(t)= b(t)
(2.49)

for all t ∈ I .

2.3. Uniform bounds. In order to bound the distance between g and gsb, we consider a
theorem of Ciarlet et al. concerning Hermite interpolation.

Given a partition Δ : t0 < t1 < ··· < tN of an interval [t0, tN ], In = [tn−1, tn] for 1≤ n≤
N , the Hermite function space (see [14]) H

p+1
Δ (p ∈N) is defined by

H
p+1
Δ = {ϕ :

[
t0, tN

]−→R; ϕ∈�p
[
t0, tN

]
, ϕ|In ∈�2p+1

}
, (2.50)

where �2p+1 is the space consisting of all polynomials of degree at most 2p+1.

Theorem 2.8 (Ciarlet et al. [6]). Let g ∈�r[t0, tN ] with r ≥ 2p+2, let Δ be any partition

of [t0, tN ], let Δ : t0 < t1 < ··· < tN , and let ϕ(t) be the unique interpolation of g(t) in H
p+1
Δ ,

that is, g(l)(tn)= ϕ(l)(tn), for all 0≤ n≤N , 0≤ l ≤ p. Then

∥
∥g(k)−ϕ(k)

∥
∥∞ ≤

‖Δ‖2p+2−k
22p+2−2kk!(2p+2− 2k)!

∥
∥g(2p+2)

∥
∥∞ (2.51)

for all k = 0,1, . . . , p+1.

In the case in study, we consider a single subinterval of length T = b− a. To bound
the difference between the kth derivative of g and the kth derivative of gsb, we can use
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Theorem 2.4,

∥
∥(gsb

)(k)− g(k)
∥
∥∞ =

∥
∥(g(k)

)Nks
b(k) − g(k)

∥
∥∞ ≤

Nk
∣
∣s1
∣
∣

1−Nk
∣
∣s1
∣
∣
∥
∥g(k)− b(k)

∥
∥∞. (2.52)

Considering that b(t) = ϕ(t) is the Hermite interpolating polynomial of degree 2p +
1 of g, theorem of Ciarlet et al. can be used in order to bound ‖g(k) − b(k)‖∞, so that
applying (2.51), (2.52) and considering g ∈�(2p+2),

∥
∥(gsb

)(k)− g(k)
∥
∥∞ ≤

Nk
∣
∣s1
∣
∣

1−Nk
∣
∣s1
∣
∣
∥
∥g(k)− b(k)

∥
∥∞

≤ Nk
∣
∣s1
∣
∣

1−Nk
∣
∣s1
∣
∣

T2p+2−k

22p+2−2kk!(2p+2− 2k)!

∥
∥g(2p+2)

∥
∥∞, k = 0,1, . . . , p.

(2.53)

2.4. An operator of �p(I). From here on, we denote by gs the s-fractal function of g ∈
�p(I) with respect to a fixed partition Δ of the interval, a scaling vector s with constant
coordinates sn = s1 for all n= 1,2, . . .N and b(t)=Hg(t) defined in the preceding sections.

For fixed Δ, let us consider the operator of �p(I) which assigns gs to the function g,

�s
p(g)= gs. (2.54)

Theorem 2.9. �s
p is a linear, injective, and bounded operator of �p(I).

Proof. The operator is linear as by (2.26) for all t ∈ In,

f s(t)= f (t) + sn
(
f s−Hf

)◦L−1n (t),

gs(t)= g(t) + sn
(
gs−Hg

)◦L−1n (t).
(2.55)

Multiplying the first equation by λ and the second by μ and considering that

λHf +μHg =Hλ f +μg , (2.56)

the function

λ f s +μgs (2.57)

satisfies the equation corresponding to

(λ f +μg)s. (2.58)

By the uniqueness of the solution, the linearity is proved.
To prove the injectivity, let us consider that gs = 0. In this case, for all t ∈ In by (2.26),

0= g(t)− s1Hg ◦L−1n (t) (2.59)

but this equation is satisfied by g(t)= 0 and due to the uniqueness of the solution g = 0.
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We consider �p(I) endowed with the norm ‖ f ‖�p(I) =
∑p

k=0‖ f (k)‖∞. Using the defi-
nition of Hg(t) (2.34),

∥
∥H

( j)
g (t)

∥
∥∞ = sup

∣
∣
∣
∣
∣

p∑

k=0

(
g(k)
(
t0
)
�

( j)
0k (t) + g(k)

(
tN
)
�

( j)
Nk(t)

)
∣
∣
∣
∣
∣,

∥
∥H

( j)
g (t)

∥
∥∞ ≤ sup

t∈I
‖g‖�p(I)

p∑

k=0

(∣∣
∣�

( j)
0k (t)

∣
∣
∣+

∣
∣
∣�

( j)
Nk(t)

∣
∣
∣
)
.

(2.60)

Let us consider

λp = sup
t∈I

0≤ j≤p

p∑

k=0

(∣∣
∣�

( j)
0k (t)

∣
∣
∣+

∣
∣
∣�

( j)
Nk(t)

∣
∣
∣
)

(2.61)

then
∥
∥Hg

∥
∥

�p(I) ≤ ‖g‖�p(I)λp,
∥
∥g −Hg

∥
∥

�p(I) ≤
(
λp +1

)‖g‖�p(I).
(2.62)

On the other hand, using Theorem 2.4, (2.52), and

N j
∣
∣s1
∣
∣

1−N j
∣
∣s1
∣
∣ ≤

Np
∣
∣s1
∣
∣

1−Np
∣
∣s1
∣
∣ (2.63)

for 0≤ j ≤ p, one has

∥
∥gs− g

∥
∥

�p(I) ≤
Np
∣
∣s1
∣
∣

1−Np
∣
∣s1
∣
∣
∥
∥g −Hg

∥
∥

�p(I), (2.64)

by (2.64) and (2.62),

∥
∥gs
∥
∥

�p(I)−‖g‖�p(I) ≤ Np
∣
∣s1
∣
∣

1−Np
∣
∣s1
∣
∣
(
λp +1

)‖g‖�p(I),

∥
∥gs
∥
∥

�p(I) ≤
1+ λpN p

∣
∣s1
∣
∣

1−Np
∣
∣s1
∣
∣ ‖g‖�p(I).

(2.65)

As a consequence, �s
p is bounded and

∥
∥�s

p

∥
∥≤ 1+ λpN p

∣
∣s1
∣
∣

1−Np
∣
∣s1
∣
∣ . (2.66)

�

2.5. Convergence in �p(I). Let x ∈ �p(I) be an original function providing the data
and let gΔN ∈ �p(I) be an interpolant of x on the partition ΔN . We consider the fractal
function gs

N

ΔN
of gΔN with respect to the partition ΔN , the scale vector sN with constant

coordinates, and the function b defined by the equality (2.34).
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Theorem 2.10. If x ∈�p(I) is an original function and gΔN is a p-smooth interpolant of x
with respect to the partition ΔN , consider a scaling vector sN with constant coordinates such
that |sN1 | < 1/N p, then

∥
∥x− gs

N

ΔN

∥
∥

�p(I) ≤
∥
∥x− gΔN

∥
∥

�p(I) +
Np
∣
∣sN1

∣
∣

1−Np
∣
∣sN1

∣
∣
(
λp +1

)∥∥gΔN

∥
∥

�p(I). (2.67)

Proof. One has

∥
∥x− gs

N

ΔN

∥
∥

�p(I) ≤
∥
∥x− gΔN

∥
∥

�p(I) +
∥
∥gΔN − gs

N

ΔN

∥
∥

�p(I), (2.68)

by (2.64),

∥
∥x− gs

N

ΔN

∥
∥

�p(I) ≤
∥
∥x− gΔN

∥
∥

�p(I) +
Np
∣
∣sN1

∣
∣

1−Np
∣
∣sN1

∣
∣
∥
∥gΔN −HgΔN

∥
∥

�p(I). (2.69)

Using (2.62), the result is obtained. �

Consequence 2.11. If one considers a scaling vector such that |sN1 | < 1/N p+r , for r > 0
fixed, the fractal interpolant gs

N

ΔN
converges in �p(I) towards the original x if gΔN does (as

N tends to∞).

Note. The constant λp does not depend on ΔN but only on the extremes of the interval.

3. Fractal cubic splines

In this section, we study the particular case p = 2, considering the following IFS:

Ln(t)= ant+ bn,

Fn(t,x)= snx+ qn(t),
(3.1)

where an = 1/N , sn = s1 for all n= 1,2, . . . ,N ,

qn(t)= g ◦Ln(t)− s1b(t), (3.2)

where g is a cubic spline with respect to a uniform partition ΔN (g = σΔN ) and b =Hg is
a Hermite interpolating polynomial satisfying the described conditions (2.33) with p = 2
(b(t) is a polynomial of degree 5).

We use a classical result of splines in order to find �2(I) bounds of the interpolation
error.

Theorem 3.1 (Hall and Meyer [7]). Let f ∈ �4[a,b] and | f (4)(t)| ≤ L for all t ∈ [a,b].
Let ‖ f ‖∞ = sup| f (t)| when t ∈ [a,b]. Let ΔN = {a= t0 < t1 < ··· < tN = b} be a partition
of the interval [a,b], with constant distances between nodes h = tn − tn−1. Let σΔN be the
spline function that interpolates the values of the function f at the points t0, t1, . . . , tN ∈ ΔN ,
being σΔN type I or II. Then

∥
∥ f (r)− σ (r)ΔN

∥
∥∞ ≤ CrLh

4−r (r = 0,1,2) (3.3)

with C0 = 5/384, C1 = 1/24, C2 = 3/8. The constants C0 and C1 are optimum.
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Remark 3.2. A spline is type I if its first derivatives at a and b are known. A spline is type
II if it can be explicitly represented by its second derivatives at a and b.

Theorem 3.3. Let x(t) be a function verifying x(t) ∈ �4[t0, tN ] and |x(4)(t)| ≤ L for all
t ∈ [t0, tN ]. Let σΔN (t) be a cubic spline (with respect to the uniform partition ΔN ) and let
b(t) be a Hermite interpolating polynomial of degree 5 of σΔN at the extremes of the interval.
Choose a scaling vector with constant coordinates such that |sN1 | < 1/N2, then

∥
∥x− σs

N

ΔN

∥
∥

�2(I) ≤Mh +
N2
∣
∣sN1

∣
∣

1−N2
∣
∣sN1

∣
∣
(
λ2 + 1

)(
Mh +‖x‖�2(I)

)
, (3.4)

where Mh = C0Lh4 +C1Lh3 +C2Lh2, C0, C1, C2 are the constants of Hall and Meyer theo-
rem, T = tN − t0 =Nh, and λ2 is defined in (2.61).

Proof. Applying Theorem 2.10,

∥
∥x− σs

N

ΔN

∥
∥

�2(I) ≤Mh +
N2
∣
∣sN1

∣
∣

1−N2
∣
∣sN1

∣
∣
(
λ2 + 1

)∥∥σΔN

∥
∥

�2(I). (3.5)

Using now theorem of Hall and Meyer,

∥
∥σΔN

∥
∥

�2(I) ≤Mh +‖x‖�2(I) (3.6)

and the result is obtained. �

3.1. Convergence in �2[a,b]. In this subsection, we weaken the hypotheses about the
original function x. The set

�2[a,b]= {x : [a,b]−→R; x′ absolutely continuous; x′′ ∈ L2(a,b)
}

(3.7)

is a Hilbert space with respect to the inner product

〈x, y〉 =
2∑

j=0

〈
x( j), y( j)

〉
L2(a,b), (3.8)

where

〈 f ,g〉L2(a,b) =
(∫ b

a
f (t)g(t)dt

)1/2
(3.9)

and the norm

‖x‖�2[a,b] =
( 2∑

j=0
‖x‖2j

)1/2

, (3.10)

where

‖x‖ j =
(∫ b

a

(
x( j)(t)

)2
dt
)1/2

= ∥∥x( j)∥∥L2(a,b) for j = 0,1,2. (3.11)
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Cubic splines belong to �2[a,b] and these functions satisfy the following very well-
known properties with respect to the elements of �2[a,b] (see [1]).

Theorem 3.4. Consider x ∈�2[a,b] and consider a sequence of partitions ΔN such that
‖ΔN‖→ 0 as N →∞. If σΔN is a spline of interpolation of x with respect to the partition ΔN ,

then {σ (q)ΔN
} converges uniformly to x(q) on I = [a,b] for q = 0,1.

Theorem 3.5. If x ∈�2[a,b] and σΔ is a spline of interpolation of x with respect to the
partition Δ, then

‖x‖22 =
∥
∥σΔ

∥
∥2
2 +
∥
∥x− σΔ

∥
∥2
2. (3.12)

Consequence 3.6. One has

‖x‖22−
∥
∥σΔ

∥
∥2
2 ≥ 0. (3.13)

Consequence 3.7. If x ∈�2[a,b] is such that x(ti)= xi at the nodes of the partition Δ and
σΔ(t) is the cubic spline corresponding to (ti,xi), then

∫ b

a

∣
∣σ ′′Δ (t)

∣
∣2dt ≤

∫ b

a

∣
∣x′′(t)

∣
∣2dt (3.14)

(property of minimum ‖ · ‖2-norm).

Theorem 3.9 states the convergence of fractal cubic splines towards the original func-
tion if an additional condition is imposed on the scaling factors.We need a previous result
concerning fractal interpolation functions.

Lemma 3.8. For a uniform partition and constant scale factors sn = s1, for all n= 1, . . . ,N ,

∥
∥ f s− f

∥
∥
L2(a,b) ≤

∣
∣s1
∣
∣

1−∣∣s1
∣
∣‖ f − b‖L2(a,b). (3.15)

Proof. According to (2.26), for all t ∈ In,

f s(t)− f (t)= s1
(
f s− b

)◦L−1n (t),

∥
∥ f s− f

∥
∥2
L2(a,b) =

N∑

n=1
s21

∫ tn

tn−1

[(
f s− b

)◦L−1n (t)
]2
dt.

(3.16)

The change of variable t̃ = L−1n (t) provides

∥
∥ f s− f

∥
∥2
L2(a,b) = s21

N∑

n=1
an

∫ b

a

[(
f s− b

)
(t̃)
]2
dt̃,

∥
∥ f s− f

∥
∥2
L2(a,b) = s21

∥
∥ f s− b

∥
∥2
L2(a,b).

(3.17)
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As a consequence,
∥
∥ f s− f

∥
∥
L2(a,b) =

∣
∣s1
∣
∣
∥
∥ f s− b

∥
∥
L2(a,b) ≤

∣
∣s1
∣
∣(
∥
∥ f s− f

∥
∥
L2(a,b) +

∥
∥ f − b

∥
∥
L2(a,b)

)
,

∥
∥ f s− f

∥
∥
L2(a,b) ≤

∣
∣s1
∣
∣

1−∣∣s1
∣
∣
∥
∥ f − b

∥
∥
L2(a,b).

(3.18)

�

The next theorem states the convergence of fractal cubic splines towards any original
function x ∈�2[a,b] when the partition is refined. A part of the proof can be read in [1,
Theorem 3.14.1]. For reason of completeness, we include it here.

Theorem 3.9. Consider x ∈�2[a,b] and let {ΔN} be a sequence of partitions such that
ΔN ⊆ ΔN+1 and ‖ΔN‖ → 0 as N →∞. Let sN ∈ (−1,1)N be any sequence of scaling vectors
with constant coordinates satisfying |sN1 | < 1/N2+r , where r > 0, then {σsNΔN

} converges to x in
the norm of �2[a,b].

Proof. As ΔN ⊆ ΔN+1, the spline σΔN interpolates to σΔN+1 at the nodes of ΔN . Applying
the property of minimum ‖ · ‖2-norm,

∥
∥σΔN

∥
∥
2 ≤

∥
∥σΔN+1

∥
∥
2. (3.19)

As a consequence, {‖σΔN‖2}∞N=1 is increasing. Besides, σΔN is bounded because of (3.13),
∥
∥σΔN

∥
∥
2 ≤ ‖x‖2, (3.20)

therefore, {‖σΔN‖2}∞N=1 is a convergent sequence. Using the same argument, as ΔN ⊆
ΔN+p for all p ∈N , by (3.12),

∥
∥σΔN+p − σΔN

∥
∥2
2 =

∥
∥σΔN+p

∥
∥2
2−
∥
∥σΔN

∥
∥2
2 (3.21)

and {σ ′′ΔN
} is a Cauchy sequence in L2(a,b). As L2(a,b) is complete, there exists y ∈

L2(a,b) such that

lim
N→∞

∫ b

a

∣
∣y(t)− σ ′′ΔN

(t)
∣
∣2dt = 0. (3.22)

Let us define Y(t)= x′(a) +
∫ t
a y(u)du,

∣
∣Y(t)− σ ′ΔN

(t)
∣
∣≤

∫ t

a

∣
∣y(u)− σ ′′ΔN

(u)
∣
∣du+

∣
∣x′(a)− σ ′ΔN

(a)
∣
∣

≤
〈∣
∣y− σ ′′ΔN

∣
∣,1
〉

L2(a,b)
+
∣
∣x′(a)− σ ′ΔN

(a)
∣
∣.

(3.23)

Using Schwarz’s inequality,

∣
∣Y(t)− σ ′ΔN

(t)
∣
∣≤

(∫ b

a

∣
∣y(t)− σ ′′ΔN

(t)
∣
∣2dt

)1/2
(b− a)1/2 +

∣
∣x′(a)− σ ′ΔN

(a)
∣
∣. (3.24)

Considering (3.22), (3.24), and Theorem 3.4,

lim
N→∞

σ ′ΔN
(t) =

unif
Y(t). (3.25)
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Besides,

∣
∣x′(t)−Y(t)

∣
∣≤ ∣∣x′(t)− σ ′ΔN

(t)
∣
∣+

∣
∣σ ′ΔN

(t)−Y(t)
∣
∣. (3.26)

Applying limits in this expression asN →∞, according to Theorem 3.4 and (3.25), x′ = Y
and x′′ = Y ′ = y almost everywhere. As a consequence by (3.22), as N →∞,

∥
∥σΔN − x

∥
∥
2 −→ 0 (3.27)

and by (3.25),

∥
∥σ ′ΔN

− x′
∥
∥∞ −→ 0. (3.28)

According to Theorem 3.4, as ‖ΔN‖→ 0 and x ∈�2(a,b),

∥
∥σΔN − x

∥
∥∞ −→ 0. (3.29)

The uniform convergence on I = [a,b] implies L2-convergence and

∥
∥σΔN − x

∥
∥

�2[a,b] −→ 0. (3.30)

Let us consider now any sequence of scaling factors such that |sN1 | < 1/N2+r , where r > 0.
One has

∥
∥x− σs

N

ΔN

∥
∥

�2[a,b] ≤
∥
∥x− σΔN

∥
∥

�2[a,b] +
∥
∥σs

N

ΔN
− σΔN

∥
∥

�2[a,b]. (3.31)

Considering (2.44) and Lemma 3.8, for j = 0,1,2,

∥
∥
∥
(
σs

N

ΔN

)( j)− σ
( j)
ΔN

∥
∥
∥
L2(a,b)

≤ N j
∣
∣sN1

∣
∣

1−N j
∣
∣sN1

∣
∣

∥
∥
∥σ

( j)
ΔN
− b( j)

∥
∥
∥
L2(a,b)

. (3.32)

As a consequence, bearing in mind that for j = 0,1,2,

N j
∣
∣sN1

∣
∣

1−N j
∣
∣sN1

∣
∣ ≤

N2
∣
∣sN1

∣
∣

1−N2
∣
∣sN1

∣
∣ , (3.33)

one has

∥
∥σs

N

ΔN
− σΔN

∥
∥

�2[a,b] ≤
N2
∣
∣sN1

∣
∣

1−N2
∣
∣sN1

∣
∣
∥
∥σΔN − b

∥
∥

�2[a,b] (3.34)

on the other hand,

∥
∥σΔN − b

∥
∥

�2[a,b] ≤
∥
∥σΔN − x

∥
∥

�2[a,b] +‖x− b‖�2[a,b]. (3.35)

Due to the convergence of σΔN to x in �2[a,b] (3.30), ‖σΔN − b‖�2[a,b] is bounded (3.35).
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Since |sN1 | < 1/N2+r , taking limits in (3.34) as N →∞,

∥
∥σs

N

ΔN
− σΔN

∥
∥

�2[a,b] −→ 0. (3.36)

Finally, by (3.30) and (3.31),

σs
N

ΔN
−→ x (3.37)

in �2[a,b]. �

Consequence 3.10. The fractal cubic splines with non-null scale vector are dense in
�2[a,b].

Note. For sN = 0, we retrieve the standard spline case.

3.2. Fractal cubic spline operator. Let

ΔN : a= t0 < t1 < t2 < ··· < tN+1 = b (3.38)

be a given partition of the interval [a,b]. We follow here the spline definition of Laurent
(see [9]). In order to simplify the notation, we will omit the subindex and we will write
σ(t) to represent a spline with respect to ΔN .

Definition 3.11. Let S be the space of cubic spline functions σ defined in [a,b] such that
(i) σ is a cubic polynomial on each subinterval (tk, tk+1), k = 1, . . . ,N − 1,
(ii) σ is a polynomial of degree 1 in [a, t1) and (tN ,b],
(iii) σ ′′ is continuous.

Note 1. S is a linear subspace of �2[a,b].

Note 2. In this case, σ ′′(a)= σ ′′(b)= 0 (natural splines).

Note 3. Every σ ∈ S can be expressed as (see [9]),

σ(t)=
1∑

j=0
s j t

j +
N∑

k=1
dk

(
t− tk

)3
+

3!
, (3.39)

where

(
t− tk

)3
+ =

⎧
⎨

⎩

(
t− tk

)3
if t ≥ tk,

0 if t < tk,

dk = σ (3)
(
tk +

)− σ (3)
(
tk −

)
.

(3.40)

Besides, dk satisfies the condition

N∑

k=1
dk
(
tk
)K = 0, K = 0,1. (3.41)



M. A. Navascués and M. V. Sebastián 17

Let σkN be the unique cubic spline defined by

σkN
(
t j
)= δjk ∀ j,k = 1,2, . . . ,N , (3.42)

where δjk is the delta of Kronecker. The family {σkN}Nk=1 is an orthonormal system with
respect to the form

〈 f ,g〉 =
N∑

k=1
f
(
tk
)
g
(
tk
)
. (3.43)

Besides,

S= span
{
σkN

}N
k=1. (3.44)

Let s be a scale vector with constant coordinates such that |s1| < 1/(N +1)2. As S⊂�2(I),
we can consider the operator �s

p defined in Section 2.4 for p = 2. �s
2(S)= Ss is the space

of s-fractal functions of S with respect to the partition

ΔN : a= t0 < t1 < t2 < ··· < tN+1 = b. (3.45)

Since �s
2 is linear,

�s
2(S)= Ss = span

{
σskN

}N
k=1. (3.46)

The family σskN is orthonormal respect to (3.43) because

σskN
(
t j
)= σkN

(
t j
)= δjk (3.47)

for k, j = 1,2, . . . ,N . As a consequence, {σskN}Nk=1 is a basis of Ss.
Let us define the fractal cubic spline operator with domain�[a,b] or, more specifically,

�2[a,b],

�s
N (g)(t)=

N∑

k=1
g
(
tk
)
σskN (t). (3.48)

Note that for all k = 1,2, . . . ,N ,

SsN (g)
(
tk
)= g

(
tk
)

(3.49)

since, for all j,k = 1,2, . . . ,N ,

σskN
(
t j
)= σkN

(
t j
)= δjk. (3.50)

Proposition 3.12. �s
N is linear.

Proof. It is an immediate consequence of (3.48). �

Without loss of generality, we consider I = [0,1] and tk = k/N .
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Lemma 3.13. Let f and g be defined in I such that f (tk)= g(tk) for k = 1,2, . . . ,N for some
N , then

�s
N ( f )=�s

N (g). (3.51)

Proof. For all t ∈ I ,

�s
N ( f )(t)=

N∑

k=1
f
(
tk
)
σskN (t)=

N∑

k=1
g
(
tk
)
σskN (t)=�s

N (g)(t). (3.52)

�

Let us consider a sequence of partitions ΔN such that Δ=⋃N∈NΔN is dense in I .

Lemma 3.14. If f and g are functions defined on I such that

lim
N→∞

�s
N ( f )(t)= g(t) ∀t ∈ Δ, (3.53)

then

f (t)= g(t) ∀t ∈ Δ. (3.54)

Proof. If t ∈ Δ, then t ∈ ΔN0 for some N0, t = n/N0 and by (3.49),

�s
N0
( f )(t)= f (t). (3.55)

If the sequence of partitions {ΔmN0} is considered t = n/N0 = mn/mN0 ∈ ΔmN0 and
�s

mN0
( f )(t)= f (t),

f (t)= lim
m→∞�s

mN0
( f )(t)= g(t). (3.56)

�

Proposition 3.15. If, in addition to the hypotheses of Lemma 3.14, f and g ∈�2[0,1],
then f = g.

Proof. It is a consequence of the density of Δ in I and the continuity of f and g. If t ∈
[a,b] there exists tm ∈ Δ such that tm −−−→

m→∞ t therefore, f (tm)→ f (t) and g(tm)→ g(t) as

m→∞. But f (tm)= g(tm) (previous lemma) and therefore, f (t)= g(t), for all t ∈ I . �

Proposition 3.16. If g ∈ �2(I), then �s
N (g

s) = �s
N (g). (g

s = �s
2(g) with respect to the

partition ΔN .)

Proof. It is an immediate consequence of the definition of �s
N and the properties of in-

terpolation of gs with respect to g. �

Proposition 3.17. If σ ∈ S, then �s
N (σ

s)= σs.

Proof. Let us consider σ ∈ S. By Proposition 3.16, since σ ∈�2(I),

�s
N

(
σs
)
(t)=�s

N (σ)(t)=
N∑

k=1
σ
(
tk
)
σskN (t). (3.57)
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On the other hand,

σ(t)=
N∑

k=1
σ
(
tk
)
σkN (t) (3.58)

because the spline passing through σ(tk) is unique. By the linearity of �s
2,

σs(t)=
N∑

k=1
σ
(
tk
)
σskN (t), (3.59)

by (3.57) and (3.59),

�s
N

(
σs
)= σs. (3.60)

�

Consequence 3.18. The fractal cubic splines with scale vector s are eigenfunctions (or fixed
points) of the operator �s

N .

Proposition 3.19. �s
N is a projector of �2[0,1],

�s
N ◦�s

N =�s
N . (3.61)

Proof. For all g ∈�2[0,1],

�s
N (g)=

N∑

k=1
g
(
tk
)
σskN ∈ Ss (3.62)

and, as a consequence, �s
N (g) is a fixed point of �s

N (Proposition 3.17),

�s
N

(
�s

N (g)
)=�s

N (g). (3.63)
�
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